
 Rou no: F. 18 Bs (mss) 3 Greap : OM Ant -remess 6 $D_{\text {err }}$ Oflamenames \& Simstras. $x-x=$

Q: No:1: find the values of u. for which matrix invertible.

Sol
A motrin is investable if determinant of Matrix not equal to 3080 for instance: A is any square matrix and inverse of A exist it

$$
\operatorname{det}(A) \neq 0
$$

So In Question first we will find the det of matrix A.

$$
\begin{aligned}
\operatorname{det}(A) & =\left|\begin{array}{ccc}
1 & 1 & x \\
1 & x & x \\
x & x & x
\end{array}\right| \\
& =1\left(x^{2}-x^{2}\right)-1\left(x-x^{2}\right)+x\left(x-x^{2}\right) \\
& =-x+x^{2}+x^{2}-x^{3} \\
\operatorname{det}(A) & =-x+2 x^{2}-x^{3} \neq 0
\end{aligned}
$$

Now we will find the values of x.

$$
-x+2 x^{2}-x^{3}=0 \Rightarrow-x^{3}+2 x^{2}-x=0
$$

By using synthetic division melnod we evil find the values of u.

$$
\begin{gathered}
-x^{2}+x=0 \\
-x(+x-1)=0 \\
-x=0 \\
x=1
\end{gathered}
$$

values of $x=\{0,1\}$
Now we put the values of u in matrix by using theorem: condition that yields a zero determinant:
conditions:
in An en life row so column consist of zero
2. Two row er column equal
3. One row or column is multiple of another row do culamn.
we can put the values of 21 in Matrix "A" except These condition. then motrin will be invesbable.

So

$$
\begin{aligned}
& \text { So Matrix of } A \text { is } \\
& \qquad A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
& |A|=\left|\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right| \\
& = \\
& =1(0-1)-1(1-0)+0(1-0) \\
& \\
& |A|=-1-1 \\
& |A|
\end{aligned}
$$

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \begin{aligned}
& \text { What value of } x \text { did you use? } \\
& \text { I think, you used different values at same } \\
& \text { time?? }
\end{aligned}
$$

$$
\text { Use single value of } \mathrm{x} \text {, for which matrix is }
$$

invertible.

Q: No:2: Find inverse of matrix A by putting values of x for which A is in-vestabe.

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

solution Being by actjoining the identity matrix to A to form the matrix

$$
\begin{aligned}
{[A \vdots I] } & =\left[\begin{array}{lllllll}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
1 & 0 & 1 & \vdots & 0 & 1 & 0 \\
0 & 1 & 1 & \vdots & 0 & 0 & 1
\end{array}\right] \quad R_{2} \leftrightarrow R_{3} \\
& =\left[\begin{array}{lllllll}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & 1 & \vdots & 0 & 0 & 1 \\
1 & 0 & 1 & \vdots & 0 & 1 & 0
\end{array}\right] \quad R_{3}-R_{1} \Rightarrow R_{3}
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccccccc}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & 1 & \vdots & 0 & 0 & 1 \\
0 & -1 & 1 & \vdots & -1 & 1 & 0
\end{array}\right] \quad R_{2}+R_{3} \Rightarrow R_{2} \\
& =\left[\begin{array}{cccccccc}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 0 & 2 & \vdots & -1 & 1 & 1 \\
0 & -1 & 1 & \vdots & -1 & 1 & 0
\end{array}\right] \quad R_{2} \leftrightarrow R_{3} \\
& =\left[\begin{array}{ccccccc}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & -1 & 1 & \vdots & -1 & 1 & 0 \\
0 & 0 & 2 & \vdots & -1 & 1 & 1
\end{array}\right] \quad \frac{1}{2} R_{3} \Rightarrow R_{3} \\
& =\left[\begin{array}{cccccc}
1 & 1 & 0 & \vdots & 0 & 0 \\
0 & -1 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & \vdots & -1 / 2 & 1 / 2 \\
1 / 2
\end{array}\right] \quad-R_{2} \Rightarrow R_{2} \\
& =\left[\begin{array}{llllll}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & \vdots & 1 & -1 \\
0 \\
0 & 0 & 1 & \vdots & -1 / 2 & 1 / 2 \\
1 / 2
\end{array}\right] \quad R_{2}+R_{3} \Rightarrow R_{2} \\
& =\left[\begin{array}{lllllll}
1 & 1 & 0 & \vdots & 1 & 0 & 0 \\
0 & 1 & 0 & \vdots & -1 / 2 & -1 / 2 & 1 / 2 \\
0 & 0 & 1 & \vdots & -1 / 2 & 1 / 2 & 1 / 2
\end{array}\right] \quad R_{1}-R_{2} \Rightarrow R_{2} \\
& =\left[\begin{array}{llllll}
1 \\
1 & 0 & 0 & \vdots & 1 / 2 & 1 / 2 \\
0 & 1 & 0 & \vdots & -1 / 2 & -1 / 2 \\
0 & 0 & 1 & \vdots & 1 / 2 & 1 / 2 \\
1 / 2
\end{array}\right]
\end{aligned}
$$

The matrin A is invertable and it's invesse is

$$
A^{-1}=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2
\end{array}\right]
$$

Q:No:S Find
The determinant
determinant of matrices

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right] \quad \text { and } \quad u=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

Sol
$I_{n} L=\left[\begin{array}{lll}1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1\end{array}\right]$
By using Determinant of a Triangular Theorem

$$
\begin{aligned}
& |L|=1(1)(1)=1 \\
& |L|=1
\end{aligned}
$$

which is the product of the entire on the min diagonal.

Solve
$2 \| U=\left[\begin{array}{lll}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right]$
find $|U|$ by using determinant of a Priangwlas theorem-

$$
\begin{aligned}
& |U|=1(1)(1)=1 \\
& |U|=1
\end{aligned}
$$

which is the product of the entire on the main diagonal.

Q:No:4 Find the invorse of matrices in Q:No: 3 using elemonlasy vew operation.

Sol

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
a & 1 & 0 \\
b & c & 1
\end{array}\right]
$$

Salution:
Being by adjoining the identily matrien to A to form the matrix.

$$
\begin{aligned}
& {[l!I]=\left[\begin{array}{cccccc}
1 & a & 0 & 1 & 0 & 0 \\
a & 1 & 0 & 0 & 1 & 0 \\
b & c & 1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{2}-a R_{1} \Rightarrow R_{2}-b R_{1} \Rightarrow R_{3} \\
\hline
\end{array}} \\
& \left.=\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & \vdots & 1 & 0 \\
0 & 1 & 0 & -a & 1 & 0 \\
0 & c & 1 & \vdots & -b & 0
\end{array}\right] \quad 1\right] R_{3}-C R_{2} \Rightarrow R_{3} \\
& {[\because L i: I]=\left[\begin{array}{ccccccc}
1 & 0 & 0 & : & 1 & 0 & 0 \\
0 & 1 & 0 & \vdots & -a & 1 & 0 \\
0 & 0 & 1 & \vdots & -b+c a & -c & 1
\end{array}\right]} \\
& L^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-a & 1 & 0 \\
-b+c a & -c & 1
\end{array}\right] \\
& \text { Ansues. }
\end{aligned}
$$

$$
{ }^{\prime} \because U=\left[\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
$$

sol.
Bergs by adjoining the idenlilly matrix to A to form the matrix.

$$
\begin{aligned}
& {[U: I]=\left[\begin{array}{ccc:ccc}
1 & a & b & 1 & 0 & 0 \\
0 & 1 & c & 0 & 1 & 0 \\
0 & 0 & 1 & \vdots & 0 & 0
\end{array}\right]} \\
& =\left[\begin{array}{lll:lll}
1 & a & b & 1 & 0 & 0 \\
0 & d & 0 & 0 & 1 & c \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right] \begin{array}{l}
R_{1}-a R_{2} \Rightarrow R_{1} \\
R_{1}-b R_{3} \Rightarrow R_{1}
\end{array} \\
& =\left[\begin{array}{cccccc}
1 & 0 & 0 & \vdots & 0 & -a
\end{array}-(a c+b)\right] \\
& U^{-1}=\left[\begin{array}{ccc}
0 & -a & -(a c+b) \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

