

In the Name of Allah, the Beneficent, the Merciful.
Group Name: Integreny welldone.

Shoaib Noway :Roll NO 57
Liked quote.
Sajjad Ali: Roll NO 25
INajid Ali: Roll No 12
(1) Not: Define Similar matrices. Gie Example.

In linear Algebra two n-by-n matrices A and B are called similar if there exists an $B=P^{-1} A P$
Similar matrices represent the same linear map under two (possibly) different basis with p being the change of Basis mat rind $^{[1][2]} A$ Transformation $A \rightarrow P^{-1} A P$ is called a similarity Eransformation or Conjugat ion q the matrix A in the general linear group. Similarity is therefore the same Conjugacy and Similar matrices are called Conjugate however in given subgroup H of the general linear group. the notion of the Conjugacy may be more restrictive It an similarity since it require that P be Chosen to lie in H

Example of QroH1
let $A=\left[\begin{array}{ll}4 & -2 \\ 3 & 6\end{array}\right]$ and $P=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(a) find $B=P^{-1} A P$ (b) verify $\operatorname{tr}(B)=\operatorname{tr}(A)$
(C) verify $\operatorname{det}(B)=\operatorname{det}(A)$
(a) First find ρ^{-1} using the formula a) First sind p inverse of a 2×2 matin we
for the in
lave.

$$
P^{-1}=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & \frac{-1}{2}
\end{array}\right]
$$

then

$$
B=P^{-1} A P=\left[\begin{array}{cc}
-2 & 1 \\
\frac{3}{2} & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
4 & -2 \\
3 & 6
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{cc}
25 & 30 \\
-\frac{27}{2} & -15
\end{array}\right]
$$

(b) $\operatorname{tr}(A)=4+6=10$ and $\operatorname{tr}(B)=25-15=10$

Hence $\operatorname{tr}(B)=\operatorname{Cr}(A)$
(c) $\operatorname{def}(A)=24+6=30$ and $\operatorname{del}(B)=-375+405=30$

Hence $\operatorname{del} \cdot(B)=\operatorname{del}-(A)$

QNo:2: write defiexileos of elimension \%. vector
space Find dimension of vector space RL^{2}. Ans The number g. k erector in finite vector space v is the D imension of u and is denoted by dim (v). The vector space $v=\{0\}$ is defined to Rave dimension o. a plane on Ω^{2} is a two dissension subspace.
a line in \mathbb{R}^{n} is a ene-dimensional. a hypaplane in \mathbb{R}^{n} is an $(H-1)$ dimensional subspace of \mathbb{R}^{n}.

- the vector space F qu real function is the infinite dimension al space.
the vector sauce or real-valued syuentes is an. infinite dimensional space.
\Rightarrow Find dimension of valor space \mathbb{R}^{2}.
Dimension: numbat $\%$ elerneat Basis vector.
(1) in ension, if the uceler space V spanned or overrated by finite then U is said bo be finite dimension.
if two vector linearly independent Basis velter pother dimension is two.

Qroz: conl incu:

$$
\begin{aligned}
& S=v i=(1,1), v_{2}(1,-1) \text { is Basis } \mathbb{R}^{2} \text {. } \\
& x=\left(x_{1}, x_{1}\right) \\
& \text { civi }+\mathrm{CLV}_{2}=u \text {. } \\
& C(1,1)+C_{2}(1,1)=(x i, x,) \\
& C i+C l_{2}=x i \\
& c_{1}-c_{2}=x_{2} \\
& \text { cive }+\mathrm{CLUL}_{2}=0 \\
& c_{i}(1,1)+c_{1}(1,-1)=(0,0) \\
& (C i+C r, \quad C i-C L)=(0,0)
\end{aligned}
$$

Bqualion correspandisg homogeneous. sysliem.

$$
\begin{aligned}
& C_{1}+C_{2}=0 \\
& c_{i}=C_{2}=0 \\
& c_{i}=C_{2}=0
\end{aligned}
$$

S is lineanly independad.
Dinensios. Numba q.elemux. of Basis vueor.
Vo Basis is 2
linearly independexl is 2.
so dinsension is 2.

$$
\begin{aligned}
& v=\Omega^{2} \\
& v i(0,1)+v_{2}(1,0) \\
& \text { aivi eavv2 } \\
& \text { ai }(0,1)+a+(1,0)
\end{aligned}
$$

QNo A: conl incue

$$
\begin{aligned}
& a i+a_{2}=0 \\
\Rightarrow & a_{i}=0 \\
\Rightarrow & a_{2}=0 \quad \Rightarrow \quad \text { Basss } \quad v=\mathbb{R}^{\prime}
\end{aligned}
$$

So linearly ind epend
So (1) in ension is 2 .

Que 3: Define nullity of seitan matin of aden.
Ans:- The nullity of. squaace matin witt linearly independent rows is at least one because if the rows are errearly dependent. then the rank is at least 1 less than the number q. rows so since the matrix is square ib s nullity is al least one.
Hence.
Nullity of matrix is defined only for square matrices.

$$
\operatorname{rank}(A)+\text { nullity }(A)=\operatorname{arder} \text { of matrix. }
$$

since.
nallity $(D)=$ order of malrinin $-\operatorname{vank}(A)$.

Quince 4:- Show that nullity of two simitar (Squclave) matrix is same of ordain n.
proofs:
suppose tat malvern A is similar to B J a matin C with

$$
B=C^{-1} A C .
$$

firs we have bo show if $x \in k=1(B)$ then $\quad x \in \operatorname{ker}(A)$.

Note that $A C=C B$ if $n \in k a(B)$ ten $A(x)=C B x=C O=0$, so that $C_{x} G \operatorname{ker}(A)$ as claimed.
Now wo have bo show that nullity $(A)=$ nullity (B) them vectors.
If $f v_{1}, u_{2} \ldots . . v_{p} f$ is a basis for $\operatorname{ken}(B)$ then vectors.
$\{$ cor. cos.... ap $\} \subset k a(A)$ are linear ely as dependent. Now reverse the rob of. A $A \& B$.
we observe A_{a} t

$$
\text { nullity }(B)=\operatorname{dim}(\text { ka } B)=1 \leqslant \text { dims. }
$$

$$
k a(A)=\text { nullity }(A)
$$

Quo is cone incl:

Since Cvi..... cup are linearly independent Vectors in ka (A).
Reversing the role r \%. A \& B. show that
Conversely.
nullity $(A) \leqslant$ nullity (B), so that the Equctal ion.

$$
\text { nullity }(A)=\text { nullity }(B) \text {. }
$$

COMMON INTEGRATION

 IS ONLY THE MEMORY OF DIFFERENTIATION...AUGUSTUS DE MORGAN

PICTUREQUOTES.com

