Discrete Structures (Discrete Mathematics)

> Lecture – 3 Functions

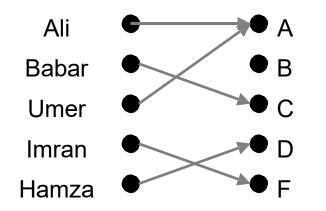
Application of Functions

۲

. . .

- Define discrete structures such as sequences and strings
- Represent the time that a computer takes to solve problems of a given size
- Represent the complexity of algorithms

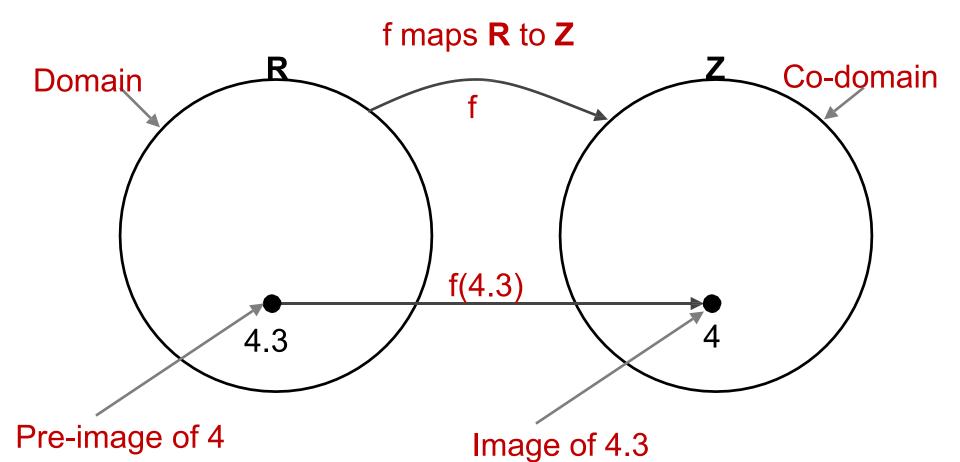
- In many examples we assign to each element of a set, a particular element of a second set (which may be the same as the first).
- For example, suppose that each student in a discrete mathematics class is assigned a letter grade from the set {A,B,C,D, F}.
- This assignment is an example of a function.



- Let A and B be nonempty sets.
- A function f from A to B is an assignment of exactly one element of B to each element of A.
- If b is the unique element of B assigned by the function f to the element a of A, we write f(a) = b.
- If **f** is a function from **A** to **B**, we write $f: A \rightarrow B$.

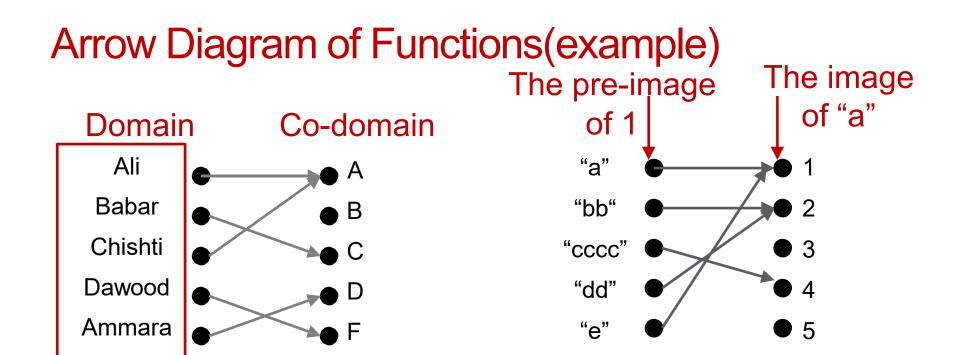
- If *f* is a function from A to B, we say that A is the domain of *f* and B is the codomain of *f*.
- if f(a) = b, we say that b is the image of a and a is the preimage of b.
- The range of **f** is the set of all images of elements of **A**.
- Also, if *f* is function from A to B, we say that *f* maps A to B.

 A function takes an element from a set and maps it to a UNIQUE element in another set.



Arrow Diagram of Functions

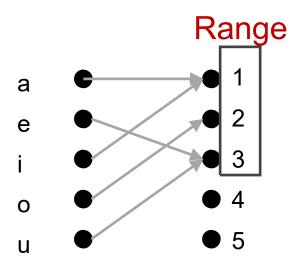
- The definition of a function implies that the arrow diagram for a function f has the following two properties:
- Every element of **A** has an arrow coming out of it
- No elements of A has two arrows coming out of it that point to two different elements of B.

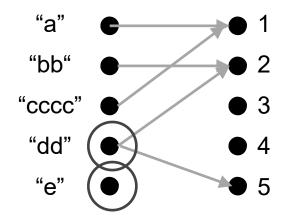


A class grade function

g(Ali) = A g(Babar) = C g(Chishti) = A A string length function f(x) = length x f("a") = 1 f("bb") = 2

The *range* of f is the set of all images of elements of A.



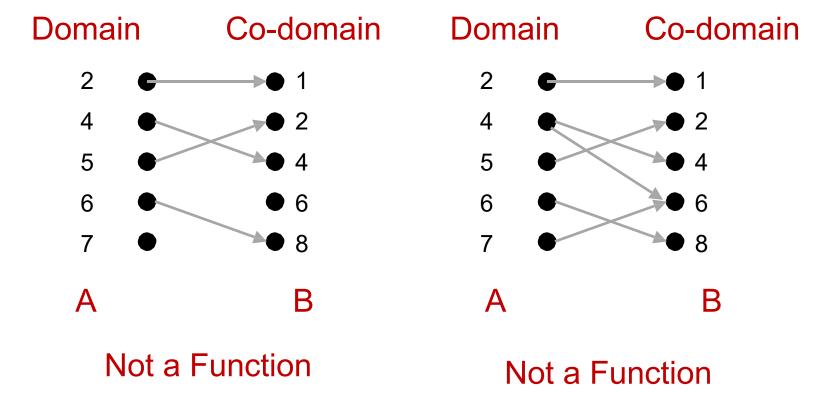


Not a valid function

Functions and Non-Functions

Which of the arrow diagrams define functions from

• A = $\{2,4,5,6,7\}$ to B = $\{1,2,4,6,8\}$.



Example

• Let $f: \mathbf{Z} \to \mathbf{Z}$

assign the square of an integer to this integer

- What is *f* (*x*) =?
 - $f(x) = x^2$
- What is domain of *f* ?
 - Set of all integers
- What is codomain of f?
 - Set of all integers
- What is the range of *f* ?
 - {0, 1, 4, 9, . . . }. All integers that are perfect squares

Function Arithmetic

- Just as we are able to add (+), subtract (-), multiply (*), and divide (÷) two or more numbers, we are able to + , - , *, and ÷ two or more functions
- Let *f* and *g* be functions from *A* to *R*. Then *f* + *g*, *f* − *g*, *f* * *g* and *f*/*g* are also functions from *A* to *R* defined for all *x* ∈ *A* by:
- (f+g)(x) = f(x) + g(x)
- (f g)(x) = f(x) g(x)
- (f *g)(x) = f(x)*g(x)
- (f/g)(x) = f(x)/g(x) given that $g(x) \neq 0$

Function Arithmetic

Let f_1 and f_2 be functions from **R** to **R** such that:

- $f_1(x) = 2x$
- $f_2(x) = x^2$
- Find $f_1 + f_2$ and $f_1 * f_2$.
- $f_1 + f_2 = (f_1 + f_2)(x) = f_1(x) + f_2(x) = 2x + x^2$
- $f_1 * f_2 = (f_1 * f_2)(x) = f_1(x) * f_2(x) = 2x * x^2 = 2x^3$

Function Arithmetic

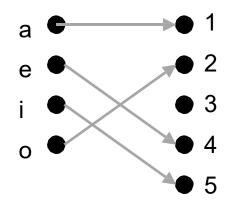
- Let f and g be functions from **R** to **R** such that:
- f(x) = 3x+2 g(x) = -2x + 1
- What is the function *f* **g*?

•
$$f^*g = (f^*g)(x) = f(x)^*g(x) = (3x+2)^*(-2x+1) = -6x^2 - x + 2$$

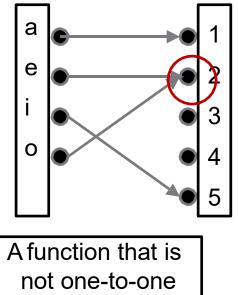
Let
$$x = -1$$
, what is $f(-1)*g(-1)$ and $(f*g)(-1)$?
• $f(-1) = 3(-1) + 2 = -1$
• $g(-1) = -2(-1) + 1 = 3$
• $f(-1)*g(-1) = -1 \times 3 = -3$
• $(f*g)(-1) = -6(-1)2 - (-1) + 2 = -6+1+2 = -3$

One-to-One Function

- A function is one-to-one if each element in the co-domain has a unique pre-image
- Formal definition: A function *f* is one-to-one if f(a) = f(b) implies a = b for all a and b in the domain of *f*.



A one-to-one function



One-to-One Function

f is one-to-one using quantifiers/symbols

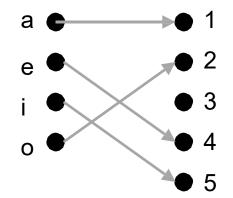
$$\forall a, \forall b [f(a) = f(b) \rightarrow a = b] \text{ or equivalently} \\ \forall a, \forall b, [a \neq b \rightarrow f(a) \neq f(b)] \end{cases}$$

Where a and b are in domain of f i.e. $\forall a, b \in D(f)$

More on One-to-One Functions

- Injective is synonymous with one-to-one
 - "A function is injective"
- A function is an injection if it is one-to-one

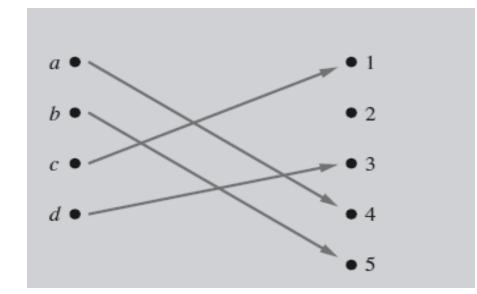
 Note that there can be un-used elements in the co-domain



A one-to-one function

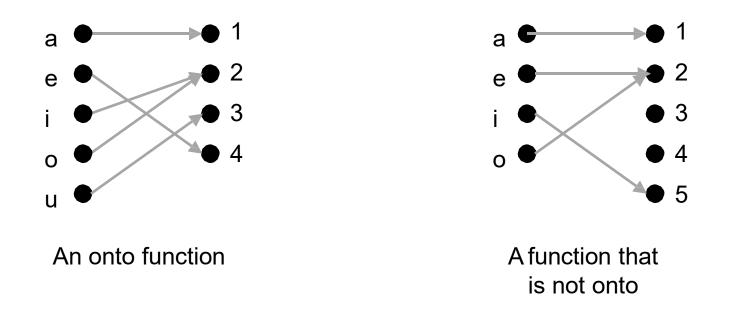
Example one-to-one function

• Determine whether the function f from set {a, b, c, d} to set {1,2,3,4,5} with f(a) = 4, f(b) =5, f(c) = 1 and f(d) = 3 is one -to - one?



Onto Functions

- A function is onto if each element in the co-domain is an image of some pre-image
- Formal definition: A function f is onto if for all b ∈ B, there exists a ∈ A such that f(a) = b.

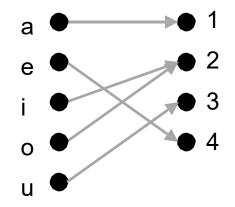


Onto functions

A function *f* is onto if ∀ *b*, ∃ *a*, [*f*(*a*) = *b*], where the domain for *a* is the domain of the function and the domain for *b* is the codomain of the function.

More on Onto Functions

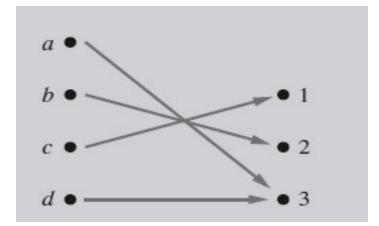
- Surjective is synonymous with onto
 - "A function is surjective"
- A function is a surjection if it is onto
- Note that there can be multiple used elements in the co-domain



An onto function

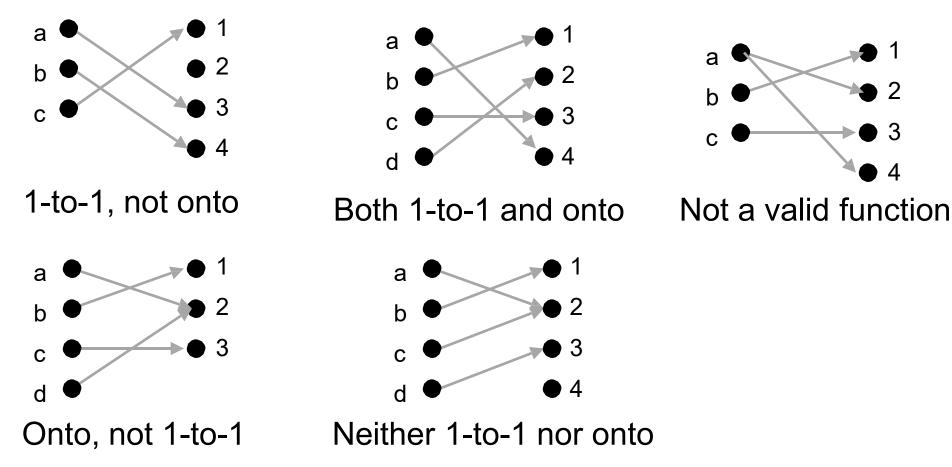
Example onto function

• Determine whether the function f from $\{a, b, c, d\}$ to $\{1,2,3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1 and f(d) = 3. Is f an onto function?



Onto vs One-to-One

 Are the following functions onto, one-to-one, both, or neither?



Example

• Determine whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one.

7

$$f:\mathbb{Z} \to \mathbb{Z}; f(x) = x^2$$

To show f is one to one, let $x_1, x_2 \in \mathbb{Z}$ and suppose
 $f(x_1) = f(x_2)$
 $x_1^2 = x_2^2$
 $x_1^2 - x_2^2 = 0$
 $(x_1 + x_2)(x_1 - x_2) = 0$
 $x_1 + x_2 = 0, x_1 - x_2 = 0$
 $x_1 = -x_2, x_1 = x_2$
Hence f is not one to one.

Example

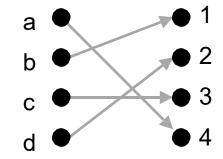
• Determine whether the function f(x) = x + 1 from the set of integers to the set of integers is onto.

$$f: \mathbb{Z} \to \mathbb{Z}; \; ; \; f(x) = x+1$$

Let $y \in Z$. We look for an $x \in Z$ such that f(x) = yf(x) = yx+1 = y By definition of f x = y - 1Thus for each $y \in \mathbb{Z}$, there exists $x = y - 1 \in \mathbb{Z}$ such that f(x) = f(y-1)=(y-1)+1=yHence f is onto.

Bijections

- Consider a function that is both one-to-one and onto:
- Such a function is a one-to-one correspondence, or a bijection.



Example

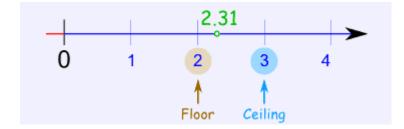
 Determine whether the following functions are bijective or not?

$$f: R \to R; f(x) = x^3$$
$$f: R - \{0\} \to R; f(x) = \frac{x+1}{x}$$

Floor and Ceiling

- floor(x) = [X] is the largest integer that is less than or equal to x and ceiling(x) = [X] is the smallest integer that is greater than or equal to x
- The floor and ceiling functions give you the nearest integer up or down.

Sample value <i>x</i>	Floor <i>x</i>	Ceiling <i>x</i>
12/5 = 2.4	2	3
2.7	2	3
-2.7	-3	-2
-2	-2	-2



Identity Functions

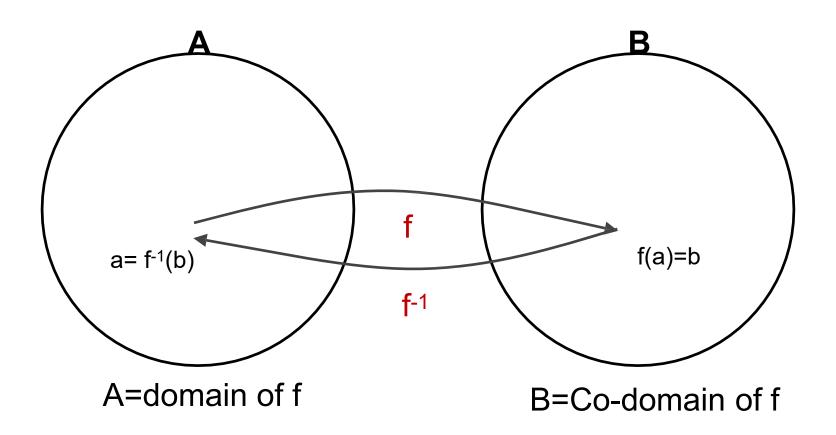
- A function such that the image and the pre-image are ALWAYS equal
- $f(x) = 1^*x$
- f(x) = x + 0
- The domain and the co-domain must be the same set.

Inverse Function

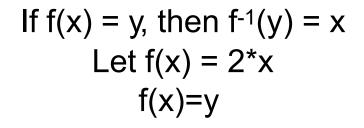
- Let *f* be a one-to-one correspondence from the set A to the set B.
- The inverse function of *f* is the function that assigns to an element in **b** belonging to **B** the unique element *a* in **A** such that *f*(*a*) = *b*.
- The inverse function of f is denoted by f^{-1} .
- Hence, *f*⁻¹(b) = a when *f*(a) = b.

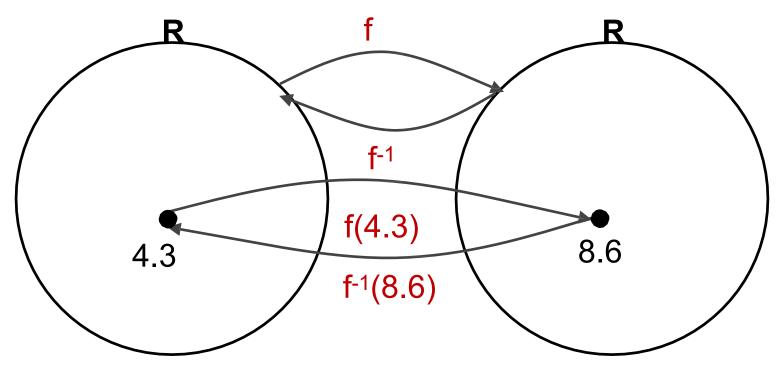
Inverse Functions

If f(a) = b, then $f^{-1}(b) = a$



Inverse Functions

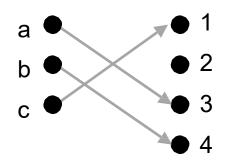


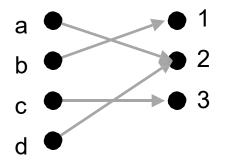


Then $f^{-1}(y) = y/2$

More on Inverse Functions

Can we define the inverse of the following functions?





What is f⁻¹(2)? Not onto! What is f⁻¹(2)? Not 1-to-1!

 An inverse function can ONLY be done defined on a bijection

More on Inverse Functions

- A one-to-one correspondence is called **invertible** because we can define an inverse of this function.
- A function is not invertible if it is not a one-to-one correspondence, because the inverse of such a function does not exist.

Example

- Let *f* be the function from {*a*, *b*, *c*} to {1, 2, 3} such that
 f (*a*) = 2, *f* (*b*) = 3, and *f* (*c*) = 1.
- Is *f* invertible, and if it is, what is its inverse?

Working Rule to Find Inverse Function

- Let f: X → Y be a one-to-one correspondence defined by the formula f(x) = y.
- 1. Solve the equation f(x) = y for x in terms of y.
- 2. $f^{-1}(y)$ equals the right hand side of the equation found in step 1.

Example

Let $f : Z \rightarrow Z$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

The given function f is defined by rule

$$f(x) = y$$

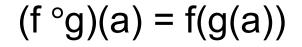
$$x + 1 = y$$

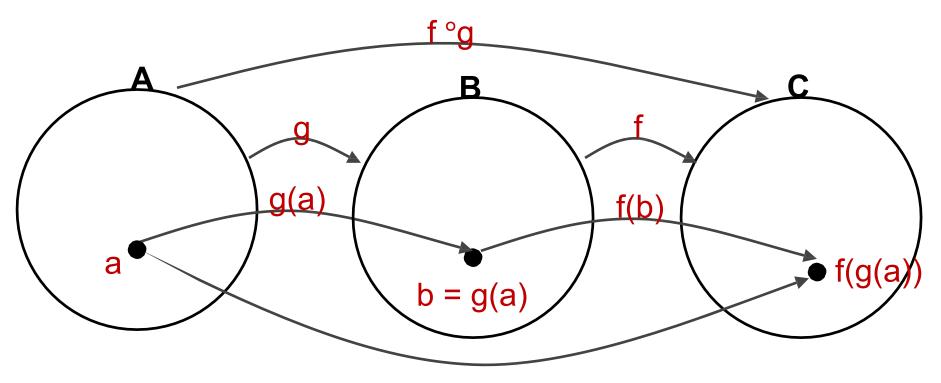
$$x = y - 1$$

Hence $f^{-1}(y) = y - 1$

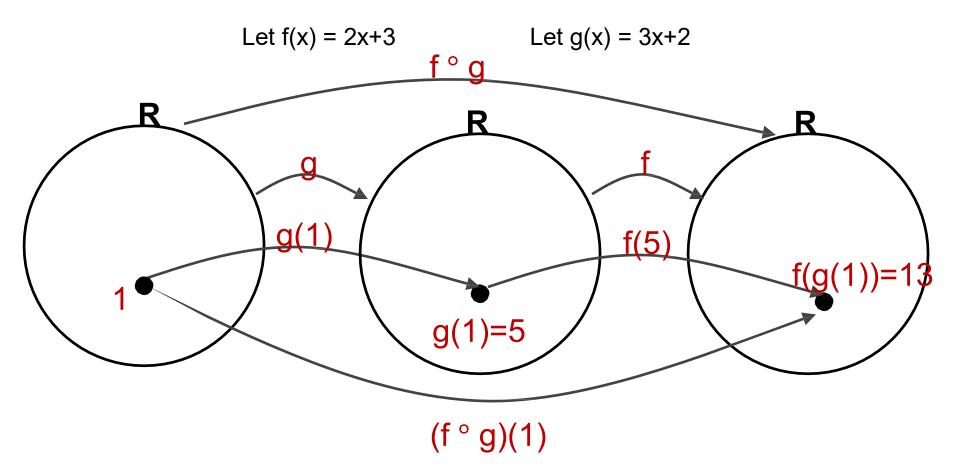
 Let g be a function from the set A to the set B and let f be a function from the set B to the set C. the compositions of the functions f and g, denoted by f °g, is defined by

 $(f^{\circ}g)(a) = f(g(a))$





(f °g)(a)



f(g(x)) = 2(3x+2)+3 = 6x+7

Does f(g(x)) = g(f(x))?

Let f(x) = 2x+3 f(g(x)) = 2(3x+2)+3 = 6x+7 g(f(x)) = 3(2x+3)+2 = 6x+11Let g(x) = 3x+2Not equal!

Function composition is not commutative!

• Let
$$A = \{1,2,3,4,5\}$$

 $f : A \to A$ and $g : A \to A$
 $f(1) = 3$, $f(2) = 5$, $f(3) = 3$, $f(4) = 1$, $f(5) = 2$
 $g(1) = 4$, $g(2) = 1$, $g(3) = 1$, $g(4) = 2$, $g(5) = 3$
Find the composition functions $f \circ g$ and $g \circ f$.

<i>f</i> ∘ <i>g</i>	<i>g</i> ∘ <i>f</i>
$(f \circ g) (1) = f(g(1)) = f(4) = 1$	$(g \circ f)(1) = g(f(1)) = g(3) = 1$
$(f \circ g) (2) = ?$	$(g \circ f)(2) = ?$
$(f \circ g) (3) = ?$	$(g \circ f)(3) = ?$
$(f \circ g) (4) = ?$	$(g \circ f)(4) = ?$
$(f \circ g) (5) = ?$	$(g \circ f)(5) = ?$

Let $g : A \rightarrow A$ be the function, Set $A = \{a, b, c\}$ such that g(a) = b, g(b) = c, and g(c) = a.

Let $f : A \rightarrow B$ be the function, Set $A = \{a, b, c\}$ to the set $B = \{1, 2, 3\}$ such that f(a) = 3, f(b) = 2, and f(c) = 1.

What is the composition of *f* and *g*, and what is the composition of *g* and *f*?

Solution:

The composition $f \circ g$ is defined by

$$(f \circ g)(a) = f(g(a)) = f(b) = 2,$$

 $(f \circ g)(b) = f(g(b)) = f(c) = 1,$
 $(f \circ g)(c) = f(c) = 2,$

$$(f \circ g)(c) = f(g(c)) = f(a) = 3.$$

 $g \circ f$ is not defined, because the range of f is not a subset of the domain of g.

Exercise Questions

Chapter # 2 Topic # 2.3 Questions 1, 2, 8, 9,10,11,12, 22, 23, 36, 37