Team:

$$
\begin{aligned}
& \text { Roll no: } \\
& \text { F18MS- } 38 \\
& \text { F18MS-03 } \\
& \text { F18MS-68 } \\
& \text { F18MS-18 }
\end{aligned}
$$

Q NO 1: Show that $T: P_{2}[R R(x)] \rightarrow \mathbb{R}^{3}$ defined by $T\left(a x^{2}+b x+c\right)=(a, b, c)$ is linear Transformation.
Pu \&0f: let

$$
\begin{aligned}
& U=a_{1} x^{2}+b_{1} x+c_{1} \\
& V=a_{2} x^{2}+b_{2} x+c_{2}
\end{aligned}
$$

Now r

$$
\begin{aligned}
& \alpha u+v=\alpha\left(a_{1} x^{2}+b_{1} x+c_{1}\right)+\left(a_{2} x^{2}+b_{2} x+c_{2}\right) \\
& T(\alpha u+v)=T\left(\left(\alpha a_{1}+a_{2}\right) x^{2}+\left(\alpha b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right)\right)
\end{aligned}
$$

According to given Condition Condition ordefinition of T ?

$$
\begin{aligned}
T\left(a x^{2}+b x+c\right) & =(a, b, c) \\
& =\left(\alpha a_{1}+a_{2}, \alpha b_{1}+b_{2}, \alpha c_{1}+c_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
T(\alpha u+r) & =T\left(\alpha a_{1}, \alpha b_{1}, \alpha c_{1}\right)+\left(a_{2}, b_{2}, c_{2}\right) \\
& =\alpha\left(a_{1}, b_{1}, c_{1}\right)+\left(a_{2}, b_{2}, c_{2}\right)
\end{aligned}
$$

hence both the condition are satisfied

QNO 2: Write the matrix corresponding to ilinear Transformation in QNO 1 with respect standard basis of $P_{2}[\mathbb{R}(x)]$ and \mathbb{R}^{3}.

As from QNO 1 we know that
$T: P_{2}[R(x)] \rightarrow \mathbb{R}^{3}$ is defined as

$$
T\left(a x^{2}+b x+c\right)=(a, b, c)
$$

hel suppose B and E are standard basis respectively of $P_{2}[R R(x)]$.
This is standard basis?

$$
\begin{aligned}
& B=\{(\underbrace{\left(o x^{2}+o x+c\right)}_{e_{1}}, \underbrace{\left(o x^{2}+b x+c\right)}_{e_{2}}, \underbrace{\left(a x^{2}+b x+c\right)}_{e_{3}}\} \\
& B=\left\{e_{1}, e_{2}, e_{3}\right\} \\
& \mathbb{R}^{3}=E=\{(1,0,0),(0,1,0),(0,0,1)\}
\end{aligned}
$$

$$
\begin{aligned}
& T\left(e_{1}\right)=0(1,0,0)+0(0,1,0)+c(0,0,1)=(0,0, c) \\
& T\left(e_{2}\right)=0(1,0,0)+b(0,1,0)+c(0,0,1)=(0, b, c) \\
& T\left(e_{3}\right)=a(1,0,0)+b(0,1,0)+c(0,0,1)=(0, b, c)
\end{aligned}
$$

so the malice is

$$
\left[\begin{array}{lll}
0 & 0 & a \\
0 & b & b \\
c & c & c
\end{array}\right]
$$

Not correct matrix!
How will you multiply this matrix to a polynomial (vector)
instead of applying T ? instead of applying T ?

Q: 3 show that set $\beta=\left\{-1,1+x^{2}, 1+x+x^{2}\right\}$ is basis of $P_{2}[R(x)]$.
Proof: To prove whether the jet is basis or not. we will prove whether given set is linearly dependent or Independent?
if the given set is linearly independent then we are done with it.

Let $a, b, c \in \mathbb{R} \quad$ then

$$
\begin{aligned}
& =a(-1)+b\left(1+x^{2}\right)+c\left(1+x+x^{2}\right)=0 \\
& =-a+b+b x^{2}+c+c x+c x^{2}=0 \\
& =(b+c) x^{2}+(c) x+(-a+b+c)=0 \\
& \begin{array}{ll}
b+c=0 \\
c=0 \\
-a+b+c=0 & b+0=0 \\
& 30 \quad b=0 \\
& a-0-0=0 \\
a=0
\end{array} \\
& \text { Do these three polynomials } \\
& \text { span the complete basis? } \\
& \text { second condition. }
\end{aligned}
$$

from above equations it it is clear that $a=b=c=0$
so the vectors given in set are linearly independent so given set B is basis of $P_{2}[\mathbb{R}(x)]$

QNO 4, Write the matrix of Linear Trans for--motion in QNO 1 with respect -lo basis of $P_{2}\left[\mathbb{R}_{1}(x)\right]$ in Q NO 3 and standard basis of \mathbb{R}^{3}. Solution:- As from QNO1 know that $T: P_{2}[\mathbb{R}(x)] \rightarrow \mathbb{R}^{3}$ defined by

$$
T\left(a x^{2}+b x+c\right)=(a, b, c)
$$

Now the given basis of $P_{2}[\mathbb{R}(x)]$ in $\mathbb{Q N O} 3$ defind by set β and standard basis of \mathbb{R}^{3} by P weget

$$
\begin{aligned}
& B=\{(\underbrace{\left(0 x^{2}+0 x-1\right)}_{e_{1}}, \underbrace{\left(x^{2}+0 x+1\right)}_{e_{2}}, \underbrace{\left.\left(x^{3}+x+1\right)\right\}}_{e_{3}} \\
& B=\left\{e_{1}, e_{2}, e_{3}\right\} \\
& P=\{(1,0,0),(0,1,0),(0,0,1)\}
\end{aligned}
$$

Now

$$
\begin{aligned}
& T\left(e_{1}\right)=0(1,0,0)+0(0,0,1)+1(0,0,1)=(0,0,-1) \\
& T\left(e_{2}\right)=1(1,0,0)+0(0,1,0)+1(0,0,1)=(1,0,1) \\
& T\left(e_{3}\right)=1(1,0,0)+1(0,1,0)+1(0,0,1)=(1,1,1) \\
& \text { so the matrix will be }
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right]
$$

Same comment as in Q No. 2

