Assignment (Group 1)
 Calculus and Analytical Geometry
 Energy and Environment - Batch 15

1. Show that function $y=\sin \left(\frac{1}{x}\right)$ has no limit as x approaches to zero i.e. $x \rightarrow 0$. Interpret your understanding graphically.
2. Find all possible values of n if given function $z=\frac{x e^{2 x}}{y^{n}}$ satisfy the equation

$$
3 x \frac{\partial^{2} z}{\partial x^{2}}-x y^{2} \frac{\partial^{2} z}{\partial y^{2}}=12 z
$$

3. What do you mean by definite and indefinite integration? What are the applications of integration?
4. Solve the following integral

$$
\int \frac{\left.(2 r-1) \cos \left(\sqrt{(} 3(2 r-1)^{2}+6\right)\right)}{\left.\sqrt{(} 3(2 r-1)^{2}+6\right)} d r
$$

5. For what value or values of the constant k will the curve $y=x^{3}+$ $k x^{2}+3 x-4$ have exactly one horizontal tangent? [Note: For any curve $y=f(x),\left.\frac{d y}{d x}\right|_{x=a}=y^{\prime}(a)$ is the slope of tangent line]
6. Suppose that it costs a company $y=a+b x$ USD to produce x units per week. Company sells x units per week at a price of $P=c-d x$ dollars per unit. Each of a, b, c, and d is a positive constant.
(a) What production level maximizes the profit?
(b) What is the corresponding price?
