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Matrices: overview 



Matrices: Overview 

• A matrix is simply a rectangular array of 
numbers. 

 

• Matrices are used to organize information into 
categories that correspond to the rows and 
columns of the matrix. 

 



Matrices: Overview 

• For example, a scientist might organize 
information on a population of endangered 
whales as follows: 

 

 

 
– This is a compact way of saying there are 12 

immature males, 15 immature females, 18 adult 
males, and so on. 

 



Matrices and Systems of 

Linear Equations 



Introduction 

• A Linear system is represented by a matrix.  

 

 

 
– This matrix is called the augmented matrix of the 

linear system. 
– The augmented matrix contains the same 

information as the system, but in a simpler form. 
– The operations we learned for solving systems of 

equations can now be performed on the 
augmented matrix. 



More on Matrices 



Matrices 
 

• We begin by defining the various 
elements that make up a matrix. 



Matrix—Definition 
• An m x n matrix is a rectangular array  

of numbers with m rows and n columns. 
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Matrix—Definition 

• We say the matrix has dimension m x n.  

 

• The numbers aij are the entries of  
the matrix.  

 
– The subscript on the entry aij indicates that  

it is in the ith row and the jth column. 



Examples 

• Here are some examples. 

Matrix Dimension 

2 x 3 
2 rows  

by 3 columns 

1 x 4 
1 row  

by 4 columns 

 

1 3 0

2 4 1

6 5 0 1
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The Augmented Matrix  
of a Linear System 



Augmented Matrix 

• We can write a system of linear  
equations as a matrix by writing only  
the coefficients and constants that appear in 
the equations. 

 

– This is called the augmented matrix  
of the system. 



Augmented Matrix 

• Here is an example. 

 

 

 

 
 

– Notice that a missing variable in an equation 
corresponds to a 0 entry in the augmented matrix. 

Linear System Augmented Matrix 
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Finding Augmented Matrix of Linear 
System 

• Write the augmented matrix of  
the system of equations. 

6 2 4

3 1

7 5

x y z

x z

y z
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Finding Augmented Matrix of Linear 
System 

• First, we write the linear system with  
the variables lined up in columns. 

6 2 4

3 0

7 5

x y z

x z

y z

  


 
  



Finding Augmented Matrix of Linear 
System 

• The augmented matrix is the matrix  
whose entries are the coefficients and  
the constants in this system. 

6 2 1 4

1 0 3 1

0 7 1 5

  
 
 
  



Elementary Row Operations 



Elementary Row Operations 

1. Interchange two rows. 

2. Multiply a row by a nonzero constant. 

3. Add a multiple of one row to another. 

 

– Note that performing any of these operations on 
the augmented matrix of a system does not 
change its solution. 



Elementary Row Operations preserve 
linear system in question  

1. Swapping rows is just changing the order of 
the equation, which certainly should not 
change solution.  

2. Scalar multiplication of a row is just 
multiplying the equation by the same number 
on both sides.  

 

– Note that each row corresponds to one equation of 
linear system.  



Elementary Row Operations preserve 
linear system in question  

3. Adding one row to other does not change 
solution, as both equations (corresponding to 
rows) share the solution.  



Elementary Row Operations—Notation 

We use the following notation to describe the 
elementary row operations: 

Symbol Description 

Ri ↔ Rj Interchange the ith and jth rows. 

kRi Multiply the ith row by k. 

Ri + kRj → Ri 

Change the ith row by adding  

k times row j to it. 

Then, put the result back in row i. 



Elementary Row Operations 

• In the next example, we compare  
the two ways of writing systems of 
linear equations. 



Elementary Row Operations and Linear 
System 

• Solve the system of linear equations. 

 

 
 

 

– Our goal is to eliminate the x-term from  
the second equation and the x- and y-terms  
from the third equation.  

3 4

2 2 10

3 5 14

x y z

x y z

x y z
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Elementary Row Operations and Linear 
System 

•   

For comparison, we write both the system of 

equations and its augmented matrix. 

System Augmented Matrix 
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Elementary Row Operations and Linear 
System 

•   1
32
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Elementary Row Operations and Linear 
System 

• Now, we use back-substitution to find 
that:  
     x = 2, y = 7, z = 3  

 
– The solution is (2, 7, 3). 



Gaussian Elimination 



Gaussian Elimination 

• In general, to solve a system of linear 
equations using its augmented matrix,  
we use elementary row operations to arrive  
at a matrix in a certain form.  

 

– This form is described as follows. 



Row-Echelon Form 

• A matrix is in row-echelon form if  
it satisfies the following conditions. 

 
1. The first nonzero number in each row  

(reading from left to right) is 1.  
This is called the leading entry. 

2. The leading entry in each row is to the right of  
the leading entry in the row immediately above it. 

3. All rows consisting entirely of zeros are at  
the bottom of the matrix. 



Reduced Row-Echelon Form 

• A matrix is in reduced row-echelon form if 
it is in row-echelon form and also satisfies 
the following condition. 

 
4. Every number above and below  

each leading entry is a 0. 



Row-Echelon & Reduced Row-Echelon 
Forms 

• In the following matrices, 

 

• The first is not in row-echelon form. 

• The second is in row-echelon form. 

• The third is in reduced row-echelon form.  

 

– The entries in red are the leading entries. 



Not in Row-Echelon Form 

1
2

Leading 1's do not
shift to the right 
in successive rows.

0 0 7

0 3 4 5

0 0 0 0.4

1

1

1

10 1 0 0

 
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
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Not in row-echelon form: 



Row-Echelon & Reduced Row-Echelon 
Forms: Examples 

•   Row-Echelon Form Reduced  

Row-Echelon Form 

   
   

 
   
   
   
   
     

1 1
2 2

Leading 1's haveLeading 1's shift to
0's above andthe right in 
below them.successive rows.

3 6 10 0 3 0 0 0

0 0 4 3 0 0 0 3

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1 1

1 1

1 1



Putting in Row-Echelon Form 

• We now discuss a systematic way  
to put a matrix in row-echelon form  
using elementary row operations. 

 

– We see how the process might work  
for a 3 x 4 matrix. 



Putting in Echelon Form: Step 1 

• Start by obtaining 1 in the top left corner. 

 

• Then, obtain zeros below that 1 by adding 
appropriate multiples of the first row to  
the rows below it. 

1

0

0
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 
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  



Putting in Echelon Form: Steps 2 & 3 

• Next, obtain a leading 1 in the next row. 

• Then, obtain zeros below that 1. 
– At each stage, make sure every leading entry is  

to the right of the leading entry in the row above it. 

– Rearrange the rows if necessary. 

1 1

0 0 1

0 0 0

   
   


   
      



Putting in Echelon Form:Step 4 

• Continue this process until you arrive  
at a matrix in row-echelon form. 

1 1 1

0 0 1 0 1

0 0 0 0 0 1

     
     

 
     
          



Gaussian Elimination 

• Once an augmented matrix is in row-echelon  
form, we can solve the corresponding linear 
system using back-substitution.  

 

– This technique is called Gaussian elimination,  
in honor of its inventor, the German  
mathematician C. F. Gauss. 



Solving a System Using Gaussian 
Elimination 

• To solve a system using Gaussian 
elimination, we use: 

 
1. Augmented matrix 

 

2. Row-echelon form 

 

3. Back-substitution 



Solving a System Using Gaussian 
Elimination 

1. Augmented matrix  

 
– Write the augmented matrix of the system. 

 

2. Row-echelon form  

 

– Use elementary row operations to change  
the augmented matrix to row-echelon form. 



Solving a System Using Gaussian 
Elimination 

3. Back-substitution  

 
– Write the new system of equations  

that corresponds to the row-echelon form  
of the augmented matrix and solve by  
back-substitution. 



Solving a System Using Row-Echelon 
Form 

• Solve the system of linear equations using 
Gaussian elimination. 

 

 
 

 

– We first write the augmented matrix of the system. 

– Then, we use elementary row operations to put it  
in row-echelon form. 

4 8 4 4

3 8 5 11

2 12 17

x y z

x y z

x y z

  


   
     



Solving a System Using Row-Echelon 
Form 

•   

1
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Solving a System Using Row-Echelon 
Form 

•   

2 1 2

3 1 3

1
22

R 3R R

R 2R R

R

2 1 1

2 8 14

5 1

1

0

0

1

0 15

2 1 1

4 7

5 10 15

0 1

0

 

 

 
 


 
 





 
 


 
 









Solving a System Using Row-Echelon 
Form 

•   
3 2 3
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Solving a System Using Row-Echelon 
Form 

• We now have an equivalent matrix in  
row-echelon form. 

• The corresponding system of equations is: 

 

 

 

– We use back-substitution  
to solve the system. 

2 1

4 7

2

x y z

y z

z

  


  
  



Solving a System Using Row-Echelon 
Form 

•          y + 4(–2) = –7 

•                 y = 1 

• x + 2(1) – (–2) = 1 

•      x = –3 
 

– The solution of the system is:  
      (–3, 1, –2) 



Gauss-Jordan Elimination 



Putting in Reduced Row-Echelon Form 

• If we put the augmented matrix of a linear 
system in reduced row-echelon form,  
then we don’t need to back-substitute  
to solve the system. 

 

– To put a matrix in reduced row-echelon form,  
we use the following steps. 

– We see how the process might work  
for a 3 x 4 matrix.  



Putting in Reduced Row-Echelon 
Form—Step 1 

• Use the elementary row operations to put 
the matrix in row-echelon form. 

1

0 1

0 0 1

 
 
 
  



Putting in Reduced Row-Echelon 
Form—Step 2 

• Obtain zeros above each leading entry  
by adding multiples of the row containing 
that entry to the rows above it. 

1 1 0

0 1 0 1 0

0 0 1 0 0 1

   
   


   
      



Putting in Reduced Row-Echelon 
Form—Step 2 

• Begin with the last leading entry and  
work up. 

1 1 0 1 0 0

0 1 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

     
     

 
     
          



Gauss-Jordan Elimination 

• Using the reduced row-echelon form to 
solve a system is called Gauss-Jordan 
elimination.  

 
– We illustrate this process in the next example. 



Solving Using Reduced Row-Echelon 
Form  

• Solve the system of linear equations,  
using Gauss-Jordan elimination. 

 

 
 

 

– In Example 3, we used Gaussian elimination  
on the augmented matrix of this system to arrive  
at an equivalent matrix in row-echelon form. 

4 8 4 4

3 8 5 11

2 12 17

x y z

x y z

x y z

  


   
     



Solving Using Reduced Row-Echelon 
Form 

• We continue using elementary row operations 
on the last matrix in Example 3 to arrive at  
an equivalent matrix in reduced row-echelon 
form. 

1 2 1 1

0 1 4 7

0 0 1 2

 
 


 
  



Solving Using Reduced Row-Echelon 
Form 

•   

2 3 2

1 3 1

1 2 1

R 4R R

R R R

R 2R R

0

0

1 2 1

0 1 1

0 0 1 2

0 0

0

1 3

0 1 1

0 0 1 2

 

 

 

 
 
 
  

 
 
 
 





 



Solving Using Reduced Row-Echelon 
Form 

• We now have an equivalent matrix in  
reduced row-echelon form. 

• The corresponding system of equations is: 

 

 

 

– Hence, we immediately arrive  
at the solution (–3, 1, –2). 

3

1

2

x

y

z

 



  



Inconsistent and  
Dependent Systems 



Solutions of a Linear System 

• The systems of linear equations that  
we considered in above examples had 
exactly one solution.  

 

– However, a linear system may have:  
    One solution 
    No solution 
    Infinitely many solutions  



Examples: Consistency 
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

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
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No solutions 





Solution set: {(1, 2)} 

Infinitely many solutions. 

Consistent 

Inconsistent 

Unique 

Solution 

Set:  



x1,x2 : x1 
1

2
x2 

3

2
,x2 is free









Solution set: { } 



Solutions of a Linear System 

• Fortunately, the row-echelon form of  
a system allows us to determine which of 
these cases applies. 

 

– First, we need some terminology.  



Leading Variable 

• A leading variable in a linear system  
is one that: 

 
– Corresponds to a leading entry in  

the row-echelon form of the augmented  
matrix of the system. 



Solutions of Linear System in Row-
Echelon Form 

• Suppose the augmented matrix of a system of 
linear equations has been transformed by 
Gaussian elimination into row-echelon form.  

 

• Then, exactly one of the following is true. 

– No solution 

– One solution 

– Infinitely many solutions 



Solutions of Linear System in Row-
Echelon Form 

• No solution:  
– If the row-echelon form contains  

a row that represents  
the equation 0 = c where c  
is not zero, the system has  
no solution.  

 

– A system with no solution  
is called inconsistent. 

Last equation 
says 0 1.

1 2 5 7

0 1 3 4

0 0 0 1

  



 
 
 
  





Solutions of Linear System in Row-
Echelon Form 

• One solution:  
– If each variable in the row-echelon form is  

a leading variable, the system  
has exactly one solution. 

 

– We find this by using  
back-substitution or  
Gauss-Jordan elimination. 

Each variable is a
leading variable.

1 6 1 3

0 1 2 2

0 0 1 8

 
 


 
  

  



Solutions of Linear System in Row-
Echelon Form 

• Infinitely many solutions:  
– If the variables in the row-echelon form  

are not all leading variables,  
and if the system is not  
inconsistent, it has infinitely  
many solutions.  

 

– The system is called  
dependent.  

 is not a leading
variable.

1 2 3 1

0 1 5 2

0 0 0 0

z

 
 


 
  





Solutions of Linear System in Row-
Echelon Form 

– We solve the system by putting the matrix  
in reduced row-echelon form and then expressing 
the leading variables in terms  
of the non-leading variables.  

 

– The non-leading variables may take on  
any real numbers as their values. 



System with No Solution (Example) 

Solve the system 

 

 

 
 

– We transform the system into row-echelon form. 

3 2 12

2 5 5 14

2 3 20

x y z

x y z

x y z

  


  
   



System with No Solution 

– The last matrix is in row-echelon form. 

– So, we can stop the Gaussian elimination process. 

2 1 2

3 1 3

1
33 2 3 18

R 2R R

R R R

RR R R

1 3 2 12 1 3 2 12

2 5 5 14 0 1 1 10

1 2 3 20 0 1 1 8

1 3 2 12 1 3 2 12

0 1 1 10 0 1 1 10

0 0 0 18 0 0 0 1

 

 

 

    
   

 
   
   





   
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   

 
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 
 

  



   
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2 5 5 14 0 1 1 10

1 2 3 20 0 1 1 8
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0 1 1 10 0 1 1 10

0 0 0 18 0 0 0 1

 

 
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   





   

    
   

 
 

 
 

  



   



System with No Solution 

– Now, if we translate this last row back into  
equation form, we get 0x + 0y + 0z = 1, or 0 = 1, 
which is false. 

– No matter what values we pick for x, y, and z,  
the last equation will never be a true statement. 

– This means the system has no solution. 

1 3 2 12

0 1 1 10

0 0 0 1

 
 


 
  



System with Infinitely Many 
Solutions (Example) 

• Find the complete solution of  
the system. 

 

 
 

 

– We transform the system  
into reduced row-echelon form. 

3 5 36 10

7 5

10 4

x y z

x z

x y z

   

  

    



System with Infinitely Many 
Solutions (Example) 

1 3

3 2 32 1 2

3 1 3

1 2 1

R R

R 2R RR R R

R 3R R

R R R

3 5 36 10 1 1 10 4

1 0 7 5 1 0 7 5

1 1 10 4 3 5 36 10

1 1 10 4 1 1 10 4

0 1 3 1 0 1 3 1

0 2 6 2 0 0 0 0

1 1 7 5

0 1 3 1

0 0 0 0



  

 

 



 

      
   
 
   
         

      
   

 
   
    



  

  
 


 


 







3 5 36 10

1 0 7 5

1 1 10 4

  
 

 
   

1 1 10 4

1 0 7 5

3 5 36 10

  
 

 
   

1 1 10 4

0 1 3 1

0 2 6 2

  
 


 
   

1 1 10 4

0 1 3 1

0 0 0 0

  
 


 
  

1 1 7 5

0 1 3 1

0 0 0 0

  
 


 
  



System with Infinitely Many 
Solutions (Example) 

– The third row corresponds to the equation 0 = 0.  

– This equation is always true, no matter what  
values are used for x, y, and z. 

– Since the equation adds no new information about 
the variables, we can drop it from the system. 

1 1 7 5

0 1 3 1

0 0 0 0

  
 


 
  



System with Infinitely Many 
Solutions (Examples) 

• So, the last matrix corresponds to  
the system  
 
 

 

– Now, we solve for the leading variables  
x and y in terms of the non-leading  
variable z:  
    x = 7z – 5  
    y = 3z + 1 

7 5

3 1

x z

y z

  


 



System with Infinitely Many 
Solutions (Example) 

• To obtain the complete solution, we let t 
represent any real number, and we express  
x, y, and z in terms of t: 

•     x = 7t – 5 

•                             y = 3t + 1 

•                             z = t 

– We can also write the solution as  
the ordered triple (7t – 5, 3t + 1, t),  
where t is any real number. 



System with Infinitely Many Solutions 

• In Example, to get specific solutions we 
give a specific value to t.  

 
– For example, if t = 1,  

then 
   x = 7(1) – 5 = 2 
   y = 3(1) + 1 = 4 
   z = 1 



System with Infinitely Many Solutions 

• Here are some other solutions of  
the system obtained by substituting other 
values for the parameter t. 



System with Infinitely Many 
Solutions 

• Find the complete solution of  
the system. 

 

 

 
– We transform the system  

into reduced row-echelon form. 

2 3 4 10

3 3 4 15

2 2 6 8 10

x y z w

x y z w

x y z w

   


   
    



System with Infinitely Many 
Solutions 

– Since the last row represents  
the equation 0 = 0, we may discard it.  

 

2 1 2

3 1 3

3 2 3 1 2 1

R R R

R 2R R

R 2R R R 2R R

1 2 3 4 10 1 2 3 4 10

1 3 3 4 15 0 1 0 0 5

2 3 6 8 10 0 2 0 0 10

1 2 3 4 10 1 0 3 4 0

0 1 0 0 5 0 1 0 0 5

0 0 0 0 0 0 0 0 0 0

 

 

   

      
   

 
   
        







      
   
   


 





    

1 2 3 4 10

1 3 3 4 15

2 3 6 8 10

  
 

 
 
   

1 2 3 4 10

0 1 0 0 5

0 2 0 0 10

  
 
 
   

1 2 3 4 10

0 1 0 0 5

0 0 0 0 0

  
 
 
  

1 0 3 4 0

0 1 0 0 5

0 0 0 0 0

  
 
 
  



System with Infinitely Many 
Solutions 

• So, the last matrix corresponds to  
the system 

 

 
– To obtain the complete solution,  

we solve for the leading variables x and y  
in terms of the nonleading variables z and w,  
and we let z and w be any real numbers. 

3 4 0

5

x z w

y

  






System with Infinitely Many 
Solutions 

• Thus, the complete solution is: 

•                                x = 3s + 4t 

•                                y = 5 

•                                z = s 

•                               w = t 

• where s and t are any real numbers. 

– We can also express the answer as  
the ordered quadruple (3s + 4t, 5, s, t). 



Note 1 

• Note that s and t do not have to be  
the same real number in the solution  
for Example. 

 
– We can choose arbitrary values for each  

if we wish to construct a specific solution  
to the system. 



Note 1 

• For example, if we let s = 1 and t = 2, we 
get the solution (11, 5, 1, 2).  

 
– You should check that this does indeed  

satisfy all three of the original equations  
in Example 7. 



Note 2 

• Examples above illustrate this general 
fact:  

 

– If a system in row-echelon form has  
n nonzero equations in m variables (m > n), then the 
complete solution will have m – n nonleading 
variables. 



Note 2 

• For instance, in on of the above Examples , we 
arrived at  
two nonzero equations in the three variables x, 
y, and z. 

 

• These gave us 3 – 2 = 1 nonleading variable. 



Modeling with Linear Systems 



Modeling with Linear Systems 

• Linear equations—often containing hundreds or 
even thousands of variables—occur frequently 
in the applications of algebra to  
the sciences and to other fields.  

 

– For now, let’s consider an example that involves 
only three variables. 



A Traffic Flow Problem 

Modeling a traffic flow problem 



Modeling a round-about 

kshum ENGG2013 91 

100 
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50 

150 100 
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300 
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x1 

x
2 x4 

x3 

x5 

Can we find x1, x2, x3, x4 and x5? 

The unit is number 

of vehicles per 

hour. 



In-flow = out-flow 
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We need to solve … 
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x1 x2 x3 x4 x5 

Representation 

using augmented matrix 



Last time: Gaussian elimination 

• Step 1: Try to transform the matrix into upper 
triangular form 

 

 

• Step 2: Backward substitution 
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Nutritional Analysis 

• A nutritionist is performing an 
experiment on student volunteers.  

 
– He wishes to feed one of his subjects  

a daily diet that consists of a combination  
of three commercial diet foods:  
      MiniCal 
      LiquiFast 
      SlimQuick  



Nutritional Analysis 

• For the experiment, it’s important that, 
every day, the subject consume exactly: 

 

– 500 mg of potassium 

 

– 75 g of protein 

 

– 1150 units of vitamin D 



Nutritional Analysis 
• The amounts of these nutrients in  

one ounce of each food are given here.  

 

 

 

 

– How many ounces of each food should  
the subject eat every day to satisfy  
the nutrient requirements exactly? 



Nutritional Analysis 
• Let x, y, and z represent the number  

of ounces of MiniCal, LiquiFast, and 
SlimQuick, respectively, that the subject 
should eat every day. 



Nutritional Analysis 
• This means that he will get: 

– 50x mg of potassium from MiniCal 

– 75y mg from LiquiFast 

– 10z mg from SlimQuick 

 

• This totals 50x + 75y + 10z mg potassium. 



Nutritional Analysis 
• Based on the requirements of the three 

nutrients, we get the system 

Potassium

Protein

Vitamin D

50 75 10 500

5 10 3 75

90 100 50 1150

x y z

x y z

x y z

  


  
   



Nutritional Analysis 
• Dividing the first equation by 5 and the third by 

10 gives the system 

 

 

 
– We can solve this using Gaussian elimination. 

– Alternatively, we could use a graphing calculator  
to find the reduced row-echelon form of  
the augmented matrix of the system. 

10 15 2 100

5 10 3 75

9 10 5 115

x y z

x y z

x y z

  


  
   



Nutritional Analysis 

• Using the  r r e f  command on the TI-83, 
we get the output shown. 

 

– From the reduced  
row-echelon form,  
we see that:  
 
 x = 5, y = 2, z = 10 



Nutritional Analysis 

• Every day, the subject should be fed: 
 

– 5 oz of MiniCal  

– 2 oz of LiquiFast 

– 10 oz of SlimQuick 



Nutritional Analysis Using System of 
Linear Equations 

• A more practical application might involve 
dozens of foods and nutrients rather than 
just three.  

 

– Such problems lead to systems with large  
numbers of variables and equations. 

 

– Computers or graphing calculators are  
essential for solving such large systems. 


