Discrete Structures (Discrete Mathematics)

> Lecture - 2 Set Operations

Set Operations

- Two sets can be combined in many different ways.
- Set operations can be used to combine sets.

Union

- Let A and B be sets.
- The union of A and B, denoted by A ∪ B, is the set containing those elements that are either in A or in B, or in both.

•
$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

Intersection

- Let A and B be sets.
- The intersection of A and B, denoted by A ∩ B, is the set containing those elements in both A and B.
- $A \cap B = \{x \mid x \in A \land x \in B\}$

Union (example)

Intersection (example)

- Let A = {1,2,3}
 B = {2,4,6,8}
 A ∩ B = { 2 }
- Let A = Z
 B = {x | x ∈ Z ∧ x is odd}
 A ∩ B = {x | x ∈ Z ∧ x is odd}

Disjoint Sets

• Two sets are called **disjoint** if their intersection is empty.

The Cardinality of the Union of Sets

• |A ∪ B|=?

Solution:

- Let A = {1,2,3} B = {2,3,4} A ∪ B = {1,2,3,4}
 |A| = 3 |B| = 3 |A ∪ B|=4
- |A ∪ B| = |A| + |B| |A ∩ B|

Difference

- Let A and B be sets.
- The difference of A and B, denoted by A B, is the set containing those elements that are in A but not in B. (also called complement of B with respect to A).

• A - B =
$$\{x \mid x \in A \land x \notin B\}$$

Difference (example)

- Let A = {1,2,3}
 B = {2,4}
 A B = {1,3}
- Let A = Z
 B = { x | x ∈ Z ^ x is odd }
 A B = { x | x ∈ Z ^ x is even }

Complement

- Let U be the universal set and A be a set.
- The complement of A, denoted by A, is the complement of A with respect to U (which is U - A).

•
$$A = \{x \mid x \notin A +$$

Complement (example)

Let A = { a, b, c, d } and
 U is the set of English alphabet
 A = { e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z }

 Let A = { x | x ∈ Z ∧ x is odd } and U is Z A = { x | x ∈ Z ∧ x is even }

Summary Set Operations

Operation	Notation
Union	$A \cup B = \{x \mid x \in A \lor x \in B\}$
Intersection	$A \cap B = \{x \mid x \in A \land x \in B\}$
Difference	$A - B = \{x \mid x \in A \land x \notin B\}$
Complement (U - A)	$A = \{ x \mid x \notin A +$

Set Identities

$A \cup \phi = A$ $A \cap U = A$	Identity Laws
$A \cup U = U$ $A \cap \phi = \phi$	Domination Laws
$A \cup A = A$ $A \cap A = A$	Idempotent Laws
$\overline{(A)} = A$	Complementation Law
A ∪ A= U A ∩ A = Ø	Complement Laws

Set Identities

 $A \cup B = B \cup A$ $A \cap B = B \cap A$

Commutative Laws

 $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Associative Laws

 $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Absorption Laws

Set Identities

 $\overline{A \cup B} = A \cap B$ De Morgan's Law $\overline{A \cap B} = A \cup B$

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ Distributive Law $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

How to Prove a Set Identity

- Four methods:
 - Use the basic set identities
 - Use membership tables
 - Prove each set is a subset of each other
 - Use set builder notation and logical equivalences

Set Identities (example)

```
• Show A \cup (B \cap C) = (C \cup B) \cap A
Solution:
```

```
\overline{A \cup (B \cap C)}
= A \cap B \cap C \) (By DeMorgan's Law)

= A \cap B \cap C \) (By DeMorgan's Law)

= A \cap (C \cap B) (By CommutativeLaw)

= (C \cap B) \cap A (By Commutative Law)
```

What is a membership table

- Membership tables show all the combinations of sets an element can belong to
 - 1 means the element belongs, 0 means it does not
- Consider the following membership table:

Α	В	A ∪ B	A ∩ B	A - B
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

Membership Table

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Distributive Law

Α	В	С	B ∩ C	A ∪ (B ∩ C)	A ∪ B	A ∪ C	(A ∪ B) ∩ (A ∪ C)
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Proof by showing each set is a subset of the other

- Assume that an element is a member of one of the identities
 - Then show it is a member of the other

• Show $A \cap B \cup C \Rightarrow A \land B \cup A \cap C$) Solution:

Part 1: $A \cap B \cup C \supseteq A \cap B \cup A \cap C$) Assume $x \in A \cap \mathbb{R} \cup C$ $(x \in A) \land (x \in B(\cup C))$ $(x \in A) \land (x \in B \lor x \in C)$ $(x \in A \land x \in B) \land (x \in A \land x \in C)$ $(x \in (A \cap B)) \land (x \in (A \cap C))$ $x \in (A \cap B) \cup (A \cap C)$ So, $A \cap B \cup C \supseteq A \land B \cup A \cap \land$

Definition of Intersection Definition of Union Distributive Law Definition of Intersection Definition of Union)

• Show $A \cap B \cup C \Rightarrow A \cap B \cup A \cap C$ Solution: Part 2: $(A \cap B) \cup A \cap C \subseteq A \cap B \cup C$ Assume $x \in A \cap B \cup A$ for C $(x \in A \cap B) \vee (x \in A \cap C))$ Definition of Union $(x \in A \land x \in B) \land (x \in A \land x \in C)$ Definition of Intersection **Distributive Law** $x \in A \land (x \in B \lor x \in C)$ Definition of Union $x \in A \land (x \in B \cup C)$ Definition of Intersection $x \in A \cap (B \cup C)$ $(A \cap B) \cup A (\cap C \subseteq) A \cap B \cup (C$ So, Thus, $A \cap B \cup C \Rightarrow A \land B \cup A \cap C$

Proof by set builder notation and logical equivalences

- First, translate both sides of the set identity into set builder notation
- Then use one side (or both) to make it identical to the other
 - Do this using logical equivalences

Set Builder Notation and Logical Equivalences (Example)

- Show $\overline{A \cap B} = A \cup B$ Solution:
- $A \cap B = *x | x \notin A \cap B +$ = $x + x (\in A \cap B)$ = $x + x (\in A \cap x) \in \mathbb{R}$)) = $x + x (\in A \vee - x \in \mathbb{R})$) = $x + x (\in A \vee - x \in \mathbb{R})$ } = $x + (x \notin A) \vee x \notin B$) = $x + (x \notin A) \vee x \notin B$) = $x + (x \in A) \vee x \in B$) = $x + x = A \cup B +$ = $A \cup B$
- Definition of Complement
 - Definition of does not belong symbol
 - Definition of intersection
 - DeMorgan's Law
 - Definition of does not belong symbol
 - **Definition of Complement**
 - Definition of Union
 - By meaning of Set Builder Notation

2 and 3 - Set Venn Diagram

```
|A ∪ B| = |A| + |B| - |A ∩ B|
|A ∪ B ∪ C | = |A| + |B| +|C| - |A ∩ B| - |A ∩ C| - |B ∩ C| +
|A ∩ B ∩ C |
```


Suppose a list *A* contains the 30 students in a mathematics class, and a list *B* contains the 35 students in an English class, and suppose there are 20 names on both lists.

Find the number of students:

- only on list A
- only on list B
- on list A or B (or both),
- on exactly one list.

Solution:

- 30 20 = 10 names are only on list A.
- 35 20 = 15 are only on list *B*.
- $|A \cup B| = |A| + |B| |A \cap B| = 30 + 35 20 = 45.$
- 10 + 15 = 25 names are only on one list; that is, $|A \oplus B| = 25$.

Consider the following data for 120 mathematics students at a college concerning the languages French, German, and Russian:

65 study French, 45 study German,

- 42 study Russian, 20 study French and German,
- 25 study French and Russian,
- 15 study German and Russian.
- 8 study all three languages.

Determine how many students study exactly 1 subject and fill the correct numbers of students in each eight region of Venn diagram shown in figure.

Total number of students exactly registered in one course
 = 28+18+10=56

Exercise Questions

Chapter # 2 Topic # 2.2 Question # 1, 2, 3,4,5,6,15,16,17,18, 19,20,21,22,23,24,25