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• When making a loan to a good friend, you charge no
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• A personal loan between strangers often has a one-

time interest charge. If P dollars is loaned, P + rP

dollars is paid back, where r is the interest rate. For
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example, $100 loaned with a one-time 7% rate is repaid

as 100 + 0.07× 100 = 107 dollars. It will be helpful to

rewrite P + rP as P (1 + r).

• Some loans/investments accrue interest yearly. In these

cases, one is paying/earning interest on top of interest.

For example, after two years of 7% interest, $100
becomes [100 × (1.07)] × (1.07) = 114.49 dollars. (in

this case, the 49 cents is the interest on top of interest).

In general, if for a principal of P , the value after n years

will be P (1 + r)n. Note that interest on top of interest

becomes much more significant as n gets larger.
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• In order to be more sensitive to when transactions

are made, it makes sense to compound interest more

frequently. To compound things monthly, we would

charge an interest of r
12 each month, resulting in a total

return of P (1 + r
12)

n, where n is the number of months.

Note that the total for n = 12, which is a year, will be

greater than if an interest of r percent is changed once.

To compound interest every day would result in a total

of P (1 + r
365)

n, after n days, for P (1 + r
365)

365 after a

year.
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• We could even compoud every hour, every minute,

etc. The general formula is that after a year one has

P (1 + r
N)N , if one compounds N times. For a fraction

q of a year (such as 1
2 for six monts), the formula is

P (1 + r
N)qN . For example, if one compounds 5% yearly

interest every day, then after 6 months $100 becomes

100(1 + 0.05
365 )182 = $102.53
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• Theoretically, we can compound continuously by taking

the limit as N goes to ∞ in the formula above. For

example, suppose we invest $1 with yearly interest of

100%, so that r = 1. How much would there be if the

interest is compounded continuously?

N 1 2 10 100 1000 100000

(1 + 1
N)N 2 2.25 2.594 2.705 2.71815 2.71827

In the limit, the answer to this question is the magic

number e, whose value is approximately 2.71828.
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Theorem 1. In general, if P dollars are invested at an

annual rate of r × 100 percent, then the balance B(t)
after t years is Pert dollars.

The number e is called the natural base for

exponentiation, since it occurs raised to a power in

problems from almost every quantitative subject.

Example 2. What are you paying out to the credit card

company if you have a $1000 balance at a 19% APR

compounded continuously, which you finally pay after two

years?
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Example 3. Find the value of $325, 000 after 1 year

with 7% interest compounded yearly, monthly, daily and

continuously. (Ans: 347750; 348494.28; 348562.82;

348565.16)

Example 4. What would you need to deposit in the bank

at a 3% interest rate in order to have $40K in the bank

ten years from now? (This kind of calculation is called a

present value calculation).
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Logarithmic functions

Many common functions arise through “undoing” basic

functions (more formally, we say they are inverses of

basic functions). For example, subtraction was invented

as the inverse of addition, division as the inverse of

multiplication, and the square root as the inverse of the

squaring function.

Definition 5. The inverse of the exponential function ax

is called the logarithm function (with a base of a) denoted

loga(x). By this definition, loga ax = x and aloga x = x.
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The logarithm with a base of e is called the natural log

function and is denoted ln(x).

Example 6. • log10 10000 = 6 because 106 = 100000.

• log2
1
8 = −3 because 2−3 = 1

8.

• ln
√

e = 1
2 because e

1
2 =

√
e.

The properties of the logarithm function follow from

those of the exponential function.
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• loga(xy) = loga x + loga y follows from ax+y = axay.

• loga xy = y loga x follows from (ax)y = axy.

• logb x = logb a·loga x follows from the previous property.

In other words, logarithms turn multiplication to addition

and turn exponentiation to multiplication. Also note that

the last property says that logarithms with different bases

are related by multiplication by a constant.
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