Group Name : \rightarrow Integreats

$$
\begin{aligned}
\text { Roll Numbers } \rightarrow & F_{-18} \mathrm{BS}(M) 10 \\
& F_{-18} B S(M) 29 \\
& F_{-18 B S}(M) 45 \\
& F_{-18} B S(M) 67
\end{aligned}
$$

Ans of $\$ 1$
Given that
$\sum_{i, j=1}^{n} a_{i j}$, where $a_{i j}=0$ for $i<j$
For expanding the above exprostion, we can write $\alpha_{i, j=1}^{n} a_{i j}$ in the form of makix
ie

$$
A=\left[\begin{array}{cccccc}
\Phi & a_{12} & a_{13} & a_{14} & \cdots & a_{1 n} \\
0 & 0 & a_{23} & a_{24} & \cdots & a_{2 n} \\
0 & 0 & 0 & a_{34} & \cdots & a_{3 n} \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & 0 & & 0
\end{array}\right]
$$

Now change the matrix A in determinant form
σ

$$
\begin{aligned}
& A=\left(\begin{array}{ccccc}
0 & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & 0 & a_{23} & \cdots & a_{2 n} \\
0 & 0 & 0 & \ddots & a_{3 n} \\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { zero determinant. } \\
& |A|=O-O+\cdots+0 \\
& |A|=0
\end{aligned}
$$

Remark:- If a matrix having last how is equal to zero (0) then its determinant is also be zero (0)
Q.4 \rightarrow Find the Rank of $\left[\begin{array}{lll}1 & 2 & 3 \\ 9 & 4 & 1 \\ 1 & \text { in } & \text { in }\end{array}\right]$
fins of Q. 2
Given that
$\sum_{i, i=1}^{n} a_{i j}$, where $a_{i j}=0$ for $i \geqslant j$
Firstly. for expanding, we can write the above explexion in the form of makix
ie.

$$
A=\left[\begin{array}{lllll}
0 & 0 & 0 & \cdots & 0 \\
a_{21} & 0 & 0 & \cdots & 0 \\
a_{31} & a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots & 0
\end{array}\right]_{n \times n} \quad \text { Same arguments as given in Q No. } 1
$$

Now, from finding determinant we can find the value of a

$$
\begin{aligned}
& |A|=O\left|\begin{array}{cccc}
0 & 0 & \cdots & 0 \\
a_{32} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n} & \cdots & a_{n n}
\end{array}\right|-0\left|\begin{array}{cccc}
a_{21} & 0 & \ldots & 0 \\
a_{31} & 0 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|+\cdots-0\left|\begin{array}{cccc}
a_{21} & a & \cdots & 0 \\
a_{31} & a_{32} & \cdots & 0 \\
\vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right| \\
& |f|=0
\end{aligned}
$$

Hence the Sumation $\sum_{i, j=1}^{n} a i j=0$ for $a i j=0 \forall a i \geqslant j$
Q. 4 :
$A=\left[\begin{array}{lll}1 & 2 & 3 \\ 9 & 4 & 1 \\ 12 & 10 & 10\end{array}\right]^{\text {Ans of } Q .3}$ find its determinant by elementary ron $\begin{gathered}\text { operation? }\end{gathered}$
Sol:
hs
Sol: \rightarrow change the above makix in the form of determinant

$$
\begin{aligned}
& |f|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
9 & 4 & 1 \\
12 & 10 & 10
\end{array}\right| \\
& R_{2}-9 R_{1} \rightarrow R_{2} \\
& R_{3}-12 R_{1} \rightarrow R_{2} \\
& |H|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
0 & -14 & -26 \\
0 & -14 & -26
\end{array}\right| \\
& R_{3}+R_{2} \rightarrow R_{3}
\end{aligned}\left|\begin{array}{cc}
1 & 2 \\
3 \\
0 & -14 \\
0 & 0
\end{array}\right|
$$

Determinant of any matrix A is equation of its row equivalent matrix ??
Performing one row operation (operation of adding two rows) perserves determinant. Other two two operations does not perserve determinant. Multiplying a row scales determinant and exchanging two rows scales determinant with -1 .

From original matrix the determinant is also 0
Q.4 \rightarrow Find the rank of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 9 & 4 & 1 \\ 12 & 10 & 10\end{array}\right]$

Sol: \rightarrow Its obvious from solution of Q. 3 that this matrix has 2 rank
Here, I am introducing 2 methods of finding lank which are given below.

1) By elementary row operation

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
9 & 4 & 1 \\
12 & 10 & 10
\end{array}\right] \\
& R_{2}-9 R_{1} \rightarrow R_{2} \\
& R_{3}-12 R_{1} \rightarrow R_{3} \\
& A_{3}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -14 & -26 \\
0 & -14 & -26
\end{array}\right] \\
& A_{3}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -14 & -26 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Hence the rank is 2
2) By detaminant method.
convert A matrix in the determinant

$$
\begin{aligned}
& A=\left|\begin{array}{ccc}
1 & 2 & 3 \\
9 & 4 & 1 \\
12 & 10 & 10
\end{array}\right| \\
& |A|=1(+30)-2(78)+3(42) \\
& |A|=+30-156+126 \\
& |A|=15 \not 6-1566 \\
& |A|=0
\end{aligned}
$$

Hence from $|A|$ it is obvious that the lank of a matrix A is not equal to 3

Now take any minor of that matrix if it is equal to non-zero, it means that if has 2 rank

$$
\begin{aligned}
& M_{11}=\left|\begin{array}{ll}
4 & 1 \\
10 & 10
\end{array}\right|+30 \\
& M_{11} \neq 0
\end{aligned}
$$

It meas that the matrix A has rank equal to 2

