Limits and Derivatives

The Precise Definition of a Limit

The Precise Definition of a Limit

The intuitive definition of a limit is inadequate for some purposes because such phrases as " x is close to 2 " and " $f(x)$ gets closer and closer to L " are vague.

In order to be able to prove conclusively that

$$
\lim _{x \rightarrow 0}\left(x^{3}+\frac{\cos 5 x}{10,000}\right)=0.0001 \quad \text { or } \quad \lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

we must make the definition of a limit precise.

The Precise Definition of a Limit

To motivate the precise definition of a limit, let's consider the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x \neq 3 \\ 6 & \text { if } x=3\end{cases}
$$

Intuitively, it is clear that when x is close to 3 but $x \neq 3$, then $f(x)$ is close to 5 , and so $\lim _{x \rightarrow 3} f(x)=5$.

To obtain more detailed information about how $f(x)$ varies when x is close to 3 , we ask the following question: How close to 3 does x have to be so that $f(x)$ differs from 5 by less than 0.1 ?

The Precise Definition of a Limit

The distance from x to 3 is $|x-3|$ and the distance from $f(x)$ to 5 is $|f(x)-5|$, so our problem is to find a number δ such that

$$
|f(x)-5|<0.1 \quad \text { if } \quad|x-3|<\delta \quad \text { but } x \neq 3
$$

If $|x-3|>0$, then $x \neq 3$, so an equivalent formulation of our problem is to find a number δ such that

$$
|f(x)-5|<0.1 \text { if } 0<|x-3|<\delta
$$

The Precise Definition of a Limit

Notice that if $0<|x-3|<(0.1) / 2=0.05$, then

$$
\begin{aligned}
|f(x)-5|=|(2 x-1)-5| & =|2 x-6| \\
& =2|x-3|<2(0.05)=0.1
\end{aligned}
$$

that is,

$$
|f(x)-5|<0.1 \quad \text { if } \quad 0<|x-3|<0.05
$$

Thus an answer to the problem is given by $\delta=0.05$; that is, if x is within a distance of 0.05 from 3 , then $f(x)$ will be within a distance of 0.1 from 5 .

The Precise Definition of a Limit

If we change the number 0.1 in our problem to the smaller number 0.01 , then by using the same method we find that $f(x)$ will differ from 5 by less than 0.01 provided that x differs from 3 by less than $(0.01) / 2=0.005$:

$$
|f(x)-5|<0.01 \quad \text { if } \quad 0<|x-3|<0.005
$$

Similarly,

$$
|f(x)-5|<0.001 \quad \text { if } \quad 0<|x-3|<0.0005
$$

The numbers $0.1,0.01$, and 0.001 that we have considered are error tolerances that we might allow.

The Precise Definition of a Limit

For 5 to be the precise limit of $f(x)$ as x approaches 3 , we must not only be able to bring the difference between $f(x)$ and 5 below each of these three numbers; we must be able to bring it below any positive number.

And, by the same reasoning, we can! If we write ε (the Greek letter epsilon) for an arbitrary positive number, then we find as before that

1

$$
|f(x)-5|<\varepsilon \quad \text { if } \quad 0<|x-3|<\delta=\frac{\varepsilon}{2}
$$

The Precise Definition of a Limit

This is a precise way of saying that $f(x)$ is close to 5 when x is close to 3 because (1) says that we can make the values of $f(x)$ within an arbitrary distance ε from 5 by restricting the values of x within a distance $\varepsilon / 2$ from 3 (but $x \neq 3$).

Note that (1) can be rewritten as follows: if

$$
3-\delta<x<3+\delta \quad(x \neq 3)
$$

then

$$
5-\varepsilon<f(x)<5+\varepsilon
$$

and this is illustrated in Figure 1.

Figure 1

The Precise Definition of a Limit

By taking the values of $x(\neq 3)$ to lie in the interval $(3-\delta, 3+\delta)$ we can make the values of $f(x)$ lie in the interval $(5-\varepsilon, 5+\varepsilon)$.

Using (1) as a model, we give a precise definition of a limit.

2 Precise Definition of a Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then we say that the limit of $f(x)$ as x approaches a is L, and we write

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

The Precise Definition of a Limit

Since $|x-a|$ is the distance from x to a and $|f(x)-L|$ is the distance from $f(x)$ to L, and since ε can be arbitrarily small, the definition of a limit can be expressed in words as follows:

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that the distance between $f(x)$ and L can be made arbitrarily small by requiring that the distance from x to a be sufficiently small (but not 0).

The Precise Definition of a Limit

Alternatively,

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that the values of $f(x)$ can be made as close as we please to L by requiring x to be close enough to a (but not equal to a).

The Precise Definition of a Limit

We can also reformulate Definition 2 in terms of intervals by observing that the inequality $|x-a|<\delta$ is equivalent to $-\delta<x-a<\delta$, which in turn can be written as $a-\delta<x<a+\delta$.

Also $0<|x-a|$ is true if and only if $x-a \neq 0$, that is, $x \neq a$.

The Precise Definition of a Limit

Similarly, the inequality $|f(x)-L|<\varepsilon$ is equivalent to the pair of inequalities $L-\varepsilon<f(x)<L+\varepsilon$. Therefore, in terms of intervals, Definition 2 can be stated as follows:

$$
\lim _{x \rightarrow a} f(x)=L
$$

means that for every $\varepsilon>0$ (no matter how small ε is) we can find $\delta>0$ such that if x lies in the open interval ($a-\delta, a+\delta$) and $x \neq a$, then $f(x)$ lies in the open interval $(L-\varepsilon, L+\varepsilon)$.

The Precise Definition of a Limit

We interpret this statement geometrically by representing a function by an arrow diagram as in Figure 2, where f maps a subset of \mathbb{R} onto another subset of \mathbb{R}.

Figure 2

The Precise Definition of a Limit

The definition of limit says that if any small interval ($L-\varepsilon, L+\varepsilon$) is given around L, then we can find an interval ($a-\delta, a+\delta$) around a such that f maps all the points in ($a-\delta, a+\delta$) (except possibly a) into the interval ($L-\varepsilon, L+\varepsilon$). (See Figure 3.)

Figure 3

The Precise Definition of a Limit

Another geometric interpretation of limits can be given in terms of the graph of a function. If $\varepsilon>0$ is given, then we draw the horizontal lines $y=L+\varepsilon$ and $y=L-\varepsilon$ and the graph of f. (See Figure 4.)

Figure 4

The Precise Definition of a Limit

If $\lim _{x \rightarrow a} f(x)=L$, then we can find a number $\delta>0$ such that if we restrict x to lie in the interval $(a-\delta, a+\delta)$ and take $x \neq a$, then the curve $y=f(x)$ lies between the lines $y=L-\varepsilon$ and $y=L+\varepsilon$ (See Figure 5.) You can see that if such a δ has been found, then any smaller δ will also work.

Figure 5

The Precise Definition of a Limit

It is important to realize that the process illustrated in Figures 4 and 5 must work for every positive number ε, no matter how small it is chosen. Figure 6 shows that if a smaller ε is chosen, then a smaller δ may be required.

Figure 6

Example 1

Since $f(x)=x^{3}-5 x+6$ is a polynomial, we know from the Direct Substitution Property that

$$
\lim _{x \rightarrow 1} f(x)=f(1)=1^{3}-5(1)+6=2 .
$$

Use a graph to find a number δ such that if x is within δ of 1 , then y is within 0.2 of 2 , that is,

$$
\text { if }|x-1|<\delta \text { then }\left|\left(x^{3}-5 x+6\right)-2\right|<0.2
$$

In other words, find a number δ that corresponds to $\varepsilon=0.2$ in the definition of a limit for the function $f(x)=x^{3}-5 x+6$ with $a=1$ and $L=2$.

Example 1 - Solution

A graph of f is shown in Figure 7; we are interested in the region near the point (1, 2).

Figure 7
Notice that we can rewrite the inequality
as

$$
-0.2<\left(x^{3}-5 x+6\right)-2<0.2
$$

or equivalently $1.8<x^{3}-5 x+6<2.2$

Example 1 - Solution

So we need to determine the values of x for which the curve $y=x^{3}-5 x+6$ lies between the horizontal lines $y=1.8$ and $y=2.2$.

Therefore we graph the curves $y=x^{3}-5 x+6, y=1.8$, and $y=2.2$ near the point $(1,2)$ in Figure 8.

Figure 8

Example 1 - Solution

Then we use the cursor to estimate that the x-coordinate of the point of intersection of the line $y=2.2$ and the curve $y=x^{3}-5 x+6$ is about 0.911 .

Similarly, $y=x^{3}-5 x+6$ intersects the line $y=1.8$ when $x \approx 1.124$. So, rounding toward 1 to be safe, we can say that
if $0.92<x<1.12$ then $1.8<x^{3}-5 x+6<2.2$

This interval $(0.92,1.12)$ is not symmetric about $x=1$. The distance from $x=1$ to the left endpoint is $1-0.92=0.08$ and the distance to the right endpoint is 0.12 .

Example 1 - Solution

We can choose δ to be the smaller of these numbers, that is, $\delta=0.08$.

Then we can rewrite our inequalities in terms of distances as follows:

$$
\text { if }|x-1|<0.08 \text { then }\left|\left(x^{3}-5 x+6\right)-2\right|<0.2
$$

This just says that by keeping x within 0.08 of 1 , we are able to keep $f(x)$ within 0.2 of 2 .

Although we chose $\delta=0.08$, any smaller positive value of δ would also have worked.

Example 2

Prove that $\lim _{x \rightarrow 3}(4 x-5)=7$.

Solution:

1. Preliminary analysis of the problem (guessing a value for δ).

Let ε be a given positive number. We want to find a number δ such that
if $0<|x-3|<\delta$ then $\quad|(4 x-5)-7|<\varepsilon$
But $|(4 x-5)-7|=|4 x-12|=|4(x-3)|=4|x-3|$.

Example 2 - Solution

Therefore we want δ such that

$$
\text { if } \quad 0<|x-3|<\delta \quad \text { then } \quad 4|x-3|<\varepsilon
$$

that is, if $0<|x-3|<\delta$ then $\quad|x-3|<\frac{\varepsilon}{4}$
This suggests that we should choose $\delta=\varepsilon / 4$.

Example 2 - Solution

2. Proof (showing that this δ works). Given $\varepsilon>0$, choose $\delta=\varepsilon / 4$. If $0<|x-3|<\delta$, then
$|(4 x-5)-7|=|4 x-12|=4|x-3|<4 \delta=4\left(\frac{\varepsilon}{4}\right)=\varepsilon$
Thus
if $0<|x-3|<\delta$ then $\quad|(4 x-5)-7|<\varepsilon$

Example 2 - Solution

Therefore, by the definition of a limit,

$$
\lim _{x \rightarrow 3}(4 x-5)=7
$$

This example is illustrated by Figure 9.

Figure 9

The Precise Definition of a Limit

The intuitive definitions of one-sided limits can be precisely reformulated as follows.

3 Definition of Left-Hand Limit

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad a-\delta<x<a \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

The Precise Definition of a Limit

4 Definition of Right-Hand Limit

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

if for every number $\varepsilon>0$ there is a number $\delta>0$ such that

$$
\text { if } \quad a<x<a+\delta \quad \text { then } \quad|f(x)-L|<\varepsilon
$$

Example 3

Use Definition 4 to prove that $\lim _{x \rightarrow 0^{+}} \sqrt{x}=0$.

Example 3 - Solution

1. Guessing a value for δ. Let ε be a given positive number. Here $a=0$ and $L=0$, so we want to find a number δ such that
if $0<x<\delta$ then $|\sqrt{x}-0|<\varepsilon$
that is,
if $0<x<\delta$ then $\sqrt{x}<\varepsilon$
or, squaring both sides of the inequality $\sqrt{x}<\varepsilon$, we get
if $0<x<\delta$ then $x<\varepsilon^{2}$
This suggests that we should choose $\delta=\varepsilon^{2}$.

Example 3 - Solution

2. Showing that this δ works. Given $\varepsilon>0$, let $\delta=\varepsilon^{2}$. If $0<x<\delta$, then

$$
\sqrt{x}<\sqrt{\delta}=\sqrt{\varepsilon^{2}}=\varepsilon
$$

so

$$
|\sqrt{x}-0|<\varepsilon
$$

According to Definition 4, this shows that

$$
\lim _{x \rightarrow 0^{+}} \sqrt{x}=0 .
$$

The Precise Definition of a Limit

If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$ both exist, then

$$
\lim _{x \rightarrow a}[f(x)+g(x)]=L+M
$$

Infinite Limits

Infinite Limits

Infinite limits can also be defined in a precise way.

6 Precise Definition of an Infinite Limit Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

means that for every positive number M there is a positive number δ such that

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad f(x)>M
$$

Infinite Limits

This says that the values of $f(x)$ can be made arbitrarily large (larger than any given number M) by requiring x to be close enough to a (within a distance δ, where δ depends on M, but with $x \neq$ a). A geometric illustration is shown in Figure 10.

Figure 10

Infinite Limits

Given any horizontal line $y=M$, we can find a number $\delta>0$ such that if we restrict x to lie in the interval $(a-\delta, a+\delta)$ but $x \neq a$, then the curve $y=f(x)$ lies above the line $y=M$.

You can see that if a larger M is chosen, then a smaller δ may be required.

Example 5

Use Definition 6 to prove that $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$.

Solution:

Let M be a given positive number. We want to find a number δ such that
if $0<|x|<\delta$ then $1 / x^{2}>M$
But $\frac{1}{x^{2}}>M \quad \Leftrightarrow x^{2}<\frac{1}{M} \Leftrightarrow \sqrt{x^{2}}<\sqrt{\frac{1}{M}} \quad \Leftrightarrow \quad|x|<\frac{1}{\sqrt{M}}$
So if we choose $\delta=1 / \sqrt{M}$ and $0<|x|<\delta=1 / \sqrt{M}$, then $1 / x^{2}>M$. This shows that $1 / x^{2} \rightarrow \infty$ as $x \rightarrow 0$.

Infinite Limits

7 Definition Let f be a function defined on some open interval that contains the number a, except possibly at a itself. Then

$$
\lim _{x \rightarrow a} f(x)=-\infty
$$

means that for every negative number N there is a positive number δ such that

$$
\text { if } \quad 0<|x-a|<\delta \quad \text { then } \quad f(x)<N
$$

