# Discrete Structures (Discrete Mathematics) 

Lecture - 3

## Functions

## Application of Functions

- Define discrete structures such as sequences and strings
- Represent the time that a computer takes to solve problems of a given size
- Represent the complexity of algorithms


## Functions

- In many examples we assign to each element of a set, a particular element of a second set (which may be the same as the first).
- For example, suppose that each student in a discrete mathematics class is assigned a letter grade from the set $\{A, B, C, D, F\}$.
- This assignment is an example of a function.



## Functions

- Let A and B be nonempty sets.
- A function $f$ from $\mathbf{A}$ to $\mathbf{B}$ is an assignment of exactly one element of $\mathbf{B}$ to each element of $\mathbf{A}$.
- If $\mathbf{b}$ is the unique element of $\mathbf{B}$ assigned by the function $\boldsymbol{f}$ to the element $\mathbf{a}$ of $\mathbf{A}$, we write $f(\mathbf{a})=\mathbf{b}$.
- If $f$ is a function from $\mathbf{A}$ to $B$, we write $f: A \rightarrow B$.


## Functions

- If $\boldsymbol{f}$ is a function from $\mathbf{A}$ to $\mathbf{B}$, we say that $\mathbf{A}$ is the domain of $\boldsymbol{f}$ and $\mathbf{B}$ is the codomain of $\boldsymbol{f}$.
- if $f(\mathbf{a})=\mathbf{b}$, we say that $\mathbf{b}$ is the image of $\mathbf{a}$ and $\mathbf{a}$ is the preimage of $b$.
- The range of $\boldsymbol{f}$ is the set of all images of elements of $\mathbf{A}$.
- Also, if $\boldsymbol{f}$ is function from $\mathbf{A}$ to $\mathbf{B}$, we say that $\boldsymbol{f}$ maps $\mathbf{A}$ to B.


## Functions

- A function takes an element from a set and maps it to a UNIQUE element in another set.
$f$ maps $R$ to $\mathbf{Z}$


Pre-image of 4
Image of 4.3

## Arrow Diagram of Functions

- The definition of a function implies that the arrow diagram for a function $f$ has the following two properties:
- Every element of $\mathbf{A}$ has an arrow coming out of it
- No elements of $\mathbf{A}$ has two arrows coming out of it that point to two different elements of $\mathbf{B}$.

Arrow Diagram of Functions(example)
The pre-image


A class grade function
$g(A l i)=A$
g(Babar) $=$ C
$g($ Chishti $)=A$


A string length function

$$
\begin{aligned}
& f(x)=\text { length } x \\
& f(" a ")=1 \\
& f(" b b ")=2
\end{aligned}
$$

## Functions

The range of $f$ is the set of all images of elements of A.


## Functions



Not a valid function

## Functions and Non-Functions

- Which of the arrow diagrams define functions from
- $A=\{2,4,5,6,7\}$ to $B=\{1,2,4,6,8\}$.

Domain


Domain Co-domain


A
B
Not a Function

## Example

- Let $f: \mathbf{Z} \rightarrow \mathbf{Z}$
assign the square of an integer to this integer
- What is $f(x)=$ ?
- $f(x)=x^{2}$
- What is domain of $f$ ?
- Set of all integers
- What is codomain of $f$ ?
- Set of all integers
- What is the range of $f$ ?
- $\{0,1,4,9, \ldots\}$. All integers that are perfect squares


## Function Arithmetic

- Just as we are able to add (+), subtract (-), multiply (*), and divide ( $\div$ ) two or more numbers, we are able to,+- , * , and $\div$ two or more functions
- Let $f$ and $g$ be functions from $\boldsymbol{A}$ to $\mathbf{R}$. Then $f+g, f-g, f * g$ and $f / g$ are also functions from $\boldsymbol{A}$ to $\mathbf{R}$ defined for all $\boldsymbol{x} \in \boldsymbol{A}$ by:

$$
\begin{aligned}
& \text { - }(f+g)(x)=f(x)+g(x) \\
& \text { - } \quad(f-g)(x)=f(x)-g(x) \\
& \text { - }\left(f{ }^{*} g\right)(x)=f(x)^{*} g(x) \\
& \text { - }(f / g)(x)=f(x) / g(x)
\end{aligned}
$$

## Function Arithmetic

Let $f_{1}$ and $f_{2}$ be functions from $\mathbf{R}$ to $\mathbf{R}$ such that:

- $f_{1}(x)=2 x$
- $f_{2}(x)=x^{2}$
- Find $f_{1}+f_{2}$ and $f_{1}{ }^{*} f_{2}$.
- $f_{1}+f_{2}=\left(f_{1}+f_{2}\right)(x)=f_{1}(x)+f_{2}(x)=2 x+x^{2}$
- $f_{1} * f_{2}=\left(f_{1}{ }^{*} f_{2}\right)(x)=f_{1}(x) * f_{2}(x)=2 x^{*} x^{2}=2 x^{3}$


## Function Arithmetic

- Let $f$ and $g$ be functions from $\mathbf{R}$ to $\mathbf{R}$ such that:
- $\mathbf{f}(\mathbf{x})=3 \mathrm{x}+\mathbf{2}$ $g(x)=-2 x+1$
- What is the function $f^{*} g$ ?
- $\mathrm{f}^{*} \mathrm{~g}=(\mathrm{f} * \mathrm{~g})(\mathrm{x})=\mathrm{f}(\mathrm{x})^{*} \mathrm{~g}(\mathrm{x})=(3 \mathrm{x}+2)^{*}(-2 \mathrm{x}+1)=-6 \mathrm{x}^{2}-\mathrm{x}+2$

Let $\mathrm{x}=-1$, what is $\mathrm{f}(-1)^{*} \mathrm{~g}(-1)$ and $\left(\mathrm{f}^{*} \mathrm{~g}\right)(-1)$ ?

- $\mathrm{f}(-1)=3(-1)+2=-1$
- $g(-1)=-2(-1)+1=3$
- $\mathrm{f}(-1)^{* g}(-1)=-1 \times 3=-3$
- $(\mathrm{f} * \mathrm{~g})(-1)=-6(-1) 2-(-1)+2=-6+1+2=-3$


## One-to-One Function

- A function is one-to-one if each element in the co-domain has a unique pre-image
- Formal definition: A function $\boldsymbol{f}$ is one-to-one if $f(a)=f(b)$ implies $\mathrm{a}=\mathrm{b}$ for all a and b in the domain of $\boldsymbol{f}$.


A one-to-one function

> A function that is not one-to-one

## One-to-One Function

$f$ is one-to-one using quantifiers/symbols

$$
\begin{gathered}
\forall a, \forall b[f(a)=f(b) \rightarrow a=b] \text { or equivalently } \\
\forall a, \forall b,[a \neq b \rightarrow f(a) \neq f(b)]
\end{gathered}
$$

Where $a$ and $b$ are in domain of $f$ i.e. $\forall a, b \in D(f)$

## More on One-to-One Functions

- Injective is synonymous with one-to-one
- "A function is injective"
- A function is an injection if it is one-to-one
- Note that there can be un-used elements in the co-domain


A one-to-one function

## Example one-to-one function

- Determine whether the function $f$ from set $\{a, b, c, d\}$ to set $\{1,2,3,4,5\}$ with $f(a)=4, f(b)=$ $5, f(c)=1$ and $f(d)=3$ is one - to - one ?



## Onto Functions

- A function is onto if each element in the co-domain is an image of some pre-image
- Formal definition: A function $f$ is onto if for all $b \in B$, there exists $a \in A$ such that $f(a)=b$.


An onto function


A function that is not onto

## Onto functions

- A function $f$ is onto if $\forall b, \exists a,[f(a)=b]$, where the domain for $a$ is the domain of the function and the domain for $b$ is the codomain of the function.


## More on Onto Functions

- Surjective is synonymous with onto
- "A function is surjective"
- A function is a surjection if it is onto
- Note that there can be multiple used elements in the co-domain


An onto function

## Example onto function

- Determine whether the function $f$ from $\{a, b, c, d\}$ to $\{1,2,3\}$ defined by $f(a))=3, f(b)=2, f(c)=$ 1 and $f(d)=3$. Is $f$ an onto function ?



## Onto vs One-to-One

- Are the following functions onto, one-to-one, both, or neither?


1-to-1, not onto


Onto, not 1-to-1


Both 1-to-1 and onto


Neither 1-to-1 nor onto

## Example

- Determine whether the function $f(x)=x^{2}$ from the set of integers to the set of integers is one-to-one.

$$
f: \mathbb{Z} \rightarrow \mathbb{Z} ; f(x)=x^{2}
$$

To show $f$ is one to one, let $x_{1}, x_{2} \in \mathrm{Z}$ and suppose
$f\left(x_{1}\right)=f\left(x_{2}\right)$
$x_{1}^{2}=x_{2}^{2}$
$x_{1}^{2}-x_{2}^{2}=0$
$\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=0$
$x_{1}+x_{2}=0, x_{1}-x_{2}=0$
$x_{1}=-x_{2}, \quad x_{1}=x_{2}$
$x_{1=} \pm x_{2}$
Hence $f$ is not one to one.

## Example

- Determine whether the function $f(x)=x+1$ from the set of integers to the set of integers is onto.

$$
f: \mathbb{Z} \rightarrow \mathbb{Z} ; \quad ; \quad f(x)=x+1
$$

Let $\mathrm{y} \in \mathrm{Z}$. We look for an $\mathrm{x} \in \mathrm{Z}$ such that $\mathrm{f}(\mathrm{x})=\mathrm{y}$
$f(x)=y$
$x+1=y$ By definition of $f$
$x=y-1$
Thus for each $y \in \mathrm{Z}$, there exists $x=y-1 \in \mathrm{Z}$
such that $f(x)=f(y-1)$
$=(y-1)+1=y$
Hence f is onto.

## Bijections

- Consider a function that is both one-to-one and onto:
- Such a function is a one-to-one correspondence, or a bijection.



## Example

- Determine whether the following functions are bijective or not?

$$
\begin{aligned}
& f: R \rightarrow R ; f(x)=x^{3} \\
& f: R-\{0\} \rightarrow R ; f(x)=\frac{x+1}{x}
\end{aligned}
$$

## Floor and Ceiling

- $\operatorname{floor}(x)=\lfloor\mathrm{X}\rfloor$ is the largest integer that is less than or equal to $\mathbf{x}$ and ceiling $(x)=\lceil\mathrm{X}\rceil$ is the smallest integer that is greater than or equal to $\mathbf{x}$
- The floor and ceiling functions give you the nearest integer up or down.

|  |  |  |
| :--- | :--- | :--- |
| Sample value $\boldsymbol{x}$ | Floor $\boldsymbol{x}$ | Ceiling $\boldsymbol{x}$ |
| $12 / 5=2.4$ | 2 | 3 |
| 2.7 | 2 | 3 |
| -2.7 | -3 | -2 |
| -2 | -2 | -2 |



## Identity Functions

- A function such that the image and the pre-image are ALWAYS equal
- $f(x)=1^{*} x$
- $f(x)=x+0$
- The domain and the co-domain must be the same set.


## Inverse Function

- Let $\boldsymbol{f}$ be a one-to-one correspondence from the set $\mathbf{A}$ to the set B.
- The inverse function of $\boldsymbol{f}$ is the function that assigns to an element in $\mathbf{b}$ belonging to $\mathbf{B}$ the unique element $\mathbf{a}$ in $\mathbf{A}$ such that $f(a)=b$.
- The inverse function of $\boldsymbol{f}$ is denoted by $\boldsymbol{f}^{-\mathbf{1}}$.
- Hence,$f^{-1}(b)=a$ when $f(a)=b$.


## Inverse Functions

If $f(a)=b$, then $f^{-1}(b)=a$


## Inverse Functions

$$
\begin{gathered}
\text { If } f(x)=y \text {, then } f^{-1}(y)=x \\
\text { Let } f(x)=2^{*} x \\
f(x)=y
\end{gathered}
$$



Then $f^{-1}(y)=y / 2$

## More on Inverse Functions

- Can we define the inverse of the following functions?


What is $f^{-1}(2)$ ?
Not onto!

What is $\mathrm{f}^{-1}(2)$ ?
Not 1-to-1!

- An inverse function can ONLY be done defined on a bijection


## More on Inverse Functions

- A one-to-one correspondence is called invertible because we can define an inverse of this function.
- A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.


## Example

- Let $f$ be the function from $\{a, b, c\}$ to $\{1,2,3\}$ such that $f(a)=2, f(b)=3$, and $f(c)=1$.
- Is $f$ invertible, and if it is, what is its inverse?


## Working Rule to Find Inverse Function

- Let $f: X \rightarrow Y$ be a one-to-one correspondence defined by the formula $f(x)=y$.

1. Solve the equation $f(x)=y$ for $x$ in terms of $y$.
2. $\mathbf{f}^{-\mathbf{1}}(y)$ equals the right hand side of the equation found in step 1.

## Example

Let $f: Z \rightarrow Z$ be such that $f(x)=x+1$. Is $f$ invertible, and if it is, what is its inverse?

The given function $f$ is defined by rule
$f(x)=y$
$x+1=y$
$x=y-1$
Hence $f^{-1}(y)=y-1$

## Compositions of Functions

- Let $\boldsymbol{g}$ be a function from the set $\mathbf{A}$ to the set $\mathbf{B}$ and let $\boldsymbol{f}$ be a function from the set $\mathbf{B}$ to the set $\mathbf{C}$. the compositions of the functions $f$ and g , denoted by $\boldsymbol{f}^{\circ} \boldsymbol{g}$, is defined by

$$
\left(f^{\circ} g\right)(a)=f(g(a))
$$

## Compositions of Functions

$$
\left(f^{\circ} \mathrm{g}\right)(\mathrm{a})=\mathrm{f}(\mathrm{~g}(\mathrm{a}))
$$



## Compositions of Functions



$$
f(g(x))=2(3 x+2)+3=6 x+7
$$

## Compositions of Functions

$$
\begin{aligned}
& \text { Does } f(g(x))=g(f(x)) \text { ? } \\
& \text { Let } \mathrm{f}(\mathrm{x})=2 \mathrm{x}+3 \\
& \text { Let } g(x)=3 x+2 \\
& f(g(x))=2(3 x+2)+3=6 x+7 \\
& g(f(x))=3(2 x+3)+2=6 x+11 \\
& \text { Not equal! }
\end{aligned}
$$

Function composition is not commutative!

## Compositions of Functions

- Let $A=\{1,2,3,4,5\}$
$f: \mathrm{A} \rightarrow \mathrm{A}$ and $g: \mathrm{A} \rightarrow \mathrm{A}$
$f(1)=3, f(2)=5, f(3)=3, f(4)=1, f(5)=2$
$g(1)=4, g(2)=1, g(3)=1, g(4)=2, g(5)=3$
Find the composition functions $f \circ g$ and $g \circ f$.

| $f \circ g$ | $g \circ f$ |
| :--- | :--- |
| $(f \circ g)(1)=f(g(1))=f(4)=1$ | $(g \circ f)(1)=g(f(1))=g(3)=1$ |
| $(f \circ g)(2)=?$ | $(g \circ f)(2)=?$ |
| $(f \circ g)(3)=?$ | $(g \circ f)(3)=?$ |
| $(f \circ g)(4)=?$ | $(g \circ f)(4)=?$ |
| $(f \circ g)(5)=?$ | $(g \circ f)(5)=?$ |

## Compositions of Functions

Let $g: A \rightarrow A$ be the function, $\operatorname{Set} A=\{a, b, c\}$ such that $g(a)=b$, $g(b)=c$, and $g(c)=a$.

Let $f: A \rightarrow B$ be the function, Set $A=\{a, b, c\}$ to the set $B=\{1,2$, 3 \} such that $f(a)=3, f(b)=2$, and $f(c)=1$.

What is the composition of $f$ and $g$, and what is the composition of $g$ and $f$ ?
Solution:
The composition $f \circ g$ is defined by
$(f \circ g)(a)=f(g(a))=f(b)=2$,
$(f \circ g)(b)=f(g(b))=f(c)=1$,
$(f \circ g)(c)=f(g(c))=f(a)=3$.
$g \circ f$ is not defined, because the range of $f$ is not a subset of the domain of $g$.

## Exercise Questions

Chapter \# 2
Topic \# 2.3
Questions 1, 2, 8, 9,10,11,12, 22, 23, 36, 37

