

Roll Numbers-
Team Mathsketeers
F18ms-61
F. $18 \mathrm{~ms}-62$
F. $18 \mathrm{~ms}-36$
F. 18 ms - 06 .

Gno:1 Consider vector space of all real valued function defined on interval $I=[-1,1]$. check if set of function (rectors) $\{\sqrt{x}, x\}$ is linear independent.
Solutions-
Let $v_{1}, v_{2} \in V, a_{1}, a_{2} \in F$ (scalars).

$$
v_{1}=\left(\sqrt{x_{1}}, x_{1}\right) \text { and } v_{2}=\left(\sqrt{x_{2}}, x_{2}\right)^{\text {These two are vectors, why } x_{1} \text { and } x_{2}}
$$

Now we will check the two vectors are linear independent, So that any vector in V (vector space) is the linear Combination of other two vectors.

$$
\begin{aligned}
& a_{1} v_{1}+a_{2} v_{2}=u \\
& a_{1}\left(\sqrt{x_{1}}, x_{1}\right)+a_{2}\left(\sqrt{x_{2}}, x_{2}\right)=(0,0) \\
& a \sqrt{x_{1}}, a_{1} x_{1}+a_{2} \sqrt{x_{2}}+a_{2} x_{2}=(0,0) \\
& a \sqrt{x_{1}}+a_{2} \sqrt{x_{2}}, \quad a_{1} x_{1}+a_{2} x_{2}=(0,0)
\end{aligned}
$$

By equating, we have.

02

$$
\begin{aligned}
& a_{1} \sqrt{x_{1}}+a_{2} \sqrt{x_{2}}=0 \longrightarrow \text { (i) } \\
& a_{1} x_{1}+a_{2} x_{2}=0 \longrightarrow \text { (ii) }
\end{aligned}
$$

$\therefore a_{1}$ and a_{2} will be equal to zero and then put equations (1) or (il) equations will be satisfied.

$$
\Rightarrow \quad a_{1}=a_{2}=0
$$

By the def of Linear independent all scalars are equal to zero. It means these vectors $\frac{a x}{v_{1}}$ and r_{2} are linear independent. कीns:

G\#02: By adding another function x^{2} in set in Gwo:1
check check linear independence or dependence.
Solution:

$$
S=\left\{v_{1}, v_{2}\right\}
$$

let $V_{1}, v_{2} \in V$ and a_{1}, a_{2} are scalars over F You are NOT adding set, but in coordinate??
$V_{1}=\left(\sqrt{x_{1}}, x_{1}, x_{1}^{2}\right)$ and $V_{2}=$ (isfon, nested!! $\left.x_{2}^{2}\right)$ By Ques: No
Now these vi vectors will be check linear independence or dependence So that any vector is in V is the uniquely written as the linear combinat of other vectors v_{1} and v_{2}

Q\#03: Show that no set of two vectors can be based vector space \mathbb{R}^{3}
Solution:-

$$
S=\left\{\begin{array}{l}
v_{1}=(1,1,2) \\
x_{2}=(0,1,7)
\end{array}\right\}
$$

A quick solution is to note that any basis of \mathbb{R}^{3} must consist of three rectors, Thus can not be a basis as S contain two only vectors. and V is any rector is equal to (a, b, c) is in $\operatorname{span}(s)$ if and only if r is a linear Combination of rectors in S.

$$
\begin{aligned}
& V=a_{1} v_{1}+a_{2} v_{2} \quad a_{1}, a_{2} \in F, \quad v_{1}, v_{2} \in V \\
& (a, b, c)=a_{1}(1,1,2)+a_{2}(0,1,7) \\
& (a, b, c)=1 a_{1}, 1, a_{1}, 2 a_{1}+0 a_{2}+1 a_{2}, 7 a_{2} \\
& (a, b, c)=1 a_{1}+0 a_{2}, 1 a_{1}+1 a_{2}, 2 a_{1}+7 a_{2}
\end{aligned}
$$

By equating, we have.

So,

$$
\begin{aligned}
& a_{1} v_{1}+a_{2} v_{2}=u \quad a_{1}, a_{2} \in F \\
& a_{1}\left(\sqrt{x_{1}}, x_{1}, x_{1}^{2}\right)+a_{2}\left(\sqrt{x_{2}}, x_{2}, x_{2}^{2}\right)=(0,0,0) \\
& a \sqrt{x_{1}}, a_{1}>a x_{1}^{2}+a_{2} \sqrt{x_{2}}, a_{2} x_{2}, a_{2} x_{2}^{2}=(0,0,0) \\
& a_{1} \sqrt{x_{1}}+a_{2} \sqrt{x_{2}}=0 \longrightarrow \text { (i) } \\
& a_{1} x_{1}+a_{2} x_{2}^{2}=0 \longrightarrow \text { (ii) } \\
& a_{1} x_{1}^{2}+a_{2} x_{2}^{2}=0 \longrightarrow \text { (iiI) }
\end{aligned}
$$

a_{1} and a_{2} will be equal to zero and then put the equations \bar{I} and II and then equations will be satisfied.

$$
\Rightarrow \quad a_{1}=a=0
$$

By def say all scalars are equal to zero
It means these vectors v_{1} and v_{2} are Linearly Independence.
$\Rightarrow V_{1}, V_{2}$ are linearly Independence.

QouFind bases of real vector space \mathbb{R}.
Solution:-
Given set

$$
\begin{aligned}
& S=\left\{v_{1}\right\} \\
& \therefore \quad V_{1}=1
\end{aligned}
$$

$\Rightarrow S=\{1\}$ of the vector in the rector space \mathbb{R} find a basis for Span S.
The set $S=\left\{v_{1}\right\}$ of vectors in \mathbb{R}, Inly one. element $v_{i}=1$ It is also linearly independent.

By the linear Combination $1-e$.

$$
\begin{aligned}
c_{1} V_{1} & =0 \\
\Rightarrow \quad c_{1} & =0
\end{aligned}
$$

In this case, the set S forms a basis for span S
i.e

$$
\begin{aligned}
& a_{1}=a_{1} v_{1} \\
& a_{2}=a_{2} v_{1} \\
& a_{3}=a_{3} v_{1} \\
& \vdots \\
& a_{n}=a_{n} v_{1}
\end{aligned}
$$

$$
\begin{aligned}
& 1 a_{1}+0 a_{2}=a \\
& 1 a_{1}+1 a_{2}=b \\
& 2 a_{1}+7 a_{2}=c \\
& \qquad\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
2 & 7
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { is consistent. }
\end{aligned}
$$

Let us consider the augmented matrix and reduce it by elementry row operations.

$$
\begin{aligned}
& \left.\left.\Rightarrow\left[\begin{array}{ll|l}
1 & 0 & a \\
1 & 1 & b \\
2 & 7 & c
\end{array}\right] \quad \begin{array}{l}
R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}-2 R_{1} \rightarrow R_{3}
\end{array} \right\rvert\, \begin{array}{ll|l}
1 & 0 & a \\
0 & 1 & b-a \\
0 & 7 & c-2 a
\end{array}\right] \\
& \Rightarrow R_{3}-7 R_{2} \rightarrow R_{3}\left[\begin{array}{ll|l}
1 & 0 & a \\
0 & 1 & b-a \\
0 & 0 & 5 a-7 b+c
\end{array}\right]
\end{aligned}
$$

Note that we obtained the $(3,3)$ entry by

$$
c-2 a-7(b-a)=5 a-7 b+c
$$

It follows that the system is consistent if and if

$$
5 a-7 b+c=0
$$

Thus, for example, the vector $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is not in $\operatorname{span}(s)$. as $5.1-7.0+0 \neq 0$

Hence span (s) is not \mathbb{R}^{3}, and we conclude that S is not a basis.

Hence shown.

