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The Precise Definition of a Limit

The intuitive definition of a limit is inadequate for some 

purposes because such phrases as “x is close to 2” and 

“f(x) gets closer and closer to L” are vague.

In order to be able to prove conclusively that 

or

we must make the definition of a limit precise.



The Precise Definition of a Limit

To motivate the precise definition of a limit, let’s consider 

the function

Intuitively, it is clear that when x is close to 3 but x ≠ 3, then 

f(x) is close to 5, and so limx → 3 f(x) = 5.

To obtain more detailed information about how f(x) varies 

when x is close to 3, we ask the following question: 

How close to 3 does x have to be so that f(x) differs from 5 

by less than 0.1?



The distance from x to 3 is |x – 3| and the distance from 

f(x) to 5 is | f(x) – 5|, so our problem is to find a number 

such that 

| f(x) – 5| < 0.1   if    |x – 3| <  but x ≠ 3

If |x – 3| > 0, then x ≠ 3, so an equivalent formulation of our 

problem is to find a number  such that

| f(x) – 5| < 0.1   if   0 < |x – 3| < 
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The Precise Definition of a Limit

Notice that if 0 < |x – 3| < (0.1)/2 = 0.05, then

| f(x) – 5| = |(2x – 1) – 5| = |2x – 6| 

= 2|x – 3| < 2(0.05) = 0.1

that is,

| f(x) – 5| < 0.1          if         0 < |x – 3| < 0.05

Thus an answer to the problem is given by  = 0.05; that is, 

if x is within a distance of 0.05 from 3, then f(x) will be 

within a distance of 0.1 from 5.



The Precise Definition of a Limit

If we change the number 0.1 in our problem to the smaller 

number 0.01, then by using the same method we find that 

f(x) will differ from 5 by less than 0.01 provided that x

differs from 3 by less than (0.01)/2 = 0.005:

| f(x) – 5| < 0.01         if        0 < |x – 3| < 0.005 

Similarly, 

| f(x) – 5| < 0.001        if       0 < |x – 3| < 0.0005 

The numbers 0.1, 0.01, and 0.001 that we have considered 

are error tolerances that we might allow.



The Precise Definition of a Limit

For 5 to be the precise limit of f(x) as x approaches 3, we 

must not only be able to bring the difference between f(x) 

and 5 below each of these three numbers; we must be able 

to bring it below any positive number. 

And, by the same reasoning, we can! If we write ε (the 

Greek letter epsilon) for an arbitrary positive number, then 

we find as before that

| f(x) – 5| < ε if      0 < |x – 3| <  = 



The Precise Definition of a Limit

This is a precise way of saying that f(x) is close to 5 when x

is close to 3 because (1) says that we can make the values 

of f(x) within an arbitrary distance ε from 5 by restricting the 

values of x within a distance ε/2 from 3 (but x  3).

Note that (1) can be rewritten as 

follows: if

3 –  < x < 3 +  (x  3)

then

5 – ε < f(x) < 5 + ε

and this is illustrated in Figure 1.

Figure 1



The Precise Definition of a Limit

By taking the values of x ( 3) to lie in the interval 

(3 – , 3 + ) we can make the values of f(x) lie in the 

interval (5 – ε, 5 + ε).

Using (1) as a model, we give a precise definition of a limit.



The Precise Definition of a Limit

Since |x – a| is the distance from x to a and | f(x) – L | is the 

distance from f(x) to L, and since ε can be arbitrarily small, 

the definition of a limit can be expressed in words as 

follows:

limx → a f(x) = L

means that the distance between f(x) and L can be made

arbitrarily small by requiring that the distance from x to a be 

sufficiently small (but not 0).



The Precise Definition of a Limit

Alternatively,

limx → a f(x) = L

means that the values of f(x) can be made as close as we 

please to L by requiring x to be close enough to a (but not 

equal to a).



The Precise Definition of a Limit

We can also reformulate Definition 2 in terms of intervals 

by observing that the inequality |x – a| <  is equivalent to  

– < x – a < , which in turn can be written as 

a –  < x < a + . 

Also 0 < |x – a | is true if and only if x – a  0, that is, x  a. 
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Similarly, the inequality | f(x) – L | < ε is equivalent to the 

pair of inequalities L – ε < f(x) < L + ε. Therefore, in terms 

of intervals, Definition 2 can be stated as follows:

limx → a f(x) = L

means that for every ε > 0 (no matter how small ε is) we 

can find  > 0 such that if x lies in the open interval 

(a – , a + ) and x  a, then f(x) lies in the open interval 

(L – ε, L + ε).



The Precise Definition of a Limit

We interpret this statement geometrically by representing a 

function by an arrow diagram as in Figure 2, where f maps 

a subset of    onto another subset of    .

Figure 2
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The definition of limit says that if any small interval 

(L – ε, L + ε) is given around L, then we can find an interval 

(a – , a + ) around a such that f maps all the points in 

(a – , a + ) (except possibly a) into the interval 

(L – ε, L + ε). (See Figure 3.)

Figure 3



The Precise Definition of a Limit

Another geometric interpretation of limits can be given in 

terms of the graph of a function. If ε > 0 is given, then we 

draw the horizontal lines y = L + ε and y = L – ε and the 

graph of f. (See Figure 4.)

Figure 4
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If limx → a f(x) = L, then we can find a number  > 0 such that 

if we restrict x to lie in the interval (a – , a + ) and take 

x  a, then the curve y = f(x) lies between the lines 

y = L – ε and y = L + ε (See Figure 5.) You can see that if 

such a  has been found, then any smaller  will also work.

Figure 5



The Precise Definition of a Limit

It is important to realize that the process illustrated in 

Figures 4 and 5 must work for every positive number ε, no 

matter how small it is chosen. Figure 6 shows that if a 

smaller ε is chosen, then a smaller  may be required.

Figure 6



Example 1

Since f(x) = x3 – 5x + 6 is a polynomial, we know from the 

Direct Substitution Property that 

limx→1 f(x) = f(1) = 13 – 5(1) + 6 = 2. 

Use a graph to find a number  such that if x is within  of 

1, then y is within 0.2 of 2, that is,

if |x – 1| <  then     |(x3 – 5x + 6) – 2| < 0.2

In other words, find a number  that corresponds to ε = 0.2 

in the definition of a limit for the function f(x) = x3 – 5x + 6

with a = 1 and L = 2.



Example 1 – Solution

A graph of f is shown in Figure 7; we are interested in the 

region near the point (1, 2).

Notice that we can rewrite the inequality

|(x3 – 5x + 6) – 2| < 0.2

as                   –0.2 < (x3 – 5x + 6) – 2 < 0.2

or equivalently  1.8 < x3 – 5x + 6 < 2.2

Figure 7



Example 1 – Solution

So we need to determine the values of x for which the 

curve y = x3 – 5x + 6 lies between the horizontal lines 

y = 1.8 and y = 2.2.

Therefore we graph the curves y = x3 – 5x + 6, y = 1.8, and 

y = 2.2 near the point (1, 2) in Figure 8.

cont’d

Figure 8



Example 1 – Solution

Then we use the cursor to estimate that the x-coordinate of 

the point of intersection of the line y = 2.2 and the curve     

y = x3 – 5x + 6 is about 0.911. 

Similarly, y = x3 – 5x + 6 intersects the line y = 1.8 when 

x  1.124. So, rounding toward 1 to be safe, we can say 

that

if     0.92 < x < 1.12     then    1.8 < x3 – 5x + 6 < 2.2

This interval (0.92, 1.12) is not symmetric about x = 1. The 

distance from x = 1 to the left endpoint is 1 – 0.92 = 0.08 

and the distance to the right endpoint is 0.12. 

cont’d



Example 1 – Solution

We can choose  to be the smaller of these numbers, that 

is,  = 0.08.

Then we can rewrite our inequalities in terms of distances 

as follows:

if    |x – 1| < 0.08     then    | (x3 – 5x + 6) – 2| < 0.2  

This just says that by keeping x within 0.08 of 1, we are 

able to keep f(x) within 0.2 of 2.

Although we chose  = 0.08, any smaller positive value of 

would also have worked.

cont’d



Example 2

Prove that 

Solution:

1. Preliminary analysis of the problem (guessing a value  

for ). 

Let ε be a given positive number. We want to find  

a number  such that

if    0 < |x – 3| <  then      |(4x – 5) – 7| < ε

But | (4x – 5) – 7| = |4x – 12| = |4(x – 3)| = 4|x – 3|.



Example 2 – Solution

Therefore we want  such that

if    0 < |x – 3| <  then      4|x – 3| < ε

that is,      if   0 < |x – 3| <  then     |x – 3| < 

This suggests that we should choose  = ε/4.

cont’d



Example 2 – Solution

2. Proof (showing that this  works). Given ε > 0, choose         

 = ε/4. If 0 < |x – 3| < , then

| (4x – 5) – 7| = |4x – 12| = 4|x – 3| < 4 =            = ε

Thus

if    0 < |x – 3| <  then       | (4x – 5) – 7| < ε

cont’d



Example 2 – Solution

Therefore, by the definition of a limit,

This example is illustrated by Figure 9. 

Figure 9

cont’d



The Precise Definition of a Limit

The intuitive definitions of one-sided limits can be precisely 

reformulated as follows. 
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Example 3

Use Definition 4 to prove that



Example 3 – Solution

1. Guessing a value for . Let ε be a given positive number.  

Here a = 0 and L = 0, so we want to find a number 

such that

if    0 < x <  then      |      – 0| < ε

that is,

if    0 < x <  then           < ε

or, squaring both sides of the inequality     < ε, we get

if   0 < x <  then      x < ε2

This suggests that we should choose  = ε2.



Example 3 – Solution

2. Showing that this  works. Given ε > 0, let  = ε2. If             

0 < x < , then 

so                            |      – 0| < ε

According to Definition 4, this shows that

cont’d



The Precise Definition of a Limit

If limx → a f(x) = L and limx → a g(x) = M both exist, then 
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Infinite Limits

Infinite limits can also be defined in a precise way.



Infinite Limits

This says that the values of f(x) can be made arbitrarily large 

(larger than any given number M) by requiring x to be close 

enough to a (within a distance , where  depends on M, but 

with x ≠ a). A geometric illustration is shown in Figure 10.

Figure 10



Infinite Limits

Given any horizontal line y = M, we can find a number           

 > 0 such that if we restrict x to lie in the interval

(a – , a + ) but x ≠ a, then the curve y = f(x) lies above 

the line y = M.

You can see that if a larger M is chosen, then a smaller 

may be required.



Example 5

Use Definition 6 to prove that

Solution:

Let M be a given positive number. We want to find a number 
such that

if    0 < |x| <  then      1/x2 > M

But 

So if we choose  = and 0 < |x | <  = , then      

1/x2 > M. This shows that 1/x2 → as x → 0.



Infinite Limits


