Assignment (Group 5)
 Calculus and Analytical Geometry
 Energy and Environment - Batch 15

1. Define derivative of the function $f(x)$. Interprete derivative as rate of change of function. Write the function whose first and second derivatives are same.
2. If $x^{2}+y^{2}+z^{2}=1$, find the rate of at which z is changing with respect to y at the point $\left(\frac{2}{3}, \frac{1}{3}\right)$.
3. Differentiate the proper and improper integration? Explain how integration is applied to engineering problems?
4. Find a function, whose minimum and maximum of a function on an interval $I=[a, b]$ are equal.
5. Suppose that the velocity of a moving body is $\frac{d s}{d t}=v=9.8 t-3$. Find the body's displacement over the time interval from $t=1$ to $t=3$ given that $s=5$ when $t=0$. [Hint: Use antiderivatives/integration]
6. Find second order partial derivatives $f_{x x}$ and $f_{y y}$ of the function $f(x, y)=$ $e^{x y^{2}}$.
