Discrete Structures (Discrete Mathematics)

Lecture - 2
 Set Operations

Set Operations

- Two sets can be combined in many different ways.
- Set operations can be used to combine sets.

Union

- Let A and B be sets.
- The union of A and B, denoted by $\mathbf{A} \cup \mathbf{B}$, is the set containing those elements that are either in A or in B , or in both.
- $A \cup B=\{x \mid x \in A \vee x \in B\}$

Intersection

- Let A and B be sets.
- The intersection of A and B, denoted by $\mathbf{A} \cap \mathbf{B}$, is the set containing those elements in both A and B.
- $A \cap B=\{x \mid x \in A \wedge x \in B\}$

Union (example)

- Let $A=\{1,2,3\}$

$$
\begin{aligned}
& B=\{2,4,6,8\} \\
& A \cup B=\{1,2,3,4,6,8\}
\end{aligned}
$$

- Let $A=\{x \mid x \in \mathbf{Z} \wedge x$ is even $\}$
$B=\{x \mid x \in \mathbf{Z} \wedge x$ is odd $\}$
$A \cup B=\mathbf{Z}$

Intersection (example)

- Let $A=\{1,2,3\}$
$B=\{2,4,6,8\}$
$A \cap B=\{2\}$
- Let $A=\mathbf{Z}$
$B=\{x \mid x \in Z \wedge x$ is odd $\}$
$A \cap B=\{x \mid x \in Z \wedge x$ is odd $\}$

Disjoint Sets

- Two sets are called disjoint if their intersection is empty.
- Let $A=\{x \mid x \in \mathbf{Z} \wedge x$ is even $\}$

$$
\begin{aligned}
& B=\{x \mid x \in \mathbf{Z} \wedge x \text { is odd }\} \\
& A \cap B=\varnothing
\end{aligned}
$$

The Cardinality of the Union of Sets

- $|\mathrm{A} \cup \mathrm{B}|=$?

Solution:

- Let $A=\{1,2,3\}$
$B=\{2,3,4\}$
$A \cup B=\{1,2,3,4\}$
- $|A|=3 \quad|B|=3 \quad|A \cup B|=4$
$\cdot|A \cup B|=|A|+|B|-|A \cap B|$

Difference

- Let A and B be sets.
- The difference of A and B, denoted by $\mathbf{A}-\mathbf{B}$, is the set containing those elements that are in A but not in B. (also called complement of B with respect to A).
- $A-B=\{x \mid x \in A \wedge x \notin B\}$

Difference (example)

- Let $\mathrm{A}=\{1,2,3\}$

$$
\begin{aligned}
& B=\{2,4\} \\
& A-B=\{1,3\}
\end{aligned}
$$

- Let $\mathrm{A}=\mathbf{Z}$

$$
\begin{aligned}
& B=\{x \mid x \in Z \wedge x \text { is odd }\} \\
& A-B=\{x \mid x \in Z \wedge x \text { is even }\}
\end{aligned}
$$

Complement

- Let U be the universal set and A be a set.
- The complement of A , denoted by A , is the complement of A with respect to U (which is $U-A$).
- $A=\{x \quad \mid x \notin A+$

Complement (example)

- Let $A=\{a, b, c, d\}$ and
U is the set of English alphabet

$$
A=\{e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z\}
$$

- Let $A=\{x \mid x \in \mathbf{Z} \wedge x$ is odd $\}$ and
U is \mathbf{Z}
$A=\{x \mid x \in \mathbf{Z} \wedge x$ is even $\}$

Summary Set Operations

Operation	Notation
Union	$A \cup B=\{x \mid x \in A \vee x \in B\}$
Intersection	$A \cap B=\{x \mid x \in A \wedge x \in B\}$
Difference	$A-B=\{x \mid x \in A \wedge x \notin B\}$
Complement $(U-A)$	$A=\{x \quad \mid x \notin A+$

Set Identities

$A \cup \emptyset=A$
$A \cap U=A$
$A \cup U=U$
$A \cap \emptyset=\varnothing$
$A \cup A=A$
$A \cap A=A$
$(\mathrm{A})=\mathrm{A}$
$A \cup A=U$
$A \cap A=\varnothing$

Identity Laws

Domination Laws

Idempotent Laws

Complementation Law

Complement Laws

Set Identities

$A \cup B=B \cup A$
$A \cap B=B \cap A$
$A \cup(B \cup C)=(A \cup B) \cup C$
$A \cap(B \cap C)=(A \cap B) \cap C$
$A \cup(A \cap B)=A$
$A \cap(A \cup B)=A$

Commutative Laws

Associative Laws

Absorption Laws

Set Identities

$\overline{A \cup B}=A \cap B$
$\overline{A \cap B}=A \cup B$
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \quad$ Distributive Law
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

How to Prove a Set Identity

- Four methods:
- Use the basic set identities
- Use membership tables
- Prove each set is a subset of each other
- Use set builder notation and logical equivalences

Set Identities (example)

- Show $\mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{C} \cup \mathrm{B}) \cap \mathrm{A}$

Solution:

$$
\begin{array}{ll}
\overline{A \cup(B \cap C)} \\
=A \cap B \cap C) & \\
=A \cap B \cup C) & \text { (By DeMorgan's Law) } \\
=A \cap(C \cup B) & \text { (By DeMorgan's Law) } \\
=(C \cup B) \cap A \quad \text { (By CommutativeLaw) } \\
\quad=(C \cup B+1) \text { Law) }
\end{array}
$$

What is a membership table

- Membership tables show all the combinations of sets an element can belong to
- 1 means the element belongs, 0 means it does not
- Consider the following membership table:

\mathbf{A}	\mathbf{B}	$\mathbf{A} \cup \mathbf{B}$	$\mathbf{A} \cap \mathbf{B}$	$\mathbf{A}-\mathbf{B}$
1	1	1	1	0
1	0	1	0	1
0	1	1	0	0
0	0	0	0	0

Membership Table

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C) \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C)
\end{aligned}
$$ Distributive Law

A	B	C	$B \cap C$	$A \cup(B \cap C)$	$A \cup B$	$A \cup C$	$(A \cup B) \cap(A \cup C)$
1	1	1	1	1	1	1	1
1	1	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	0	0	0	1	1	1	1
0	1	1	1	1	1	1	1
0	1	0	0	0	1	0	0
0	0	1	0	0	0	1	0
0	0	0	0	0	0	0	0

Proof by showing each set is a subset of the other

- Assume that an element is a member of one of the identities
- Then show it is a member of the other

Example

- Show $A \cap B \cup C \nexists A \emptyset B \cup A) \cap()$

Solution:

Part 1: $A \cap B \cup C \pm A 历 B \cup A) \cap($)
Assume $x \in A \cap \mathbb{B} \cup C)$
$(x \in A)_{\wedge}(x \in B(\cup C))$
$(x \in A) \wedge(x \in B \vee x \in C)$
$(x \in A \wedge x \in B)(x \in A \wedge x \in C)$
$(x \in(A \cap B)) \vee(x \in(A \cap C))$
$x \in(A \cap B) \cup(A \cap C)$
Definition of Intersection
Definition of Union
Distributive Law
Definition of Intersection
Definition of Union
So, $\quad A \cap B \cup C \nsubseteq A \varnothing B \cup A) \cap \mathbb{C}$
)

Example

- Show $A \cap B \cup C \nexists A \subset B \cup A) \cap()$

Solution:

Part 2: $(A \cap B) \cup A(\cap C \subseteq) A \cap B \cup(C \quad)$ Assume $x \in \mathbb{A} \cap B \cup A$ ■ $C \quad)$
$(x \in A \cap B) \vee(x \in A(\cap C))$
$(x \in A \wedge x \in B)(x \in A \wedge x \in C)$
$x \in A \wedge(x \in B \vee x \in C)$
$x \in A \wedge(x \in B \cup C)$
$x \in A \cap(B \cup C)$
Definition of Union
Definition of Intersection
Distributive Law
Definition of Union
Definition of Intersection
So, $\quad(A \cap B) \cup A(\cap C \subseteq) A \cap B \cup(C \quad)$
Thus, $\quad A \cap B \cup C \neq A \pitchfork B \cup A) \cap()$

Proof by set builder notation and logical equivalences

- First, translate both sides of the set identity into set builder notation
- Then use one side (or both) to make it identical to the other
- Do this using logical equivalences

Set Builder Notation and Logical Equivalences (Example)

- Show $\overline{A \cap B}=A \cup B$

Solution:
$\overline{A \cap B}={ }^{*} x \mid x \notin A \cap B+$
$=\{\notin x(\in A \cap B)\}$
$=\{\neq x(\in A \wedge x) \in \mathbb{x}$
$=x \nrightarrow x(\in A \vee) \rightarrow x \in(B$
$=\{\mid(x \notin A \downarrow x(\notin B \quad)\}$
$=\{\mid(x \in A) \vee\{x \in B)\}$
$={ }^{*} x \mid x \in A \cup B+$
$=A \cup B$

Definition of Complement
Definition of does not belong symbol
)\}
Definition of intersection
DeMorgan's Law
Definition of does not belong symbol
Definition of Complement
Definition of Union
By meaning of Set Builder Notation

2 and 3 - Set Venn Diagram

$|A \cup B|=|A|+|B|-|A \cap B|$
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+$
$|A \cap B \cap C|$

Example

Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists.
Find the number of students:

- only on list A
- only on list B
- on list A or B (or both),
- on exactly one list.

Example

Solution:

- $30-20=10$ names are only on list A.
- $35-20=15$ are only on list B.
- $|A \cup B|=|A|+|B|-|A \cap B|=30+35-20=45$.
- $10+15=25$ names are only on one list; that is, $|A \oplus B|=25$.

Example

Consider the following data for 120 mathematics students at a college concerning the languages French, German, and Russian:

65 study French, 45 study German,
42 study Russian , 20 study French and German,
25 study French and Russian,
15 study German and Russian.
8 study all three languages.
Determine how many students study exactly 1 subject and fill the correct numbers of students in each eight region of Venn diagram shown in figure.

Example

- Total number of students exactly registered in one course $=28+18+10=56$

Exercise Questions

Chapter \# 2
Topic \# 2.2
Question \# 1, 2, 3,4,5,6,15,16,17,18, $19,20,21,22,23,24,25$

