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• Explain why this is a reasonably-shaped profit function.

For example, P (0) = −20; does that make sense?

• Find the optimum number of Freshies to produce.
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Our next goal is to increase our toolbox of functions

beyond polynomials, etc. Our first new functions will be

the exponential functions. These functions arise in

population modeling, finance, the study of heat transfer

and rates of reaction in physics, chemistry and biology.

Exponential functions arise by taking one number to the

power of another, just as polynomial functions like x3 do.

For exponential functions, the variable occurs as the

power, not as the base.
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It is an interesting story to see how the exponential

function is defined for different kinds of numbers; its

careful development required many of the fundamental

ideas in calculus.

We develop the function 4x, to be concrete and to be

clear that for exponential functions, the variable appears

in the power.
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Important fact: if 4x = 4y then x = y. In other words,

the function 4x doesn’t repeat any values (in contrast

with most other functions – for example, x2 + 2 has the

same value when x = 2 or x = −2.)

The graph of an exponential function always starts or

ends close to the x-axis (why?) and then gets far away

from the axis very quickly.

Example 5. Sketch the graphs of the exponential

functions f(x) = −3 · 2x and y = (2
3)

x.
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example, $100 loaned with a one-time 7% rate is repaid

as 100 + 0.07× 100 = 107 dollars. It will be helpful to

rewrite P + rP as P (1 + r).

• Some loans/investments accrue interest yearly. In these

cases, one is paying/earning interest on top of interest.

For example, after two years of 7% interest, $100
becomes [100 × (1.07)] × (1.07) = 114.49 dollars. (in

this case, the 49 cents is the interest on top of interest).

In general, if for a principal of P , the value after n years

will be P (1 + r)n. Note that interest on top of interest

becomes much more significant as n gets larger.
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• In order to be more sensitive to when transactions

are made, it makes sense to compound interest more

frequently. To compound things monthly, we would

charge an interest of r
12 each month, resulting in a total

return of P (1 + r
12)

n, where n is the number of months.

Note that the total for n = 12, which is a year, will be

greater than if an interest of r percent is changed once.

To compound interest every day would result in a total

of P (1 + r
365)

n, after n days, for P (1 + r
365)

365 after a

year.
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• We could even compoud every hour, every minute,

etc. The general formula is that after a year one has

P (1 + r
N)N , if one compounds N times. For a fraction

q of a year (such as 1
2 for six monts), the formula is

P (1 + r
N)qN . For example, if one compounds 5% yearly

interest every day, then after 6 months $100 becomes

100(1 + 0.05
365 )182 = $102.53
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• Theoretically, we can compound continuously by taking

the limit as N goes to ∞ in the formula above. For

example, suppose we invest $1 with yearly interest of

100%, so that r = 1. How much would there be if the

interest is compounded continuously?

N 1 2 10 100 1000 100000

(1 + 1
N)N 2 2.25 2.594 2.705 2.71815 2.71827

In the limit, the answer to this question is the magic

number e, whose value is approximately 2.71828.
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• In general, if P dollars are invested at an annual rate of

r × 100 percent, then the balance B(t) after t years is

Pert dollars.

The number e is called the natural base for

exponentiation, since it occurs raised to a power in

problems from almost every quantitative subject.

Example 6. What are you paying out to the credit card

company if you have a $1000 balance at a 19% APR

compounded continuously, which you finally pay after two

years?
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