Discrete Structures (Discrete Mathematics)

Lecture - 1 Sets

Application of Sets

- Databases
- Data-type or type in computer programming
- Constructing discrete structures
- Finite state machine
- Modeling computing machine
- Representing computational complexity of algorithms

Set

- A set is an unordered collection of objects.
- The objects in a set are called the elements, or members, of the set.
- A set is said to contain its elements.

Example:

- \mathbf{Z} is the set of integers.
- Cities in the Pakistan: \{Lahore, Karachi, Islamabad, ... \}
- Sets can contain non-related elements: $\{3$, a, red, Gilgit $\}$

Properties:

- Order does not matter
- $\{1,2,3,4,5\}$ is equivalent to $\{3,5,2,4,1\}$
- Sets do not have duplicate elements
- Consider the list of students in this class
- It does not make sense to list somebody twice

Set Membership

- \mathbf{a} is an element of the set \mathbf{A}, denoted by $\mathbf{a} \in \mathbf{A}$.
- \mathbf{a} is not an element of the set \mathbf{A}, denoted by $\mathbf{a} \notin$ A.

Sets (example)

- Example:
- Set D: Students taking Discrete Mathematics course.
- Assume Ali is taking Discrete Mathematics course and Saad is not taking Discrete Mathematics course.
- Ali $\in D$
- Saad $\notin D$

Sets (example)

- Example:

V: $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
$a \in V$
$\mathrm{b} \notin \mathrm{V}$
I: $\{0,1,2, \ldots, 99\}$
$50 \in I$
$100 \notin 1$

S: \{a,2,class $\}$
$2 \in S$
room $\notin S$

Specifyinga Set

- Capital letters (A, B, S...) for sets
- Italic lower-case letter for elements (a, x, y...)
- Easiest way: list all the elements
- $A=\{1,2,3,4,5\}$, Not always feasible!
- May use ellipsis (...): $B=\{0,1,2,3, \ldots\}$
- May cause confusion. $\mathrm{C}=\{3,5,7, \ldots\}$. What's next?
- If the set is all odd integers greater than 2 , it is 9
- If the set is all prime numbers greater than 2 , it is 11

Set Builder

- Set builder:

Characterize all elements in the set by stating properties they must have.

- Example:
$O=\{x \mid x$ is an odd positive integer less than 10\}
$O=\left\{x \in Z^{+} \mid x\right.$ is odd and $\left.x<10\right\}$
$O=\{1,3,5,7,9\}$
The vertical bar means "such that"

Important Sets

- Set of natural numbers
- $\mathbf{N}=\{1,2,3, \ldots\}$
- Set of integers
- $\mathbf{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
- Set of positive integers
- $\mathbf{Z}^{+}=\{1,2,3, \ldots\}$
- Set of rational numbers
- $\mathbf{Q}=\{p / q \mid p \in \mathbf{Z}, q \in \mathbf{Z}$, and $q \neq 0\}$
- Set of real numbers
- R

Examples

- $\mathbf{S}_{1}=\{\mathbf{N}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}\}$
- S_{1} has 4 elements, each of which is a set.
- $S_{2}=\left\{x \mid x \in \mathbf{N}\right.$ and $\left.\exists k k \in \mathbf{N}, x=k^{2}\right\}$
- Set of squares of natural numbers

Equality of Sets

- Let A and B be two sets.
- A and B are equal if and only if they have the same elements, denoted by $\mathrm{A}=\mathrm{B}$.
- A and B are equal if and only if $\forall x(x \in A \leftrightarrow x \in B)$.

Equality of Sets (examples)

- $\{1,2,3\}$ and $\{3,2,1\}$
$\{1,2,3\}=\{3,2,1\}$
- \mathbf{Z}^{+}and $\{0,1,2, \ldots\}$

$$
\mathbf{z}^{+} \neq\{0,1,2, \ldots\}
$$

The Universal Set

- \boldsymbol{U} is the universal set - the set of all of elements (or the "universe") from which given any set is drawn
- For the set $\{-2,0.4,2\}, \mathrm{U}$ would be the real numbers
- For the set $\{0,1,2\}, U$ could be the N, Z, Q, R depending on the context
- For the set of the vowels of the alphabet, U would be all the letters of the alphabet

Venn Diagrams

- Sets can be represented graphically using Venn diagram.

- The box represents the universal set
- Circles represent the set(s)
- Consider set S, which is the set of all vowels in the alphabet
- The individual elements are usually not written in a Venn diagram

Empty Set (example)

- Example:
- $S=\left\{x \mid x \in Z^{+}\right.$and $\left.x<0\right\}$
$S=\{ \}=\varnothing$
- A set that has no elements called empty set, or null set.
- \varnothing and $\{\varnothing\}$
$\varnothing \neq\{\varnothing\}$

Sets Of Sets

- Sets can contain other sets
- $\mathrm{S}=\{$ \{1\}, $\{2\},\{3\}\}$
- $\mathrm{T}=\{$ \{1\}, $\{\{2\}\}$, , \{\{3\}\}\}\}
$\cdot \mathrm{V}=\{$ \{ \{1\}, $\{\{2\}\}\},\{\{\{3\}\}\},\{$ \{1\}, \{\{2\}\}, \{\{\{3\}\}\}\} \}
\vee has only 3 elements!
- Note that $1 \neq\{1\} \neq\{\{1\}\} \neq\{\{\{1\}\}\}$
- They are all different

Subset

- Let A and B be sets.
- A is a subset of B if and only if every element of A is also an element of B, denoted by $A \subseteq B$.
- $A \subseteq B$ if and only if $\forall x(x \in A \rightarrow x \in B)$.
- \forall set S,

$$
\begin{aligned}
& \varnothing \subseteq S \\
& S \subseteq S
\end{aligned}
$$

Subset and Equality

- $A \subseteq B, \forall x(x \in A \rightarrow x \in B)$ and
- $B \subseteq A, \forall x(x \in B \rightarrow x \in A)$ then
- $A=B, \forall x(x \in A \leftrightarrow x \in B)$

Subset (example)

- \mathbf{Q} and \mathbf{R}
$\mathbf{Q} \subseteq \mathbf{R}$
- \mathbf{N} and \mathbf{Z}
$\mathbf{N} \subseteq \mathbf{Z}$
- $A=\left\{x \mid x \in Z^{+}\right.$and $\left.x<10\right\}$
$B=\left\{x \mid x \in Z^{+}, x\right.$ is even and $\left.x<10\right\}$ $B \subseteq A$

Subset

- Show \forall set $S, \varnothing \subseteq S$.
- Proof:

We want to show $\forall x(x \in \varnothing \rightarrow x \in S)$.

- \varnothing contains no element, so $x \in \varnothing$ is false.
- Hypothesis of conditional statement is false, so $x \in \varnothing \rightarrow x \in S$ is true.
- Thus, $\forall x(x \in \varnothing \rightarrow x \in S)$ is true.

Subset

- Show \forall set $S, S \subseteq S$.
- Proof:

We want to show $\forall x(x \in S \rightarrow x \in S)$.

- If $x \in S$ is true, then hypothesis and conclusion of conditional statement are both true and $(x \in S \rightarrow x \in S$) is true.
- If $x \in S$ is false, then hypothesis and conclusion of conditional statement are both false and $(x \in S \rightarrow x \in S)$ is true.
- Thus, $\forall x(x \in S \rightarrow x \in S)$ is true.

Proper Subset

Let A and B be sets.

- A is a proper subset of B if and only if $A \subseteq B$ but $A \neq B$, denoted $A \subset B$.
- $A \subset B$ if and only if $\forall x(x \in A \rightarrow x \in B) \wedge \exists x(x \in B \wedge x \notin A)$.

Example

- If S is a subset of T, and S is not equal to T, then S is a proper subset of T

$$
\text { Let } T=\{0,1,2,3,4,5\} \text { and } S=\{1,2,3\}
$$

- S is not equal to T, and S is a subset of T
- Let $Q=\{4,5,6\}$. Q is neither a subset of T nor a proper subset of T
- The difference between "subset" and "proper subset" is like the difference between "less than or equal to" and "less than" for numbers
- Is $\varnothing \subseteq\{1,2,3\}$?
- Is $\emptyset \in\{1,2,3\}$?
- Is $\varnothing \subseteq\{\varnothing, 1,2,3\}$?
- Is $\varnothing \in\{\emptyset, 1,2,3\}$?
- Is $x \in\{x\}$
- Is $\{x\} \subseteq\{x\}$
- Is $\{x\} \in\{x,\{x\}\}$
- Is $\{x\} \subseteq\{x,\{x\}\}$
- Is $\{x\} \in\{x\}$
- Is $\emptyset \subseteq\{1,2,3\}$? Yes!
- Is $\emptyset \in\{1,2,3\}$? No!
- Is $\emptyset \subseteq\{\emptyset, 1,2,3\}$? Yes!
- Is $\emptyset \in\{\emptyset, 1,2,3\}$? Yes!
- Is $x \in\{x\}$
- Is $\{x\} \subseteq\{x\}$
- Is $\{x\} \in\{x,\{x\}\}$
- Is $\{x\} \subseteq\{x,\{x\}\}$
- Is $\{x\} \in\{x\}$

Size of Sets

- Let S be a set.
- The cardinality of a set is the number of elements in a set S
- cardinality of S, denoted by $|S|$.

Example

- Find cardinality of following sets.
- $A=\left\{x \mid x \in \mathbf{Z}^{+}, x\right.$ is odd and $\left.x<10\right\}$ $A=\{1,3,5,7,9\}$
$|A|=5$
- $B=\varnothing$
$|B|=0$
- $C=\{\varnothing\}$
$|C|=1$
- \mathbf{R}
\mathbf{R} is infinite.

The Power Set

- Let S be a set.
- The power set of S is the set of all subsets of S, denoted by $P(S)$.
- Example:

$$
P(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}
$$

The Power Set (example)

- What is $\mathrm{P}(\{1,2,3\})$?
- Solution:
$P(\{1,2,3\})=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$
- $P(\varnothing)=$?
- $P(\{\varnothing\})=$?

The Cardinality of the Power Set

- Assume A is finite.
- $|\mathrm{P}(\mathrm{A})|=$?

Solution:

- $A=\{a\} \quad P(A)=\{\varnothing,\{a\}\} \quad|P(A)|=2$
- $A=\{a, b\} \quad P(A)=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad|P(A)|=4$
- $A=\{a, b, c\}$
$P(A)=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\} \quad|P(A)|=8$
- $|P(A)|=2^{|A|}$

Cartesian Product

Let A and B be sets.

- The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$.
- $A x B=\{(a, b) \mid a \in A \wedge b \in B\}$

Cartesian Product (example)

$A=\{0,1,2\}$
$B=\{a, b\}$
Are $\mathrm{A} \times \mathrm{B}$ and $\mathrm{B} \times \mathrm{A}$ equal?

Solution:
$A \times B=\{(0, a),(0, b),(1, a),(1, b),(2, a),(2, b)\}$
$B \times A=\{(a, 0),(a, 1),(a, 2),(b, 0),(b, 1),(b, 2)\}$

So, $A \times B \neq B \times A$.

The Cardinality of Cartesian Product

Assume A and B are finite.
$|A x B|=$?
Solution:

- $A=\{a\} \quad B=\{0\}$
$A x B=\{(a, 0)\} \quad|A x B|=1$
- $A=\{a, b\} \quad B=\{0\}$
$A x B=\{(a, 0),(b, 0)\} \quad|A x B|=2$
$\cdot A=\{a, b\} \quad B=\{0,1\} \quad A x B=\{(a, 0),(a, 1),(b, 0),(b, 1)\}$
$|A x B|=4$
- $|A x B|=|A| .|B|$

Cartesian Product

- Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets.
- The Cartesian product of $A_{1}, A_{2}, \ldots, A_{n}$, denoted by $A_{1} \times A_{2} \times \ldots \times A_{n}$, is the set of all ordered n-tuples ($a_{1}, a_{2}, \ldots, a_{n}$), where $a_{i} \in A_{i}$ for $i=1,2, \ldots, n$.
- $A_{1} \times A_{2} x \ldots x A_{n}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, \forall i \in\{1,2, \ldots, n\}\right\}$

Cartesian Product

$A=\{a, b\}$
$B=\{1\}$
$C=\{x, y, z\}$
$\mathrm{A} \times \mathrm{B} \times \mathrm{C}=$?

Solution:
$A \times B \times C=\{(a, 1, x),(a, 1, y),(a, 1, z),(b, 1, x),(b, 1, y)$,
(b, 1, z) \}

The Cardinality of Cartesian product

Assume A, B and C are finite.
$|A x B x C|=$?

Solution:

- $A=\{a\} \quad B=\{0\} \quad C=\{x\} \quad A x B x C=\{(a, 0, x)\}$ $|A x B x C|=1$
- $A=\{a, b\} \quad B=\{0\} \quad C=\{x\} \quad A x B x C=\{(a, 0, x),(b, 0, x)\}$ $|A x B|=2$
- $A=\{a, b\} \quad B=\{0,1\} \quad C=\{x\}$
$A x B=\{(a, 0, x),(a, 1, x),(b, 0, x),(b, 1, x)\} \quad|A x B x C|=4$
- $|A x B x C|=|A| .|B| \cdot|C|$

Ordered n-tuple

- The ordered n-tuple $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ is the ordered collection that has a_{1} as its first element, a_{2} as its second element, \ldots, and a_{n} as its nth element.
- Example:
(a,b) is an ordered 2-tuple (ordered pair).

Ordered n-tuple (example)

- Assume c $\neq \mathrm{b}$.
- Are ordered 3-tuples (a,b,c) and (a,c,b) equal?

Solution:

- $\mathrm{a}=\mathrm{a}$ but $\mathrm{b} \neq \mathrm{c}$ and $\mathrm{c} \neq \mathrm{b}$.
- So, (a, b, c) and (a, c, b) are not equal.

Using Set Notation with Quantifiers

- $\forall x P(x)$
domain: S
- $\forall x \in S(P(x))$
- $\forall x(x \in S \rightarrow P(x))$

Using Set Notation with Quantifiers

- $\exists x P(x)$ domain: S
- $\exists x \in S(P(x))$
- $\exists x(x \in S \wedge P(x))$

Example

-What does the following statement mean?

$$
\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)
$$

Example

- What does the following statement mean?

$$
\forall x \in \mathbf{R}\left(x^{2} \geq 0\right)
$$

Solution:

- For every real number $x,\left(x^{2} \geq 0\right)$.
- The square of every real number is nonnegative.

Example

-What does the following statement mean?

$$
\exists x \in \mathbf{Z}\left(x^{2}=1\right)
$$

Example

-What does the following statement mean?

$$
\exists x \in \mathbf{Z}\left(x^{2}=1\right)
$$

Solution:

- There is an integer x such that $x^{2}=1$.
- There is an integer whose square is 1 .

Truth Sets of Predicates

- Let P be a predicate and D is a domain.
- The truth set of P is the set of elements x in D for which $P(x)$ is true.
- The truth set of $P(x)$ is $\{x \in D \mid P(x)\}$.

Example

- Let $P(x)$ be $|x|=1$ where the domain is the set of integers. What is the truth set of $P(x)$?

Example

- Let $P(x)$ be $|x|=1$ where the domain is the set of integers. What is the truth set of $P(x)$?

Solution:

The truth set of $P(x)$ is $\{-1,1\}$.

Example

- Let $R(x)$ be $|x|=x$ where the domain is the set of integers. What is the truth set of $R(x)$?

Example

- Let $R(x)$ be $|x|=x$ where the domain is the set of integers. What is the truth set of $R(x)$?

Solution:

The truth set of $\mathrm{R}(\mathrm{x})$ is $x \geq 0$.

Example

- Let $Q(x)$ be $x^{2}=2$ where the domain is the set of integers. What is the truth set of $Q(x)$?

Example

- Let $Q(x)$ be $x^{2}=2$ where the domain is the set of integers. What is the truth set of $Q(x)$?

Solution:

The truth set of $Q(x)$ is \varnothing.

Truth Set of Quantifiers

- $\forall x P(x)$ is true over the domain D if and only if the truth set of P is the set D.
- $\exists x P(x)$ is true over the domain D if and only if the truth set of P is nonempty.

Exercise Questions

Chapter \# 2
Topic \# 2.1
Question \# 1,3,5,6,7,9,12,19,20,23,32,43,44

