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Continuity

The limit of a function as x approaches a can often be 

found simply by calculating the value of the function at a. 

Functions with this property are called continuous at a.

We will see that the mathematical definition of continuity 

corresponds closely with the meaning of the word 

continuity in everyday language. (A continuous process is 

one that takes place gradually, without interruption or 

abrupt change.)



Continuity

Notice that Definition 1 implicitly requires three things if f is 

continuous at a:

1. f(a) is defined (that is, a is in the domain of f )

2. exists

3.

The definition says that f is continuous at a if f(x) 

approaches f(a) as x approaches a. Thus a continuous 

function f has the property that a small change in x 

produces only a small change in f(x).



Continuity

In fact, the change in f(x) can be kept as small as we 

please by keeping the change in x sufficiently small.

If f is defined near a (in other words, f is defined on an open 

interval containing a, except perhaps at a), we say that f is 

discontinuous at a (or f has a discontinuity at a) if f is not 

continuous at a.

Physical phenomena are usually continuous. For instance, 

the displacement or velocity of a vehicle varies 

continuously with time, as does a person’s height. But 

discontinuities do occur in such situations as electric 

currents.



Continuity

Geometrically, you can think of a function that is continuous 

at every number in an interval as a function whose graph 

has no break in it: the graph can be drawn without 

removing your pen from the paper.



Example 1

Figure 2 shows the graph of a function f. At which numbers 

is f discontinuous? Why?

Solution:

It looks as if there is a discontinuity when a = 1 because the 

graph has a break there. The official reason that f is 

discontinuous at 1 is that f(1) is not defined.

Figure 2



Example 1 – Solution

The graph also has a break when a = 3, but the reason for 

the discontinuity is different. Here, f(3) is defined, but 

limx→3 f(x) does not exist (because the left and right limits 

are different). So f is discontinuous at 3. 

What about a = 5? Here, f(5) is defined and limx→5 f(x) 

exists (because the left and right limits are the same). 

But

So f is discontinuous at 5.

cont’d



Example 2

Where are each of the following functions discontinuous?

Solution:

(a) Notice that f(2) is not defined, so f is discontinuous at 2.

Later we’ll see why f is continuous at all other numbers.



Example 2 – Solution

(b) Here f(0) = 1 is defined but

does not exist. So f is discontinuous at 0.

(c) Here f(2) = 1 is defined and

cont’d



Example 2 – Solution

= 3 exists.

But

so f is not continuous at 2.

(d) The greatest integer function f(x) =       has 

discontinuities at all of the integers because                

does not exist if n is an integer.

cont’d



Continuity

Figure 3 shows the graphs of the functions in Example 2. 

Figure 3

Graphs of the functions in Example 2



Continuity

Figure 3

Graphs of the functions in Example 2



Continuity

In each case the graph can’t be drawn without lifting the 

pen from the paper because a hole or break or jump occurs 

in the graph.

The kind of discontinuity illustrated in parts (a) and (c) is 

called removable because we could remove the 

discontinuity by redefining f at just the single number 2. 

[The function g(x) = x + 1 is continuous.]

The discontinuity in part (b) is called an infinite 

discontinuity. The discontinuities in part (d) are called 

jump discontinuities because the function “jumps” from 

one value to another.



Continuity



Continuity

Instead of always using Definitions 1, 2, and 3 to verify the 

continuity of a function, it is often convenient to use the 

next theorem, which shows how to build up complicated 

continuous functions from simple ones.



Continuity

It follows from Theorem 4 and Definition 3 that if f and g are 

continuous on an interval, then so are the functions 

f + g, f – g, cf, fg, and (if g is never 0) f/g.

The following theorem was stated as the Direct Substitution 

Property.



Continuity

As an illustration of Theorem 5, observe that the volume of 

a sphere varies continuously with its radius because the 

formula V(r) =   r3 shows that V is a polynomial function of 

r.

Likewise, if a ball is thrown vertically into the air with a 

velocity of 50 ft/s, then the height of the ball in feet t

seconds later is given by the formula h = 50t – 16t2.

Again this is a polynomial function, so the height is a 

continuous function of the elapsed time.



Continuity

It turns out that most of the familiar functions are

continuous at every number in their domains.

From the appearance of the graphs of the sine and cosine 

functions, we would certainly guess that they are 

continuous.

We know from the definitions of

sin  and cos  that the coordinates

of the point P in Figure 5 are 

(cos , sin  ). As  → 0, we see 

that P approaches the point (1, 0) 

and so cos  → 1 and sin  → 0.
Figure 5



Continuity

Thus

Since cos 0 = 1 and sin 0 = 0, the equations in (6) assert 

that the cosine and sine functions are continuous at 0.

The addition formulas for cosine and sine can then be used 

to deduce that these functions are continuous everywhere.

It follows from part 5 of Theorem 4 that

is continuous except where cos x = 0.



Continuity

This happens when x is an odd integer multiple of /2, so

y = tan x has infinite discontinuities when

x = /2, 3/2, 5/2, and so on (see Figure 6).

y = tan x

Figure 6



Continuity

Another way of combining continuous functions f and g to 

get a new continuous function is to form the composite 

function f  g. This fact is a consequence of the following 

theorem.



Continuity

Intuitively, Theorem 8 is reasonable because if x is close to 

a, then g(x) is close to b, and since f is continuous at b, if 

g(x) is close to b, then f(g(x)) is close to f(b).

An important property of continuous functions is expressed 

by the following theorem, whose proof is found in more 

advanced books on calculus.



Continuity

The Intermediate Value Theorem states that a continuous 

function takes on every intermediate value between the 

function values f(a) and f(b). It is illustrated by Figure 8. 

Note that the value N can be taken on once [as in part (a)]  

or more than once [as in part (b)].

Figure 8



Continuity

If we think of a continuous function as a function whose 

graph has no hole or break, then it is easy to believe that 

the Intermediate Value Theorem is true. 

In geometric terms it says that if any horizontal line y = N is 

given between y = f(a) and y = f(b) as in Figure 9, then the 

graph of f can’t jump over the line. It must intersect y = N

somewhere.

Figure 9



Continuity

It is important that the function f in Theorem 10 be 

continuous. The Intermediate Value Theorem is not true in 

general for discontinuous functions.

We can use a graphing calculator or computer to illustrate 

the use of the Intermediate Value Theorem.

Figure 10 shows the graph of f in the 

viewing rectangle [–1, 3] by [–3, 3] and

you can see that the graph crosses the 

x-axis between 1 and 2.

Figure 10



Continuity

Figure 11 shows the result of zooming in to the viewing 

rectangle [1.2, 1.3] by [–0.2, 0.2].

In fact, the Intermediate Value Theorem plays a role in the 

very way these graphing devices work.

Figure 11



Continuity

A computer calculates a finite number of points on the 

graph and turns on the pixels that contain these calculated 

points.

It assumes that the function is continuous and takes on all 

the intermediate values between two consecutive points.

The computer therefore “connects the dots” by turning on 

the intermediate pixels.


