

Eight Edition Statistics

n't eme

Richard I. Levin
David S. Rubin
Masood Husain Siddiqui Sanjay Rastogi

Statistics for MANAGEMENT

 EIGHTH EDITION
Richard I. Levin

The University of
North Carolina at Chapel Hill
David S. Rubin
The University of
North Carolina at Chapel Hill

Masood H. Siddiqui

Jaipuria Institute of
Management, Lucknow
Sanjay Rastogi
Indian Institute of
Foreign Trade, New Delhi

Copyright © 2017 Pearson India Education Services Pvt. Ltd

Published by Pearson India Education Services Pvt. Ltd, CIN: U72200TN2005PTC057128, formerly known as TutorVista Global Pvt. Ltd, licensee of Pearson Education in South Asia.

No part of this eBook may be used or reproduced in any manner whatsoever without the publisher's prior written consent.

This eBook may or may not include all assets that were part of the print version. The publisher reserves the right to remove any material in this eBook at any time.
ISBN 978-93-325-8118-0
eISBN
Head Office: A-8 (A), 7th Floor, Knowledge Boulevard, Sector 62, Noida 201 309, Uttar Pradesh, India.

Registered Office: 4th Floor, Software Block, Elnet Software City, TS 140, Block 2 \& 9, Rajiv Gandhi Salai, Taramani, Chennai 600 113, Tamil Nadu, India. Fax: 080-30461003, Phone: 080-30461060
www.pearson.co.in, Email: companysecretary.india@pearson.com

Contents

Preface xi
CHAPTER 1 Introduction 1
1.1 Why Should I Take This Course and Who Uses Statistics Anyhow? 2
1.2 History 3
1.3 Subdivisions Within Statistics 4
1.4 A Simple and Easy-to-Understand Approach 4
1.5 Features That Make Learning Easier 5
1.6 Surya Bank-Case Study 6
CHAPTER 2 Grouping and Displaying Data to Convey Meaning: Tables and Graphs 13
2.1 How Can We Arrange Data? 14
2.2 Examples of Raw Data 17
2.3 Arranging Data Using the Data Array and the Frequency Distribution 18
2.4 Constructing a Frequency Distribution 27
2.5 Graphing Frequency Distributions 38
Statistics at Work 58
Chapter Review 59
Flow Chart: Arranging Data to Convey Meaning 72
Chapter 3 Measures of Central Tendency and Dispersion in Frequency Distributions 73
3.1 Summary Statistics 74
3.2 A Measure of Central Tendency: The Arithmetic Mean 77
3.3 A Second Measure of Central Tendency: The Weighted Mean 87
3.4 A Third Measure of Central Tendency: The Geometric Mean 92
3.5 A Fourth Measure of Central Tendency: The Median 96
3.6 A Final Measure of Central Tendency: The Mode 104
3.7 Dispersion: Why It is Important? 111
3.8 Ranges: Useful Measures of Dispersion 113
3.9 Dispersion: Average Deviation Measures 119
3.10 Relative Dispersion: The Coefficient of Variation 132
3.11 Descriptive Statistics Using MsExcel \& SPSS 136
Statistics at Work 140
Chapter Review 141
Flow Charts: Measures of Central Tendency and Dispersion 151
ChAPTER 4 Probability I: Introductory Ideas 153
4.1 Probability: The Study of Odds and Ends 154
4.2 Basic Terminology in Probability 155
4.3 Three Types of Probability 157
4.4 Probability Rules 164
4.5 Probabilities Under Conditions of Statistical Independence 170
4.6 Probabilities Under Conditions of Statistical Dependence 179
4.7 Revising Prior Estimates of Probabilities: Bayes’ Theorem 188
Statistics at Work 196
Chapter Review 197
Flow Chart: Probability I: Introductory Ideas 206
CHAPTER 5 Probability Distributions 207
5.1 What is a Probability Distribution? 208
5.2 Random Variables 212
5.3 Use of Expected Value in Decision Making 218
5.4 The Binomial Distribution 222
5.5 The Poisson Distribution 230
5.6 The Normal Distribution: A Distribution of a Continuous Random Variable 238
5.7 Choosing the Correct Probability Distribution 254
Statistics at Work 255
Chapter Review 256
Flow Chart: Probability Distribution 264
Chapter 6 Sampling and Sampling Distributions 267
6.1 Introduction to Sampling 268
6.2 Random Sampling 271
6.3 Non-random Sampling 279
6.4 Design of Experiments 282
6.5 Introduction to Sampling Distributions 286
6.6 Sampling Distributions in More Detail 289
6.7 An Operational Consideration in Sampling: The Relationship Between Sample Size and Standard Error 302
Statistics at Work 308
Chapter Review 309
Flow Chart: Sampling and Sampling Distributions 314
CHAPTER 7 Estimation 315
7.1 Introduction 316
7.2 Point Estimates 319
7.3 Interval Estimates: Basic Concepts 324
7.4 Interval Estimates and Confidence Intervals 329
7.5 Calculating Interval Estimates of the Mean from Large Samples 332
7.6 Calculating Interval Estimates of the Proportion from Large Samples 336
7.7 Interval Estimates Using the t Distribution 341
7.8 Determining the Sample Size in Estimation 351
Statistics at Work 357
Chapter Review 358
Flow Chart: Estimation 363
vi
Chapter 8 Testing Hypotheses: One-sample Tests 365
8.1 Introduction 366
8.2 Concepts Basic to the Hypothesis-testing Procedure 367
8.3 Testing Hypotheses 371
8.4 Hypothesis Testing of Means When the Population Standard Deviation is Known 379
8.5 Measuring the Power of a Hypothesis Test 388
8.6 Hypothesis Testing of Proportions: Large Samples 391
8.7 Hypothesis Testing of Means When the Population Standard Deviation is Not Known 397
Statistics at Work 404
Chapter Review 404
Flow Chart: One-Sample Tests of Hypotheses 410
Chapter 9 Testing Hypotheses: Two-sample Tests 411
9.1 Hypothesis Testing for Differences Between Means and Proportions 412
9.2 Tests for Differences Between Means: Large Sample Sizes 414
9.3 Tests for Differences Between Means: Small Sample Sizes 420
9.4 Testing Differences Between Means with Dependent Samples 431
9.5 Tests for Differences Between Proportions: Large Sample Sizes 441
9.6 Prob Values: Another Way to Look at Testing Hypotheses 450
Statistics at Work 455
Chapter Review 456
Flow Chart: Two-Sample Tests of Hypotheses 463
CHAPTER 10 Quality and Quality Control 465
10.1 Introduction 466
10.2 Statistical Process Control 468
$10.3 \bar{x}$ Charts: Control Charts for Process Means 470
10.4 R Charts: Control Charts for Process Variability 481
10.5 p Charts: Control Charts for Attributes 487
10.6 Total Quality Management 494
10.7 Acceptance Sampling 500
Statistics at Work 508
Chapter Review 509
Flow Chart: Quality and Quality Control 515
Chapter 11 Chi-Square and Analysis of Variance 517
11.1 Introduction 518
11.2 Chi-Square as a Test of Independence 519
11.3 Chi-Square as a Test of Goodness of Fit: Testing the Appropriateness of a Distribution 534
11.4 Analysis of Variance 542
11.5 Inferences About a Population Variance 568
11.6 Inferences About Two Population Variances 576
Statistics at Work 583
Chapter Review 584
Flow Chart: Chi-Square and Analysis of Variance 594
CHAPTER 12 Simple Regression and Correlation 595
12.1 Introduction 596
12.2 Estimation Using the Regression Line 603
12.3 Correlation Analysis 629
12.4 Making Inferences About Population Parameters 643
12.5 Using Regression and Correlation Analyses:
Limitations, Errors, and Caveats 650
Statistics at Work 653
Chapter Review 653
Flow Chart: Regression and Correlation 662
ChAPTER 13 Multiple Regression and Modeling 663
13.1 Multiple Regression and Correlation Analysis 664
13.2 Finding the Multiple-Regression Equation 665
13.3 The Computer and Multiple Regression 674
13.4 Making Inferences About Population Parameters 684
13.5 Modeling Techniques 703
Statistics at Work 719
Chapter Review 720
Flow Chart: Multiple Regression and Modeling 731
Chapter 14 Nonparametric Methods 733
14.1 Introduction to Nonparametric Statistics 734
14.2 The Sign Test for Paired Data 736
14.3 Rank Sum Tests: The Mann-Whitney U Test and the Kruskal-Wallis Test 744
14.4 The One-sample Runs Test 758
14.5 Rank Correlation 767
14.6 The Kolmogorov-Smirnov Test 779
Statistics at Work 786
Chapter Review 787
Flow Chart: Nonparametric Methods 800
Chapter 15 Time Series and Forecasting 803
15.1 Introduction 804
15.2 Variations in Time Series 804
15.3 Trend Analysis 806
15.4 Cyclical Variation 818
15.5 Seasonal Variation 824
15.6 Irregular Variation 833
15.7 A Problem Involving All Four Components of a Time Series 834
15.8 Time-Series Analysis in Forecasting 844
Statistics at Work 844
Chapter Review 846
Flow Chart: Time Series 853
Chapter 16 Index Numbers 855
16.1 Defining an Index Number 856
16.2 Unweighted Aggregates Index 860
16.3 Weighted Aggregates Index 865
16.4 Average of Relatives Methods 874
16.5 Quantity and Value Indices 881
16.6 Issues in Constructing and Using Index Numbers 886
Statistics at Work 887
Chapter Review 888
Flow Chart: Index Numbers 896
ChAPTER 17 Decision Theory 897
17.1 The Decision Environment 898
17.2 Expected Profit Under Uncertainty: Assigning Probability Values 899
17.3 Using Continuous Distributions: Marginal Analysis 908
17.4 Utility as a Decision Criterion 917
17.5 Helping Decision Makers Supply the Right Probabilities 921
17.6 Decision-Tree Analysis 925
Statistics at Work 938
Chapter Review 939
Appendix Tables 949
Bibliography 973
Index 977

This page is intentionally left blank

Preface

An Opportunity for New Ideas

Writing a new edition of our textbook is an exciting time. In the two years that it takes to complete it, we get to interact with a number of adopters of our text, we benefit from the many thoughtful comments of professors who review the manuscript, our students here at the University of North Carolina at Chapel Hill always have a lot of good ideas for change, and our team at Prentice Hall organizes the whole process and provides a very high level of professional input. Even though this is the eighth edition of our book, our original goal of writing the most teacher- and student-friendly textbook in business statistics still drives our thoughts and our writing in this revision.

What Has Made This Book Different through Various Editions?

Our philosophy about what a good business statistics textbook ought to be hasn't changed since the day we started writing the first edition, twenty years ago. At that time and up through this edition, we have always strived to produce a textbook that met these four goals:

- We think a beginning business statistics textbook ought to be intuitive and easy to learn from. In explaining statistical concepts, we begin with what students already know from their life experience and we enlarge on this knowledge by using intuitive ideas. Common sense, real-world ideas, references, patient explanations, multiple examples, and intuitive approaches all make it easier for students to learn.
- We believe a beginning business statistics textbook ought to cover all of the topics any teacher might wish to build into a two-semester or a two-quarter course. Not every teacher will cover every topic in our book, but we offer the most complete set of topics for the consideration of anyone who teaches this course.
- We do not believe that using complex mathematical notation enhances the teaching of business statistics; and our own experience suggests that it may even make learning more difficult. Complex mathematical notation belongs in advanced courses in mathematics and statistics (and we do use it there), but not here. This is a book that will make and keep you comfortable even if you didn't get an A in college algebra.
- We believe that a beginning business statistics textbook ought to have a strong real-world focus. Students ought to see in the book what they see in their world every day. The approach we use, the exercises we have chosen for this edition, and the continuing focus on using statistics to solve business problems all make this book very relevant. We use a large number of real-world problems, and our
explanations tend to be anecdotal, using terms and references that students read in the newspapers, see on TV, and view on their computer monitors. As our own use of statistics in our consulting practices has increased, so have the references to how and why it works in our textbook. This book is about actual managerial situations, which many of the students who use this book will face in a few years.

New Features in This Edition to Make Teaching and Learning Easier

Each of our editions and the supplements that accompanied them contained a complete set of pedagogical aids to make teaching business statistics more effective and learning it less painful. With each revision, we added new ideas, new tools, and new helpful approaches. This edition begins its own set of new features. Here is a quick preview of the twelve major changes in the eighth edition:

- End-of-section exercises have been divided into three subsets: Basic Concepts, Applications, and Self-Check Exercises. The Basic Concepts are those exercises without scenarios, Applications have scenarios, and the Self-Check Exercises have worked-out solutions right in the section.
- The set of Self-Check Exercises referenced above is found at the end of each chapter section except the introductory section. Complete Worked-Out Answers to each of these can be found at the end of the applications exercises in that section of the chapter.
- Hints and Assumptions are short discussions that come at the end of each section in the book, just before the end-of-section exercises. These review important assumptions and tell why we made them, they give students useful hints for working the exercises that follow, and they warn students of potential pitfalls in finding and interpreting solutions.
- The number of real-world examples at the end-of-chapter Review and Application Exercises have been doubled, and many of the exercises from the previous edition have been updated. The content and language of the problems have been modified to have local touch and more business applications.
- Most of the hypothesis tests in Chapters 8 and 9 are done using the standardized scale.
- The scenarios for a quarter of the exercises in this edition have been rewritten.
- Over a hundred new exercises appear in this edition.
- All of the large, multipage data sets have been moved to the data disk, which is available with this book.
- The material on exploratory data analysis has been significantly expanded.
- The design of this edition has been completely changed to represent the state of the art in easy-tofollow pedagogy.
- Instructions are provided to handle the data using computer software such as MS Excel and SPSS.
- A Comprehensive Case "Surya Bank Pvt. Ltd." has been added along with the live data. The questions related to this case has been put at the end of each chapter in order to bring more clarity in Statistical Applications in real-life scenarios.

Successful Features Retained from Previous Editions

In the time between editions, we listen and learn from teachers who are using our book. The many adopters of our last edition reinforced our feeling that these time-tested features should also be a part of the new edition:

- Chapter learning objectives are prominently displayed in the chapter opening.
- The more than 1,500 on-page notes highlight important material for students.
- Each chapter begins with a real-world problem, in which a manager must make a decision. Later in the chapter, we discuss and solve this problem as part of the teaching process.
- Each chapter has a section entitled review of Terms Introduced in the chapter.
- An annotated review of all Equations Introduced is a part of every chapter.
- Each chapter has a comprehensive Chapter Concepts Test using multiple pedagogies.
- A flow chart (with numbered page citations) in Chapters 2-16 organizes the material and makes it easier for students to develop a logical, sequential approach to problem solving.
- Our Statistics at Work sections in each chapter allow students to think conceptually about business statistics without getting bogged down with data. This learning aid is based on the continuing story of the "Loveland Computer Company" and the experiences of its employees as they bring more and more statistical applications to the management of their business.

Teaching Supplements to the Eighth Edition

The following supplements to the text represent the most comprehensive, classroom-tested set of supplementary teaching aids available in business statistics books today. Together they provide a powerful instructor-focused package.

- An Instructor's Solutions Manual containing worked-out solutions to all of the exercises in the book.
- A comprehensive online Test Bank Questions.
- A complete set of Instructor Lecture Notes, developed in Microsoft Powerpoint.

It Takes a Lot of People to Make a Book

Our part in the process of creating a new edition is to present ideas that we believe work in the classroom. The Prentice Hall team takes these ideas and makes them into a book. Of course, it isn't that easy.

The whole process starts with our editor, Tom Tucker, who rides herd on the process from his office in St. Paul. Tom is like a movie director; he makes sure everybody plays his or her part and that the entire process moves forward on schedule. Tom guides the project from the day we begin to discuss a eighth edition until the final book version appears on his desk. Without Tom, we'd be rudderless.

Then comes Kelli Rahlf, our production supervisor from Carlisle Publishers Services. In conjunction with Katherine Evancie, our Prentice Hall Production Manager, she manages the thousands of day-to-day activities that must all be completed before a book is produced. Together they move the rough manuscript pages through the editing and printing process, see that printed pages from the compositor reach us, keep us on schedule as we correct and return proofs, work with the bindery and the art folks, and do about a thousand other important things we never get to see but appreciate immensely.

A very helpful group of teachers reviewed the manuscript for the eighth edition and took the time to make very useful suggestions. We are happy to report that we incorporated most of them. This process gives the finished book a student-teacher focus we could not achieve without them; for their effort, we are grateful. The reviewers for this edition were Richard P. Behr, Broome Community College; Ronald L. Coccari, Cleveland State University; V. Reddy Dondeti, Norfolk State University; Mark Haggerty, Clarion University; Robert W. Hull, Western Illinois University; James R. Schmidt, University of Nebraska-Lincoln; and Edward J. Willies.

We use statistical tables in the book that were originally prepared by other folks, and we are grateful to the literary executor of the late Sir Ronald Fisher, F.R.S., to Dr Frank Yates, F.R.S., and to Longman

Group, Ltd., London, for pemrission to reprint tables from their book Statistical Tables for Biological, Agricultural and Medical Research, sixth edition, 1974.

Dr David O. Robinson of the Hass School of Business, Berkeley University, contributed a number of real-world exercises, produced many of the problem scenario changes, and as usual, persuaded us that it would be considerably less fun to revise a book without him.

Kevin Keyes provided a large number of new exercises, and Lisa Klein produced the index. To all of these very important, hard-working folks, we are grateful.

We are glad it is done and now we look forward to hearing from you with your comments about how well it works in your classroom. Thank you for all your help.

Richard I. Levin

 David S. RubinI want to express my heartfelt and sincere gratitude towards my mother, Late Mrs Ishrat Sultana, my wife, Uzma, my son Ashar, family members, and friends. I also want to express my sincere thanks to my statistics teachers, colleagues, and Jaipuria Institute of Management, Lucknow, for their help and support in completion of this task.

Masood H. Siddiqui

I owe a great deal to my teachers and colleagues from different management institutes for their support, encouragement, and suggestions. Sincere thanks to my student, Ashish Awasthi, for helping me in preparing the snapshots for SPSS and Microsoft Excel, to my assistant, Kirti Yadav, for helping me in preparing the manuscript. Finally, I would like to express my gratitude to my parents, special thanks to my wife, Subha, and my kids, Sujay and Sumedha, for their love, understanding, and constant support.

Sanjay Rastogi

Introduction

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To examine who really uses statistics and how statistics is used
- To provide a very short history of the use of statistics
- To present a quick review of the special features of this book that were designed to make learning statistics easier for you

CHAPTER CONTENTS

1.1 Why should I Take This Course and Who Uses Statistics Anyhow? 2

1.2 History 3
1.3 Subdivisions within Statistics 4

1.4 A Simple and Easy-to-Understand Approach 4

1.5 Features That Make Learning Easier 5
1.6 Surya Bank-Case Study 6

1.1 WHY SHOULD I TAKE THIS COURSE AND WHO USES STATISTICS ANYHOW?

Every 4 years, Americans suffer through an affliction known as the presidential election. Months before the election, television, radio, and newspaper broadcasts inform us that "a poll conducted by XYZ Opinion Research shows that the Democratic (or Republican) candidate has the support of 54 percent of voters with a margin of error of plus or minus 3 percent." What does this statement mean? What is meant by the term margin of error? Who has actually done the polling? How many people did they interview and how many should they have interviewed to make this assertion? Can we rely on the truth of what they reported? Polling is a big business and many companies conduct polls for political candidates, new products, and even TV shows. If you have an ambition to become president, run a company, or even star in a TV show, you need to know something about statistics and statisticians.

It's the last play of the game and the Giants are behind by 4 points; they have the ball on the Chargers' 20-yard line. The Chargers' defensive coordinator calls time and goes over to the sidelines to speak to his coach. The coach knows that because a field goal won't even tie the game, the Giants will either pass or try a running play. His statistical assistant quickly consults his computer and points out that in the last 50 similar situations, the Giants have passed the ball 35 times. He also points out to the Chargers' coach that two-thirds of these passes have been short passes, right over center. The Chargers' coach instructs his defensive coordinator to expect the short pass over center. The ball is snapped, the Giants' quarterback does exactly what was predicted and there is a double-team Charger effort there to break up the pass. Statistics suggested the right defense.

The Food and Drug Administration is in final testing of a new drug that cures prostate cancer in 80 percent of clinical trials, with only a 2 percent incidence of undesirable side effects. Prostate cancer is the second largest medical killer of men and there is no present cure. The Director of Research must forward a finding on whether to release the drug for general use. She will do that only if she can be more than 99 percent certain that there won't be any significant difference between undesirable side effects in the clinical tests and those in the general population using the drug. There are statistical methods that can provide her a basis for making this important decision.

The Community Bank has learned from hard experience that there are four factors that go a long way in determining whether a borrower will repay his loan on time or will allow it to go into default. These factors are (1) the number of years at the present address, (2) the number of years in the present job, (3) whether the applicant owns his own home, and (4) whether the applicant has a checking or savings account with the Community Bank. Unfortunately, the bank doesn't know the individual effect of each of these four factors on the outcome of the loan experience. However, it has computer files full of information on applicants (both those who were granted a loan and those who were turned down) and knows, too, how each granted loan turned out. Sarah Smith applies for a loan. She has lived at her present address 4 years, owns her own home, has been in her current job only 3 months, and is not a Community Bank depositor. Using statistics, the bank can calculate the chance that Sarah will repay her loan on time if it is granted.

The word statistics means different things to different folks. To a football fan, statistics are rushing, passing, and first down numbers; to the Chargers' coach in the second example, statistics is the chance that the Giants will throw the short pass over center. To the manager of a power station, statistics are the amounts of pollution being released into the atmosphere. To the Food and Drug Administrator in our third example, statistics is the likely percentage of undesirable effects in the general population using the new prostate drug. To the Community Bank in the fourth example, statistics is the chance that Sarah
will repay her loan on time. To the student taking this course, statistics are the grades on your quizzes and final exam in the course.

Each of these people is using the word correctly, yet each person uses it in a different way. All of them are using statistics to help them make decisions; you about your grade in this course, and the Chargers' coach about what defense to call for the final play of the game. Helping you learn why statistics is important and how to use it in your personal and professional life is the purpose of this book.

Benjamin Disraeli once said, "There are three kinds of lies: lies, damned lies, and statistics." This rather severe castigation of statistics, made so many years ago, has come to be a rather apt description of many of the statistical deceptions we encounter in our everyday lives. Darrell Huff, in an enjoyable little book, How to Lie with Statistics, noted that "the crooks already know these tricks; honest men must learn them in self-defense." One goal of this book is to review some of the common ways statistics are used incorrectly.

1.2 HISTORY

The word statistik comes from the Italian word statista (meaning "statesman"). It was first used by Gottfried Achenwall (1719-1772),

How to lie with statistics

Origin of the word

 a professor at Marlborough and Göttingen. Dr. E. A. W. Zimmerman introduced the word statistics into England. Its use was popularized by Sir John Sinclair in his work Statistical Account of Scotland 1791-1799. Long before the eighteenth century, however, people had been recording and using data.Official government statistics are as old as recorded history. The Old Testament contains several accounts of census taking. Governments of ancient Babylonia, Egypt, and Rome gathered detailed

Early government records

 records of populations and resources. In the Middle Ages, governments began to register the ownership of land. In A.D. 762, Charlemagne asked for detailed descriptions of church-owned properties. Early in the ninth century, he completed a statistical enumeration of the serfs attached to the land. About 1086, William the Conqueror ordered the writing of the Domesday Book, a record of the ownership, extent, and value of the lands of England. This work was England's first statistical abstract.Because of Henry VII's fear of the plague, England began to register its dead in 1532. About this same time, French law required the clergy to register baptisms, deaths, and marriages. During an outbreak of the plague in the late 1500s, the English government started publishing weekly death statistics. This practice continued, and by 1632, these Bills of Mortality listed births and deaths by sex. In 1662, Captain John Graunt used 30 years of these Bills to make predictions about the number of people who would die from various diseases and the proportions of male and female births that could be expected. Summarized in his work Natural and Political Observations . . . Made upon the Bills of Mortality, Graunt's study was a pioneer effort in statistical analysis. For his achievement in using past records to predict future events, Graunt was made a member of the original Royal Society.

The history of the development of statistical theory and practice is a lengthy one. We have only begun to list the people who have made significant contributions to this field. Later we will encounter others whose names are now attached to specific laws and methods. Many people have brought to the study of statistics refinements or innovations that, taken together, form the theoretical basis of what we will study in this book.

1.3 SUBDIVISIONS WITHIN STATISTICS

Managers apply some statistical technique to virtually every branch of public and private enterprise. These techniques are so diverse that statisticians commonly separate them into two broad categories: descriptive statistics and inferential statistics. Some examples will help us understand the difference between the two.

Suppose a professor computes an average grade for one history class. Because statistics describe the performance of that one class

Descriptive statistics

 but do not make a generalization about several classes, we can say that the professor is using descriptive statistics. Graphs, tables, and charts that display data so that they are easier to understand are all examples of descriptive statistics.Now suppose that the history professor decides to use the average grade achieved by one history class to estimate the average grade achieved in all ten sections of the same history course. The

Inferential statistics

 process of estimating this average grade would be a problem in inferential statistics. Statisticians also refer to this category as statistical inference. Obviously, any conclusion the professor makes about the ten sections of the course is based on a generalization that goes far beyond the data for the original history class; the generalization may not be completely valid, so the professor must state how likely it is to be true. Similarly, statistical inference involves generalizations and statements about the probability of their validity.The methods and techniques of statistical inference can also be used in a branch of statistics called decision theory. Knowledge of decision theory is very helpful for managers because it is used to

Decision theory

 make decisions under conditions of uncertainty when, for example, a manufacturer of stereo sets cannot specify precisely the demand for its products or when the chairperson of the English department at your school must schedule faculty teaching assignments without knowing precisely the student enrollment for next fall.
1.4 A SIMPLE AND EASY-TO-UNDERSTAND APPROACH

This book is designed to help you get the feel of statistics: what it is, how and when to apply statistical techniques to decision-making situations, and how to interpret the results you get. Because we are not writing for professional statisticians, our writing is tailored to the backgrounds and needs of college students, who probably accept the fact that statistics can be of considerable help to them in their future occupations but are probably apprehensive about studying the subject.

We discard mathematical proofs in favor of intuitive ones. You will be guided through the learning process by reminders of what you already know, by examples with which you can identify, and by a step-by-step process instead of statements such as "it can be shown" or "it therefore follows."

As you thumb through this book and compare it with other basic business statistics textbooks, you will notice a minimum of mathematical notation. In the past, the complexity of the notation has intimidated many students, who got lost in the symbols even though

For students, not statisticians

 they were motivated and intellectually capable of understanding the ideas. Each symbol and formula that is used is explained in detail, not only at the point at which it is introduced, but also in a section at the end of the chapter.If you felt reasonably comfortable when you finished your high school algebra course, you have enough background to understand everything in this book. Nothing beyond basic algebra is assumed

No math beyond simple

 algebra is required or used. Our goals are for you to be comfortable as you learn and for you to get a good intuitive grasp of statistical concepts and techniques. As a future manager, you will need to know when statistics can help your decision process and which tools to use. If you do need statistical help, you can find a statistical expert to handle the details.The problems used to introduce material in the chapters, the exercises at the end of each section in the chapter, and the chapter review exercises are drawn from a wide variety of situations you

Text problem cover a wide variety of situations

 are already familiar with or are likely to confront quite soon. You will see problems involving all facets of the private sector of our economy: accounting, finance, individual and group behavior, marketing, and production. In addition, you will encounter managers in the public sphere coping with problems in public education, social services, the environment, consumer advocacy, and health systems.In each problem situation, a manager is trying to use statistics creatively and productively. Helping you become comfortable doing exactly that is our goal.

1.5 FEATURES THAT MAKE LEARNING EASIER

In our preface, we mentioned briefly a number of learning aids that are a part of this book. Each has a particular role in helping you study and understand statistics, and if we spend a few minutes here discussing the most effective way to use some of these aids, you will not only learn more effectively, but will gain a greater understanding of how statistics is used to make managerial decisions.

Margin Notes Each of the more than 1,500 margin notes highlights the material in a paragraph or group of paragraphs. Because the notes briefly indicate the focus of the textual material, you can avoid having to read through pages of information to find what you need. Learn to read down the margin as you work through the textbook; in that way, you will get a good sense of the flow of topics and the meaning of what the text is explaining.

Application Exercises The Chapter Review Exercises include Application Exercises that come directly from real business/economic situations. Many of these are from the business press; others come from government publications. This feature will give you practice in setting up and solving problems that are faced every day by business professionals. In this edition, the number of Application Exercises has been doubled.

Review of Terms Each chapter ends with a glossary of every new term introduced in that chapter. Having all of these new terms defined again in one convenient place can be a big help. As you work through a chapter, use the glossary to reinforce your understanding of what the terms mean. Doing this is easier than going back in the chapter trying to find the definition of a particular term. When you finish studying a chapter, use the glossary to make sure you understand what each term introduced in the chapter means.

Equation Review Every equation introduced in a chapter is found in this section. All of them are explained again, and the page on which they were first introduced is given. Using this feature of the book is a very effective way to make sure you understand what each equation means and how it is used.

Chapter Concepts Test Using these tests is a good way to see how well you understand the chapter material. As a part of your study, be sure to take these tests and then compare your answers with those in the back of the book. Doing this will point out areas in which you need more work, especially before quiz time.

Statistics at Work In this set of cases, an employee of Loveland Computers applies statistics to managerial problems. The emphasis here is not on numbers; in fact, it's hard to find any numbers in these cases. As you read each of these cases, focus on what the problem is and what statistical approach might help find a solution; forget the numbers temporarily. In this way, you will develop a good appreciation for identifying problems and matching solution methods with problems, without being bogged down by numbers.

Flow Chart The flow charts at the end of the chapters will enable you to develop a systematic approach to applying statistical methods to problems. Using them helps you understand where you begin, how you proceed, and where you wind up; if you get good at using them, you will not get lost in some of the more complex word problems instructors are fond of putting on tests.

From the Textbook to the Real World Each of these will take you no more than 2 or 3 minutes to read, but doing so will show you how the concepts developed in this book are used to solve real-world problems. As you study each chapter, be sure to review the "From the Textbook to the Real World" example; see what the problem is, how statistics solves it, and what the solution adds in value. These situations also generate good classroom discussion questions.

Classification of Exercises This feature is new with this edition of the book. The exercises at the end of each section are divided into three categories: basic concepts to get started on, application exercises to show how statistics is used, and self-check exercises with worked-out answers to allow you to test yourself.

Self-Check Exercises with Worked-Out Answers A new feature in this edition. At the beginning of most sets of exercises, there are one or two self-check exercises for you to test yourself. The workedout answers to these self-check exercises appear at the end of the exercise set.

Hints and Assumptions New with this edition, these provide help, direction, and things to avoid before you begin work on the exercises at the end of each section. Spending a minute reading these saves lots of time, frustration, and mistakes in working the exercises.

1.6 SURYA BANK—CASE STUDY

SURYA BANK PVT. LTD. was incorporated in the first quarter of the Twentieth Century in Varanasi, by a group of ambitious and enterprising Entrepreneurs. Over the period of time, the Bank with its untiring customer services has earned a lot of trust and goodwill of its customers. The staff and the management of the bank had focused their attention on the customers from the very inceptions of the bank. It is the practice of the bank that its staff members would go out to meet the customers of various walks of life and enquire about their banking requirements on the regular basis. It was due to the bank's strong belief in the need for innovation, delivering the best service and demonstrating responsibility that had helped the bank in growing from strength to strength.

The bank had only 6 branches till 1947. Post-independence, the bank expanded and now has 198 fullfledged branches across the North, North-West and Central India, dotted across the rural, semi-urban and urban areas.

SURYA BANK PVT. LTD. concentrated on its efforts to meet the genuine requirements of the different sectors of business and was forthcoming in giving loans to the needy \& weaker sections of the society. The bank also has a sound portfolio of advances consisting of wide basket of retail finance. As a matter of policy, SURYA BANK PVT. LTD. gives loans to a large spectrum of retail businessmen.

In 2011, the bank had a net-profit of ₹ 26.3 crores. The total income of the bank has been steadily increasing over the past one decade from ₹ 188.91 crores in 2000 to ₹ 610.19 crores in 2011. The financial results of the bank are given below:

SURYA BANK FINANCIAL RESULTS

SI. No.	Financial Year	Net Profit	Total Income	Operating Expenses
1	2000	10.24	188.91	35.62
2	2001	5.37	203.28	49.03
3	2002	9.33	240.86	50.97
4	2003	14.92	258.91	97.42
5	2004	17.07	250.07	99.20
6	2005	-20.1	204.19	80.72
7	2006	10.39	237.33	86.68
8	2007	16.55	280.64	96.52
9	2008	33.01	361.51	95.23
10	2009	58.17	486.67	114.74
11	2010	23.92	625.94	194.10
12	2011	26.30	610.19	202.14

SURYA BANK PVT. LTD. is one of the first private sector banks in India to introduce a massive computerization at branch level. The bank adopted modernization and computerization as early as 1990. All its 198 branches are computerized. The bank operates around 400 ATMs across northern India. This computerization has enabled the bank to render better and efficient service to its customers.

The bank is implementing new technology in core bank on an ongoing basis so as to achieve higher customer satisfaction and better retention to the customers. The bank has embarked upon a scheme of total branch automation with centralized Data Base System to integrate all its branches. This scheme has helped the bank to implement newer banking modes like internet banking, cyber banking and mobile banking etc, which has helped the customers to access the banking account from their place of work. The bank in its endeavor to provide quality service to its customers has been constantly improvising its services for the satisfaction of its customers. To better understand the customers' needs and wants and of its customers and the level of satisfaction with respect to the services provided to its customers, Surya Bank has conducted a survey of the bank customers to understand their opinions/perceptions with respect to the services provided by the bank.

NOTE: This case is prepared for class discussion purpose only. The information provided is hypothetical, but the questionnaire and the data set are real.

8 Statistics for Management

Questionnaire

Q. 1 Do You have an account in any bank, If yes name of the bank
Q. 2 Which type of account do you have,
Q. 3 For how long have had the bank account

Q. 4 Rank the following modes in terms of the extent to which they helped you know about e-banking services on scale 1 to 4

	Least important	Slightly important	Important	Most important
(a) Advertisement				
(b) Bank Employee				
(c) Personal enquiry				
(d) Friends or relative				

Q. 5 How frequently do you use e-banking

Daily	\square
2-3 times in a week	\square
Every week	\square
Fort nightly	\square
Monthly	\square
Once in a six month	\square
Never	\square

Q. 6 Rate the add-on services which are available in your e-banking account on scale 1 to 5

	Highly unavailable	Available	Moderate	Available	Highly available
(a) Seeking product \& rate information					
(b) Calculate loan payment information					
(c) Balance inquiry					
(d) Inter account transfers					
(e) Lodge complaints					
(f) To get general information					
(g) Pay bills					
(h) Get in touch with bank					

Q. 7 Rate the importance of the following e-banking facilities while selecting a bank on the scale 1 to 4

	Least important	Slightly important	If important	Most important
(a) Speed of transaction				
(b) Reliability				
(c) Ease of use				
(d) Transparency				
(e) 24×7 any time banking				
(f) Congestion				
(g) Lower amount transactions are not				
possible				
(h) Add on services and schemes				
(i) Information retrieval				
(j) Ease of contact				
(k) Safety				
(l) Privacy				
(m) Accessibility				

Q. 8 Rate the level of satisfaction of the following e-banking facilities of your bank on the scale 1 to 4

	Highly dissatisfied	Dissatisfied	Satisfied	Highly satisfied
(a) Speed of transaction				
(b) Reliability				
(c) Ease of use				
(d) Transparency				
(e) 24×7 any time banking				
(f) Congestion				
(g) Lower amount transactions				
are not possible				
(h) Add on services and schemes				
(i) Information retrieval				
(j) Ease of contact				
(k) Safety				
(l) Privacy				
(m) Accessibility				

Q. 9

Rate the level of satisfaction with e-services provided by your bank
Q. 10 How frequently you find problem in using the e-banking

Highly dissatisfied	\square
Dissatisfied	\square
Satisfied	\square
Highly satisfied	\square

Daily
Monthly

2-3 times in a week
Once in a six month
Every week
Nightly
never

Q. 11 Rate the following problems you have faced frequently using e-banking.

	Least faced	Slightly faced	Faced	Fegularly faced
(a) Feel it is unsecured mode of transaction				
(b) Misuse of information				
(c) Slow transaction				
(d) No availability of server				
(e) Not a techno savvy				
(f) Increasingly expensive and time consuming				
(g) Low direct customer connection				

Q. 12 How promptly your problems have been solved

Instantly	\square
Within a week	\square
10-15 days	\square
Within a month	\square

Q. 13 Rate the following statements for e-banking facility according to your agreement level on scale 1-5

	Strongly disagree	Disagree	Neutral	Agree	Strongly agree
(a) It saves a person's time					
(b) Private banks are better than public banks					
(c) This facility was first initiated by private banks so they have an edge over the public banks					

Q. 19 | Monthly Personal Income | $<10,000$ |
| :--- | :--- |
| in INR | $10,000-20,000$ |
| | |
| | |
| | |
| | $35,001-35,000$ |
| | $>50,000$ |

Our own work experience has brought us into contact The authors' goals with thousands of situations where statistics helped deci-
sion makers. We participated personally in formulating and applying many of those solutions. It was stimulating, challenging, and, in the end, very rewarding as we saw sensible application of these ideas produce value for organizations. Although very few of you will likely end up as statistical analysts, we believe very strongly that you can learn, develop, and have fun studying statistics, and that's why we wrote this book. Good luck!

Grouping and Displaying Data to Convey Meaning: Tables and Graphs

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To show the difference between samples and populations
- To convert raw data to useful information
- To construct and use data arrays
- To graph frequency distributions with histograms, polygons, and ogives
- To use frequency distributions to make decisions
- To construct and use frequency distributions

CHAPTER CONTENTS

2.1 How Can We Arrange Data?
 14

2.2 Examples of Raw Data 17
2.3 Arranging Data Using the Data Array and the Frequency Distribution 18
2.4 Constructing a Frequency Distribution 27
2.5 Graphing Frequency Distributions 38

- Statistics at Work 58
- Terms Introduced in Chapter 259
- Equations Introduced in Chapter 260
- Review and Application Exercises 60
- Flow Chart: Arranging Data to Convey Meaning 72

TThe production manager of the Dalmon Carpet Company is responsible for the output of over 500 carpet looms. So that he does not have to measure the daily output (in yards) of each loom, he samples the output from 30 looms each day and draws a conclusion as to the average carpet production of the entire 500 looms. The table below shows the yards produced by each of the 30 looms in yesterday's sample. These production amounts are the raw data from which the production manager can draw conclusions about the entire population of looms yesterday.

YARDS PRODUCED YESTERDAY BY EACH OF 30 CARPET LOOMS

16.2	15.4	16.0	16.6	15.9	15.8	16.0	16.8	16.9	16.8
15.7	16.4	15.2	15.8	15.9	16.1	15.6	15.9	15.6	16.0
16.4	15.8	15.7	16.2	15.6	15.9	16.3	16.3	16.0	16.3

Using the methods introduced in this chapter, we can help the production manager draw the right conclusion.

Data are collections of any number of related observations. We can collect the number of telephones that several workers install on a given

Some definitions

 day or that one worker installs per day over a period of several days, and we can call the results our data. A collection of data is called a data set, and a single observation a data point.
2.1 HOW CAN WE ARRANGE DATA?

For data to be useful, our observations must be organized so that we can pick out patterns and come to logical conclusions. This chapter introduces the techniques of arranging data in tabular and graphical forms. Chapter 3 shows how to use numbers to describe data.

Collecting Data

Statisticians select their observations so that all relevant groups are represented in the data. To determine the potential market for a new

Represent all groups

 product, for example, analysts might study 100 consumers in a certain geographical area. Analysts must be certain that this group contains people representing variables such as income level, race, education, and neighborhood.Data can come from actual observations or from records that are kept for normal purposes. For billing purposes and doctors' reports, a hospital, for example, will record the number of patients using the X-ray facilities. But this information can also be organized to produce data that statisticians can describe and interpret.

Data can assist decision makers in educated guesses about the causes and therefore the probable effects of certain characteristics in given situations. Also, knowledge of trends from past experience can enable concerned citizens to be aware of potential outcomes

Find data by observation or from records

Use data about the past to make decisions about the future and to plan in advance. Our marketing survey may reveal that the product is preferred by African-American homemakers of suburban communities, average incomes, and average education. This product's advertising copy should address this target audience. If hospital records show that more patients used the X-ray facilities in June than in January, the hospital personnel
division should determine whether this was accidental to this year or an indication of a trend, and perhaps it should adjust its hiring and vacation practices accordingly.

When data are arranged in compact, usable forms, decision makers can take reliable information from the environment and use it to make intelligent decisions. Today, computers allow statisticians to collect enormous volumes of observations and compress them instantly into tables, graphs, and numbers. These are all compact, usable forms, but are they reliable? Remember that the data that come out of a computer are only as accurate as the data that go in. As computer programmers say, "GIGO," or "Garbage In, Garbage Out." Managers must be very careful to be sure that the data they are using are based on correct assumptions and interpretations. Before relying on any interpreted data, from a computer or not, test the data by asking these questions:

1. Where did the data come from? Is the source biased-that is, is it likely to have an interest in supplying data points that will

Tests for data

 lead to one conclusion rather than another?2. Do the data support or contradict other evidence we have?
3. Is evidence missing that might cause us to come to a different conclusion?
4. How many observations do we have? Do they represent all the groups we wish to study?
5. Is the conclusion logical? Have we made conclusions that the data do not support?

Study your answers to these questions. Are the data worth using? Or should we wait and collect more information before acting? If the hospital was caught short-handed because it hired too few nurses to staff the X-ray room, its administration relied on insufficient data. If the advertising agency targeted its copy only toward African-American suburban home makers when it could have tripled its sales by appealing to white suburban homemakers, too, it also relied on insufficient data. In both cases, testing available data would have helped managers make better decisions.

The effect of incomplete or biased data can be illustrated with this example. A national association of truck lines claimed in an

Double-counting example

 advertisement that " 75 percent of everything you use travels by truck." This might lead us to believe that cars, railroads, airplanes, ships, and other forms of transportation carry only 25 percent of what we use. Reaching such a conclusion is easy but not enlightening. Missing from the trucking assertion is the question of double counting. What did they do when something was carried to your city by rail and delivered to your house by truck? How were packages treated if they went by airmail and then by truck? When the double-counting issue (a very complex one to treat) is resolved, it turns out that trucks carry a much lower proportion of the goods you use than truckers claimed. Although trucks are involved in delivering a relatively high proportion of what you use, railroads and ships still carry more goods for more total miles.
Difference between Samples and Populations

Statisticians gather data from a sample. They use this informa-
Sample and population defined tion to make inferences about the population that the sample
ner represents. Thus, a population is a whole, and a sample is a fraction or segment of that whole.

We will study samples in order to be able to describe populations. Our hospital may study a small, representative group

Function of samples

 of X-ray records rather than examining each record for the last 50 years. The Gallup Poll may interview a sample of only 2,500 adult Americans in order to predict the opinion of all adults living in the United States.Studying samples is easier than studying the whole population; it costs less and takes less time. Often, testing an airplane part for

Advantages of samples

 strength destroys the part; thus, testing fewer parts is desirable. Sometimes testing involves human risk; thus, use of sampling reduces that risk to an acceptable level. Finally, it has been proven that examining an entire population still allows defective items to be accepted; thus, sampling, in some instances, can raise the quality level. If you're wondering how that can be so, think of how tired and inattentive you might get if you had to look at thousands and thousands of items passing before you.A population is a collection of all the elements we are studying and about which we are trying to draw conclusions. We must define this population so that it is clear whether an element is a member of the population. The population for our marketing study may be all women within a 15 -mile radius of center-city Cincinnati who have annual family incomes between $\$ 20,000$ and $\$ 45,000$ and have completed at least 11 years of school. A woman living in downtown Cincinnati with a family income of $\$ 25,000$ and a college degree would be a part of this population. A woman living in San Francisco, or with a family income of $\$ 7,000$, or with 5 years of schooling would not qualify as a member of this population.

A sample is a collection of some, but not all, of the elements of the population. The population of our marketing survey is all women who meet the qualifications listed above. Any group of

Function of populations

 women who meet these qualifications can be a sample, as long as the group is only a fraction of the whole population. A large helping of cherry filling with only a few crumbs of crust is a sample of pie, but it is not a representative sample because the proportions of the ingredients are not the same in the sample as they are in the whole.A representative sample contains the relevant characteristics of the population in the same proportions as they are included in that population. If our population of women is one-third African-American, then a sample of the population that is representative in terms of race will also be one-third AfricanAmerican. Specific methods for sampling are covered in detail in Chapter 6.

Finding a Meaningful Pattern in the Data

There are many ways to sort data. We can simply collect them and keep them in order. Or if the observations are measured in numbers, we can list the data points from lowest to highest in numerical value.

Data come in a variety of forms

 or the various colors of sweaters manufactured by a given firm, we must organize them differently. We must present the data points in alphabetical order or by some other organizing principle. One useful way to organize data is to divide them into similar categories or classes and then count the number of observations that fall into each category. This method produces a frequency distribution and is discussed later in this chapter.The purpose of organizing data is to enable us to see quickly Why should we arrange data? some of the characteristics of the data we have collected. We look for things such as the range (the largest and smallest values), apparent patterns, what values the data may tend to group around, what values appear most often, and so on. The more information of this kind that we can learn from our sample, the better we can understand the population from which it came, and the better we can make decisions.

EXERCISES 2.1

Applications

2-1 When asked what they would use if they were marooned on an island with only one choice for a pain reliever, more doctors chose Bayer than Tylenol, Bufferin, or Advil. Is this conclusion drawn from a sample or a population?
2-2 Twenty-five percent of the cars sold in the United States in 1996 were manufactured in Japan. Is this conclusion drawn from a sample or a population?
2-3 An electronics firm recently introduced a new amplifier, and warranty cards indicate that 10,000 of these have been sold so far. The president of the firm, very upset after reading three letters of complaint about the new amplifiers, informed the production manager that costly control measures would be implemented immediately to ensure that the defects would not appear again. Comment on the president's reaction from the standpoint of the five tests for data given on page 15.
2-4 "Germany will remain ever divided" stated Walter Ulbricht after construction of the Berlin Wall in 1961. However, toward the end of 1969, the communists of East Germany began allowing free travel between the east and west, and twenty years after that, the wall was completely destroyed. Give some reasons for Ulbricht's incorrect prediction.
2-5 Discuss the data given in the chapter-opening problem in terms of the five tests for data given on page 15 .

2.2 EXAMPLES OF RAW DATA

Information before it is arranged and analyzed is called raw data. It is "raw" because it is unprocessed by statistical methods.

The carpet-loom data in the chapter-opening problem was one Problem facing admissions example of raw data. Consider a second. Suppose that the admissions staff of a university, concerned with the success of the students

staff

 it selects for admission, wishes to compare the students' college performances with other achievements, such as high school grades, test scores, and extracurricular activities. Rather than study every student from every year, the staff can draw a sample of the population of all the students in a given time period and study only that group to conclude what characteristics appear to predict success. For example, the staff can compare high school grades with college grade-point averages (GPAs) for students in the sample. The staff can assign each grade a numerical value. Then it can add the grades and divide by the total number of grades to get an average for each student. Table 2-1 shows a sample of these raw data in tabular form: 20 pairs of average grades in high school and college.TABLE 2-1 HIGH SCHOOL AND COLLEGE GRADE-POINT AVERAGES OF 20 COLLEGE SENIORS

H.S.	College	H.S.	College	H.S.	College	H.S.	College
3.6	2.5	3.5	3.6	3.4	3.6	2.2	2.8
2.6	2.7	3.5	3.8	2.9	3.0	3.4	3.4
2.7	2.2	2.2	3.5	3.9	4.0	3.6	3.0
3.7	3.2	3.9	3.7	3.2	3.5	2.6	1.9
4.0	3.8	4.0	3.9	2.1	2.5	2.4	3.2

TABLE 2-2 POUNDS OF PRESSURE PER SQUARE INCH THAT CONCRETE CAN WITHSTAND

2500.2	2497.8	2496.9	2500.8	2491.6	2503.7	2501.3	2500.0
2500.8	2502.5	2503.2	2496.9	2495.3	2497.1	2499.7	2505.0
2490.5	2504.1	2508.2	2500.8	2502.2	2508.1	2493.8	2497.8
2499.2	2498.3	2496.7	2490.4	2493.4	2500.7	2502.0	2502.5
2506.4	2499.9	2508.4	2502.3	2491.3	2509.5	2498.4	2498.1

When designing a bridge, engineers are concerned with the stress that a given material, such as concrete, will withstand. Rather than

Bridge-building problem

 test every cubic inch of concrete to determine its stress capacity, engineers take a sample of the concrete, test it, and conclude how much stress, on the average, that kind of concrete can withstand. Table 2-2 summarizes the raw data gathered from a sample of 40 batches of concrete to be used in constructing a bridge.
HINTS \& ASSUMPTIONS

Data are not necessarily information, and having more data doesn't necessarily produce better decisions. The goal is to summarize and present data in useful ways to support prompt and effective decisions. The reason we have to organize data is to see whether there are patterns in them, patterns such as the largest and smallest values, and what value the data seem to cluster around. If the data are from a sample, we assume that they fairly represent the population from which they were drawn. All good statisticians (and users of data) recognize that using biased or incomplete data leads to poor decisions.

EXERCISES 2.2

Applications

2-6 Look at the data in Table 2-1. Why do these data need further arranging? Can you form any conclusions from the data as they exist now?
2-7 The marketing manager of a large company receives a report each month on the sales activity of one of the company's products. The report is a listing of the sales of the product by state during the previous month. Is this an example of raw data?
2-8 The production manager in a large company receives a report each month from the quality control section. The report gives the reject rate for the production line (the number of rejects per 100 units produced), the machine causing the greatest number of rejects, and the average cost of repairing the rejected units. Is this an example of raw data?

2.3 ARRANGING DATA USING THE DATA ARRAY AND THE FREQUENCY DISTRIBUTION

The data array is one of the simplest ways to present data. It arranges values in ascending or descending order. Table 2-3 repeats the carpet data from our chapter-opening problem, and Table 2-4

TABLE 2-3 SAMPLE OF DAILY PRODUCTION IN YARDS OF 30 CARPET LOOMS

16.2	15.8	15.8	15.8	16.3	15.6
15.7	16.0	16.2	16.1	16.8	16.0
16.4	15.2	15.9	15.9	15.9	16.8
15.4	15.7	15.9	16.0	16.3	16.0
16.4	16.6	15.6	15.6	16.9	16.3

TABLE 2-4 DATA ARRAY OF DAILY PRODUCTION IN YARDS OF 30 CARPET LOOMS

15.2	15.7	15.9	16.0	16.2	16.4
15.4	15.7	15.9	16.0	16.3	16.6
15.6	15.8	15.9	16.0	16.3	16.8
15.6	15.8	15.9	16.1	16.3	16.8
15.6	15.8	16.0	16.2	16.4	16.9

Data arrays offer several advantages over raw data:

Advantages of data arrays

1. We can quickly notice the lowest and highest values in the data. In our carpet example, the range is from 15.2 to 16.9 yards.
2. We can easily divide the data into sections. In Table 2-4, the first 15 values (the lower half of the data) are between 15.2 and 16.0 yards, and the last 15 values (the upper half) are between 16.0 and 16.9 yards. Similarly, the lowest third of the values range from 15.2 to 15.8 yards, the middle third from 15.9 to 16.2 yards, and the upper third from 16.2 to 16.9 yards.
3. We can see whether any values appear more than once in the array. Equal values appear together. Table 2-4 shows that nine levels occurred more than once when the sample of 30 looms was taken.
4. We can observe the distance between succeeding values in the data. In Table 2-4,16.6 and 16.8 are succeeding values. The distance between them is 0.2 yards ($16.8-16.6$).

In spite of these advantages, sometimes a data array isn't helpful. Because it lists every observation, it is a cumbersome form for displaying large quantities of data. We need to compress the information and still be able to use it for interpretation and decision making. How can we do this?

A Better Way to Arrange Data: The Frequency Distribution

One way we can compress data is to use a frequency table or a frequency distribution. To understand the difference between this and an array, take as an example the average inventory (in days) for 20 convenience stores:

In Tables 2-5 and 2-6, we have taken identical data concerning the average inventory and displayed them first as an array in ascending order and then as a frequency distribution. To obtain Table 2-6, we had to divide the data in groups of similar values. Then we

Frequency distributions handle more data

They lose some information

But they gain other information recorded the number of data points that fell into each group. Notice that we lose some information in constructing the frequency distribution. We no longer know, for example, that the value 5.5 appears four times or that the value 5.1 does not appear at all. Yet we gain information concerning the pattern of average inventories. We can see from Table 2-6 that average inventory falls most often in the range from 3.8 to 4.3 days. It is unusual to find an average inventory in the range from 2.0

TABLE 2-5 DATA ARRAY OF AVERAGE INVENTORY (IN DAYS) FOR 20 CONVENIENCE STORES

2.0	3.8	4.1	4.7	5.5
3.4	4.0	4.2	4.8	5.5
3.4	4.1	4.3	4.9	5.5
3.8	4.1	4.7	4.9	5.5

TABLE 2-6 FREQUENCY DISTRIBUTION OF AVERAGE INVENTORY (IN DAYS) FOR 20 CONVENIENCE STORES (6 CLASSES)

Class (Group of Similar Values of Data Points)	Frequency (Number of Observations in Each Class)
2.0 to 2.5	1
2.6 to 3.1	0
3.2 to 3.7	2
3.8 to 4.3	8
4.4 to 4.9	5
5.0 to 5.5	4

TABLE 2-7 FREQUENCY DISTRIBUTION OF AVERAGE INVENTORY (IN DAYS) FOR 20 CONVENIENCE STORES (12 CLASSES)

Class	Frequency	Class	Frequency
2.0 to 2.2	1	3.8 to 4.0	3
2.3 to 2.5	0	4.1 to 4.3	5
2.6 to 2.8	0	4.4 to 4.6	0
2.9 to 3.1	0	4.7 to 4.9	5
3.2 to 3.4	2	5.0 to 5.2	0
3.5 to 3.7	0	5.3 to 5.5	4

to 2.5 days or from 2.6 to 3.1 days. Inventories in the ranges of 4.4 to 4.9 days and 5.0 to 5.5 days are not prevalent but occur more frequently than some others. Thus, frequency distributions sacrifice some detail but offer us new insights into patterns of data.

A frequency distribution is a table that organizes data into classes, that is, into groups of values describing one characteristic of the data. The average inventory is one characteristic of the 20

Function of classes in a frequency distribution

 convenience stores. In Table 2-5, this characteristic has 11 different values. But these same data could be divided into any number of classes. Table 2-6, for example, uses 6 . We could compress the data even further and use only 2 classes: less than 3.8 and greater than or equal to 3.8 . Or we could increase the number of classes by using smaller intervals, as we have done in Table 2-7.A frequency distribution shows the number of observations from the data set that fall into each of the classes. If you can determine the frequency with which values occur in each class of a

Why is it called a frequency distribution? data set, you can construct a frequency distribution.

Characteristics of Relative Frequency Distributions

So far, we have expressed the frequency with which values occur in each class as the total number of data points that fall within that class. We can also express the frequency of each value as a fraction or a percentage of the total number of observations. The frequency of an average inventory of 4.4 to 4.9 days, for example, is 5 in Table 2-6 but 0.25 in Table $2-8$. To get this value of 0.25 , we divided the frequency for that class (5) by the total number of observations in the data set (20). The answer can be expressed as a fraction ($5 / 20$) a decimal (0.25), or a percentage (25 percent). A relative frequency distribution presents frequencies in terms of fractions or percentages.

Notice in Table 2-8 that the sum of all the relative frequencies equals 1.00 , or 100 percent. This is true because a relative frequency distribution pairs each class with its appropriate fraction or percentage of the total data. Therefore, the classes in any relative or simple frequency distribution are all-inclusive. All the data fit into one category or another. Also notice

Relative frequency distribution defined

Classes are all-inclusive

They are mutually exclusive

TABLE 2-8 RELATIVE FREQUENCY DISTRIBUTION OF AVERAGE INVENTORY (IN DAYS) FOR 20 CONVENIENCE STORES

Class	Frequency	Relative Frequency: Fraction of Observations in Each Class
2.0 to 2.5	1	0.05
2.6 to 3.1	0	0.00
3.2 to 3.7	2	0.10
3.8 to 4.3	8	0.40
4.4 to 4.9	5	0.25
5.0 to 5.5	$\underline{4}$	$\underline{0.20}$
$\mathbf{1 0 0 0}$		
		(sum of the relative frequencies of all classes)

TABLE 2-9 MUTUALLY EXCLUSIVE AND OVERLAPPING CLASSES

Mutually exclusive	1 to 4	5 to 8	9 to 12	13 to 16
Not mutually exclusive	1 to 4	3 to 6	5 to 8	7 to 10

that the classes in Table 2-8 are mutually exclusive; that is, no data point falls into more than one category. Table 2-9 illustrates this concept by comparing mutually exclusive classes with ones that overlap. In frequency distributions, there are no overlapping classes.

Up to this point, our classes have consisted of numbers and have described some quantitative attribute of the items sampled. Classes of qualitative data We can also classify information according to qualitative characteristics, such as race, religion, and gender, which do not fall naturally into numerical categories. Like classes of quantitative attributes, these classes must be all-inclusive and mutually exclusive. Table 2-10 shows how to construct both simple and relative frequency distributions using the qualitative attribute of occupations.

TABLE 2-10 OCCUPATIONS OF SAMPLE OF 100 GRADUATES OF CENTRAL COLLEGE

Occupational Class	Frequency Distribution $\mathbf{(1)}$	Relative Frequency Distribution $(\mathbf{1}) \div \mathbf{1 0 0}$
Actor	5	0.05
Banker	8	0.08
Businessperson	22	0.22
Chemist	7	0.07
Doctor	10	0.10
Insurance representative	6	0.06
Journalist	2	0.02
Lawyer	14	0.14
Teacher	9	0.09
Other	$\mathbf{1 7}$	$\underline{0.17}$
	$\mathbf{1 0 0}$	$\mathbf{1 . 0 0}$

Although Table 2-10 does not list every occupation held by the graduates of Central College, it is still all-inclusive. Why? The class "other" covers all the observations that fail to fit one of the enumer-

Open-ended classes for lists that are not exhaustive ated categories. We will use a word like this whenever our list does not specifically list all the possibilities. For example, if our characteristic can occur in any month of the year, a complete list would include 12 categories. But if we wish to list only the 8 months from January through August, we can use the term other to account for our observations during the 4 months of September, October, November, and December. Although our list does not specifically list all the possibilities, it is all-inclusive. This "other" is called an openended class when it allows either the upper or the lower end of a quantitative classification scheme to be limitless. The last class in Table 2-11 ("72 and older") is open-ended.

Classification schemes can be either quantitative or qualitative and either discrete or continuous. Discrete classes are separate entities that do

TABLE 2-11 AGES OF BUNDER COUNTY RESIDENTS

Class: Age (1)	Frequency (2)	Relative Frequency (2) $\div \mathbf{8 9 , 5 9 2}$
Birth to 7	8,873	0.0990
8 to 15	9,246	0.1032
16 to 23	12,060	0.1346
24 to 31	11,949	0.1334
32 to 39	9,853	0.1100
40 to 47	8,439	0.0942
48 to 55	8,267	0.0923
56 to 63	7,430	0.0829
64 to 71	7,283	0.0813
72 and older	6,192	$\underline{0.0691}$
	$\mathbf{8 9 , 5 9 2}$	$\mathbf{1 . 0 0 0 0}$

Discrete classes

 number of trucks owned by moving companies, and the occupations of Central College graduates are discrete. Discrete data are data that can take on only a limited number of values. Central College graduates can be classified as either doctors or chemists but not something in between. The closing price of AT\&T stock can be $391 / 2$ or $397 / 8$ (but not 39.43), or your basketball team can win by 5 or 27 points (but not by 17.6 points).Continuous data do progress from one class to the next without

Continuous classes

 a break. They involve numerical measurement such as the weights of cans of tomatoes, the pounds of pressure on concrete, or the high school GPAs of college seniors. Continuous data can be expressed in either fractions or whole numbers.
HINTS \& ASSUMPTIONS

There are many ways to present data. Constructing a data array in either descending or ascending order is a good place to start. Showing how many times a value appears by using a frequency distribution is even more effective, and converting these frequencies to decimals (which we call relative frequencies) can help even more. Hint: We should remember that discrete variables are things that can be counted but continuous variables are things that appear at some point on a scale.

EXERCISES 2.3

Self-Check Exercises

SC 2-1 Here are the ages of 50 members of a country social service program:

83	51	66	61	82	65	54	56	92	60
65	87	68	64	51	70	75	66	74	68
44	55	78	69	98	67	82	77	79	62
38	88	76	99	84	47	60	42	66	74
91	71	83	80	68	65	51	56	73	55

Use these data to construct relative frequency distributions using 7 equal intervals and 13 equal intervals. State policies on social service programs require that approximately 50 percent of the program participants be older than 50 .
(a) Is the program in compliance with the policy?
(b) Does your 13-interval relative frequency distribution help you answer part (a) better than your 7-interval distribution?
(c) Suppose the Director of Social Services wanted to know the proportion of program participants between 45 and 50 years old. Could you estimate the answer for her better with a 7 - or a 13 -interval relative frequency distribution?
SC 2-2 Using the data in Table 2-1 on page 17, arrange the data in an array from highest to lowest high school GPA. Now arrange the data in an array from highest to lowest college GPA. What can you conclude from the two arrays that you could not from the original data?

Applications

2-9 Transmission Fix-It stores recorded the number of service tickets submitted by each of its 20 stores last month as follows:

823	648	321	634	752
669	427	555	904	586
722	360	468	847	641
217	588	349	308	766

The company believes that a store cannot really hope to break even financially with fewer than 475 service actions a month. It is also company policy to give a financial bonus to any store manager who generates more than 725 service actions a month. Arrange these data in a data array and indicate how many stores are not breaking even and how many are to get bonuses.
2-10 Use the data from Transmission Fix-It in Exercise 2-9. The company financial VP has set up what she calls a "store watch list," that is, a list of the stores whose service activity is low enough to warrant additional attention from the home office. This category includes stores whose service activity is between 550 and 650 service actions a month. How many stores should be on that list based on last month's activity?
2-11 The number of hours taken by transmission mechanics to remove, repair, and replace transmissions in one of the Transmission Fix-It stores one day last week is recorded as follows:

4.3	2.7	3.8	2.2	3.4
3.1	4.5	2.6	5.5	3.2
6.6	2.0	4.4	2.1	3.3
6.3	6.7	5.9	4.1	3.7

Construct a frequency distribution with intervals of 1.0 hour from these data. What conclusions can you reach about the productivity of mechanics from this distribution? If Transmission Fix-It management believes that more than 6.0 hours is evidence of unsatisfactory performance, does it have a major or minor problem with performance in this particular store?
2-12 The Orange County Transportation Commission is concerned about the speed motorists are driving on a section of the main highway. Here are the speeds of 45 motorists:

15	32	45	46	42	39	68	47	18
31	48	49	56	52	39	48	69	61
44	42	38	52	55	58	62	58	48
56	58	48	47	52	37	64	29	55
38	29	62	49	69	18	61	55	49

Use these data to construct relative frequency distributions using 5 equal intervals and 11 equal intervals. The U.S. Department of Transportation reports that, nationally, no more than 10 percent of the motorists exceed 55 mph .
(a) Do Orange County motorists follow the U.S. DOT's report about national driving patterns?
(b) Which distribution did you use to answer part (a)?
(c) The U.S. DOT has determined that the safest speed for this highway is more than 36 but less than 59 mph . What proportion of the motorists drive within this range? Which distribution helped you answer this question?
2-13 Arrange the data in Table 2-2 on page 18 in an array from highest to lowest.
(a) Suppose that state law requires bridge concrete to withstand at least $2,500 \mathrm{lb} / \mathrm{sq} \mathrm{in}$. How many samples would fail this test?
(b) How many samples could withstand a pressure of at least $2,497 \mathrm{lb} / \mathrm{sq}$ in. but could not withstand a pressure greater than $2,504 \mathrm{lb} / \mathrm{sq}$ in.?
(c) As you examine the array, you should notice that some samples can withstand identical amounts of pressure. List these pressures and the number of samples that can withstand each amount.
2-14 A recent study concerning the habits of U.S. cable television consumers produced the following data:

Number of Channels Purchased	Number of Hours Spent Watching Television per Week
25	14
18	16
42	12
96	6
28	13
43	16
39	9
29	7
17	19
84	4
76	8
22	13
104	6

Arrange the data in an array. What conclusion(s) can you draw from these data?

2-15 The Environmental Protection Agency took water samples from 12 different rivers and streams that feed into Lake Erie. These samples were tested in the EPA laboratory and rated as to the amount of solid pollution suspended in each sample. The results of the testing are given in the following table:

Sample	1	2	3	4	5	6
Pollution Rating (ppm)	37.2	51.7	68.4	54.2	49.9	33.4
Sample	7	8	9	10	11	12
Pollution Rating (ppm)	39.8	52.7	60.0	46.1	38.5	49.1

(a) Arrange the data into an array from highest to lowest.
(b) Determine the number of samples having a pollution content between 30.0 and 39.9, 40.0 and 49.9, 50.0 and 59.9, and 60.0 and 69.9.
(c) If 45.0 is the number used by the EPA to indicate excessive pollution, how many samples would be rated as having excessive pollution?
(d) What is the largest distance between any two consecutive samples?

2-16 Suppose that the admissions staff mentioned in the discussion of Table 2-1 on page 17 wishes to examine the relationship between a student's differential on the college SAT examination (the difference between actual and expected score based on the student's high school GPA) and the spread between the student's high school and college GPA (the difference between the college and high school GPA). The admissions staff will use the following data:

H.S. GPA	College GPA	SAT Score
3.6	2.5	1,100
2.6	2.7	940
2.7	2.2	950
3.7	3.2	1,160
4.0	3.8	1,340
3.5	3.6	1,180
3.5	3.8	1,250
2.2	3.5	1,040
3.9	3.7	1,310
4.0	3.9	1,330

H.S. GPA	College GPA	SAT Score
3.4	3.6	1,180
2.9	3.0	1,010
3.9	4.0	1,330
3.2	3.5	1,150
2.1	2.5	940
2.2	2.8	960
3.4	3.4	1,170
3.6	3.0	1,100
2.6	1.9	860
2.4	3.2	1,070

In addition, the admissions staff has received the following information from the Educational Testing Service:

H.S. GPA	Avg. SAT Score
4.0	1,340
3.9	1,310
3.8	1,280
3.7	1,250
3.6	1,220
3.5	1,190
3.4	1,160
3.3	1,130
3.2	1,100
3.1	1,070
3.0	1,040

H.S. GPA	Avg. SAT Score
2.9	1,020
2.8	1,000
2.7	980
2.6	960
2.5	940
2.4	920
2.3	910
2.2	900
2.1	880
2.0	860

(a) Arrange these data into an array of spreads from highest to lowest. (Consider an increase in college GPA over high school GPA as positive and a decrease in college GPA below high school GPA as negative.) Include with each spread the appropriate SAT differential. (Consider an SAT score below expected as negative and above expected as positive.)
(b) What is the most common spread?
(c) For this spread in part (b), what is the most common SAT differential?
(d) From the analysis you have done, what do you conclude?

Worked-Out Answers to Self-Check Exercises

SC 2-1	$\mathbf{7}$ Intervals	
	Class	Relative Frequency
	$30-39$	0.02
$40-49$	0.06	
$50-59$	0.16	
	$60-69$	0.32
	$70-79$	0.20
	$80-89$	0.16
	$90-99$	$\underline{0.08}$
		$\mathbf{1 . 0 0}$

13 Intervals			
Class	Relative Frequency	Class	Relative Frequency
$35-39$	0.02	$70-74$	0.10
$40-44$	0.04	$75-79$	0.10
$45-49$	0.02	$80-84$	0.12
$50-54$	0.08	$85-89$	0.04
$55-59$	0.08	$90-94$	0.04
$60-64$	0.10	$95-99$	$\underline{0.04}$
$65-69$	0.22		$\mathbf{1 . 0 0}$

(a) As can be seen from either distribution, about 90 percent of the participants are older than 50 , so the program is not in compliance.
(b) In this case, both are equally easy to use.
(c) The 13-interval distribution gives a better estimate because it has a class for 45-49, whereas the 7-interval distribution lumps together all observations between 40 and 49 .
SC 2-2 Data array by high school GPA:

High School GPA	College GPA
4.0	3.9
4.0	3.8
3.9	4.0
3.9	3.7
3.7	3.2
3.6	3.0
3.6	2.5
3.5	3.8
3.5	3.6
3.4	3.6

High School GPA	College GPA
3.4	3.4
3.2	3.5
2.9	3.0
2.7	2.2
2.6	2.7
2.6	1.9
2.4	3.2
2.2	3.5
2.2	2.8
2.1	2.5

Data array by college GPA:

College GPA	High School GPA
4.0	3.9
3.9	4.0
3.8	4.0
3.8	3.5
3.7	3.9
3.6	3.5
3.6	3.4
3.5	3.2
3.5	2.2
3.4	3.4

College GPA	High School GPA
3.2	3.7
3.2	2.4
3.0	3.6
3.0	2.9
2.8	2.2
2.7	2.6
2.5	3.6
2.5	2.1
2.2	2.7
1.9	2.6

From these arrays we can see that high GPAs at one level tend to go with high GPAs at the other, although there are some exceptions.

2.4 CONSTRUCTING A FREQUENCY DISTRIBUTION

Now that we have learned how to divide a sample into classes, we
can take raw data and actually construct a frequency distribution. To solve the carpet-loom problem on the first page of the chapter,

Classify the data

 follow these three steps:1. Decide on the type and number of classes for dividing the data. In this case, we have already chosen to classify the data by the quantitative measure of the number of yards produced rather than by a qualitative attribute such as color or pattern. Next, we need to decide how many different classes to use and the range each class should cover. The range must be divided by equal classes; that is, the width of the interval from the beginning of one class to the beginning of the next class must be the same for every class. If we choose a width of 0.5 yard for each class in our distribution, the classes will be those shown in Table 2-12.

If the classes were unequal and the width of the intervals differed among the classes, then we would have a distribution that is much more difficult to interpret than one with equal intervals. Imagine how hard it would be to interpret the data presented in Table 2-13!

The number of classes depends on the number of data points and the range of the data collected. The more data points or the wider the range of the data, the more classes it takes to divide the data. Of course, if we have only 10 data points, it is senseless to have as many as 10 classes. As a rule, statisticians rarely use fewer than 6 or more than 15 classes.

Because we need to make the class intervals of equal size, the number of classes determines the width of each class. To find the intervals, we can use this equation:

Divide the range by equal classes

Problems with unequal classes

Use 6 to 15 classes

Determine the width of the class intervals

TABLE 2-12 DAILY PRODUCTION IN A SAMPLE OF 30 CARPET LOOMS WITH 0.5-YARD CLASS INTERVALS

Class in Yards	Frequency
$15.1-15.5$	2
$15.6-16.0$	16
$16.1-16.5$	8
$16.6-17.0$	$\underline{4}$
	$\mathbf{3 0}$

TABLE 2-13 DAILY PRODUCTION IN A SAMPLE OF 30 CARPET LOOMS USING UNEQUAL CLASS INTERVALS

Class	Width of Class Intervals	Frequency
$15.1-15.5$	$15.6-15.1=0.5$	2
$15.6-15.8$	$15.9-15.6=0.3$	8
$15.9-16.1$	$16.2-15.9=0.3$	9
$16.2-16.5$	$16.6-16.2=0.4$	7
$16.6-16.9$	$17.0-16.6=0.4$	$\underline{4}$
		$\mathbf{3 0}$

$$
\text { Width of class intervals }=\frac{\begin{array}{l}
\text { Width of a Class Interval } \\
\text { Next unit value after } \\
\text { largest value in data }- \text { Smallest value in data } \tag{2-1}
\end{array}}{\text { Total number of class intervals }}
$$

We must use the next value of the same units because we are measuring the interval between the first value of one class and the first value of the next class. In our carpet-loom study, the last value is 16.9 , so 17.0 is the next value. We shall use six classes in this example, so the width of each class will be:

Next unit value after largest value in data - Smallest value in data
Total number of class intervals

$$
\begin{align*}
& =\frac{17.0-15.2}{6} \tag{2-1}\\
& =\frac{1.8}{6} \\
& =0.3 \mathrm{yd} \leftarrow \text { width of class intervals }
\end{align*}
$$

Step 1 is now complete. We have decided to classify the data by the quantitative measure of how many yards of carpet were produced. We have chosen 6 classes to cover the range of 15.2 to 16.9 and, as a result, will use 0.3 yard as the width of our class intervals.
2. Sort the data points into classes and count the number of Create the classes and count points in each class. This we have done in Table 2-14. Every data point fits into at least one class, and no data point fits into more than one class. Therefore, our classes are all-inclusive and mutually exclusive. Notice that the lower boundary of the first class corresponds with the smallest data point in our sample, and the upper boundary of the last class corresponds with the largest data point.

3. Illustrate the data in a chart. (See Figure 2-1.)

These three steps enable us to arrange the data in both tabular and graphic form. In this case, our information is displayed in Table 2-14 and in Figure 2-1. These two frequency distributions omit some

TABLE 2-14 DAILY PRODUCTION IN A SAMPLE OF 30 CARPET LOOMS WITH 0.3 YARD CLASS INTERVALS

Class	Frequency
$15.2-15.4$	2
$15.5-15.7$	5
$15.8-16.0$	11
$16.1-16.3$	6
$16.4-16.6$	3
$16.7-16.9$	$\frac{3}{\mathbf{3 0}}$

FIGURE 2-1 FREQUENCY DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS USING 0.3-YARD CLASS INTERVALS
of the detail contained in the raw data of Table 2-3, but they make it easier for us to notice patterns in the data. One obvious characteristic, for example, is that the class 15.8-16.0 contains the most elements; class 15.2-15.4, the fewest.

Notice in Figure 2-1 that the frequencies in the classes of 0.3- Notice any trends yard widths follow a regular progression: The number of data points begins with 2 for the first class, builds to 5 , reaches 11 in the third class, falls to 6 , and tumbles to 3 in the fifth and sixth classes. We will find that the larger the width of the class intervals, the smoother

FIGURE 2-2 FREQUENCY DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS USING 1-YARD CLASS INTERVALS this progression will be. However, if the classes are too wide, we lose so much information that the chart is almost meaningless. For example, if we collapse Figure 2-1 into only two categories, we obscure the pattern. This is evident in Figure 2-2.

Using the Computer to Construct Frequency Distributions

Throughout this text, we will be using simple examples to illustrate how to do many different

Hand calculations are cumbersome kinds of statistical analyses. With such examples, you can learn what sort of calculations have to be done. We hope you will also be able to understand the concepts behind the calculations, so you will appreciate why these particular calculations are appropriate. However, the fact of the matter remains that hand calculations are cumbersome, tiresome, and error-prone. Many real problems have so much data that doing the calculations by hand is not really feasible.

For this reason, most realworld statistical analysis is done on computers. You

Software packages for

statistical analysis

```
Summary Statistics for Discrete Variables
TOTBYIO Count Percent Cument Cumpct
\begin{tabular}{rrrrr}
25 & 1 & 0.50 & 1 & 0.50 \\
35 & 1 & 0.50 & 2 & 1.01 \\
45 & 9 & 4.52 & 11 & 5.53 \\
55 & 27 & 13.57 & 38 & 19.10 \\
65 & 68 & 34.17 & 106 & 53.27 \\
75 & 65 & 32.66 & 171 & 85.93 \\
85 & 26 & 13.07 & 197 & 98.99 \\
95 & 2 & 1.01 & 199 & 100.00 \\
\(N=\) & 199 & & &
\end{tabular}
```


FIGURE 2-3 MINITAB FREQUENCY DISTRIBUTION OF RAW TOTAL SCORES

prepare the input data and interpret the results of the analysis and take appropriate actions, but the machine does all the "number crunching." There are many widely used software packages for statistical analyses, including Minitab, SAS, SPSS, and SYSTAT.* It is not our intention to teach you the details of how to use any of these to do your analyses, but we will be using primarily Minitab and occasionally the SAS System to illustrate typical sorts of outputs these packages produce.

Appendix Table 10 contains grade data for the 199 students who used this text in our course. In Figure 2-3, we have used Minitab to

Using the grade data

 create a frequency distribution of the students' raw total scores in the course. The TOTBY10 column values are the midpoints of the classes. Often, you will also be interested in bivariate frequency distributions, in which the data are classified with respect to two different attributes. In Figure 2-4, we have such a distribution showing the letter grades in each of the six sections of the class. The variable NUMGRADE has values 0 to 9 , which correspond to letter grades $\mathrm{F}, \mathrm{D}, \mathrm{C}-, \mathrm{C}, \mathrm{C}+, \mathrm{B}-, \mathrm{B}$, $\mathrm{B}+, \mathrm{A}-$, and A .Appendix Table 11 contains earnings data for 224 companies whose 1989 last-quarter earnings were published in The Wall Street Journal during the week of February 12, 1990. In Figure 2-5, we have used Minitab to create a frequency distribution of those last-quarter earnings. The variable Q489 is the 1989 last-quarter earnings, rounded to the nearest dollar.

Because companies listed on the New York Stock Exchange (3) tend to have different financial characteristics from those listed on the American Stock Exchange (2), and because those, in turn, are different from companies listed "over-the-counter" (1), we also used Minitab to produce the bivariate distribution of the same earnings data in Figure 2-6.

HINTS \& ASSUMPTIONS

When we construct a frequency distribution we need to carefully choose the classes into which we divide data. This is true even when we use a computer program to set up the classes. For example, a computer program might divide the ages of respondents to a marketing research survey into the consistent classes: 15-19, 20-24, 25-29, and so on. But if the product being researched is intended for college students, it may make more sense to set up the classes as 18, 19-22, and 23 and above. Be aware that using a computer in statistics doesn't substitute for common sense.

[^0]| Tabulated Statistics | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ROWS: NUMGRADE COLUNINS: SECTION | | | | | | | |
| | 1 | 2 | 3 | 4 | 5 | 6 | ALL |
| 0 | 2 | 3 | 0 | 1 | 3 | 2 | 11 |
| | 1.01 | 1.51 | -- | 0.50 | 1.51 | 1.01 | 5.53 |
| 1 | | | 5 | 2 | 4 | 6 | 26 |
| | 1.51 | 3.02 | 2.51 | 1.01 | 2.01 | 3.02 | 13.07 |
| 2 | 2 | 2 | 1 | 2 | 7 | 4 | 18 |
| | 1.01 | 1.01 | 0.50 | 1.01 | 3.52 | 2.01 | 9.05 |
| 3 | 9 | 11 | 3 | 9 | 6 | 6 | 44 |
| | 4.52 | 5.53 | 1.51 | 4.52 | 3.02 | 3.02 | 22.11 |
| 4 | 3 | . 6 | 10 5.03 | . 6 | - 7 | - 2 | 17. 34 |
| | 1.51 | 3.02 | 5.03 | 3.02 | 3.52 | 1.01 | 17.09 |
| 5 | 1 | 5 | 5 | 1 | 0 | 3 | 15 |
| | 0.50 | 2.51 | 2.51 | 0.50 | -- | 1.51 | 7.54 |
| 6 | 2 | 5 | 3 | 2 | 2 | 3 | 17 |
| | 1.01 | 2.51 | 1.51 | 1.01 | 1.01 | 1.51 | 8.54 |
| 7 | 1 | 1 | 1 | 2 | 1 | 1 | 7 |
| | 0.50 | 0.50 | 0.50 | 1.01 | 0.50 | 0.50 | 3.52 |
| 8 | 2 | 2 | 8 | 1 | 3 | 0 | 16 |
| | 1.01 | 1.01 | 4.02 | 0.50 | 1.51 | -- | 8.04 |
| 9 | 2 | 5 | 1 | 0 | 3 | 0 | 11 |
| | 1.01 | 2.51 | 0.50 | -- | 1.51 | -- | 5.53 |
| ALL | 27 | 46 | 37 | 26 | 36 | 27 | 199 |
| | 13.57 | 23.12 | 18.59 | 13.07 | 18.09 | 13.57 | 100.00 |
| CELL CONTENTS -- $\begin{aligned} & \text { COUNT } \\ & \\ & \\ & \%\end{aligned}$ | | | | | | | |
| | | | | | | | |
| | | | | | | | |

FIGURE 2-4 MINITAB BIVARIATE FREQUENCY DISTRIBUTION SHOWING GRADES IN EACH SECTION

Summary Statistics for Discrete Variables

Q489	Count	Percent	Cument	Cumpct
-5	1	0.45	1	0.45
-4	2	0.89	3	1.34
-2	1	0.45	4	1.79
-1	9	4.02	13	5.80
0	164	73.21	177	79.02
1	43	19.20	220	98.21
2	2	0.89	222	99.11
5	2	0.89	224	100.00
$\mathrm{~N}=$	224			

FIGURE 2-5
MINITAB FREQUENCY DISTRIBUTION OF 1989 LAST-QUARTER EARNINGS

Tabulated Statistics			
ROWS: Q489	COLUMNS: EXCHANGE		
1	2	3	ALL
-50	0	1	1
--	--	100.00	100.00
--	--	1.33	0.45
--	--	0.45	0.45
$\begin{array}{ll}-4 & 1\end{array}$	0	1	2
50.00	--	50.00	100.00
0.90	--	1.33	0.89
0.45	--	0.45	0.89
$\begin{array}{ll}-2 & 1\end{array}$	0	0	1
100.00	--	-	100.00
0.90	--	--	0.45
0.45	--	--	0.45
-1 5	2	2	9
55.56	22.22	22.22	100.00
4.50	5.26	2.67	4.02
2.23	0.89	0.89	4.02
097	31	36	164
59.15	18.90	21.95	100.00
87.39	81.58	48.00	73.21
43.30	13.84	16.07	73.21
17	4	32	43
16.28	9.30	74.42	100.00
6.31	10.53	42.67	19.20
3.12	1.79	14.29	19.20
20	0	2	
--	--	100.00	100.00
--	--	2.67	0.89
--	--	0.89	0.89
50	1	1	2
--	50.00	50.00	100.00
--	2.63	1.33	0.89
--	0.45	0.45	0.89
ALL 111	38	75	224
49.55	16.96	33.48	100.00
100.00	100.00	100.00	100.00
49.55	16.96	33.48	100.00
CELL CONTENTS --			
COUNT			
\% OF ROW			
\% OF COL			
\% OF TBL			

EXERCISES 2.4

Self-Check Exercises

SC 2-3 High Performance Bicycle Products Company in Chapel Hill, North Carolina, sampled its shipping records for a certain day with these results:

Time from Receipt of Order to Delivery (in Days)									
4	12	8	14	11	6	7	13	13	11
11	20	5	19	10	15	24	7	19	6

Construct a frequency distribution for these data and a relative frequency distribution. Use intervals of 6 days.
(a) What statement can you make about the effectiveness of order processing from the frequency distribution?
(b) If the company wants to ensure that half of its deliveries are made in 10 or fewer days, can you determine from the frequency distribution whether they have reached this goal?
(c) What does having a relative frequency distribution permit you to do with the data that is difficult to do with only a frequency distribution?
SC 2-4 Mr. Frank, a safety engineer for the Mars Point Nuclear Power Generating Station, has charted the peak reactor temperature each day for the past year and has prepared the following frequency distribution:

Temperatures in ${ }^{\circ} \mathbf{C}$	Frequency
Below 500	4
$501-510$	7
$511-520$	32
$521-530$	59
$530-540$	82
$550-560$	65
$561-570$	33
$571-580$	28
$580-590$	27
$591-600$	$\underline{23}$
Total	$\mathbf{3 6 0}$

List and explain any errors you can find in Mr. Franks's distribution.

Applications

2-17 Universal Burger is concerned about product waste, so they sampled their burger waste record from the past year with the following results:

Number of Burgers Discarded During a Shift								
2	16	4	12	19	29	24	7	19
22	14	8	24	31	18	20	16	6

Construct a frequency distribution for these data and a relative frequency distribution. Use intervals of 5 burgers.
(a) One of Universal Burger's goals is for at least 75 percent of shifts to have no more than 16 burgers wasted. Can you determine from the frequency distribution whether this goal has been achieved?
(b) What percentage of shifts have waste of 21 or fewer burgers? Which distribution did you use to determine your answer?
2-18 Refer to Table 2-2 on page 18 and construct a relative frequency distribution using intervals of $4.0 \mathrm{lb} / \mathrm{sq}$ in. What do you conclude from this distribution?
2-19 The Bureau of Labor Statistics has sampled 30 communities nationwide and compiled prices in each community at the beginning and end of August in order to find out approximately how the Consumer Price Index (CPI) has changed during August. The percentage changes in prices for the 30 communities are as follows:

0.7	0.4	-0.3	0.2	-0.1	0.1	0.3	0.7	0.0	-0.4
0.1	0.5	0.2	0.3	1.0	-0.3	0.0	0.2	0.5	0.1
-0.5	-0.3	0.1	0.5	0.4	0.0	0.2	0.3	0.5	0.4

(a) Arrange the data in an array from lowest to highest.
(b) Using the following four equal-sized classes, create a frequency distribution: -0.5 to -0.2 , -0.1 to $0.2,0.3$ to 0.6 , and 0.7 to 1.0 .
(c) How many communities had prices that either did not change or that increased less than 1.0 percent?
(d) Are these data discrete or continuous?

2-20 Sarah Anne Rapp, the president of Baggit, Inc., has just obtained some raw data from a marketing survey that her company recently conducted. The survey was taken to determine the effectiveness of the new company slogan, "When you've given up on the rest, Baggit!" To determine the effect of the slogan on the sales of Luncheon Baggits, 20 people were asked how many boxes of Luncheon Baggits per month they bought before and after the slogan was used in the advertising campaign. The results were as follows:

Before/After		Before/After		Before/After		Before/After	
4	3	2	1	5	6	8	10
4	6	6	9	2	7	1	3
1	5	6	7	6	8	4	3
3	7	5	8	8	4	5	7
5	5	3	6	3	5	2	2

(a) Create both frequency and relative frequency distributions for the "Before" responses, using as classes $1-2,3-4,5-6,7-8$, and $9-10$.
(b) Work part (a) for the "After" responses.
(c) Give the most basic reason why it makes sense to use the same classes for both the "Before" and "After" responses.
(d) For each pair of "Before/After" responses, subtract the "Before" response from the "After" response to get the number that we will call "Change" (example: 3-4=-1), and
create frequency and relative frequency distributions for "Change" using classes -5 to -4 , -3 to $-2,-1$ to 0,1 to 2,3 to 4 , and 5 to 6 .
(e) Based on your analysis, state whether the new slogan has helped sales, and give one or two reasons to support your conclusion.
2-21 Here are the ages of 30 people who bought video recorders at Symphony Music Shop last week:

26	37	40	18	14	45	32	68	31	37
20	32	15	27	46	44	62	58	30	42
22	26	44	41	34	55	50	63	29	22

(a) From looking at the data just as they are, what conclusions can you come to quickly about Symphony's market?
(b) Construct a 6-category closed classification. Does having this enable you to conclude anything more about Symphony's market?
2-22 Use the data from Exercise 2-21.
(a) Construct a 5-category open-ended classification. Does having this enable you to conclude anything more about Symphony's market?
(b) Now construct a relative frequency distribution to go with the 5-category open-ended classification. Does having this provide Symphony with additional information useful in its marketing? Why?
2-23 John Lyon, owner of Fowler's Food Store in Chapel Hill, North Carolina, has arranged his customers' purchase amounts last week into this frequency distribution:

\$ Spent	Frequency	\$ Spent	Frequency	\$ Spent	Frequency
0.00-0.99	50	16.00-18.99	1,150	34.00-36.99	610
1.00-3.99	240	19.00-21.99	980	37.00-39.99	420
4.00-6.99	300	22.00-24.99	830	40.00-42.99	280
7.00-9.99	460	25.00-27.99	780	43.00-45.99	100
10.00-12.99	900	28.00-30.99	760	46.00-48.99	90
13.00-15.99	1,050	31.00-33.99	720		

John says that having 17 intervals each defined by 2 numbers is cumbersome. Can you help him simplify the data he has without losing too much of their value?
2-24 Here are the midpoints of the intervals for a distribution representing minutes it took the members of a university track team to complete a 5-mile cross-country run.

$$
\begin{array}{lll}
25 & 35 & 45
\end{array}
$$

(a) Would you say that the team coach can get enough information from these midpoints to help the team?
(b) If your answer to part (a) is "no," how many intervals do seem appropriate?

2-25 Barney Mason has been examining the amount of daily french fry waste (in pounds) for the past 6 months at Universal Burger and has created the following frequency distribution:

French Fry Waste in Pounds	Frequency
$0.0-3.9$	37
$4.0-7.9$	46
$8.0-11.9$	23
$12.0-16.9$	27
$17.0-25.9$	7
$26.0-40.9$	$\underline{0}$
	$\mathbf{1 8 0}$

List and explain any errors you can find in Barney's distribution.
2-26 Construct a discrete, closed classification for the possible responses to the "marital status" portion of an employment application. Also, construct a 3-category, discrete, open-ended classification for the same responses.
2-27 Stock exchange listings usually contain the company name, the high and low bids, the closing price, and the change from the previous day's closing price. Here's an example:

Name	High Bid	Low Bid	Closing	Change
System Associates	$111 / 2$	$107 / 8$	$111 / 4$	$+1 / 2$

Is a distribution of all (a) stocks on the New York Stock Exchange by industry, (b) closing prices on a given day, and (c) changes in prices from the previous day
(1) Quantitative or qualitative?
(2) Continuous or discrete?
(3) Open-ended or closed?

Would your answer to part (c) be different if the change were expressed simply as "higher," "lower," or "unchanged"?
2-28 The noise level in decibels of aircraft departing Westchester County Airport was rounded to the nearest decibel and grouped in a frequency distribution having intervals with midpoints at 100 and 130. Under 100 decibels is not considered loud at all, and anything over 140 decibels is almost deafening. If Residents for a Quieter Neighborhood is gathering data for its lawsuit against the airport, is this distribution adequate for its purpose?
2-29 Use the data from Exercise 2-28. If the lawyer defending the airport is collecting data preparatory to going to trial, would she approve of the midpoints of the intervals in Exercise 2-28 for her purposes?
2-30 The president of Ocean Airlines is trying to estimate when the Federal Aviation Administration (FAA) is most likely to rule on the company's application for a new route between Charlotte and Nashville. Assistants to the president have assembled the following waiting times for applications filed during the past year. The data are given in days from the date of application until an FAA ruling.

34	40	23	28	31	40	25	33	47	32
44	34	38	31	33	42	26	35	27	31
29	40	31	30	34	31	38	35	37	33
24	44	37	39	32	36	34	36	41	39
29	22	28	44	51	31	44	28	47	31

(a) Construct a frequency distribution using 10 closed intervals, equally spaced. Which interval contains the most data points?
(b) Construct a frequency distribution using 5 closed intervals, equally spaced. Which interval contains the most data points?
(c) If the president of Ocean Airlines had a relative frequency distribution for either (a) or (b), would that help him estimate the answer he needs?
2-31 For the purpose of performance evaluation and quota adjustment, Ralph Williams monitored the auto sales of his 40 salespeople. Over a 1-month period, they sold the following number of cars:

7	8	5	10	9	10	5	12	8	6
10	11	6	5	10	11	10	5	9	13
8	12	8	8	10	15	7	6	8	8
5	6	9	7	14	8	7	5	5	14

(a) Based on frequency, what would be the desired class marks (midpoints of the intervals)?
(b) Construct a frequency and relative frequency distribution having as many of these marks as possible. Make your intervals evenly spaced and at least two cars wide.
(c) If sales fewer than seven cars a month is considered unacceptable performance, which of the two answers, (a) or (b), helps you more in identifying the unsatisfactory group of salespeople?
2-32 Kessler's Ice Cream Delight attempts to keep all of its 55 flavors of ice cream in stock at each of its stores. Their marketing-research director suggests that keeping better records for each store is the key to preventing stockouts. Don Martin, director of store operations, collects data to the nearest half gallon on the daily amount of each flavor of ice cream that is sold. No more than 20 gallons of any flavor are ever used on one day.
(a) Is the flavor classification discrete or continuous? Open or closed?
(b) Is the "amount of ice cream" classification discrete or continuous? Open or closed?
(c) Are the data qualitative or quantitative?
(d) What would you suggest Martin do to generate better data for market-research purposes?

2-33 Doug Atkinson is the owner and ticket collector for a ferry that transports people and cars from Long Island to Connecticut. Doug has data indicating the number of people, as well as the number of cars, that have ridden the ferry during the past 2 months. For example,

JULY 3 NUMBER OF PEOPLE, 173 NUMBER OF CARS, 32

might be a typical daily entry for Doug. Doug has set up six equally spaced classes to record the daily number of people, and the class marks are $84.5,104.5,124.5,144.5,164.5$, and 184.5. Doug's six equally spaced classes for the daily number of cars have class marks of 26.5, $34.5,42.5,50.5,58.5$, and 66.5 . (The class marks are the midpoints of the intervals.)
(a) What are the upper and lower boundaries of the classes for the number of people?
(b) What are the upper and lower boundaries of the classes for the number of cars?

Worked-Out Answers to Self-Check Exercises

SC 2-3	Class	$1-6$	$7-12$	$13-18$	$19-24$	$25-30$
	Frequency	4	8	4	3	1
	Relative Frequency	0.20	0.40	0.20	0.15	0.05

(a) Assuming that the shop is open 6 days a week, we see that fully 80 percent of the orders are filled in 3 weeks or less.
(b) We can tell only that between 20 percent and 60 percent of the deliveries are made in 10 or fewer days, so the distribution does not generate enough information to determine whether the goal has been met.
(c) A relative frequency distribution lets us present frequencies as fractions or percentages.

SC 2-4 The distribution is not all-inclusive. The data point $500^{\circ} \mathrm{C}$ is left out, along with the points between $541^{\circ} \mathrm{C}$ and $549^{\circ} \mathrm{C}$, inclusive. In addition, the distribution is closed on the high end, which eliminates all data points above $600^{\circ} \mathrm{C}$. These omissions might explain the fact that the total number of observations is only 360 , rather than 365 as might be expected for a data set compiled over one year. (Note: It is not absolutely necessary that the distribution be openended on the high end, especially if no data points were recorded above $600^{\circ} \mathrm{C}$. However, for completeness, the distribution should be continuous over the range selected, even though no data points may fall in some of the intervals.) Finally, the classifications are not mutually exclusive. Two points, $530^{\circ} \mathrm{C}$ and $580^{\circ} \mathrm{C}$, are contained in more than one interval. When creating a set of continuous classifications, care must be taken to avoid this error.

2.5 GRAPHING FREQUENCY DISTRIBUTIONS

Figures 2-1 and 2-2 (on page 29) are previews of what we are going to discuss now: how to present frequency distributions graphically. Graphs give data in a two-dimensional picture. On the horizontal

Identifying the horizontal and vertical axes axis, we can show the values of the variable (the characteristic we are measuring), such as the carpet output in yards. On the vertical axis, we mark the frequencies of the classes shown on the horizontal axis. Thus, the height of the boxes in Figure 2-1 measures the number of observations in each of the classes marked on the horizontal axis. Graphs of frequency distributions and relative frequency distributions are useful because they emphasize and clarify patterns that are not so readily discernible in tables. They attract a reader's attention to patterns in the data. Graphs can also help us do problems concerning frequency distributions. They will enable us to estimate some values at a glance and will provide us with a pictorial check on the accuracy of our solutions.

Histograms

Figures 2-1 and 2-2 (page 29) are two examples of histograms. A

Histograms described

 histogram is a series of rectangles, each proportional in width to the range of values within a class and proportional in height to the number of items falling in the class. If the classes we use in the frequency distribution are of equal width, then the vertical bars in the histogram are also of equal width. The height of the bar for each class corresponds to the number of items in the class. As a result, the area contained in each rectangle (width times height) is the same percentage of the area of all the rectangles as the frequency of that class is to all the observations made.A histogram that uses the relative frequency of data points in each of the classes rather than the actual number of points is called a relative frequency histogram. The relative frequency histogram has the same shape as an absolute frequency histogram made from

Function of a relative
frequency histogram the same data set. This is true because in both, the relative size of each rectangle is the frequency of that class compared to the total number of observations.

15.2-15.4 15.5-15.7 15.8-16.0 16.1-16.3 16.4-16.6 16.7-16.9

Production level in yards

FIGURE 2-7 RELATIVE FREQUENCY DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS USING 0.3-YARD CLASS INTERVALS

Recall that the relative frequency of any class is the number of observations in that class divided by the total number of observations made. The sum of all the relative frequencies for any data set is equal to 1.0. With this in mind, we can convert the histogram of Figure 2-1 into a relative frequency histogram, such as we find in Figure 2-7. Notice that the only difference between these two is the left-hand vertical scale. Whereas the scale in Figure 2-1 is the absolute number of observations in each class, the scale in Figure 2-7 is the number of observations in each class as a fraction of the total number of observations.

Being able to present data in terms of the relative rather than the absolute frequency of observations in each class is useful because, while the absolute numbers may change (as we test more looms, for

Advantage of the relative

frequency histogram

 example), the relationship among the classes may remain stable. Twenty percent of all the looms may fall in the class "16.1-16.3 yards" whether we test 30 or 300 looms. It is easy to compare the data from different sizes of samples when we use relative frequency histograms.
Frequency Polygons

Although less widely used, frequency polygons are another way to portray graphically both simple and relative frequency distributions. To construct a frequency polygon, we mark the frequencies on the

Use midpoints on the horizontal axis vertical axis and the values of the variable we are measuring on the horizontal axis, as we did with histograms. Next, we plot each class frequency by drawing a dot above its midpoint, and connect the successive dots with straight lines to form a polygon (a many-sided figure).

Figure 2-8 is a frequency polygon constructed from the data in Table 2-14 on page 29. If you compare this figure with Figure 2-1, you will notice that classes have been added at each end of the scale

Add two classes

of observed values. These two new classes contain zero observations but allow the polygon to reach the horizontal axis at both ends of the distribution.

How can we turn a frequency polygon into a histogram? A frequency polygon is simply a line graph that connects the midpoints of all the bars in a histogram. Therefore, we can reproduce the

Converting a frequency
polygon to a histogram histogram by drawing vertical lines from the bounds of the classes

FIGURE 2-8 FREQUENCY POLYGON OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS USING 0.3-YARD CLASS INTERVALS
(as marked on the horizontal axis) and connecting them with horizontal lines at the heights of the polygon at each midpoint. We have done this with dotted lines in Figure 2-9.

A frequency polygon that uses the relative frequency of data points in each of the classes rather than the actual number of points is called a relative frequency polygon. The relative frequency polygon

Constructing a relative frequency polygon has the same shape as the frequency polygon made from the same data set but a different scale of values on the vertical axis. Rather than the absolute number of observations, the scale is the number of observations in each class as a fraction of the total number of observations.

Histograms and frequency polygons are similar. Why do we Advantages of histograms need both? The advantages of histograms are

1. The rectangle clearly shows each separate class in the distribution.
2. The area of each rectangle, relative to all the other rectangles, shows the proportion of the total number of observations that occur in that class.
Frequency polygons, however, have certain advantages, too. Advantages of polygons
3. The frequency polygon is simpler than its histogram counterpart.
4. It sketches an outline of the data pattern more clearly.
5. The polygon becomes increasingly smooth and curvelike as we increase the number of classes and the number of observations.

FIGURE 2-9 HISTOGRAM DRAWN FROM THE POINTS OF THE FREQUENCY POLYGON IN FIGURE 2-8

FIGURE 2-10 FREQUENCY CURVE OF PRODUCTION LEVELS IN A SAMPLE OF 300 CARPET LOOMS USING 0.2-YARD INTERVALS

A polygon such as the one we have just described, smoothed by added classes and data points, is called a frequency curve. In

Creating a frequency curve Figure 2-10, we have used our carpet-loom example, but we have increased the number of observations to 300 and the number of classes to 10 . Notice that we have connected the points with curved lines to approximate the way the polygon would look if we had a very large number of data points and very small class intervals.

TABLE 2-15 CUMULATIVE "LESSTHAN" FREQUENCY DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS

Class	Cumulative Frequency
Less than 15.2	0
Less than 15.5	2
Less than 15.8	7
Less than 16.1	18
Less than 16.4	24
Less than 16.7	27
Less than 17.0	30

Ogives

A cumulative frequency Cumulative frequency distribution enables us to distribution defined see how many observations lie above or below certain values, rather than merely recording the number of items within intervals. For example, if we wish to know how many looms made less than 17.0 yards we can use a table recording the cumulative "less-than" frequencies in our sample, such as Table 2-15.

A graph of a cumulative frequency distribu- A "less-than" ogive tion is called an ogive (pronounced "oh-jive"). The ogive for the cumulative distribution in Table 2-15 is shown in Figure 2-11. The plotted points represent the number of looms having less production

FIGURE 2-11 "LESS-THAN" OGIVE OF THE DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS
than the number of yards shown on the horizontal axis. Notice that the lower bound of the classes in the table becomes the upper bound of the cumulative distribution of the ogive.

Occasionally, the information we are using is presented in terms of "more-than" frequencies. The appropriate ogive for such information would slope down and to the right, instead of up and to the right as it did in Figure 2-11.

We can construct an ogive of a relative frequency distribution Ogives of relative frequencies in the same manner in which we drew the ogive of an absolute frequency distribution in Figure 2-11. There will be one change-the vertical scale. As in Figure 2-7, on page 39, this scale must mark the fraction of the total number of observations that falls into each class.

To construct a cumulative "less-than" ogive in terms of relative frequencies, we can refer to a relative frequency distribution (such as Figure 2-7) and set up a table using the data (such as Table 2-16). Then

TABLE 2-16 CUMULATIVE RELATIVE FREQUENCY DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS

Class	Cumulative Frequency	Cumulative Relative Frequency
Less than 15.2	0	0.00
Less than 15.5	2	0.07
Less than 15.8	7	0.23
Less than 16.1	18	0.60
Less than 16.4	24	0.80
Less than 16.7	27	0.90
Less than 17.0	30	1.00

FIGURE 2-12 "LESS-THAN" OGIVE OF THE DISTRIBUTION OF PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS USING RELATIVE FREQUENCIES

we can convert the figures there to an ogive (as in Figure 2-12). Notice that Figures 2-11 and 2-12 are equivalent except for the left-hand vertical axis.

Suppose we now draw a line perpendicular to the vertical axis Approximating the data array at the 0.50 mark to intersect our ogive. (We have done this in
Figure 2-13.) In this way, we can read an approximate value of 16.0 for the production level in the fifteenth loom of an array of the 30 .

Thus, we are back to the first data arrangement discussed in this chapter. From the data array, we can construct frequency distributions. From frequency distributions, we can construct cumulative frequency distributions. From these, we can graph an ogive. And from this ogive, we can approximate the values we had in the data array. However, we cannot normally recover the exact original data from any of the graphic representations we have discussed.

FIGURE 2-13 "LESS-THAN" OGIVE OF THE DISTRIBUTION OF THE PRODUCTION LEVELS IN A SAMPLE OF 30 CARPET LOOMS, INDICATING THE APPROXIMATE MIDDLE VALUE IN THE ORIGINAL DATA ARRAY

Using Statistical Packages to Graph Frequency Distribution:

Histogram

Above data is sample of daily production in meters of 30 carpet looms and the desired mid values for creating histogram.

For histogram go to DATA>DATA ANALYISYS >HISTOGARAM>DEFINE INPUT RANGE, BIN RANGE (mid values)> SELECT CHART OUTPUT>OK.

Now for correcting generated histogram click on any data series and go to Format Data Series and set gap width as zero, go to border style and set width as 2 .

Frequency Polygon

Above data is sample of daily production in meters of 30 carpet looms and the desired mid values for creating frequency polygon.

For Frequency Polygon go to Insert>Chart>Line>Line with Markers>Select Data Source>Add Legend Entries>Select Series Name>Select Series Value> Add Horizontal Axis Label

Edit Series		8	E
Series name：			
＝Sheet 2 ！\＄8\＄1	臣年	＝frequency	
Series values：			
＝Sheet2！\＄8\＄2：\＄8\＄9	茞家	$=0,1,4,9,7, \ldots$	
	OK	Canc	

Axis Labels		9	$\Sigma 3$
Axis label range：			
$=$ Sheet 2 ！$\$$ A\＄2：\＄A\＄9			
	OK	Can	

Frequency Curve

Above data is sample of daily production in meters of 30 carpet looms and the desired mid values for creating frequency curve.

For Frequency Polygon go to Insert>Chart>XY (Scatter)>Scatter with smooth line and markers> Select Data>Select Data Source>Legend Entries>Give Series X Values>Give Series Y Values

Edit Series		8	83
Series name：			
＝Sheet 3 ！\＄8\＄1	㖪號	＝frequency	
Series \underline{X} values：			
＝Sheet 3 ！\＄A\＄2：\＄A\＄9		$=15,15.3,15.6 \ldots$	
Series \underline{Y} values：			
＝Sheet 3 ！\＄8\＄2：\＄8\＄9	臓	$=0,1,4,9,7, \ldots$	
	OK	Can	

Bar Chart

Below data is sample unit wise production in meters of 30 carpet looms for creating bar chart.
For Bar chart go to Insert>Chart>Column>Clustered Column>Select Data>Add Legend Entries> Add Horizontal Axis Label

Pie Chart

Below data is sample weekday production in meters of 30 carpet looms for creating pie chart.

For Pie Chart go to Insert>Chart>Pie>Pie in 3D>Select Data>Add Legend Entries>Add Horizontal Axis Label

HINTS \& ASSUMPTIONS

Whoever said "a picture is worth a thousand words" understood intuitively what we have been covering in this section. Using graphic methods to display data gives us a quick sense of patterns and trends and what portion of our data is above or below a certain value. Warning: Some publications print graphic displays of data (histograms) in a way that is confusing by using a vertical axis that doesn't go all the way to zero. Be aware when you see one of these that small differences have been made to look too large, and that the pattern you are seeing is misleading.

EXERCISES 2.5

Self-Check Exercises

SC 2-5 Here is a frequency distribution of the weight of 150 people who used a ski lift a certain day. Construct a histogram for these data.

Class	Frequency			
	Class	Frequency		
$75-89$	10		$150-164$	23
$90-104$	11		$165-179$	9
$105-119$	23		$180-194$	9
$120-134$	26		$195-209$	6
$135-149$	31		$210-224$	2

(a) What can you see from the histogram about the data that was not immediately apparent from the frequency distribution?
(b) If each ski lift chair holds two people but is limited in total safe weight capacity to 400 pounds, what can the operator do to maximize the people capacity of the ski lift without exceeding the safe weight capacity of a chair? Do the data support your proposal?
SC 2-6 Central Carolina Hospital has the following data representing weight in pounds at birth of 200 premature babies.

Class	Frequency			Class	Frequency
$0.5-0.9$	10		$2.5-2.9$	29	
$1.0-1.4$	19		$3.0-3.4$	34	
$1.5-1.9$	24		$3.5-3.9$	40	
$2.0-2.4$	27		$4.0-4.4$	17	

Construct an ogive that will help you answer these questions:
(a) What was the approximate middle value in the original data set?
(b) If premature babies under 3.0 pounds are normally kept in an incubator for several days as a precaution, about what percentage of Central's premature babies will need an incubator?

Applications

2-34 Here is a frequency distribution of the length of phone calls made by 175 people during a Labor Day weekend. Construct a histogram for these data.

Length in Minutes	Frequency
$1-7$	45
$8-14$	32
$15-21$	34
$22-28$	22
$29-35$	16
$36-42$	12
$43-49$	9
$50-56$	5

(a) Describe the general shape of the histogram. Does there appear to be a pattern?
(b) Suppose all the people were making their calls from a room that had 10 different phones, and each person knew which time class the call would belong to. Suggest an ordering so that all calls can be completed as fast as possible.
(c) Does the order affect the length of time to complete all calls?

2-35 Golden Acres is a homeowners' association that operates a trailer park outside Orlando, Florida, where retirees keep their winter homes. In addition to lot rents, a monthly facility fee of $\$ 12$ is charged for social activities at the clubhouse. One board member has noted that many of the older residents never attend the clubhouse functions, and has proposed waiving the fee for association members over age 60 . A survey of 25 residents reported the following ages:

66	65	96	80	71
93	66	96	75	61
69	61	51	84	58
73	77	89	69	92
57	56	55	78	96

Construct an ogive that will help you answer these questions:
(a) Roughly what proportion of residents would be eligible for no fee?
(b) Approximately what fee would the board have to charge to the remaining (fee-paying) residents to cover the same total cost of running the clubhouse?
2-36 Homer Willis, a fishing boat captain from Salter Path, North Carolina, believes that the breakeven catch on his boats is 5,000 pounds per trip. Here are data on a sample of catches on 20 fishing trips Homer's boats have made recently:

6,500	6,700	3,400	3,600	2,000
7,000	5,600	4,500	8,000	5,000
4,600	8,100	6,500	9,000	4,200
4,800	7,000	7,500	6,000	5,400

Construct an ogive that will help you answer these questions:
(a) Roughly what proportion of the trips breaks even for Homer?
(b) What is the approximate middle value in the data array for Homer's boats?
(c) What catch do Homer's boats exceed 80 percent of the time?

2-37 The Massachusetts Friends of Fish has the following data representing pollutants (in parts per million) at 150 sites in the state:

Pollutants (in ppm)	Frequency		Pollutants (in ppm)	Frequency
$5.0-8.9$	14		$25.0-28.9$	16
$9.0-12.9$	16		$29.0-32.9$	9
$13.0-16.9$	28		$33.0-36.9$	7
$17.0-20.9$	36		$37.0-40.9$	4
$21.0-24.9$	20			

Construct an ogive that will help you answer the following questions:
(a) Below what value (approximately) do the lowest one-fourth of these observations fall?
(b) If the Friends of Fish heavily monitor all sites with more than 30 ppm of pollutants, what percentage of sites will be heavily monitored?

2-38 Before constructing a dam on the Colorado River, the U.S. Army Corps of Engineers performed a series of tests to measure the water flow past the proposed location of the dam. The results of the testing were used to construct the following frequency distribution:

River Flow (Thousands of Gallons per Minute)	Frequency
$1,001-1,050$	7
$1,051-1,100$	21
$1,101-1,150$	32
$1,151-1,200$	49
$1,201-1,250$	58
$1,251-1,300$	41
$1,301-1,350$	27
$1,351-1,400$	$\underline{11}$
Total	$\mathbf{2 4 6}$

(a) Use the data given in the table to construct a "more-than" cumulative frequency distribution and ogive.
(b) Use the data given in the table to construct a "less-than" cumulative frequency distribution and ogive.
(c) Use your ogive to estimate what proportion of the flow occurs at less than 1,300 thousands of gallons per minute.
2-39 Pamela Mason, a consultant for a small local brokerage firm, was attempting to design investment programs attractive to senior citizens. She knew that if potential customers could obtain a certain level of return, they would be willing to risk an investment, but below a certain level, they would be reluctant. From a group of 50 subjects, she obtained the following data regarding the various levels of return required for each subject to invest $\$ 1,000$:

Indifference Point	Frequency			Indifference Point	Frequency
	2		$\$ 0-94$	$90-94$	
$75-79$	5		$95-99$	11	
$80-84$	10		$100-104$	3	
$85-89$	14		$105-109$	3	

(a) Construct both "more-than" and "less-than" cumulative relative frequency distributions.
(b) Graph the 2 distributions in part (a) into relative frequency ogives.

2-40 At a newspaper office, the time required to set the entire front page in type was recorded for 50 days. The data, to the nearest tenth of a minute, are given below.

20.8	22.8	21.9	22.0	20.7	20.9	25.0	22.2	22.8	20.1
25.3	20.7	22.5	21.2	23.8	23.3	20.9	22.9	23.5	19.5
23.7	20.3	23.6	19.0	25.1	25.0	19.5	24.1	24.2	21.8
21.3	21.5	23.1	19.9	24.2	24.1	19.8	23.9	22.8	23.9
19.7	24.2	23.8	20.7	23.8	24.3	21.1	20.9	21.6	22.7

(a) Arrange the data in an array from lowest to highest.
(b) Construct a frequency distribution and a "less-than" cumulative frequency distribution from the data, using intervals of 0.8 minute.
(c) Construct a frequency polygon from the data.
(d) Construct a "less-than" ogive from the data.
(e) From your ogive, estimate what percentage of the time the front page can be set in less than 24 minutes.
2-41 Chien-Ling Lee owns a CD store specializing in spoken-word recordings. Lee has 35 months of gross sales data, arranged as a frequency distribution.

Monthly Sales	Frequency
$\$ 10,000-12,499$	2
$12,500-14,999$	4
$15,000-17,499$	7
$17,500-19,999$	5

Monthly Sales	Frequency
$\$ 20,000-22,499$	6
$22,500-24,999$	8
$25,000-27,499$	2
$27,500-29,999$	1

(a) Construct a relative frequency distribution.
(b) Construct, on the same graph, a relative frequency histogram and a relative frequency polygon.
2-42 The National Association of Real Estate Sellers has collected these data on a sample of 130 salespeople representing their total commission earnings annually:

Earnings	Frequency
$\$ 5,000$ or less	5
$\$ 5,001-\$ 10,000$	9
$\$ 10,001-\$ 15,000$	11
$\$ 15,001-\$ 20,000$	33
$\$ 20,001-\$ 30,000$	37
$\$ 30,001-\$ 40,000$	19
$\$ 40,001-\$ 50,000$	9
Over $\$ 50,000$	7

Construct an ogive that will help you answer these questions.
(a) About what proportion of the salespeople earns more than $\$ 25,000$?
(b) About what does the "middle" salesperson in the sample earn?
(c) Approximately how much could a real estate salesperson whose performance was about 25 percent from the top expect to earn annually?
2-43 Springfield is a college town with the usual parking problems. The city allows people who have received tickets for illegally parked cars to come in and make their case to an administrative officer and have the ticket voided. The town's administrative officer collected the following frequency distribution for the time spent on each appeal:

Minutes Spent on Appeal	Frequency
Less than 2	30
$2-3$	40
$4-5$	40
$6-7$	90

Minutes Spent on Appeal	Frequency
$8-9$	70
$10-11$	50
$12-13$	50
$14-15$	$\frac{30}{\mathbf{4 0 0}}$

(a) Construct a "less-than" cumulative frequency distribution.
(b) Construct an ogive based on part (a).
(c) The town administrator will consider streamlining the paperwork for the appeal process if more than 50 percent of appeals take longer than 4 minutes. What is the percentage taking more than 4 minutes? What is the approximate time for the 200th (midpoint) appeal?

Worked-Out Answers to Self-Check Exercises

SC 2-5

(a) The lower tail of the distribution is fatter (has more observations in it) than the upper tail.
(b) Because there are so few people who weigh 180 pounds or more, the operator can afford to pair each person who appears to be heavy with a lighter person. This can be done without greatly delaying any individual's turn at the lift.

C 2-6

(a) The middle value was about 2.8 pounds.
(b) About 55 percent will need incubators.

STATISTICS AT WORK

Loveland Computers

Case 2: Arranging Data New Year's Day 1995, found Lee Azko staring out the window, watching a light dusting of snow fall on the Denver suburbs. Lee had graduated early from the University of Colorado, one semester short of the usual 4 years, thanks to a handful of advanced placement credits from high school. Lee was both excited and apprehensive that the next day would be the start of a serious job search for a well-trained business major, with little experience in the real world.

Contemplation of the future was interrupted by a phone call from Lee's uncle. "I was going to call you anyway to congratulate you on finishing school early. But I have another reason for calling-some things have come up in the business, and it looks as if I need someone to crunch some numbers in a hurry. Why don't you drive up tomorrow and I'll tell you what I have in mind."

Lee knew that Uncle Walter's company, Loveland Computers, had been growing by leaps and bounds. Walter Azko had developed the computer company from a strange background. Unlike Lee, Walter never finished college. "I was making too much money to stay in school," he used to explain. Walter had traveled extensively in the Far East with his parents, so it was only natural that he would begin an importing business while still a student at Boulder. He imported just about anything that could be sold cheaply and that would appeal to students: furniture, gifts, household utensils, and some clothing.

On one buying trip to Taiwan in the early 1980s, Walter was offered some personal computers. Looking back, they were awful. Not much memory and no hard drive, but they were dirt cheap and Walter soon sold them to "tekkies" at the university. The computer business grew, and within 2 years, Walter sold his retail importing business and concentrated solely on importing and selling computers.

Walter's first move was to lease a commercial building in Loveland, Colorado, where rents were much cheaper than in Boulder. From this location, he could market directly to students at the Universities at Boulder, Fort Collins, and Greeley. About an hour north of Denver's Stapleton International Airport, Loveland was a convenient site for imports coming by airfreight and a good place to recruit part-time workers. The name Loveland Computers seemed a natural.

At first, Walter Azko acted as his own sales staff, personally delivering computers from the back of his car. Walter made every sale on price alone and word-of-mouth referrals supplemented a few ads placed in the college newspapers. Because he sold directly to students and enthusiasts, it seemed that he was the only game in town. Walter's niche seemed to be an altogether different market from the one being reached by the industry giants. At the top end of the market for PCs, IBM was using expensive retail distribution, targeting the business market. And Apple was defending its high-price strategy with easy "point-and-click" graphical computing that couldn't be matched by IBM-compatible machines.

Azko began reading computer magazines and found he wasn't the only box shop (the industry name for a company that shipped boxes of computers to users with little or no additional service). One or two other companies had found cheap overseas suppliers and they were pursuing a mail-order strategy. Walter thought customers would be reluctant to buy such an expensive-and novel-piece of equipment sight unseen, but the arrival of a new shipment of computers with preinstalled hard disk drives gave him the motivation to run a few ads of his own.

So Loveland Computers joined the ranks of the national mail-order box shops, and by 1988, the company was one of the two dozen companies in this market. The mail-order companies together shared about the same percentage of the market as "Big Blue" (IBM) was maintaining: about 20 percent. But the market for PCs was huge and growing rapidly. By 1993, Loveland Computers regularly booked sales of $\$ 10$ million a quarter, and even at discount prices, profits regularly amounted to 6 percent of sales. Uncle Walter had become a rich man.

Along the way, Walter Azko realized that to give customers exactly what they wanted, there were advantages in assembling computers at his ever-expanding Loveland facility. He never saw himself as a manufacturer-just an assembler of premade parts such as drive controllers and power supplies. With his contacts with overseas manufacturers, Walter was able to hunt around for the best prices, so Loveland Computers' costs remained low.

To configure new machines and to help with specifications, Walter hired a bright young engineer, Gratia Delaguardia. Gratia knew hardware: She had completed several development projects for Storage Technology. In only a few years at Loveland Computers, she built a development staff of more than two dozen and was rewarded with a partnership in the business.

Loveland Computers had a few setbacks due to misjudging demand. Walter Azko was always optimistic about sales so inventory of components was often much greater than needed. Once or twice there were embarrassing "write-downs," such as when a shipment of power supplies turned out to be useless because they produced too little current for Loveland's latest model. Gratia Delaguardia had concluded that Loveland ought to be able to manage the supplies better, but it seemed difficult to predict what the market would be like from one month to the next.

After a sleepless night, Lee Azko met with Loveland Computers' founder and president. "Come and sit over here by the window-you can see my new Mercedes 500 SL sports car," Walter Azko said, welcoming his young visitor. "Let me tell you my problem. You know that things move pretty fast around here. Seems like each model lasts about 6 months and then we replace it with something fancier. Up to this point, I've pretty much relied on the local bank for financing. But this is a hot business and we're getting some attention from folks on Wall Street. We may be doing a 'private placement' -that's where we'd raise money for expansion from one or two well-heeled investors or banks-and then, later on, we might want to take the company public. Thing is, they want to know a whole lot about our sales growth: how much is coming from which products and so on. They want to know how long each model lasts, what we should project for next year. Now, of course, I have monthly sales reports going back almost to the beginning. The good news is, it's all on disk. The bad news is, we kept changing our formats so it's very difficult to compare numbers. And, of course, no one wants to flip through, say, 48 months of reports. Your job is to organize it all so it makes sense when these city slickers come to town in their corporate jet."
"When would I start, Uncle?" asked Lee Azko, quite taken aback by the task ahead.
"You've already started," snapped Walter. "It's when you finish that's important. These folks are due in next Monday."

Lee made a mental note to cancel a ski trip planned for the weekend and pulled out a notepad and started to sketch out a plan.

Study Questions: What information should Lee gather, other than financial information relating to sales and income? What format will present the company's rapid growth most clearly in a 45-minute business presentation?

CHAPTER REVIEW

Terms Introduced in Chapter 2

Continuous Data Data that may progress from one class to the next without a break and may be expressed by either whole numbers or fractions.
Cumulative Frequency Distribution A tabular display of data showing how many observations lie above, or below, certain values.

Data A collection of any number of related observations on one or more variables.
Data Array The arrangement of raw data by observations in either ascending or descending order.
Data Point A single observation from a data set.
Data Set A collection of data.
Discrete Classes Data that do not progress from one class to the next without a break; that is, where classes represent distinct categories or counts and may be represented by whole numbers.
Frequency Curve A frequency polygon smoothed by adding classes and data points to a data set.
Frequency Distribution An organized display of data that shows the number of observations from the data set that falls into each of a set of mutually exclusive and collectively exhaustive classes.
Frequency Polygon A line graph connecting the midpoints of each class in a data set, plotted at a height corresponding to the frequency of the class.
Histogram A graph of a data set, composed of a series of rectangles, each proportional in width to the range of values in a class and proportional in height to the number of items falling in the class, or the fraction of items in the class.
Ogive A graph of a cumulative frequency distribution.
Open-Ended Class A class that allows either the upper or lower end of a quantitative classification scheme to be limitless.
Population A collection of all the elements we are studying and about which we are trying to draw conclusions.
Raw Data Information before it is arranged or analyzed by statistical methods.
Relative Frequency Distribution The display of a data set that shows the fraction or percentage of the total data set that falls into each of a set of mutually exclusive and collectively exhaustive classes.
Representative Sample A sample that contains the relevant characteristics of the population in the same proportions as they are included in that population.
Sample A collection of some, but not all, of the elements of the population under study, used to describe the population.

Equations Introduced in Chapter 2

> Next unit value after
> 2-1
> Width of class intervals $=\frac{\text { largest value in data }- \text { Smallest value in data }}{\text { Total number of class intervals }}$ p. 28

To arrange raw data, decide the number of classes into which you will divide the data (normally between 6 and 15), and then use Equation 2-1 to determine the width of class intervals of equal size. This formula uses the next value of the same units because it measures the interval between the first value of one class and the first value of the next class.

Review and Application Exercises

2-44 The following set of raw data gives income and education level for a sample of individuals. Would rearranging the data help us to draw some conclusions? Rearrange the data in a way that makes them more meaningful.

Income	Education	Income	Education	Income	Education
\$17,000	High school	\$ 21,200	B.S.	\$17,200	2 years college
20,800	B.S.	28,000	B.S.	19,600	B.A.
27,000	M.A.	30,200	High school	36,200	M.S.
70,000	M.D.	22,400	2 years college	14,400	1 year college
29,000	Ph.D.	100,000	M.D.	18,400	2 years college
14,400	10th grade	76,000	Law degree	34,400	B.A.
19,000	High school	44,000	Ph.D.	26,000	High school
23,200	M.A.	17,600	11th grade	52,000	Law degree
30,400	High school	25,800	High school	64,000	Ph.D.
25,600	B.A.	20,200	1 year college	32,800	B.S.

2-45 All 50 states send the following information to the Department of Labor: the average number of workers absent daily during the 13 weeks of a financial quarter, and the percentage of absentees for each state. Is this an example of raw data? Explain.
2.46 The Nebraska Department of Agriculture has these data representing weekly growth (in inches) on samples of newly planted spring corn:

0.4	1.9	1.5	0.9	0.3	1.6	0.4	1.5	1.2	0.8
0.9	0.7	0.9	0.7	0.9	1.5	0.5	1.5	1.7	1.8

(a) Arrange the data in an array from highest to lowest.
(b) Construct a relative frequency distribution using intervals of 0.25 .
(c) From what you have done so far, what conclusions can you come to about growth in this sample?
(d) Construct an ogive that will help you determine what proportion of the corn grew at more than 1.0 inch a week.
(e) What was the approximate weekly growth rate of the middle item in the data array?

2-47 The National Safety Council randomly sampled the tread depth of 60 right front tires on passenger vehicles stopped at a rest area on an interstate highway. From its data, it constructed the following frequency distribution:

Tread Depth (Inches)	Frequency
$\frac{16}{32}$ (new tire)	5
$\frac{13}{32}-\frac{15}{32}$	10
$\frac{10}{32}-\frac{12}{32}$	20
$\frac{7}{32}-\frac{9}{32}$	12

Tread Depth (Inches)	Frequency
$\frac{4}{32}-\frac{6}{32}$	7
$\frac{1}{32}-\frac{3}{32}$	4
$\frac{0}{32}$ bald	2

(a) Approximately what was the tread depth of the thirtieth tire in the data array?
(b) If a tread depth less than $\frac{7}{32}$ inch is considered dangerous, approximately what proportion of the tires on the road are unsafe?
2-48 The High Point Fastener Company produces 15 basic items. The company keeps records on the number of each item produced per month in order to examine the relative production
levels. Records show the following numbers of each item were produced by the company for the last month of 20 operating days:

9,897	10,052	10,028	9,722	9,908
10,098	10,587	9,872	9,956	9,928
10,123	10,507	9,910	9,992	10,237

Construct an ogive that will help you answer these questions.
(a) On how many of its items did production exceed the break-even point of 10,000 units?
(b) What production level did 75 percent of its items exceed that month?
(c) What production level did 90 percent of its items exceed that month?

2-49 The administrator of a hospital has ordered a study of the amount of time a patient must wait before being treated by emergency room personnel. The following data were collected during a typical day:

Waiting Time (Minutes)									
12	16	21	20	24	3	11	17	29	18
26	4	7	14	25	1	27	15	16	5

(a) Arrange the data in an array from lowest to highest. What comment can you make about patient waiting time from your data array?
(b) Now construct a frequency distribution using 6 classes. What additional interpretation can you give to the data from the frequency distribution?
(c) From an ogive, state how long 75 percent of the patients should expect to wait based on these data.
2-50 Of what additional value is a relative frequency distribution once you have already constructed a frequency distribution?
2-51 Below are the weights of an entire population of 100 NFL football players.

226	198	210	233	222	175	215	191	201	175
264	204	193	244	180	185	190	216	178	190
174	183	201	238	232	257	236	222	213	207
233	205	180	267	236	186	192	245	218	193
189	180	175	184	234	234	180	252	201	187
155	175	196	172	248	198	226	185	180	175
217	190	212	198	212	228	184	219	196	212
220	213	191	170	258	192	194	180	243	230
180	135	243	180	209	202	242	259	238	227
207	218	230	224	228	188	210	205	197	169

(a) Select two samples: one sample of the first 10 elements, and another sample of the largest 10 elements.
(b) Are the two samples equally representative of the population? If not, which sample is more representative, and why?
(c) Under what conditions would the sample of the largest 10 elements be as representative as the sample of the first 10 elements?
2-52 In the population under study, there are 2,000 women and 8,000 men. If we are to select a sample of 250 individuals from this population, how many should be women to make our sample considered strictly representative?

2-53 The U.S. Department of Labor publishes several classifications of the unemployment rate, as well as the rate itself. Recently, the unemployment rate was 6.8 percent. The department reported the following educational categories:

Level of Education	Relative Frequency (\% of Those Unemployed)
Did not complete high school	35%
Received high school diploma	31
Attended college but did not receive a degree	16
Received a college degree	9
Attended graduate school but did not receive a degree	6
Received a graduate degree	$\mathbf{3}$
Total	$\mathbf{1 0 0 \%}$

Using these data, construct a relative frequency histogram.
2-54 Using the relative frequency distribution given in Exercise 2-63, construct a relative frequency histogram and polygon. For the purposes of the present exercise, assume that the upper limit of the last class is $\$ 51.00$.
2-55 Consider the following information about March 1992 nonfarm employment (in thousands of workers) in the United States, including Puerto Rico and the Virgin Islands:

Alabama	$1,639.0$	Nebraska	730.6
Alaska	235.5	Nevada	638.4
Arizona	$1,510.0$	New Hampshire	466.5
Arkansas	951.1	New Jersey	$3,390.7$
California	$12,324.3$	New Mexico	583.3
Colorado	$1,552.7$	New York	$7,666.4$
Connecticut	$1,510.6$	North Carolina	$3,068.3$
Delaware	335.2	North Dakota	271.0
District of Columbia	667.0	Ohio	$4,709.9$
Florida	$5,322.8$	Oklahoma	$1,196.9$
Georgia	$2,927.1$	Oregon	$1,245.6$
Hawaii	546.3	Pennsylvania	$4,992.1$
Idaho	400.4	Rhode Island	413.2
Illinois	$5,146.2$	South Carolina	$1,494.6$
Indiana	$2,496.3$	South Dakota	295.6
Iowa	$1,229.2$	Tennessee	$2,178.6$
Kansas	$1,108.3$	Texas	$7,209.7$
Kentucky	$1,474.8$	Utah	752.2
Louisiana	$1,617.5$	Vermont	244.8
Maine	500.0	Virginia	$2,792.4$
Maryland	$2,037.3$	Washington	$2,165.8$
Massachusetts	$2,751.6$	West Virginia	622.1
Michigan	$3,828.9$	Wisconsin	$2,272.1$
Minnesota	$2,117.1$	Wyoming	198.0
Mississippi	940.9	Puerto Rico	842.4
Missouri	$2,275.9$	Virgin Islands	42.4
Montana	299.3		

Source: Sharon R. Cohany, "Employment Data," 'Monthly Labor Review 115(6), (June 1992): 80-82.
(a) Arrange the data into 10 equal-width, mutually exclusive classes.
(b) Determine the frequency and relative frequency within each class.
(c) Are these data discrete or continuous?
(d) Construct a "less-than" cumulative frequency distribution and ogive for the relative frequency distribution in part (b).
(e) Based on the ogive constructed in part (d), what proportion of states have nonfarm employment greater than 3 million?
2-56 Using the frequency distribution given in Exercise 2-57 for miles per day of jogging, construct an ogive that will help you estimate what proportion of the joggers are averaging 4.0 miles or fewer daily.
2-57 A sports psychologist studying the effect of jogging on college students' grades collected data from a group of college joggers. Along with some other variables, he recorded the average number of miles run per day. He compiled his results into the following distribution:

Miles per Day	Frequency
$1.00-1.39$	32
$1.40-1.79$	43
$1.80-2.19$	81
$2.20-2.59$	122
$2.60-2.99$	131
$3.00-3.39$	130
$3.40-3.79$	111
$3.80-4.19$	95
$4.20-4.59$	82
$4.60-4.99$	47
5.00 and up	$\frac{53}{}$
$\mathbf{9 2 7}$	

(a) Construct an ogive that will tell you approximately how many miles a day the middle jogger runs.
(b) From the ogive you constructed in part (a), approximately what proportion of college joggers run at least 3.0 miles a day?
2-58 A behavioral researcher studying the success of college students in their careers conducts interviews with 100 Ivy League undergraduates, half men and half women, as the basis for the study. Comment on the adequacy of this survey.
2-59 If the following age groups are included in the proportions indicated, how many of each age group should be included in a sample of 3,000 people to make the sample representative?

Age Group	Relative Proportion in Population
$12-17$	0.17
$18-23$	0.31
$24-29$	0.27
$30-35$	0.21
$36+$	0.04

2-60 State University has three campuses, each with its own business school. Last year, State's business professors published numerous articles in prestigious professional journals, and the board of regents counted these articles as a measure of the productivity of each department.

Journal Number	Number of Publications	Campus			Journal Number	Number of Publications	Campus
9	3	North		14	20	South	
12	6	North		10	18	South	
3	12	South		3	12	West	
15	8	West		5	6	North	
2	9	West		7	5	North	
5	15	South		7	15	West	
1	2	North		6	2	North	
15	5	West		2	3	West	
12	3	North		9	1	North	
11	4	North		11	8	North	
7	9	North		14	10	West	
6	10	West		8	17	South	

(a) Construct a frequency distribution and a relative frequency distribution by journal.
(b) Construct a frequency distribution and a relative frequency distribution by university branch.
(c) Construct a frequency distribution and a relative frequency distribution by number of publications (using intervals of 3).
(d) Briefly interpret your results.

2-61 A reporter wants to know how the cost of compliance with the Americans with Disabilities Act (ADA) has affected national hiring practices and sends out a form letter to 2,000 businesses in the same ZIP code as the magazine's editorial offices. A total of 880 responses are received. Comment on the data available in these responses in terms of the five tests for data.
2-62 With each appliance that Central Electric produces, the company includes a warranty card for the purchaser. In addition to validating the warranty and furnishing the company with the purchaser's name and address, the card also asks for certain other information that is used for marketing studies. For each of the numbered blanks on the card, determine the most likely characteristics of the categories that would be used by the company to record the information. In particular, would they be (1) quantitative or qualitative, (2) continuous or discrete, (3) open-ended or closed? Briefly state the reasoning behind your answers.

Name	Marital Status (3)
Address	Where was appliance purchased?
City__ State	(4)
Zip Code	Why was appliance purchased?
Age (1) Yearly Income (2)	(5)

2-63 The following relative frequency distribution resulted from a study of the dollar amounts spent per visit by customers at a supermarket:

Amount Spent	Relative Frequency
$\$ 0-\$ 5.99$	1%
$6.00-\$ 10.99$	3
$11.00-\$ 15.99$	4
$16.00-\$ 20.99$	6
$21.00-\$ 25.99$	7
$26.00-\$ 30.99$	9
$31.00-\$ 35.99$	11
$36.00-\$ 40.99$	19
$41.00-\$ 45.99$	32
46,00 and above	8
Total	$\mathbf{1 0 0 \%}$

Determine the class marks (midpoints) for each of the intervals.
2-64 The following responses were given by two groups of hospital patients, one receiving a new treatment, the other receiving a standard treatment for an illness. The question asked was, "What degree of discomfort are you experiencing?"

	Group 1			Group 2	
Mild	Moderate	Severe	Moderate	Mild	Severe
None	Severe	Mild	Severe	None	Moderate
Moderate	Mild	Mild	Mild	Moderate	Moderate
Mild	Moderate	None	Moderate	Mild	Severe
Moderate	Mild	Mild	Severe	Moderate	Moderate
None	Moderate	Severe	Severe	Mild	Moderate

Suggest a better way to display these data. Explain why it is better.
2-65 The production manager of the Browner Bearing Company posted final worker performance ratings based on total units produced, percentages of rejects, and total hours worked. Is this an example of raw data? Why or why not? If not, what would the raw data be in this situation?
2-66 The head of a large business department wanted to classify the specialties of its 67 members. He asked Peter Wilson, a Ph.D. candidate, to get the information from the faculty members' publications. Peter compiled the following:

Specialty	Faculty Members Publishing
Accounting only	1
Marketing only	5
Statistics only	4
Finance only	2
Accounting and marketing	7

(continued)

Specialty	Faculty Members Publishing
Accounting and statistics	6
Accounting and finance	3
Marketing and finance	8
Statistics and finance	9
Statistics and marketing	21
No publications	$\underline{1}$

Construct a relative frequency distribution for the types of specialties. (Hint: The categories of your distribution will be mutually exclusive, but any individual may fall into several categories.)
2-67 Lesley Niles, a summer intern at the Internet Financial Services Corporation, has been asked to investigate the low participation rates in the company's $401(\mathrm{k})$ investment program. Niles read an article in The Wall Street Journal commenting on families' second wage-earner income as a determinant of plan participation. Niles went from office to office and interviewed executives eligible to participate. None of the executives reported a spouse with second income over $\$ 35,000$ and many families had no second income. To examine the situation, Niles decides to construct both frequency and relative frequency distributions.
(a) Develop a continuous, closed distribution with $\$ 5,000$ intervals.
(b) Develop a continuous distribution open at both ends, with 6 categories. You may relax the requirement for $\$ 5,000$ intervals for the open-ended categories.
2-68 The Kawahondi Computer Company compiled data regarding the number of interviews required for each of its 40 salespeople to make a sale. Following are a frequency distribution and a relative frequency distribution of the number of interviews required per salesperson per sale. Fill in the missing data.

Number of Interviews (Classes)	Frequency	Relative Frequency
$0-10$	$?$	0.075
$11-20$	1	$?$
$21-30$	4	$?$
$31-40$	$?$	$?$
$41-50$	2	$?$
$51-60$	$?$	0.175
$61-70$	5	0.225
$71-80$	$?$	$?$
$81-90$	$?$	0.000
$91-100$	$?$	$\underline{0.025}$
		$?$

2-69 A. T. Cline, the mine superintendent of the Grover Coal Co., has recorded the amount of time per workshift that Section Crew \#3 shuts down its machinery for on-the-spot adjustments, repairs, and moving. Here are the records for the crew's last 35 shifts:

60	72	126	110	91	115	112
80	66	101	75	93	129	105
113	121	93	87	119	111	97
102	116	114	107	113	119	100
110	99	139	108	128	84	99

(a) Arrange the data in an array from highest to lowest.
(b) If Cline believes that a typical amount of downtime per shift is 108 minutes, how many of Crew \#3's last 35 shifts exceeded this limit? How many were under the limit?
(c) Construct a relative frequency distribution with 10 -minute intervals.
(d) Does your frequency distribution indicate that Cline should be concerned?

2-70 Cline has obtained information on Section Crew \#3's coal production per shift for the same 35-shift period discussed in Exercise 2-69. The values are in tons of coal mined per shift:

356	331	299	391	364	317	386
360	281	360	402	411	390	362
311	357	300	375	427	370	383
322	380	353	371	400	379	380
369	393	377	389	430	340	368

(a) Construct a relative frequency distribution with six equal intervals.
(b) If Cline considers 330 to 380 tons per shift to be an expected range of output, how many of the crew's shifts produced less than expected? How many did better than expected?
(c) Does this information affect the conclusions you reached from the preceding problem on equipment downtime?
2-71 Virginia Suboleski is an aircraft maintenance supervisor. A recent delivery of bolts from a new supplier caught the eye of a clerk. Suboleski sent 25 of the bolts to a testing lab to determine the force necessary to break each of the bolts. In thousands of pounds of force, the results are as follows:

147.8	137.4	125.2	141.1	145.7
119.9	133.3	142.3	138.7	125.7
142.0	130.8	129.8	141.2	134.9
125.0	128.9	142.0	118.6	133.0
151.1	125.7	126.3	140.9	138.2

(a) Arrange the data into an array from highest to lowest.
(b) What proportion of the bolts withstood at least 120,000 pounds of force? What proportion withstood at least 150,000 pounds?
(c) If Suboleski knows that these bolts when installed on aircraft are subjected to up to 140,000 pounds of force, what proportion of the sample bolts would have failed in use? What should Suboleski recommend the company do about continuing to order from the new supplier?

2-72 The telephone system used by PHM, a mail-order company, keeps track of how many customers tried to call the toll-free ordering line but could not get through because all the firm's lines were busy. This number, called the phone overflow rate, is expressed as a percentage of the total number of calls taken in a given week. Mrs. Loy has used the overflow data for the last year to prepare the following frequency distribution:

Overflow Rate	Frequency
$0.00-2.50 \%$	3
$2.51-5.00 \%$	7
$5.00-7.50 \%$	13
$7.51-10.00 \%$	10
$10.00-12.50 \%$	6

Overflow Rate	Frequency
$12.51-15.00 \%$	4
$17.51-20.00 \%$	3
$20.01-22.51 \%$	2
$22.51-25.50 \%$	2
25.51 or greater	$\underline{2}$
	$\mathbf{5 2}$ Total number of weeks

List and explain errors you can find in Mrs. Loy's distribution.
2-73 Hanna Equipment Co. sells process equipment to agricultural companies in developing countries. A recent office fire burned two staff members and destroyed most of Hanna's business records. Karl Slayden has just been hired to help rebuild the company. He has found sales records for the last 2 months:

Country	\# of Sales	Country	\# of Sales	Country	\# of Sales
1	3	7	4	13	1
2	1	8	9	14	1
3	1	9	5	15	5
4	8	10	1	16	6
5	3	11	3	17	6
6	5	12	7	18	2
19	2	23	1	27	1
20	1	24	7	28	5
21	1	25	3		
22	2	26	1		

(a) Arrange the sales data in an array from highest to lowest.
(b) Construct two relative frequency distributions of number of sales, one with 3 classes and one with 9 classes. Compare the two. If Slayden knows nothing about Hanna's sales patterns, think about the conclusions he might draw from each about country-to-country sales variability.
2-74 Jeanne Moreno is analyzing the waiting times for cars passing through a large expressway toll plaza that is severely clogged and accident-prone in the morning. Information was collected on the number of minutes that 3,000 consecutive drivers waited in line at the toll gates:

Minutes of Waiting	Frequency
less than 1	75
$1-2.99$	183
$3-4.99$	294
$5-6.99$	350
$7-8.99$	580

Minutes of Waiting	Frequency
$9-10.99$	709
$11-12.99$	539
$13-14.99$	164
$15-16.99$	106

(a) Construct a "less-than" cumulative frequency and cumulative relative frequency distribution.
(b) Construct an ogive based on part (a). What percentage of the drivers had to wait more than 4 minutes in line? 8 minutes?
2-75 Maribor Cement Company of Montevideo, Uruguay, hired Delbert Olsen, an American manufacturing consultant, to help design and install various production reporting systems for its concrete roof tile factory. For example, today Maribor made 7,000 tiles and had a breakage rate during production of 2 percent. To measure daily tile output and breakage rate, Olsen has set up equally spaced classes for each. The class marks (midpoints of the class intervals) for daily tile output are $4,900,5,500,6,100,6,700,7,300$, and 7,900 . The class marks for breakage rates are $0.70,2.10,3.50,4.90,6.30$, and 7.70 .
(a) What are the upper and lower boundaries of the classes for the daily tile output?
(b) What are the upper and lower boundaries of the classes for the breakage rate?

2-76 BMT, Inc., manufactures performance equipment for cars used in various types of racing. It has gathered the following information on the number of models of engines in different size categories used in the racing market it serves:

Class (Engine Size in Cubic Inches)	Frequency (\# of Models)
$101-150$	1
$151-200$	7
$201-250$	7
$251-300$	8
$301-350$	17
$351-400$	16
$401-450$	15
$451-500$	7

Construct a cumulative relative frequency distribution that will help you answer these questions:
(a) Seventy percent of the engine models available are larger than about what size?
(b) What was the approximate middle value in the original data set?
(c) If BMT has designed a fuel-injection system that can be used on racing engines up to 400 cubic inches, about what percentage of the engine models available will not be able to use BMT's system?
2-77 A business group is supporting the addition of a light-rail shuttle in the central business district and has two competing bids with different numbers of seats in each car. They arrange a factfinding trip to Denver, and in a meeting they are given the following frequency distribution of number of passengers per car:

Number of Passengers	Frequency
$1-10$	20
$11-20$	18
$21-30$	11
$31-40$	8
$41-50$	3
$51-60$	1

(a) One bid proposes light-rail cars with 30 seats and 10 standees. What percentage of the total observations are more than 30 and less than 41 passengers?
(b) The business group members have been told that street cars with fewer than 11 passengers are uneconomical to operate and more than 30 passengers lead to poor customer satisfaction. What proportion of trips would be economical and satisfying?
2-78 Refer to the toll plaza problem in Exercise 2-74. Jeanne Moreno's employer, the state Department of Transportation, recently worked with a nearby complex of steel mills, with 5,000 employees, to modify the complex's shift changeover schedule so that shift changes do not coincide with the morning rush hour. Moreno wants an initial comparison to see whether waiting times at the toll plaza appear to have dropped. Here are the waiting times observed for 3,000 consecutive drivers after the mill schedule change:

Minutes of Waiting	Frequency
less than 1	177
$1-2.99$	238
$3-4.99$	578
$5-6.99$	800
$7-8.99$	713
$9-10.99$	326
$11-12.99$	159
$13-14.99$	9
$15-16.99$	$\mathbf{0}$
	$\mathbf{3 , 0 0 0}$

(a) Construct a "less-than" cumulative frequency and cumulative relative frequency distribution.
(b) Construct an ogive based on part (a). What percentage of the drivers had to wait more than 4 minutes in line? 8 minutes?
(c) Compare your results with your answers to Exercise 2-74. Is there an obvious difference in waiting times?

Questions on Running Case: SURYA Bank Pvt. Ltd.

1. Construct a pie chart showing the distribution of type of bank account held by the people in the banks. (Question 2)
2. Construct a bar chart showing the frequency of usage of e-banking by the customers. (Question 5)
3. Construct a bar chart comparing the level of satisfaction with e-services across the different age group of customers. (Question 9 vs Question 14)
4. Draw an appropriate chart depicting the problems faced in e-banking and the promptness with which they are solved. (Question 10 vs Question 12)
5. Draw an appropriate diagram to study the gap in the expected and observed e-banking services provided by the banks to their customers. (Question 7 \& 8)

Flow Chart: Arranging Data to Convey Meaning

Measures of Central Tendency and Dispersion in Frequency Distributions

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To use summary statistics to describe - To examine computer-based exploratory data collections of data
- To use the mean, median, and mode to describe analysis to see other useful ways to summarize data how data "bunch up"
- To use the range, variance, and standard deviation to describe how data "spread out"

CHAPTER CONTENTS

3.1 Summary Statistics

74
3.2 A Measure of Central Tendency: The Arithmetic Mean 77
3.3 A Second Measure of Central Tendency: The Weighted Mean 87
3.4 A Third Measure of Central Tendency: The Geometric Mean 92
3.5 A Fourth Measure of Central Tendency: The Median 96
3.6 A Final Measure of Central Tendency: The Mode 104
3.7 Dispersion: Why It Is Important 111
3.8 Ranges: Useful Measures of Dispersion 113
3.9 Dispersion: Average Deviation Measures 119
3.10 Relative Dispersion: The Coefficient of Variation 132
3.11 Descriptive Statistics Using Msexcel \& SPSS 136

- Statistics at Work 140
- Terms Introduced in Chapter 3 141
- Equations Introduced in Chapter 3 142
- Review and Application Exercises 145
- Flow Charts: Measures of Central Tendencyand Dispersion151

TThe vice president of marketing of a fast-food chain is studying the sales performance of the 100 stores in his eastern district and has compiled this frequency distribution of annual sales:

Sales (000s)	Frequency	Sales (000s)	Frequency
$700-799$	4	$1,300-1,399$	13
$800-899$	7	$1,400-1,499$	10
$900-999$	8	$1,500-1,599$	9
$1,000-1,099$	10	$1,600-1,699$	7
$1,100-1,199$	12	$1,700-1,799$	2
$1,200-1,299$	17	$1,800-1,899$	1

The vice president would like to compare the eastern district with the other three districts in the country. To do so, he will summarize the distribution, with an eye toward getting information about the central tendency of the data. This chapter also discusses how he can measure the variability in a distribution and thus get a much better feel for the data.

3.1 SUMMARY STATISTICS

In Chapter 2, we constructed tables and graphs from raw data. The resulting "pictures" of frequency distributions illustrated trends and patterns in the data. In most cases, however, we need more exact measures. In these cases, we can use single numbers called summary statistics to describe characteristics of a data set.

Summary statistics, central

tendency, and dispersion
Two of these characteristics are particularly important to decision makers: central tendency and dispersion.

Central Tendency Central tendency is the middle point of a Middle of a data set distribution. Measures of central tendency are also called measures of location. In Figure 3-1, the central location of curve B lies to the right of those of curve A and curve C. Notice that the central location of curve A is equal to that of curve C .

Dispersion Dispersion is the spread of the data in a

Spread of a data set

 distribution, that is, the extent to which the observations are scattered. Notice that curve A in Figure 3-2 has a wider spread, or dispersion, than curve B.There are two other characteristics of data sets that provide useful information: skewness and kurtosis. Although the derivation of specific statistics to measure these characteristics is beyond the scope of this book, a general understanding of what each means will be helpful.

FIGURE 3-1 COMPARISON OF CENTRAL LOCATION OF THREE CURVES

FIGURE 3-2 COMPARISON OF DISPERSION OF TWO CURVES

Skewness Curves representing the data points in the data Symmetry of a data set set may be either symmetrical or skewed. Symmetrical curves, like the one in Figure 3-3, are such that a vertical line drawn from the center of the curve to the horizontal axis divides the area of the curve into two equal parts. Each part is the mirror image of the other.

Curves A and B in Figure 3-4 are skewed curves. They are Skewness of a data set skewed because values in their frequency distributions are concentrated at either the low end or the high end of the measuring scale on the horizontal axis. The values are not equally distributed. Curve A is skewed to the right (or positively skewed) because it tails off toward the high end of the scale. Curve B is just the opposite. It is skewed to the left (negatively skewed) because it tails off toward the low end of the scale.

Curve A might represent the frequency distribution of the number of days' supply on hand in the wholesale fruit business. The curve would be skewed to the right, with many values at the low end and few at the high, because the inventory must turn over rapidly. Similarly, curve B could represent the frequency of the number of days a real-estate broker requires to sell a house. It would be skewed to the left, with many values at the high end and few at the low, because the inventory of houses turns over very slowly.

FIGURE 3-3 SYMMETRICAL CURVE

FIGURE 3-4 COMPARISON OF TWO SKEWED CURVES

FIGURE 3-5 TWO CURVES WITH THE SAME CENTRAL LOCATION BUT DIFFERENT KURTOSIS

Kurtosis When we measure the kurtosis of a distribution, we are measuring its peakedness. In Figure 3-5, for example, curves

Peakedness of a data set A and B differ only in that one is more peaked than the other.
They have the same central location and dispersion, and both are symmetrical. Statisticians say that the two curves have different degrees of kurtosis.

EXERCISES 3.1

Basic Concepts

3-1 Draw three curves, all symmetrical but with different dispersions.
3-2 Draw three curves, all symmetrical and with the same dispersion, but with the following central locations:
(a) 0.0
(b) 1.0
(c) -1.0

3-3 Draw a curve that would be a good representation of the grades on a statistics test in a poorly prepared class and another or a well-prepared class.
3-4 For the following distributions, indicate which distribution
(a) Has the larger average value.
(b) Is more likely to produce a small value than a large value.
(c) Is the better representation of the distribution of ages at a rock concert.
(d) Is the better representation of the distribution of the times patients have to wait at a doctor's office.

For the next two distributions, indicate which distribution, if any
(e) Has values more evenly distributed across the range of possible values.
(f) Is more likely to produce a value near 0 .
(g) Has a greater likelihood of producing positive values than negative values.

3-5 If the following two curves represent the distribution of scores for a group of students on two tests, which test appears to be more difficult for the students, A or B? Explain.

3.2 A MEASURE OF CENTRAL TENDENCY: THE ARITHMETIC MEAN

Most of the time when we refer to the "average" of something, we are talking about its arithmetic mean. This is true in cases such as the average winter temperature in New York City, the average life of a flashlight battery, and the average corn yield from an acre of land.

Table 3-1 presents data describing the number of days the gen- The arithmetic mean erators at a power station on Lake Ico are out of service owing to regular maintenance or some malfunction. To find the arithmetic mean, we sum the values and divide by the number of observations:

$$
\begin{aligned}
\text { Arithmetic mean } & =\frac{7+23+4+8+2+12+6+13+9+4}{10} \\
& =\frac{88}{10} \\
& =8.8 \text { days }
\end{aligned}
$$

In this 1-year period, the generators were out of service for an average of 8.8 days. With this figure, the power plant manager has a reasonable single measure of the behavior of all her generators.

Conventional Symbols

To write equations for these measures of frequency distributions, we need to learn the mathematical notations used by statisticians. A sample of a population consists of n observations (a

Characteristics of a sample are called statistics lowercase n) with a mean of \bar{x} (read x-bar). Remember that the measures we compute for a sample are called statistics.

The notation is different when we are computing measures for the entire population, that is, for the group containing every element we are describing. The mean of a population is symbolized by μ, which is the Greek letter $m u$. The number of

TABLE 3-1 DOWNTIME OF GENERATORS AT LAKE ICO STATION

GENERATOR	1	2	3	4	5	6	7	8	9	10
DAYS OUT OF SERVICE	7	23	4	8	2	12	6	13	9	4

elements in a population is denoted by the capital italic letter N. Generally in statistics, we use italicized Roman letters to symbolize sample information and Greek letters to symbolize population information.

Calculating the Mean from Ungrouped Data

In the example, the average of 8.8 days would be μ (the population mean) if the 10 generators are the entire population. It would be \bar{x} (the sample mean) if the 10 generators are a sample drawn from a larger population of generators. To write the formulas for these two means, we combine our mathematical symbols and the steps we used to determine the arithmetic mean. If we add the values of the observations and divide this sum by the number of observations, we will get
Population Arithmetic Mean
and
Sample Arithmetic Mean

Because μ is the population arithmetic mean, we use N to indicate that we divide by the number of observations or elements in the population. Similarly, \bar{x} is the sample arithmetic mean and n is the number of observations in the sample. The Greek letter sigma, Σ, indicates that all the values of x are summed together.

Another example: Table 3-2 lists the percentile increase in SAT verbal scores shown by seven different students taking an SAT preparatory course.

Finding the population and sample means

Population Arithmetic Mean

Number of elements in the population

Number of elements in the sample

TABLE 3-2 SAT VERBAL SCORES

STUDENT	1	2	3	4	5	6	7
INCREASE	9	7	7	6	4	4	2

We compute the mean of this sample of seven students as follows:

$$
\begin{align*}
\bar{x} & =\frac{\sum x}{n} \tag{3-2}\\
& =\frac{9+7+7+6+4+4+2}{7} \\
& =\frac{39}{7} \\
& =5.6 \text { points per student } \longleftarrow \text { Sample mean }
\end{align*}
$$

Notice that to calculate this mean, we added every observation. Dealing with ungrouped data Statisticians call this kind of data ungrouped data. The computations were not difficult because our sample size was small. But suppose we are dealing with the weights of 5,000 head of cattle and prefer not to add each of our data points separately. Or suppose we have access to only the frequency distribution of the data, not to every individual observation. In these cases, we will need a different way to calculate the arithmetic mean.

Calculating the Mean from Grouped Data

A frequency distribution consists of data that are grouped by classes. Each value of an observation falls somewhere in one of

Dealing with grouped data

 the classes. Unlike the SAT example, we do not know the separate values of every observation. Suppose we have a frequency distribution (illustrated in Table 3-3) of average monthly checking-account balances of 600 customers at a branch bank. From the information in this table, we can easily compute an estimate of the value of the mean of these grouped data. It is an estimate because we do not use all 600 data points in the sample. Had we used the original, ungrouped data, we could have calculated the actual value of the mean, but only by averaging the 600 separate values. For ease of calculation, we must give up accuracy.To find the arithmetic mean of grouped data, we first calculate the midpoint of each class. To make midpoints come out in whole

Estimating the mean

Calculating the mean

 cents, we round up. Thus, for example, the midpoint for the first class becomes 25.00 , rather than 24.995 . Then we multiply each midpoint by the frequency of observations in that class, sum all these results, and divide the sum by the total number of observations in the sample. The formula looks like this:Sample Arithmetic Mean of Grouped Data

$$
\begin{equation*}
\bar{x}=\frac{\sum(f \times x)}{n} \tag{3-3}
\end{equation*}
$$

where

- $\bar{x}=$ sample mean
- $\Sigma=$ symbol meaning "the sum of"

TABLE 3-3 AVERAGE MONTHLY BALANCE OF 600 CUSTOMERS

Class (Dollars)	Frequency
$0-49.99$	78
$50.00-99.99$	123
$100.00-149.99$	187
$150.00-199.99$	82
$200.00-249.99$	51
$250.00-299.99$	47
$300.00-349.99$	13
$350.00-399.99$	9
$400.00-449.99$	6
$450.00-499.99$	$\mathbf{4}$

- $f=$ frequency (number of observations) in each class
- $x=$ midpoint for each class in the sample
- $n=$ number of observations in the sample

Table 3-4 illustrates how to calculate the arithmetic mean from our grouped data, using Equation 3-3.
TABLE 3-4 CALCULATION OF ARITHMETIC SAMPLE MEAN FROM GROUPED DATA IN TABLE 3-3

In our sample of 600 customers, the average monthly check-ing-account balance is $\$ 142.25$. This is our approximation from the frequency distribution. Notice that because we did not know every data point in the sample, we assumed that every value in a class was equal to its midpoint. Our results, then, can only approximate the actual average monthly balance.

Coding

In situations where a computer is not available and we have to do the arithmetic by hand, we can further simplify our calculation of the mean from grouped data. Using a technique called coding, we

Assigning codes to the midpoints

 eliminate the problem of large or inconvenient midpoints. Instead of using the actual midpoints to perform our calculations, we can assign small-value consecutive integers (whole numbers) called codes to each of the midpoints. The integer zero can be assigned anywhere, but to keep the integers small, we will assign zero to the midpoint in the middle (or the one nearest to the middle) of the frequency distribution. Then we can assign negative integers to values smaller than that midpoint and positive integers to those larger, as follows:| Class | $1-5$ | $6-10$ | $11-15$ | $16-20$ | $21-25$ | $26-30$ | $31-35$ | $36-40$ | $41-45$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Code (u) | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
| | | | | | \uparrow | | | | |
| | | | x_{0} | | | | | | |

Symbolically, statisticians use x_{0} to represent the midpoint that is assigned the code 0 , and u for the coded midpoint. The following formula is used to determine the sample mean using codes:

Calculating the mean from
grouped data using codes

Sample Arithmetic Mean of Grouped Data Using Codes

$$
\begin{equation*}
\bar{x}=x_{0}+w \frac{\sum(u \times f)}{n} \tag{3-4}
\end{equation*}
$$

where

- $\bar{x}=$ mean of sample
- $x_{0}=$ value of the midpoint assigned the code 0
- $w=$ numerical width of the class interval
- $u=$ code assigned to each class
- $f=$ frequency or number of observations in each class
- $n=$ total number of observations in the sample

Keep in mind that $\sum(u \times f)$ simply means that we (1) multiply u by f for every class in the frequency distribution and (2) sum all of these products. Table 3-5 illustrates how to code the midpoints and find the sample mean of the annual snowfall (in inches) over 20 years in Harlan, Kentucky.

TABLE 3-5 ANNUAL SNOWFALL IN HARLAN, KENTUCKY

Advantages and Disadvantages of the Arithmetic Mean

The arithmetic mean, as a single number representing a whole

Advantages of the mean

 data set, has important advantages. First, its concept is familiar to most people and intuitively clear. Second, every data set has a mean. It is a measure that can be calculated, and it is unique because every data set has one and only one mean. Finally, the mean is useful for performing statistical procedures such as comparing the means from several data sets (a procedure we will carry out in Chapter 9).Yet, like any statistical measure, the arithmetic mean has disadvantages of which we must be aware. First, although the mean is reliable in that it reflects all the values in the data set, it may

Three disadvantages of the mean also be affected by extreme values that are not representative of the rest of the data. Notice that if the seven members of a track team have times in a mile race shown in Table 3-6, the mean time is

$$
\begin{align*}
\mu & =\frac{\sum x}{N} \tag{3-1}\\
& =\frac{4.2+4.3+4.7+4.8+5.0+5.1+9.0}{7} \\
& =\frac{37.1}{7} \\
& =5.3 \text { minutes } \leftarrow \text { Population mean }
\end{align*}
$$

If we compute a mean time for the first six members, however, and exclude the 9.0 value, the answer is about 4.7 minutes. The one extreme value of 9.0 distorts the value we get for the mean. It would be more representative to calculate the mean without including such an extreme value.

A second problem with the mean is the same one we encountered with our 600 checking-account balances: It is tedious to compute the mean because we do use every data point in our calculation (unless, of course, we take the short-cut method of using grouped data to approximate the mean).

The third disadvantage is that we are unable to compute the mean for a data set that has openended classes at either the high or low end of the scale. Suppose the data in Table 3-6 had been arranged in the frequency distribution shown in Table 3-7. We could not compute a mean value for these data because of the open-ended class

TABLE 3-7 TIMES FOR TRACK-TEAM MEMBERS IN A 1-MILE RACE

CLASS IN	$4.2-4.5$	$4.6-4.9$	$5.0-5.3$	5.4 and
MINUTES				above
FREQUENCY	2	2	2	1

HINTS \& ASSUMPTIONS

The mean (or average) can be an excellent measure of central tendency (how data group around the middle point of a distribution). But unless the mean is truly representative of the data from which it was computed, we are violating an important assumption. Warning: If there are very high or very low values in the data that don't look like most of the data, the mean is not representative. Fortunately there are measures that can be calculated that don't suffer from this shortcoming. A helpful hint in choosing which one of these to compute is to look at the data points.

EXERCISES 3.2

Self-Check Exercises

SC 3-1 The frequency distribution below represents the weights in pounds of a sample of packages carried last month by a small airfreight company.

Class	Frequency
$10.0-10.9$	1
$11.0-11.9$	4
$12.0-12.9$	6
$13.0-13.9$	8
$14.0-14.9$	12

Class	Frequency
$15.0-15.9$	11
$16.0-16.9$	8
$17.0-17.9$	7
$18.0-18.9$	6
$19.0-19.9$	2

(a) Compute the sample mean using Equation 3-3.
(b) Compute the sample mean using the coding method (Equation 3-4) with 0 assigned to the fourth class.
(c) Repeat part (b) with 0 assigned to the sixth class.
(d) Explain why your answers in parts (b) and (c) are the same.

SC 3-2 Davis Furniture Company has a revolving credit agreement with the First National Bank. The loan showed the following ending monthly balances last year:

Jan.	$\$ 121,300$	Apr.	$\$ 72,800$	July	$\$ 58,700$	Oct.	$\$ 52,800$
Feb.	$\$ 112,300$	May	$\$ 72,800$	Aug.	$\$ 61,100$	Nov.	$\$ 49,200$
Mar.	$\$ 72,800$	June	$\$ 57,300$	Sept.	$\$ 50,400$	Dec.	$\$ 46,100$

The company is eligible for a reduced rate of interest if its average monthly balance is over $\$ 65,000$. Does it qualify?

Applications

3-6 Child-Care Community Nursery is eligible for a county social services grant as long as the average age of its children stays below 9. If these data represent the ages of all the children currently attending Child-Care, do they qualify for the grant?
$\begin{array}{lllllllllll}8 & 5 & 9 & 10 & 9 & 12 & 7 & 12 & 13 & 7 & 8\end{array}$
3-7 Child-Care Community Nursery can continue to be supported by the county social services office as long as the average annual income of the families whose children attend the nursery is below $\$ 12,500$. The family incomes of the attending children are

$\$ 14,500$	$\$ 15,600$	$\$ 12,500$	$\$ 8,600$	$\$ 7,800$	
$\$ 6,500$	$\$ 5,900$	$\$ 10,200$	$\$ 8,800$	$\$ 14,300$	$\$ 13,900$

(a) Does Child-Care qualify now for county support?
(b) If the answer to part (a) is no, by how much must the average family income fall for it to qualify?
(c) If the answer to part (a) is yes, by how much can average family income rise and ChildCare still stay eligible?
3-8 These data represent the ages of patients admitted to a small hospital on February 28, 1996:

85	75	66	43	40
88	80	56	56	67
89	83	65	53	75
87	83	52	44	48

(a) Construct a frequency distribution with classes 40-49, 50-59, etc.
(b) Compute the sample mean from the frequency distribution.
(c) Compute the sample mean from the raw data.
(d) Compare parts (b) and (c) and comment on your answer.

3-9 The frequency distribution below represents the time in seconds needed to serve a sample of customers by cashiers at BullsEye Discount Store in December 1996.

Time (in seconds)	Frequency
$20-29$	6
$30-39$	16
$40-49$	21
$50-59$	29
$60-69$	25
$70-79$	22
$80-89$	11
$90-99$	7
$100-109$	4
$110-119$	0
$120-129$	2

(a) Compute the sample mean using Equation 3-3.
(b) Compute the sample mean using the coding method (Equation 3-4) with 0 assigned to the 70-79 class.
3-10 The owner of Pets ' R Us is interested in building a new store. The owner will build if the average number of animals sold during the first 6 months of 1995 is at least 300 and the overall monthly average for the year is at least 285 . The data for 1995 are as follows:

Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
234	216	195	400	315	274	302	291	275	300	375	450

What is the owner's decision and why?
3-11 A cosmetics manufacturer recently purchased a machine to fill 3-ounce cologne bottles. To test the accuracy of the machine's volume setting, 18 trial bottles were run. The resulting volumes (in ounces) for the trials were as follows:

3.02	2.89	2.92	2.84	2.90	2.97	2.95	2.94	2.93
3.01	2.97	2.95	2.90	2.94	2.96	2.99	2.99	2.97

The company does not normally recalibrate the filling machine for this cologne if the average volume is within 0.04 of 3.00 ounces. Should it recalibrate?
3-12 The production manager of Hinton Press is determining the average time needed to photograph one printing plate. Using a stopwatch and observing the platemakers, he collects the following times (in seconds)

20.4	20.0	22.2	23.8	21.3	25.1	21.2	22.9	28.2	24.3
22.0	24.7	25.7	24.9	22.7	24.4	24.3	23.6	23.2	21.0

An average per-plate time of less than 23.0 seconds indicates satisfactory productivity. Should the production manager be concerned?

3-13 National Tire Company holds reserve funds in short-term marketable securities. The ending daily balance (in millions) of the marketable securities account for 2 weeks is shown below:

Week 1	$\$ 1.973$	$\$ 1.970$	$\$ 1.972$	$\$ 1.975$	$\$ 1.976$
Week 2	1.969	1.892	1.893	1.887	1.895

What was the average (mean) amount invested in marketable securities during
(a) The first week?
(b) The second week?
(c) The 2-week period?
(d) An average balance over the 2 weeks of more than $\$ 1.970$ million would qualify National for higher interest rates. Does it qualify?
(e) If the answer to part (c) is less than $\$ 1.970$ million, by how much would the last day's invested amount have to rise to qualify the company for the higher interest rates?
(f) If the answer to part (c) is more than $\$ 1,970$ million, how much could the company treasurer withdraw from reserve funds on the last day and still qualify for the higher interest rates?
3-14 M. T. Smith travels the eastern United States as a sales representative for a textbook publisher. She is paid on a commission basis related to volume. Her quarterly earnings over the last 3 years are given below.

	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Year 1	$\$ 10,000$	$\$ 5,000$	$\$ 25,000$	$\$ 15,000$
Year 2	20,000	10,000	20,000	10,000
Year 3	30,000	15,000	45,000	50,000

(a) Calculate separately M. T.'s average earnings in each of the four quarters.
(b) Calculate separately M. T.'s average quarterly earnings in each of the 3 years.
(c) Show that the mean of the four numbers you found in part (a) is equal to the mean of the three numbers you found in part (b). Furthermore, show that both these numbers equal the mean of all 12 numbers in the data table. (This is M. T.'s average quarterly income over 3 years.)
3-15 Lillian Tyson has been the chairperson of the county library committee for 10 years. She contends that during her tenure she has managed the book-mobile repair budget better than her predecessor did. Here are data for bookmobile repair for 15 years:

Year	Town Budget	Year	Town Budget	Year	Town Budget
1992	\$30,000	1987	\$24,000	1982	\$30,000
1991	28,000	1986	19,000	1981	20,000
1990	25,000	1985	21,000	1980	15,000
1989	27,000	1984	22,000	1979	10,000
1988	26,000	1983	24,000	1978	9,000

(a) Calculate the average annual budget for the last 5 years (1988-1992).
(b) Calculate the average annual budget for her first 5 years in office (1983-1987).
(c) Calculate the average annual budget for the 5 years before she was elected (1978-1982).
(d) Based on the answers you found for parts (a), (b), and (c), do you think that there has been a decreasing or increasing trend in the annual budget? Has she been saving the county money?

Worked-Out Answers to Self-Check Exercises

SC 3-1

Class	Frequency(f)	(a)		(b)		(c)	
		Midpoint (x)	$f \times x$	Code u	$u \times f$	Code u	$u \times f$
10.0-10.9	1	10.5	10.5	-3	-3	-5	-5
11.0-11.9	4	11.5	46.0	-2	-8	-4	-16
12.0-12.9	6	12.5	75.0	-1	-6	-3	-18
13.0-13.9	8	13.5	108.0	0	0	-2	-16
14.0-14.9	12	14.5	174.0	1	12	-1	-12
15.0-15.9	11	15.5	170.5	2	22	0	0
16.0-16.9	8	16.5	132.0	3	24	1	8
17.0-17.9	7	17.5	122.5	4	28	2	14
18.0-18.9	6	18.5	111.0	5	30	3	18
19.0-19.9	2	19.5	39.0	6	12	4	8
	65		988.5		111		-19

(a) $\bar{x}=\frac{\sum(f \times x)}{n}=\frac{988.5}{65}=15.2077$ pounds
(b) $\bar{x}=x_{0}+w \frac{\sum(u \times f)}{n}=13.5+\frac{1.0(111)}{65}=15.2077$ pounds
(c) $\bar{x}=x_{0}+w \frac{\sum(u \times f)}{n}=15.5+\frac{1.0(-19)}{65}=15.2077$ pounds
(d) Shifting the class assigned the code of 0 up by k classes replaces x_{0} by $x_{0}+k w$ and changes each code from u to $u-k$. But because

$$
\begin{aligned}
\bar{x}_{b}=x_{0}+w \frac{\sum(u \times f)}{n} & =\left(x_{0}+k w\right)-k w+w \frac{\sum(u \times f)}{n} \\
& =\left(x_{0}+k w\right)+w \frac{\sum(u-k) f}{n}=\bar{x}_{c}
\end{aligned}
$$

we see that it does not matter which class is assigned the code 0 .
SC 3-2 $\bar{x}=\frac{\sum x}{n}=\frac{827,600}{12}=\$ 68,967$
Because this exceeds $\$ 65,000$, they do qualify for the reduced interest rate.

3.3 A SECOND MEASURE OF CENTRAL TENDENCY: THE WEIGHTED MEAN

The weighted mean enables us to calculate an average that takes into account the importance of each value to the overall total. Consider, for example, the company in Table 3-8, which uses

TABLE 3-8 LABOR INPUT IN MANUFACTURING PROCESS

		Labor Hours per Unit of Output	
Grade of Labor	Hourly Wage (\boldsymbol{x})	Product $\mathbf{1}$	Product 2
Unskilled	$\$ 5.00$	1	4
Semiskilled	7.00	2	3
Skilled	9.00	5	3

three grades of labor-unskilled, semiskilled, and skilled-to produce two end products. The company wants to know the average cost of labor per hour for each of the products.

A simple arithmetic average of the labor wage rates would be

$$
\begin{align*}
\bar{x} & =\frac{\sum x}{n} \tag{3-2}\\
& =\frac{\$ 5+\$ 7+\$ 9}{3} \\
& =\frac{\$ 21}{3} \\
& =\$ 7.00 / \text { hour }
\end{align*}
$$

Using this average rate, we would compute the labor cost of one In this case, the arithmetic unit of product 1 to be $\$ 7(1+2+5)=\$ 56$ and of one unit of product 2 to be $\$ 7(4+3+3)=\$ 70$. But these answers are incorrect.

To be correct, the answers must take into account that different amounts of each grade of labor are used. We can determine the correct answers in the following manner. For product 1, the total labor cost per unit is $(\$ 5 \times 1)+(\$ 7 \times 2)+(\$ 9 \times 5)=\$ 64$, and, since there are 8 hours of labor input, the average labor cost per hour is $\$ 64 / 8=\$ 8.00$ per hour. For product 2, the total labor cost per unit is $(\$ 5 \times 4)+(\$ 7 \times 3)+(\$ 9 \times 3)=\$ 68$, for an average labor cost per hour of $\$ 68 / 10$, or $\$ 6.80$ per hour.

Another way to calculate the correct average cost per hour for the two products is to take a weighted average of the

The correct answer is the weighted mean cost of the three grades of labor. To do this, we weight the hourly wage for each grade by its proportion of the total labor required to produce the product. One unit of product 1 , for example, requires 8 hours of labor. Unskilled labor uses $1 / 8$ of this time, semiskilled labor uses $2 / 8$ of this time, and skilled labor requires $5 / 8$ of this time. If we use these fractions as our weights, then one hour of labor for product 1 costs an average of

$$
\left(\frac{1}{8} \times \$ 5\right)+\left(\frac{2}{8} \times \$ 7\right)+\left(\frac{5}{8} \times \$ 9\right)=\$ 8.00 / \text { hour }
$$

Similarly, a unit of product 2 requires 10 labor hours, of which $4 / 10$ is used for unskilled labor, $3 / 10$ for semiskilled labor, and $3 / 10$ for skilled labor. By using these fractions as weights, one hour of labor for product 2 costs

$$
\left(\frac{4}{10} \times \$ 5\right)+\left(\frac{3}{10} \times \$ 7\right)+\left(\frac{3}{10} \times \$ 9\right)=\$ 6.80 / \text { hour }
$$

Calculating the weighted mean

Thus, we see that the weighted averages give the correct values for the average hourly labor costs of the two products because they take into account that different amounts of each grade of labor are used in the products.

Symbolically, the formula for calculating the weighted average is

Weight Mean	
$\bar{x}_{w}=\frac{\sum(w \times x)}{\sum w}$	$[3-5]$

where

- $\bar{x}_{w}=$ symbol for the weighted mean*
- $w=$ weight assigned to each observation $(1 / 8,2 / 8$, and $5 / 8$, for product 1 and $4 / 10,3 / 10$, and $3 / 10$, for product 2 in our example)
- $\sum(w \times x)=$ sum of the weight of each element times that element
- $\sum w=$ sum of all of the weights

If we apply Equation 3-5 to product 1 in our labor-cost example, we find

$$
\begin{aligned}
\bar{x}_{w} & =\frac{\sum(w \times x)}{\sum w} \\
& =\frac{\left(\frac{1}{8} \times \$ 5\right)+\left(\frac{2}{8} \times \$ 7\right)+\left(\frac{5}{8} \times \$ 9\right)}{\frac{1}{8}+\frac{2}{8}+\frac{5}{8}} \\
& =\frac{\$ 8}{1} \\
& =\$ 8.00 / \text { hour }
\end{aligned}
$$

Notice that Equation 3-5 states more formally something we have done previously. When we calculated the arithmetic mean from grouped data (page 79), we actually found a weighted

The arithmetic mean of grouped data: the weighted mean mean, using the midpoints for the x values and the frequencies of each class as the weights. We divided this answer by the sum of all the frequencies, which is the same as dividing by the sum of all the weights.

In like manner, any mean computed from all the values in a data set according to Equation 3-1 or 3-2 is really a weighted average of the components of the data set. What those components are, of course, determines what the mean measures. In a factory, for example, we could determine the weighted mean

[^1]of all the wages (skilled, semiskilled, and unskilled) or of the wages of men workers, women workers, or union and nonunion members.

HINTS \& ASSUMPTIONS

Distinguish between distinct values and individual observations in a data set, since several observations can have the same value. If values occur with different frequencies, the arithmetic mean of the values (as opposed to the arithmetic mean of the observations) may not be an accurate measure of central tendency. In such cases, we need to use the weighted mean of the values. If you are using an average value to make a decision, ask how it was calculated. If the values in the sample do not appear with the same frequency, insist on a weighted mean as the correct basis for your decision.

EXERCISES 3.3

Self-Check Exercises

SC 3-3 Dave's Giveaway Store advertises, "If our average prices are not equal or lower than everyone else's, you get it free." One of Dave's customers came into the store one day and threw on the counter bills of sale for six items she bought from a competitor for an average price less than Dave's. The items cost

$$
\begin{array}{llllll}
\$ 1.29 & \$ 2.97 & \$ 3.49 & \$ 5.00 & \$ 7.50 & \$ 10.95
\end{array}
$$

Dave's prices for the same six items are $\$ 1.35, \$ 2.89, \$ 3.19, \$ 4.98, \$ 7.59$ and $\$ 11.50$. Dave told the customer, "My ad refers to a weighted average price of these items. Our average is lower because our sales of these items have been:"

$$
\begin{array}{llllll}
7 & 9 & 12 & 8 & 6 & 3
\end{array}
$$

Is Dave getting himself into or out of trouble by talking about weighted averages?
SC 3-4 Bennett Distribution Company, a subsidiary of a major appliance manufacturer, is forecasting regional sales for next year. The Atlantic branch, with current yearly sales of $\$ 193.8$ million, is expected to achieve a sales growth of 7.25 percent; the Midwest branch, with current sales of $\$ 79.3$ million, is expected to grow by 8.20 percent; and the Pacific branch, with sales of $\$ 57.5$ million, is expected to increase sales by 7.15 percent. What is the average rate of sales growth forecasted for next year?

Applications

3-16 A professor has decided to use a weighted average in figuring final grades for his seminar students. The homework average will count for 20 percent of a student's grade; the midterm, 25 percent; the final, 35 percent; the term paper, 10 percent; and quizzes, 10 percent. From the following data, compute the final average for the five students in the seminar.

Student	Homework	Quizzes	Paper	Midterm	Final
1	85	89	94	87	90
2	78	84	88	91	92
3	94	88	93	86	89
4	82	79	88	84	93
5	95	90	92	82	88

3-17 Jim's Videotaping Service recently placed an order for VHS videotape. Jim ordered 6 cases of High-Grade, 4 cases of Performance High-Grade, 8 cases of Standard, 3 cases of High Standard, and 1 case of Low Grade. Each case contains 24 tapes. Suppose a case of High-Grade costs $\$ 28$, Performance High-Grade costs $\$ 36$, Standard costs $\$ 16$, High Standard costs $\$ 18$, and Low costs $\$ 6$.
(a) What is the average cost per case to Jim?
(b) What is the average cost per tape to Jim?
(c) Suppose Jim will sell any tape for $\$ 1.25$. Is this a good business practice for Jim?
(d) How would your answer to parts (a)-(c) change if there were 48 tapes per case?

3-18 Keyes Home Furnishings ran six local newspaper advertisements during December. The following frequency distribution resulted;

NUMBER OF TIMES SUBSCRIBER							
SAW AD DURING DECEMBER	0	1	2	3	4	5	6
FREQUENCY	897	1,082	1,325	814	307	253	198

What is the average number of times a subscriber saw a Keyes advertisement during December?
3-19 The Nelson Window Company has manufacturing plants in five U.S. cities: Orlando, Minneapolis, Dallas, Pittsburgh, and Seattle. The production forecast for the next year has been completed. The Orlando division, with yearly production of 72 million windows, is predicting an 11.5 percent increase. The Pittsburgh division, with yearly production of 62 million, should grow by 6.4 percent. The Seattle division, with yearly production of 48 million, should also grow by 6.4 percent. The Minneapolis and Dallas divisions, with yearly productions of 89 and 94 million windows, respectively, are expecting to decrease production in the coming year by 9.7 and 18.2 percent, respectively. What is the average rate of change in production for the Nelson Window Company for the next year?
3-20 The U.S. Postal Service handles seven basic types of letters and cards: third class, second class, first class, air mail, special delivery, registered, and certified. The mail volume during 1977 is given in the following table:

Type of Mailing	Ounces Delivered (in millions)	Price per Ounce
Third class	16,400	$\$ 0.05$
Second class	24,100	0.08
First class	77,600	0.13
Air mail	1,900	0.17
Special delivery	1,300	0.35
Registered	750	0.40
Certified	800	0.45

What was the average revenue per ounce for these services during the year?

3-21 Matthews, Young and Associates, a management consulting firm, has four types of professionals on its staff: managing consultants, senior associates, field staff, and office staff. Average rates charged to consulting clients for the work of each of these professional categories are $\$ 75 /$ hour, $\$ 40 /$ hour, $\$ 30 /$ hour, and $\$ 15 /$ hour. Office records indicate the following number of hours billed last year in each category: $8,000,14,000,24,000$, and 35,000 . If Matthews, Young is trying to come up with an average billing rate for estimating client charges for next year, what would you suggest they do and what do you think is an appropriate rate?

Worked-Out Answers to Self-Check Exercises

SC 3-3 With unweighted averages, we get

$$
\begin{gathered}
\bar{x}_{c}=\frac{\sum x}{n}=\frac{31.20}{6}=\$ 5.20 \text { at the competition } \\
\bar{x}_{D}=\frac{31.50}{6}=\$ 5.25 \text { at Dave's }
\end{gathered}
$$

With weighted averages, we get

$$
\begin{aligned}
\bar{x}_{c} & =\frac{\sum(w \times x)}{\sum w} \\
& =\frac{7(1.29)+9(2.97)+12(3.49)+8(5.00)+6(7.50)+3(10.95)}{7+9+12+8+6+3} \\
& =\frac{195.49}{45}=\$ 4.344 \text { at the competition } \\
\bar{x}_{D} & =\frac{7(1.35)+9(2.89)+12(3.19)+8(4.98)+6(7.59)+3(11.50)}{7+9+12+8+6+3} \\
& =\frac{193.62}{45}=\$ 4.303 \text { at Dave's }
\end{aligned}
$$

Although Dave is technically correct, the word average in popular usage is equivalent to unweighted average in technical usage, and the typical customer will surely be angry with Dave's assertion (whether he or she understands the technical point or not).

$$
\begin{aligned}
\text { SC 3-4 } & \bar{x}_{w}=\frac{\sum(w \times x)}{\sum w}=\frac{193.8(7.25)+79.3(8.20)+57.5(7.15)}{193.8+79.3+57.5} \\
& =\frac{2466.435}{330.6}=7.46 \%
\end{aligned}
$$

3.4 A THIRD MEASURE OF CENTRAL TENDENCY: THE GEOMETRIC MEAN

Sometimes when we are dealing with quantities that change over a period of time, we need to know an average rate of change, such as an average growth rate over a period of several years. In

Finding the growth rate: The geometric mean

TABLE 3-9 GROWTH OF \$100 DEPOSIT IN A SAVINGS ACCOUNT

Year	Interest Rate	Growth Factor	Savings at End of Year
1	7%	1.07	$\$ 107.00$
2	8	1.08	115.56
3	10	1.10	127.12
4	12	1.12	142.37
5	18	1.18	168.00

such cases, the simple arithmetic mean is inappropriate, because it gives the wrong answers. What we need to find is the geometric mean, simply called the G.M.

Consider, for example, the growth of a savings account. Suppose we deposit \$100 initially and let it accrue interest at varying rates for 5 years. The growth is summarized in Table 3-9.

The entry labeled "growth factor" is equal to

$$
1+\frac{\text { interest rate }}{100}
$$

The growth factor is the amount by which we multiply the savings at the beginning of the year to get the savings at the end of the year. The simple arithmetic mean growth factor would be

In this case, the arithmetic mean growth rate is incorrect $(1.07+1.08+1.10+1.12+1.18) / 5=1.11$, which corresponds to an average interest rate of 11 percent per year. If the bank gives interest at a constant rate of 11 percent per year, however, a $\$ 100$ deposit would grow in five years to

$$
\$ 100 \times 1.11 \times 1.11 \times 1.11 \times 1.11 \times 1.11=\$ 168.51
$$

Table 3-9 shows that the actual figure is only $\$ 168.00$. Thus, the correct average growth factor must be slightly less than 1.11 .

To find the correct average growth factor, we can multiply together the 5 years' growth factors and then take the fifth root

Calculating the geometric mean of the product-the number that, when multiplied by itself four times, is equal to the product we started with. The result is the geometric mean growth rate, which is the appropriate average to use here. The formula for finding the geometric mean of a series of numbers is

Number of x values	Geometric Mean
G.M. $=\sqrt[n]{\text { product of all } x \text { values }}$	$[3-6]$

If we apply this equation to our savings-account problem, we can determine that 1.1093 is the correct average growth factor.

$$
\begin{aligned}
\text { G.M. }= & \sqrt[n]{\text { product of all } x \text { values }} \\
= & \text { [3-6] } \\
= & \sqrt[5]{1.07 \times 1.08 \times 1.10 \times 1.12 \times 1.18} \\
= & =\begin{array}{l}
\text { Average growth factor (the geometric } \\
\\
\end{array} \quad \text { mean of the } 5 \text { growth factors) }
\end{aligned}
$$

Notice that the correct average interest rate of 10.93 percent per year obtained with the geometric mean is very close to the incorrect average rate of 11 percent obtained with the arithmetic mean. This happens because the interest rates are relatively small. Be careful however, not to be tempted to use the arithmetic mean instead of the more complicated geometric mean. The following example demonstrates why.

In highly inflationary economies, banks must pay high interest rates to attract savings. Suppose that over 5 years in an unbelievably inflationary economy, banks pay interest at annual rates of 100, 200, 250,300 , and 400 percent, which correspond to growth factors of $2,3,3.5,4$, and 5. (We've calculated these growth factors just as we did in Table 3-9.)

In 5 years, an initial deposit of $\$ 100$ would grow to $\$ 100 \times 2 \times 3 \times 3.5 \times 4 \times 5=\$ 42,000$. The arithmetic mean growth factor is $(2+3+3.5+4+5) / 5$, or 3.5 . This corresponds to an average interest rate of 250 percent. Yet if the banks actually gave interest at a constant rate of 250 percent per year, then $\$ 100$ would grow to $\$ 52,521.88$ in 5 years:

$$
\$ 100 \times 3.5 \times 3.5 \times 3.5 \times 3.5 \times 3.5=\$ 52,521.88
$$

This answer exceeds the actual $\$ 42,000$ by more than $\$ 10,500$, a sizable error.
Let's use the formula for finding the geometric mean of a series of numbers to determine the correct growth factor:

$$
\begin{align*}
\text { G.M. } & =\sqrt[n]{\text { product of all } x \text { values }} \tag{3-6}\\
& =\sqrt[5]{2 \times 3 \times 3.5 \times 4 \times 5} \\
& =\sqrt[5]{420} \\
& =3.347 \longleftarrow \text { Average growth factor }
\end{align*}
$$

This growth factor corresponds to an average interest rate of 235 percent per year. In this case, the use of the appropriate mean does make a significant difference.

HINTS \& ASSUMPTIONS

We use the geometric mean to show multiplicative effects over time in compound interest and inflation calculations. In certain situations, answers using the arithmetic mean and the geometric mean will not be too far apart, but even a small difference can generate a poor decision. A good working hint is to use the geometric mean whenever you are calculating the average percentage change in some variable over time. When you see a value for the average increase in inflation, for example, ask whether it's a geometric mean and be warned that if it's not, you are dealing with an incorrect value.

EXERCISES 3.4

Self-Check Exercises

SC 3-5 The growth in bad-debt expense for Johnston Office Supply Company over the last few years follows. Calculate the average percentage increase in bad-debt expense over this time period. If this rate continues, estimate the percentage increase in bad debts for 1997, relative to 1995.

$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$
0.11	0.09	0.075	0.08	0.095	0.108	0.120

SC 3-6 Realistic Stereo Shops marks up its merchandise 35 percent above the cost of its latest additions to stock. Until 4 months ago, the Dynamic 400-S VHS recorder had been $\$ 300$. During the last 4 months Realistic has received 4 monthly shipments of this recorder at these unit costs: $\$ 275, \$ 250, \$ 240$, and $\$ 225$. At what average rate per month has Realistic's retail price for this unit been decreasing during these 4 months?

Applications

3-22 Hayes Textiles has shown the following percentage increase in net worth over the last 5 years:

$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
5%	10.5%	9.0%	6.0%	7.5%

What is the average percentage increase in net worth over the 5 -year period?
3-23 MacroSwift, the U.S.-based computer software giant, has posted an increase in net worth during 7 of the last 9 years. Calculate the average percentage change in net worth over this time period. Assuming similar conditions in the years to come, estimate the percentage change for 1998, relative to 1996.

$\mathbf{1 9 8 8}$	$\mathbf{1 9 8 9}$	$\mathbf{1 9 9 0}$	$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
0.11	0.09	0.07	0.08	-0.04	0.14	0.11	-0.03	0.06

3-24 The Birch Company, a manufacturer of electrical circuit boards, has manufactured the following number of units over the past 5 years:

$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
12,500	13,250	14,310	15,741	17,630

Calculate the average percentage increase in units produced over this time period, and use this to estimate production for 1999.
3-25 Bob Headen is calculating the average growth factor for his stereo store over the last 6 years. Using a geometric mean, he comes up with an answer of 1.24 . Individual growth factors for the first 5 years were $1.19,1.35,1.23,1.19$, and 1.30 , but Bob lost the records for the sixth year, after he calculated the mean. What was it?
3-26 Over a 3-week period, a store owner purchased $\$ 120$ worth of acrylic sheeting for new display cases in three equal purchases of $\$ 40$ each. The first purchase was at $\$ 1.00$ per square foot; the second, $\$ 1.10$; and the third, $\$ 1.15$. What was the average weekly rate of increase in the price per square foot paid for the sheeting?

3-27 Lisa's Quick Stop has been attracting customers by selling milk at a price 2 percent below that of the main grocery store in town. Given below are Lisa's prices for a gallon of milk for a 2-month period. What was the average rate of change in price at Lisa's Quick Stop?

Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
$\$ 2.30$	$\$ 2.42$	$\$ 2.36$	$\$ 2.49$	$\$ 2.24$	$\$ 2.36$	$\$ 2.42$	$\$ 2.49$

3-28 Industrial Suppliers, Inc., keeps records on the cost of processing a purchase order. Over the last 5 years, this cost has been $\$ 55.00, \$ 58.00, \$ 61.00, \$ 65.00$, and $\$ 66.00$. What has Industrial's average percentage increase been over this period? If this average rate stays the same for 3 more years, what will it cost Industrial to process a purchase order at that time?
3-29 A sociologist has been studying the yearly changes in the number of convicts assigned to the largest correctional facility in the state. His data are expressed in terms of the percentage increase in the number of prisoners (a negative number indicates a percentage decrease). The sociologist's most recent data are as follows:

$\mathbf{1 9 9 1}$	$\mathbf{1 9 9 2}$	$\mathbf{1 9 9 3}$	$\mathbf{1 9 9 4}$	$\mathbf{1 9 9 5}$	$\mathbf{1 9 9 6}$
-4%	5%	10%	3%	6%	-5%

(a) Calculate the average percentage increase using only the 1992-1995 data.
(b) Rework part (a) using the data from all 6 years.
(c) A new penal code was passed in 1990. Previously, the prison population grew at a rate of about 2 percent per year, What seems to be the effect of the new code?

Worked-Out Answers to Self-Check Exercises

SC 3-5 G.M. $=\sqrt[7]{1.11(1.09)(1.075)(1.08)(1.095)(1.108)(1.12)}=\sqrt[7]{1.908769992}=1.09675$
The average increase is 9.675 percent per year. The estimate for bad debt expenses in 1997 is $(1.09675)^{2}-1=.2029$, i.e., 20.29 percent higher than in 1995.
SC 3-6 The monthly growth factors are $275 / 300=0.9167,250 / 275=0.9091,240 / 250=0.9600$, and $225 / 240=0.9375$, so
G.M. $=\sqrt[4]{0.9167(0.9091)(0.9600)(0.9375)}=\sqrt[4]{0.7500}=0.9306=1-0.0694$

The price has been decreasing at an average rate of 6.94 percent per month.

3.5 A FOURTH MEASURE OF CENTRAL TENDENCY: THE MEDIAN

The median is a measure of central tendency different from any of the means we have discussed so far. The median is a single

Median defined

 value from the data set that measures the central item in the data.This single item is the middlemost or most central item in the set of numbers. Half of the items lie above this point, and the other half lie below it.

Calculating the Median from Ungrouped Data

To find the median of a data set, first array the data in ascending or descending order. If the data set contains an odd number of items, the middle item of the array is the median. If there is an even number of items, the median is the average of the two middle items. In formal language, the median is

Finding the median of ungrouped data

Mumber of x values	
Median $=\left(\frac{n+1}{2}\right)$ th item in a data array	$[3-7]$

Suppose we wish to find the median of seven items in a data array. According to Equation 3-7, the median is the $(7+1) / 2=$ 4th item in the array. If we apply this to our previous example of the times for seven members of a track team, we discover that the fourth element in the array is 4.8 minutes. This is the median

An odd number of items

The median is not distorted by extreme values time for the track team. Notice that unlike the arithmetic mean we calculated earlier, the median we calculated in Table 3-10 was not distorted by the presence of the last value (9.0). This value could have been 15.0 or even 45.0 minutes, and the median would have been the same!

Now let's calculate the median for an array with an even number of items. Consider the data shown in Table 3-11 concerning

An even number of items

 the number of patients treated daily in the emergency room of a hospital. The data are arrayed in descending order. The median of this data set would be$$
\begin{align*}
\text { Median } & =\left(\frac{n+1}{2}\right) \text { th item in a data array } \tag{3-7}\\
& =\frac{8+1}{2} \\
& =4.5 \text { th item }
\end{align*}
$$

Because the median is the 4.5 th element in the array, we need to average the fourth and fifth elements. The fourth element in Table 3-11 is 43 and the fifth is 35 . The average of these two elements is equal to

TABLE 3-10 TIMES FOR TRACK-TEAM MEMBERS

ITEM IN DATA ARRAY	1	2	3	4	5	6	7
TIME IN MINUTES	4.2	4.3	4.7	4.8	5.0	5.1	9.0
				\uparrow			
				Median			

TABLE 3-11 PATIENTS TREATED IN EMERGENCY ROOM ON 8 CONSECUTIVE DAYS

ITEM IN DATA ARRAY	1	2	3	4	5	6	7	8
NUMBER OF PATIENTS	86	52	49	43	35	31	30	11
				Medi	of 3			

$(43+35) / 2$, or 39 . Therefore, 39 is the median number of patients treated in the emergency room per day during the 8 -day period.

Calculating the Median from Grouped Data

Often, we have access to data only after they have been grouped in a frequency distribution. For example, we do not know every observation that led to the construction of Table 3-12, the data

Finding the median of grouped data on 600 bank customers originally introduced earlier. Instead, we have 10 class intervals and a record of the frequencies with which the observations appear in each of the intervals.

Nevertheless, we can compute the median checkingaccount balance of these 600 customers by determining which

Locate the median class of the 10 class intervals contains the median. To do this, we must add the frequencies in the frequency column in Table 3-12 until we reach the $(n+1) / 2$ th item. Because there are 600 accounts, the value for $(n+1) / 2$ is 300.5 (the average of the 300th and 301st items). The problem is to find the class intervals containing the 300th and 301st elements. The cumulative frequency for the first two classes is only $78+123=201$. But when we moved to the third class interval, 187 elements are added to 201 , for a total of 388 . Therefore, the 300th and 301st observations must be located in this third class (the interval from $\$ 100.00$ to $\$ 149.99$).
The median class for this data set contains 187 items. If we assume that these 187 items begin at $\$ 100.00$ and are evenly spaced over the entire class interval from $\$ 100.00$ to $\$ 149.99$, then we can interpolate and find values for the 300th and 301st items. First, we determine that the 300th item is the

TABLE 3-12 AVERAGE MONTHLY BALANCES FOR 600 CUSTOMERS

Class in Dollars	Frequency
$0-49.99$	78
$50.00-99.99$	123
$100.00-149.99$	187 Median class
$150.00-199.99$	82
$200.00-249.99$	51
$250.00-299.99$	47
$300.00-349.99$	13
$350.00-399.99$	9
$400.00-449.99$	6
$450.00-499.99$	2
	$\mathbf{6 0 0}$

$$
300-201 \text { [items in the first two classes] }=99
$$

and that the 301st item is the 100th element in the median class:

$$
301-201=100
$$

Then we can calculate the width of the 187 equal steps from $\$ 100.00$ to $\$ 149.99$, as follows:

Now, if there are 187 steps of $\$ 0.267$ each and if 98 steps will take us to the 99th item, then the 99th item is

$$
(\$ 0.267 \times 98)+\$ 100=\$ 126.17
$$

and the 100th item is one additional step:

$$
\$ 126.17+\$ 0.267=\$ 126.44
$$

Therefore, we can use $\$ 126.17$ and $\$ 126.44$ as the values of the 300th and 301 st items, respectively.
The actual median for this data set is the value of the 300.5 th item, that is, the average of the 300th and 301st items. This average is

$$
\frac{\$ 126.17+\$ 126.44}{2}=\$ 126.30
$$

This figure (\$126.30) is the median monthly checking account balance, as estimated from the grouped data in Table 3-12.

In summary, we can calculate the median of grouped data as follows:

1. Use Equation 3-7 to determine which element in the distribution is center-most (in this case, the average of the 300th and 301st items).
2. Add the frequencies in each class to find the class that contains that center-most element (the third class, or \$100.00-\$149.99).
3. Determine the number of elements in the class (187) and the location in the class of the median element (item 300 was the 99th element; item 301, the 100th element).
4. Learn the width of each step in the median class by dividing the class interval by the number of elements in the class (width $=\$ 0.267$).
5. Determine the number of steps from the lower bound of the median class to the appropriate item for the median (98 steps for the 99th element; 99 steps for the 100th element).
6. Calculate the estimated value of the median element by multiplying the number of steps to the median element times the width of each step and by adding the result to the lower bound of the median class $(\$ 100+98 \times \$ 0.267=\$ 126.17 ; \$ 126.17+\$ 0.267=\$ 126.44)$.
7. If, as in our example, there is an even number of elements in the distribution, average the values of the median element calculated in step 6 (\$126.30).

To shorten this procedure, statisticians use an equation to determine the median of grouped data. For a sample, this equation

An easier method would be

Sample Median of Grouped Data

$$
\begin{equation*}
\tilde{m}=\left(\frac{(n+1) / 2-(F+1)}{f_{m}}\right) w+L_{m} \tag{3-8}
\end{equation*}
$$

where

- $\tilde{m}=$ sample median
- $n=$ total number of items in the distribution
- $F=$ sum of all the class frequencies $u p$ to, but not including, the median class
- $f_{m}=$ frequency of the median class
- $w=$ class-interval width
- $L_{m}=$ lower limit of the median-class interval

If we use Equation 3-8 to compute the median of our sample of checking-account balances, then $n=600, F=201, f_{m}=187, w=\$ 50$, and $L_{m}=\$ 100$.

$$
\begin{align*}
\tilde{m} & =\left(\frac{(n+1) / 2-(F+1)}{f_{m}}\right) w+L_{m} \tag{3-8}\\
& =\left(\frac{601 / 2-202}{187}\right) \$ 50+\$ 100 \\
& =\left(\frac{98.5}{187}\right) \$ 50+\$ 100 \\
& =(0.527)(\$ 50)+\$ 100 \\
& =\$ 126.35 \leftarrow \text { Estimated sample median }
\end{align*}
$$

The slight difference between this answer and our answer calculated the long way is due to rounding.

Advantages and Disadvantages of the Median

The median has several advantages over the mean. The most

Advantages of the median

 important, demonstrated in our track-team example in Table 3-10, is that extreme values do not affect the median as strongly as they do the mean. The median is easy to understand and can be calculated from any kind of data-even for grouped data with open-ended classes such as the frequency distribution in Table 3-7-unless the median falls in an open-ended class.We can find the median even when our data are qualitative descriptions such as color or sharpness, rather than numbers. Suppose, for example, we have five runs of a printing press, the results from which must be rated according to sharpness of the image. We can array the results from best to worst: extremely
sharp, very sharp, sharp, slightly blurred, and very blurred. The median of the five ratings is the $(5+1) / 2$, or the third rating (sharp).

The median has some disadvantages as well. Certain statisti- Disadvantages of the median cal procedures that use the median are more complex than those that use the mean. Also, because the median is the value at the average position, we must array the data before we can perform any calculations. This is time consuming for any data set with a large number of elements. Therefore, if we want to use a sample statistic as an estimate of a population parameter, the mean is easier to use than the median. Chapter 7 will discuss estimation in detail.

HINTS \& ASSUMPTIONS

In using the median, there is good news and bad news. The good news is that it is fairly quick to calculate and it avoids the effect of very large and very small values. The bad news is that you do give up some accuracy by choosing a single value to represent a distribution. With the values 2 , $4,5,40,100,213$, and 347 , the median is 40 , which has no apparent relationship to any of the other values in the distribution. Warning: Before you do any calculating, take a commonsense look at the data themselves. If the distribution looks unusual, just about anything you calculate from it will have shortcomings.

EXERCISES 3.5

Self-Check

SC 3-7 Swifty Markets compares prices charged for identical items in all of its food stores. Here are the prices charged by each store for a pound of bacon last week:

$$
\begin{array}{llllllllll}
\$ 1.08 & 0.98 & 1.09 & 1.24 & 1.33 & 1.14 & 1.55 & 1.08 & 1.22 & 1.05
\end{array}
$$

(a) Calculate the median price per pound.
(b) Calculate the mean price per pound.
(c) Which value is the better measure of the central tendency of these data?

SC 3-8 For the following frequency distribution, determine
(a) The median class.
(b) The number of the item that represents the median.
(c) The width of the equal steps in the median class.
(d) The estimated value of the median for these data.

Class	Frequency
$100-149.5$	12
$150-199.5$	14
$200-249.5$	27
$250-299.5$	58

Class	Frequency
$300-349.5$	72
$350-399.5$	63
$400-449.5$	36
$450-499.5$	18

Applications

3-30 Meridian Trucking maintains mileage records on all of its rolling equipment. Here are weekly mileage records for its trucks.

810	450	756	789	210	657	589	488	876	689
1,450	560	469	890	987	559	788	943	447	775

(a) Calculate the median miles a truck traveled.
(b) Calculate the mean for the 20 trucks.
(c) Compare parts (a) and (b) and explain which one is a better measure of the central tendency of the data.
3-31 The North Carolina Consumers' Bureau has conducted a survey of cable television providers in the state. Here are the number of channels they offer in basic service:

32	28	31	15	25	14	12	29	22	28	29	32	33	24	26	8	35

(a) Calculate the median number of channels provided.
(b) Calculate the mean number of channels provided.
(c) Which value is the better measure of the central tendency of these data?

3-32 For the following frequency distribution,
(a) Which number item represents the median?
(b) Which class contains the median?
(c) What is the width of the equal steps in the median class?
(d) What is the estimated value of the median for these data?
(e) Use Equation 3-8 to estimate the median for the data. Are your two estimates close to one another?

Class	Frequency
$10-19.5$	8
$20-29.5$	15
$30-39.5$	23
$40-49.5$	37
$50-59.5$	46

Class	Frequency
$60-69.5$	52
$70-79.5$	84
$80-89.5$	97
$90-99.5$	16
100 or over	5

3-33 The following data represent weights of gamefish caught on the charter boat Slickdrifter:

Class	Frequency
$0-24.9$	5
$25-49.9$	13
$50-74.9$	16
$75-99.9$	8
$100-124.9$	6

(a) Use Equation 3-8 to estimate the median weight of the fish caught.
(b) Use Equation 3-3 to compute the mean for these data.
(c) Compare parts (a) and (b) and comment on which is the better measure of the central tendency of these data.
3-34 The Chicago Transit Authority thinks that excessive speed on its buses increases maintenance cost. It believes that a reasonable median time from O'Hare Airport to John Hancock Center is about 30 minutes. From the following sample data (in minutes) can you help them determine whether the buses have been driven at excessive speeds? If you conclude from these data that they have, what explanation might you get from the bus drivers?

17	32	21	22
29	19	29	34
33	22	28	33
52	29	43	39
44	34	30	41

3-35 Mark Merritt, manager of Quality Upholstery Company, is researching the amount of material used in the firm's upholstery jobs. The amount varies between jobs, owing to different furniture styles and sizes. Merritt gathers the following data (in yards) from the jobs completed last week. Calculate the median yardage used on a job last week.

$51 / 4$	$61 / 4$	6	$77 / 8$	$91 / 4$	$91 / 2$	$101 / 2$
$53 / 8$	6	$61 / 4$	8	$91 / 2$	$97 / 8$	$10^{1 / 4}$
$51 / 2$	$57 / 8$	$61 / 2$	$81 / 4$	$93 / 8$	$10^{1 / 4}$	$10^{1 / 8}$
$57 / 8$	$53 / 4$	7	$81 / 2$	$91 / 8$	$101 / 2$	$10^{1 / 8}$
6	$57 / 8$	$71 / 2$	9	$91 / 4$	$97 / 8$	10

If there are 150 jobs scheduled in the next 3 weeks, use the median to predict how many yards of material will be required.
3-36 If insurance claims for automobile accidents follow the distribution given, determine the median using the method outlined on page 94 . Verify that you get the same answer using Equation 3-8.

Amount of Claim (\$)	Frequency			Amount of Claim (\$)
	less than 250	52		Frequency
$250-499.99$	337			$750-999.99$
$500-749.99$	1,066			1,776
				1,492

3-37 A researcher obtained the following answers to a statement on an evaluation survey: strongly disagree, disagree, mildly disagree, agree somewhat, agree, strongly agree. Of the six answers, which is the median?

Worked-Out Answers to Self-Check Exercises

SC 3-7 We first arrange the prices in ascending order:

0.98	1.05	1.08	1.08	1.09	1.14	1.22	1.24	1.33	1.55

(a) Median $=\frac{1.09+1.14}{2}=\$ 1.115$, the average of items 5 and 6
(b) $\bar{x}=\frac{\sum x}{n}=\frac{11.76}{10}=\$ 1.176$
(c) Because the data are skewed slightly, the median might be a bit better than the mean, but there really isn't very much difference.

SC 3-8

Class	Frequency	Cumulative Frequency
$100-149.5$	12	12
$150-199.5$	14	26
$200-249.5$	27	53
$250-299.5$	58	111
$300-349.5$	72	183
$350-399.5$	63	246
$400-449.5$	36	282
$450-499.5$	18	300

(a) Median class $=300-349.5$
(b) Average of 150th and 151st
(c) Step width $=50 / 72=.6944$
(d) $300+38(0.6944)=326.3872(150$ th $)$
$300+39(0.6944)=\frac{327.0816}{653.4688}(151 \mathrm{st})$
Median $=\frac{653.4688}{2}=326.7344$

3.6 A FINAL MEASURE OF CENTRAL TENDENCY: THE MODE

The mode is a measure of central tendency that is different from Mode defined the mean but somewhat like the median because it is not actually calculated by the ordinary processes of arithmetic. The mode is the value that is repeated most often in the data set.

As in every other aspect of life, chance can play a role in the Risks in using the mode of arrangement of data. Sometimes chance causes a single unrepresentative item to be repeated often enough to be the most freungrouped data quent value in the data set. For this reason, we rarely use the mode of ungrouped data as a measure of central tendency. Table 3-13, for example, shows the number of delivery trips per day made by a Redi-mix concrete plant. The modal value is 15 because it occurs more often than any other value (three times). A mode of 15 implies that the plant activity is higher than 6.7 (6.7 is the answer we'd get if we calculated the mean). The mode tells us that 15 is the most frequent number of trips, but it fails to let us know that most of the values are under 10 .

TABLE 3-13 DELIVERY TRIPS PER DAY IN ONE 20-DAY PERIOD

Trips Arrayed in Ascending Order				
0	2	5	7	15
0	2	5	7	15
1	4	6	8	15
1	4	6	12	19

TABLE 3-14 FREQUENCY DISTRIBUTION OF DELIVERY TRIPS

CLASS IN				
NUMBER OF TRIPS	0-3	4-7	8-11	12 and more
FREQUENCY	6	8	1	5
		\uparrow		
Modal class				

Now let's group these data into a frequency distribution, as we have done in Table 3-14. If we select the class with the most observations, which we can call the modal class, we would

Finding the modal class of grouped data choose $4-7$ trips. This class is more representative of the activity of the plant than is the mode of 15 trips per day. For this reason, whenever we use the mode as a measure of the central tendency of a data set, we should calculate the mode from grouped data.

Calculating the Mode from Grouped Data

When data are already grouped in a frequency distribution, we must assume that the mode is located in the class with the most items, that is, the class with the highest frequency. To determine a single value for the mode from this modal class, we use Equation 3-9:

Mode	
$M o=L_{M o}+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) w$	$[3-9]$

where

- $\mathrm{L}_{M o}=$ lower limit of the modal class
- $d_{1}=$ frequency of the modal class minus the frequency of the class directly below it
- $d_{2}=$ frequency of the modal class minus the frequency of the class directly above it
- $w=$ width of the modal class interval

If we use Equation 3-9 to compute the mode of our checking-account balances (see Table 3-12), then $L_{M o}=\$ 100, d_{1}=187-123=64, d_{2}=187-82=105$, and $w=\$ 50$.

$$
\begin{align*}
M o & =L_{M o}+\left(\frac{d_{1}}{d_{1}+d_{2}}\right) w \tag{3-9}\\
& =\$ 100+\frac{64}{64+105} \$ 50 \\
& =\$ 100+(0.38)(\$ 50) \\
& =\$ 100+\$ 19 \\
& =\$ 119.00 \leftarrow \text { Mode }
\end{align*}
$$

Our answer of $\$ 119$ is the estimate of the mode.

Multimodal Distributions

What happens when we have two different values that each Bimodal distributions appear the greatest number of times of any values in the data set?
Table 3-15 shows the billing errors for one 20-day period in a hospital office. Notice that both 1 and 4 appear the greatest number of times in the data set. They each appear three times. This distribution, then, has two modes and is called a bimodal distribution.

In Figure 3-6, we have graphed the data in Table 3-15. Notice that there are two highest points on the graph. They occur at the values of 1 and 4 billing errors. The distribution in Figure 3-7 is also called bimodal, even though the two highest points are not equal. Clearly, these points are higher than the neighboring values in the frequency with which they are observed.

TABLE 3-15 BILLING ERRORS PER DAY IN 20-DAY PERIOD

\left.| Errors Arrayed in Ascending Order | | | |
| :--- | :---: | :---: | :---: |
| 0 | 2 | 6 | 9 |
| 0 | 4 | | |
| 1 | | | |
| 1 | | | |
| 1 | | | |$\right\} \leftarrow \leftarrow$ Mode \(\left.\begin{array}{l}4

\hline\end{array}\right\} \leftarrow\) Mode | 9 |
| :---: |
| 7 |

Advantages and Disadvantages of the Mode

The mode, like the median, can be used as a central location for qualitative as well as quantitative data. If a printing press

Advantages of the mode

 turns out five impressions, which we rate "very sharp," "sharp," "sharp," "sharp," and "blurred," then the modal value is "sharp." Similarly, we can talk about modal styles when, for example, furniture customers prefer Early American furniture to other styles.Also like the median, the mode is not unduly affected by extreme values. Even if the high values are very high and the low values very low, we choose the most frequent value of the data set to be the modal value. We can use the mode no matter how large, how small, or how spread out the values in the data set happen to be.

A third advantage of the mode is that we can use it even when one or more of the classes are open ended. Notice, for example, that Table 3-14 contains the open-ended class " 12 trips and more."

Despite these advantages, the mode is not used as often to measure central tendency as are the mean and median. Too often,

Disadvantages of the mode there is no modal value because the data set contains no values

FIGURE 3-6 DATA IN TABLE 3-15 SHOWING THE BIMODAL DISTRIBUTION

FIGURE 3-7 BIMODAL DISTRIBUTION WITH TWO UNEQUAL MODES
that occur more than once. Other times, every value is the mode, because every value occurs the same number of times. Clearly, the mode is a useless measure in these cases. Another disadvantage is that when data sets contain two, three, or many modes, they are difficult to interpret and compare.

Comparing the Mean, Median, and Mode

When we work statistical problems, we must decide whether to use the mean, the median, or the mode as the measure of central tendency. Symmetrical distributions that contain only one mode always have the same value for the mean, the median, and the

Mean, median, and mode are identical in a symmetrical distribution mode. In these cases, we need not choose the measure of central tendency because the choice has been made for us.

In a positively skewed distribution (one skewed to the right), as illustrated in Figure 3-8(a), the mode is at the highest point of the distribution, the median is to the right of that, and the mean is to the right of both the median and mode.

In a negatively skewed distribution (one skewed to the left), as illustrated in Figure 3-8(b), the mode is still at the highest point of the distribution, the median is to the left of that, and the mean is to the left of both the median and mode.

FIGURE 3-8 POSITIVELY (A) AND NEGATIVELY (B) SKEWED DISTRIBUTIONS, ILLUSTRATING RELATIVE POSITIONS OF MEAN, MEDIAN, AND MODE.

When the population is skewed negatively or positively, the median is often the best measure of location because it is always between the mean and the mode. The median is not as highly influenced by the frequency of occurrence of a single value as is the mode, nor is it pulled by extreme values as is the mean.

Otherwise, there are no universal guidelines for applying the mean, median, or mode as the measure of central tendency for different populations. Each case must be judged independently, according to the guidelines we have discussed.

HINTS \& ASSUMPTIONS

Hint: In trying to decide on the uses of the various means, the median, and the mode, think about practical situations in which each of them would make more sense. If you are averaging a small group of factory wages fairly near each other, the arithmetic mean is very accurate and fast. If there are 500 new houses in a development all within $\$ 10,000$ of each other in value, then the median is much quicker and quite accurate too. Dealing with the cumulative effects of inflation or interest requires the geometric mean if you want accuracy. A common-sense example: Although it's true that the average family has 1.65 children, automobile designers will make better decisions by using the modal value of 2.0 kids.

EXERCISES 3.6

Self-Check Exercises

SC 3-9 Here are the ages in years of the cars worked on by the Village Autohaus last week:

5	6	3	6	11	7	9	10	2	4	10	6	2	1	5

(a) Compute the mode for this data set.
(b) Compute the mean of the data set.
(c) Compare parts (a) and (b) and comment on which is the better measure of the central tendency of the data.
SC 3-10 The ages of a sample of the students attending Sandhills Community College this semester are:

19	17	15	20	23	41	33	21	18	20
18	33	32	29	24	19	18	20	17	22
55	19	22	25	28	30	44	19	20	39

(a) Construct a frequency distribution with intervals 15-19, 20-24, 25-29, 30-34, and 35 and older.
(b) Estimate the modal value using Equation 3-9.
(c) Now compute the mean of the raw data.
(d) Compare your answers in parts (b) and (c) and comment on which of the two is the better measure of the central tendency of these data and why.

Applications

3-38 A librarian polled 20 different people as they left the library and asked them how many books they checked out. Here are the responses:

$$
\begin{array}{llllllllllllllllllll}
1 & 0 & 2 & 2 & 3 & 4 & 2 & 1 & 2 & 0 & 2 & 2 & 3 & 1 & 0 & 7 & 3 & 5 & 4 & 2
\end{array}
$$

(a) Compute the mode for this data set.
(b) Compute the mean for this data set.
(c) Graph the data by plotting frequency versus number checked out. Is the mean or the mode a better measure of the central tendency of the data?
3-39 The ages of residents of Twin Lakes Retirement Village have this frequency distribution:

Class	Frequency
$47-51.9$	4
$52-56.9$	9
$57-61.9$	13
$62-66.9$	42
$67-71.9$	39
$72-76.9$	20
$77-81.9$	9

Estimate the modal value of the distribution using Equation 3-9.
3-40 What are the modal values for the following distributions?

(a) Hair Color	Black	Brunette	Redhead	Blonde			
Frequency	11	24	6	18			
(b) Blood Type	AB	O	A	B			
Frequency	4	12	35	16			
(c) Day of Birth	Mon.	Tues.	Wed.	Thurs.	Fri.	Sat.	Sun.
Frequency	22	10	32	17	13	32	14

3-41 The numbers of apartments in 27 apartment complexes in Cary, North Carolina, are given below.

91	79	66	98	127	139	154	147	192
88	97	92	87	142	127	184	145	162
95	89	86	98	145	129	149	158	241

(a) Construct a frequency distribution using intervals 66-87, 88-109,..., 220-241.
(b) Estimate the modal value using Equation 3-9.
(c) Compute the mean of the raw data.
(d) Compare your, answers in parts (b) and (c) and comment on which of the two is the better measure of central tendency of these data and why.
3-42 Estimate the mode for the distribution given in Exercise 3-36.

3-43 The number of solar heating systems available to the public is quite large, and their heatstorage capacities are quite vaired. Here is a distribution of heat-storage capacity (in days) of 28 systems that were tested recently by University Laboratories, Inc.:

Days	Frequency
$0-0.99$	2
$1-1.99$	4
$2-2.99$	6
$3-3.99$	7
$4-4.99$	5
$5-5.99$	3
$6-6.99$	1

University Laboratories, Inc., knows that its report on the tests will be widely circulated and used as the basis for tax legislation on solar-heat allowances. It therefore wants the measures it uses to be as reflective of the data as possible.
(a) Compute the mean for these data.
(b) Compute the mode for these data.
(c) Compute the median for these data.
(d) Select the answer among parts (a), (b), and (c) that best reflects the central tendency of the test data and justify your choice.
3-44 Ed Grant is the director of the Student Financial Aid Office at Wilderness College. He has used available data on the summer earnings of all students who have applied to his office for financial aid to develop the following frequency distribution:

Summer Earnings	Number of Students
$\$ \quad 0-499$	231
$500-999$	304
$1,000-1,499$	400
$1,500-1,999$	296
$2,000-2,499$	123
$2,500-2,999$	68
3,000 or more	23

(a) Find the modal class for Ed's data.
(b) Use Equation 3-9 to find the mode for Ed's data.
(c) If student aid is restricted to those whose summer earnings were at least 10 percent lower than the modal summer earnings, how many of the applicants qualify?

Worked-Out Answers to Self-Check Exercises

SC 3-9 (a) Mode $=6$
(b) $\bar{x}=\frac{\Sigma x}{n}=\frac{87}{15}=5.8$
(c) Because the modal frequency is only 3 and because the data are reasonably symmetric, the mean is the better measure of central tendency.

SC 3-10	(a) Class	$15-19$	$20-24$	$25-29$	$30-34$
Frequency	10	9	3	4	4

(b) $M o=L_{M o}+\frac{d_{1}}{d_{1}+d_{2}} w=15+\left(\frac{10}{10+1}\right) 5=19.55$
(c) $\bar{x}=\frac{\Sigma x}{n}=\frac{760}{30}=25.33$
(d) Because this distribution is very skewed, the mode is a better measure of central tendency.

3.7 DISPERSION: WHY IT IS IMPORTANT

Early in this chapter, in Figure 3-2, we illustrated two sets of data with the same central location but with one more spread out than the other. This is true of the three distributions in Figure 3-9. The

Need to measure dispersion or variability mean of all three curves is the same, but curve A has less spread (or variability) than curve B , and curve B has less variability than curve C . If we measure only the mean of these three distributions, we will miss an important difference among the three curves. Likewise for any data, the mean, the median, and the mode tell us only part of what we need to know about the characteristics of the data. To increase our understanding of the pattern of the data, we must also measure its dispersion-its spread, or variability.

Why is the dispersion of the distribution such an important Uses of dispersion measures characteristic to understand and measure? First, it gives us additional information that enables us to judge the reliability of our measure of the central tendency. If data are widely dispersed, such as those in curve C in Figure 3-9, the central location is less representative of the data as a whole than it would be for data more closely centered around the mean, as in curve A. Second, because there are problems peculiar to widely dispersed data, we must be able to recognize that data are widely dispersed before we can tackle those problems. Third, we may wish to compare dispersions of various samples. If a wide spread of values away from the center is undesirable or presents an unacceptable risk, we need to be able to recognize and avoid choosing the distributions with the greatest dispersion.

FIGURE 3-9 THREE CURVES WITH THE SAME MEAN BUT DIFFERENT VARIABILITIES

112

Financial analysts are concerned about the dispersion of a firm's earnings. Widely dispersed earnings-those varying from extremely high to low or even negative levels-indicate a higher risk to stockholders and creditors than do earnings remaining relatively stable. Similarly, quality control experts analyze the dispersion of a product's quality levels. A drug that is average in purity but ranges from very pure to highly impure may endanger lives.

HINTS \& ASSUMPTIONS

Airline seat manufacturers make an assumption about the shape of the average flyer. In some coach sections, it's common to find seat widths of only 19 ". If you weigh 250 pounds and wear a size 22 dress, sitting in a $19^{\prime \prime}$ seat is like putting on a tight shoe. It's O.K. to make this assumption for an airliner, but ignoring the dispersion (or spread) of the data gets you in trouble in football. A team that averages 3.6 yards per play should theoretically win every game because 3.6×4 plays is more than the 10 yards necessary to retain possession. Alas, bad luck comes to us all, and the theoretically unbeatable average of 3.6 yards is affected by the occasional 20-yard loss. Warning: Don't put too much stock in averages unless you know that the dispersion is small. A recruiter for the U.S. Air Force looking for pilot trainees who average 6' tall would get fired if he showed up with one who was 4 ' and another who was 8 '. Under "reason for termination" on his personnel file, it should say "disregarded dispersion."

EXERCISES 3.7

Basic Concepts

3-45 For which of the following distributions is the mean more representative of the data as a whole? Why?

3-46 Which of the following is not a valid reason for measuring the dispersion of a distribution?
(a) It provides an indication of the reliability of the statistic used to measure central tendency.
(b) It enables us to compare several samples with similar averages.
(c) It uses more data in describing a distribution.
(d) It draws attention to problems associated with very small or very large variability in distributions.

Applications

3-47 To measure scholastic achievement, educators need to test students' levels of knowledge and ability. Taking students' individual differences into account, teachers can plan their curricula better. The curves that follow represent distributions based on previous scores of two different tests. Which would you select as the better for the teachers' purpose?

3-48 A firm using two different methods to ship orders to its customers found the following distributions of delivery time for the two methods, based on past records. From available evidence, which shipment method would you recommend?

(a)

(b)

3-49 Of the 3 curves shown in Figure 3-9, choose one that would best describe the distribution of values for the ages of the following groups: members of Congress, newly elected members of the House of Representatives, and the chairpersons of major congressional committees. In making your choices, disregard the common mean of the curves in Figure 3-9 and consider only the variability of the distributions. Briefly state your reasons for your choices.
3-50 How do you think the concept of variability might apply to an investigation that the Federal Trade Commission (FTC) is conducting into possible price fixing by a group of manufacturers?
3-51 Choose which of the three curves shown in Figure 3-9 best describes the distribution of the following characteristics of various groups. Make your choices only on the basis of the variability of the distributions. Briefly state a reason for each choice.
(a) The number of points scored by each player in a professional basketball league during an 80-game season.
(b) The salary of each of 100 people working at roughly equivalent jobs in the federal government.
(c) The grade-point average of each of the 15,000 students at a major state university.
(d) The salary of each of 100 people working at roughly equivalent jobs in a private corporation.
(e) The grade-point average of each student at a major state university who has been accepted for graduate school.
(f) The percentage of shots made by each player in a professional basketball league during an 80-game season.

3.8 RANGES: USEFUL MEASURES OF DISPERSION

Dispersion may be measured in terms of the difference between two values selected from the data set. In this section, we shall study three of these so-called distance measures: the range, the interfractile range, and the interquartile range.

Range

The range is the difference between the highest and lowest observed values. In equation form, we can say

Three distance measures

Defining and computing the range

TABLE 3-16 ANNUAL PAYMENTS FROM BLUE CROSS-BLUE SHIELD (000S OMITTED)

CUMBERLAND	863	903	957	1,041	1,138	1,204
	1,354	1,624	1,698	1,745	1,802	1,883
VALLEY FALLS	490	540	560	570	590	600
	610	620	630	660	670	690

Range		
Range $=$value of highest observation	value of lowest observation	$[3-10]$

Using this equation, we compare the ranges of annual payments from Blue Cross-Blue Shield received by the two hospitals illustrated in Table 3-16.

The range of annual payments to Cumberland is $\$ 1,883,000-\$ 863,000=\$ 1,020,000$. For Valley Falls, the range is $\$ 690,000-\$ 490,000=\$ 200,000$.

The range is easy to understand and to find, but its useful-

Characteristics of the range

 ness as a measure of dispersion is limited. The range considers only the highest and lowest values of a distribution and fails to take account of any other observation in the data set. As a result, it ignores the nature of the variation among all the other observations, and it is heavily influenced by extreme values. Because it measures only two values, the range is likely to change drastically from one sample to the next in a given population, even though the values that fall between the highest and lowest values may be quite similar. Keep in mind, too, that open-ended distributions have no range because no "highest" or "lowest" value exists in the open-ended class.
Interfractile Range

In a frequency distribution, a given fraction or proportion of the data lie at or below a fractile. The median, for example, is the 0.5 fractile, because half the data set is less than or equal to this value. You will notice that fractiles are similar to percentages. In any distribution, 25 percent of the data lie at or below the 0.25 fractile; likewise, 25 percent of the data lie at or below the 25 th percentile. The interfractile range is a measure of the spread between two fractiles in a frequency distribution, that is, the difference between the values of the two fractiles.

Suppose we wish to find the interfractile range between the first and second thirds of Cumberland's receipts from Blue Cross-Blue Shield. We begin by dividing the observations into

Fractiles

Meaning of the interfractile range

Calculating the interfractile range

 thirds, as we have done in Table 3-17. Each third contains four items ($1 / 3$ of the total of 12 items). Therefore, $331 / 3$ percent of the items lie at $\$ 1,041,000$ or below it, and $662 / 3$ percent are less than or equal to $\$ 1,624,000$. Now we can calculate the interfractile range between the $1 / 3$ and $2 / 3$ fractiles by subtracting the value $\$ 1,041,000$ from the value $\$ 1,624,000$. ThisTABLE 3-17 BLUE CROSS-BLUE SHIELD ANNUAL PAYMENTS TO CUMBERLAND HOSPITAL (OOOS OMITTED)

First Third	Second Third	Last Third
863	1,138	1,698
903	1,204	1,745
957	1,354	1,802
$1,041 \leftarrow 1 / 3$ fractile	$1,624 \leftarrow 2 / 3$ fractile	1,883

difference of $\$ 583,000$ is the spread between the top of the first third of the payments and the top of the second third.

Fractiles have special names, depending on the number of equal parts into which they divide the data. Fractiles that divide the data into 10 equal parts are called deciles. Quartiles divide the data into four equal parts. Percentiles divide the data into 100 equal parts.

Interquartile Range

The interquartile range measures approximately how far from the median we must go on either side before we can include one-half the values of the data set. To compute this range, we

Special fractiles: deciles, quartiles, and percentiles divide our data into four parts, each of which contains 25 percent of the items in the distribution. The quartiles are then the highest values in each of these four parts, and the interquartile range is the difference between the values of the first and third quartiles:

Interquartile Range	
Interquartile range $=Q_{3}-Q_{1}$	$[3-11]$

Figure 3-10 shows the concept of the interquartile range graphically. Notice in that figure that the widths of the four quartiles need not be the same.

In Figure 3-11, another illustration of quartiles, the quartiles divide the area under the distribution into four equal parts, each containing 25 percent of the area.

FIGURE 3-10 INTERQUARTILE RANGE

FIGURE 3-11 QUARTILES

HINTS \& ASSUMPTIONS

Fractile is a term used more by statisticians than by the rest of us, who are more familiar with 100 fractiles, or percentiles, especially when our percentile score on the SAT, the GMAT, or the LSAT is involved. When we get that letter indicating that our percentile score was 35 , we know that 35 percent of those taking the test did worse than we did. The meaning of the range is easier to understand especially when the professor publishes the highest and lowest scores on the next statistics test. Hint: All of these terms help us deal with dispersion in data. If all the values look pretty much alike, then spending time computing dispersion values may not add much. If the data really spread out, betting your job on the average without considering dispersion is risky!

EXERCISES 3.8

Self-Check Exercises

SC3-11 Here are student scores on a history quiz. Find the 80th percentile.

95	81	59	68	100	92	75	67	85	79
71	88	100	94	87	65	93	72	83	91

SC 3-12 The Casual Life Insurance Company is considering purchasing a new fleet of company cars. The financial department's director, Tom Dawkins, sampled 40 employees to determine the number of miles each drove over a 1-year period. The results of the study follow. Calculate the range and interquartile range.

3,600	4,200	4,700	4,900	5,300	5,700	6,700	7,300
7,700	8,100	8,300	8,400	8,700	8,700	8,900	9,300
9,500	9,500	9,700	10,000	10,300	10,500	10,700	10,800
11,000	11,300	11,300	11,800	12,100	12,700	12,900	13,100
13,500	13,800	14,600	14,900	16,300	17,200	18,500	20,300

Basic Concepts

3-52 For the following data, compute the interquartile range.

99	75	84	61	33	45	66	97	69	55
72	91	74	93	54	76	52	91	77	68

3-53 For the sample that follows, compute the
(a) Range.
(b) Interfractile range between the 20th and 80th percentiles.
(c) Interquartile range.

2,549	3,897	3,661	2,697	2,200	3,812	2,228	3,891	2,668	2,268
3,692	2,145	2,653	3,249	2,841	3,469	3,268	2,598	3,842	3,362

Applications

3-54 Here are the high temperature readings during June 1995 in Phoenix, Arizona. Find the 70th percentile.

84	86	78	69	94	95	94	98	89	87	88	89	92	99	102
94	92	96	89	88	87	88	84	82	88	94	97	99	102	105

3-55 These are the total fares (in dollars) collected Tuesday by the 20 taxis belonging to City Transit, Ltd.

147	95	93	127	143	101	123	83	135	129
185	92	115	126	157	93	133	51	125	132

Compute the range of these data and comment on whether you think it is a useful measure of dispersion.
3-56 Redi-Mix Incorporated kept the following record of time (to the nearest 100th of a minute) its truck waited at the job to unload. Calculate the range and the interquartile range.

0.10	0.45	0.50	0.32	0.89	1.20	0.53	0.67	0.58	0.48
0.23	0.77	0.12	0.66	0.59	0.95	1.10	0.83	0.69	0.51

3-57 Warlington Appliances has developed a new combination blender-crock-pot. In a marketing demonstration, a price survey determined that most of those sampled would be willing to pay around $\$ 60$, with a surprisingly small interquartile range of $\$ 14.00$. In an attempt to replicate the results, the demonstration and accompanying survey were repeated. The marketing department hoped to find an even smaller interquartile range. The data follow. Was its hope realized?

52	35	48	46	43	40	61	49	57	58	65	46
72	69	38	37	55	52	50	31	41	60	45	41
55	38	51	49	46	43	64	52	60	61	68	49
69	66	35	34	52	49	47	28	38	57	42	38

118 Statistics for Management

3-58 MacroSwift has decided to develop a new software program designed for CEOs and other high-level executives. MacroSwift did not want to develop a program that required too much hard-drive space, so they polled 36 executives to determine the amount of available space on their PCs. The results are given below in megabytes.

6.3	6.7	7.9	8.4	9.7	10.6	12.4	19.4	29.1	42.6
59.8	97.6	100.4	120.6	135.5	148.6	178.6	200.1	229.6	284.6
305.6	315.6	325.9	347.5	358.6	397.8	405.6	415.9	427.8	428.6
439.5	440.9	472.3	475.9	477.2	502.6				

Calculate the range and interquartile range.
3-59 The New Mexico State Highway Department is charged with maintaining all state roads in good condition. One measure of condition is the number of cracks present in each 100 feet of roadway. From the department's yearly sample, the following data were obtained:

4	7	8	9	9	10	11	12	12	13
13	13	13	14	14	14	15	15	16	16
16	16	16	17	17	17	18	18	19	19

Calculate the interfractile ranges between the 20th, 40th, 60th, and 80th percentiles.
3-60 Ted Nichol is a statistical analyst who reports directly to the highest levels of management at Research Incorporated. He helped design the company slogan: "If you can't find the answer, then RESEARCH!" Ted has just received some disturbing data: the monthly dollar volume of research contracts that the company has won for the past year. Ideally, these monthly numbers should be fairly stable because too much fluctuation in the amount of work to be done can result in an inordinate amount of hiring and firing of employees. Ted's data (in thousands of dollars) follow:

253	104	633	57	500	201
43	380	467	162	220	302

Calculate the following:
(a) The interfractile range between the second and eighth deciles.
(b) The median, $Q_{1,}$ and Q_{3}.
(c) The interquartile range.

Worked-Out Answers to Self-Check Exercises

SC 3-11 First we arrange the data in increasing order:

59	65	67	68	71	72	75	79	81	83
85	87	88	91	92	93	94	95	100	100

The 16th of these (or 93) is the 80th percentile.
SC 3-12 Range $=20,300-3,600=16,700$ miles
Interquartile range $=Q_{3}-Q_{1}=12,700-8,100=4,600$ miles

3.9 DISPERSION: AVERAGE DEVIATION MEASURES

The most comprehensive descriptions of dispersion are those that deal with the average deviation from some measure of central tendency. Two of these measures are important to our study of statistics: the variance and the standard deviation. Both of these tell us an average distance of any observation in the data set from the mean of the distribution.

Population Variance

Every population has a variance, which is symbolized by σ^{2} (sigma squared). To calculate the population variance, we divide

Variance

Two measures of average deviation

he mean of the distribution. the sum of the squared distances between the mean and each item in the population by the total number of items in the population. By squaring each distance, we make each number positive and, at the same time, assign more weight to the larger deviations (deviation is the distance between the mean and a value).

The formula for calculating the variance is

Formula for the variance of a population

$$
\begin{array}{r}
\quad \text { Population Variance } \\
\sigma^{2}=\frac{\Sigma(x-\mu)^{2}}{N}=\frac{\Sigma x^{2}}{N}-\mu^{2} \tag{3-12}
\end{array}
$$

where

- $\sigma^{2}=$ population variance
- $x=$ item or observation
- $\mu=$ population mean
- $N=$ total number of items in the population
- $\Sigma=$ sum of all the values $(x-\mu)^{2}$ or all the values x^{2}

In Equation 3-12, the middle expression $\frac{\Sigma(x-\mu)^{2}}{N}$, is the definition of σ^{2} The last expression, $\frac{\Sigma x^{2}}{N}-\mu^{2}$, is mathematically equivalent to the definition but is often much more convenient to use if we must actually compute the value of σ^{2}, since it frees us from calculating the deviations from the mean. However, when the x values are large and the $x-\mu$ values are small, it may be more convenient to use the middle expression, $\frac{\Sigma(x-\mu)^{2}}{N}$, to compute σ^{2}. Before we can use this formula in an example, we need to discuss an important problem concerning the variance. In solving that problem, we will learn what the standard deviation is and how to calculate it. Then we can return to the variance itself.

Earlier, when we calculated the range, the answers were expressed in the same units as the data. (In our examples, the units were "thousands of dollars of payments.") For the variance, however, the units are the squares of the units of the data-for example, "squared dollars" or "dollars squared." Squared dollars or dollars squared are not intuitively

Units in which the variance is expressed cause a problem
clear or easily interpreted. For this reason, we have to make a significant change in the variance to compute a useful measure of deviation, one that does not give us a problem with units of measure and thus is less confusing. This measure is called the standard deviation, and it is the square root of the variance. The square root of 100 dollars squared is 10 dollars because we take the square root of both the value and the units in which it is measured. The standard deviation, then, is in units that are the same as the original data.

Population Standard Deviation

The population standard deviation, or σ, is simply the square root of the population variance. Because the variance is the average of the squared distances of the observations from the mean, the

Relationship of standard

 deviation to the variance standard deviation is the square root of the average of the squared distances of the observations from the mean. While the variance is expressed in the square of the units used in the data, the standard deviation is in the same units as those used in the data. The formula for the standard deviation isPopulation Standard Deviation

$$
\begin{equation*}
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{\Sigma(x-\mu)^{2}}{N}}=\sqrt{\frac{\Sigma x^{2}}{N}}-\mu^{2} \tag{3-13}
\end{equation*}
$$

- $x=$ observation
- $\mu=$ population mean
- $N=$ total number of elements in the population
- $\sum=$ sum of all the values $(x-\mu,)^{2}$, or all the values x^{2}
- $\sigma=$ population standard deviation
- $\sigma^{2}=$ population variance

The square root of a positive number may be either positive or negative because $a^{2}=(-a)^{2}$. When taking the square root of the

Use the positive square root variance to calculate the standard deviation, however, statisticians consider only the positive square root.

To calculate either the variance or the standard deviation, we construct a table, using every element of the population. If we have a population of fifteen vials of compound produced in one day and we test each vial to determine its purity, our data might look like Table 3-18. In Table 3-19, we show how to use these data to compute the mean ($0.166=2.49 / 15$, the column (1) sum divided

Computing the standard deviation by N), the deviation of each value from the mean (column 3), the square of the deviation of each value from the mean (column 4), and the sum of the squared deviations. From this, we can compute the variance, which is 0.0034 percent squared. (Table 3-19 also computes σ^{2} using the second half of Equation 3-12, $=\frac{\Sigma x^{2}}{N}-\mu^{2}$. Note

TABLE 3-18 RESULTS OF PURITY TEST ON COMPOUNDS

Observed Percentage Impurity				
0.04	0.14	0.17	0.19	0.22
0.06	0.14	0.17	0.21	0.24
0.12	0.15	0.18	0.21	0.25

TABLE 3-19 DETERMINATION OF THE VARIANCE AND STANDARD DEVIATION OF PERCENT IMPURITY OF COMPOUNDS

that we get the same result but do a bit less work, since we do not have to compute the deviations from the mean.) Taking the square root of σ^{2}, we can compute the standard deviation, 0.058 percent.

Uses of the Standard Deviation

The standard deviation enables us to determine, with a great deal of accuracy, where the values of a frequency distribution are

Chebyshev's theorem

FIGURE 3-12 LOCATION OF OBSERVATIONS AROUND THE MEAN OF A BELL-SHAPED
FREQUENCY DISTRIBUTION
located in relation to the mean. We can do this according to a theorem devised by the Russian mathematician P. L. Chebyshev (1821-1894). Chebyshev's theorem says that no matter what the shape of the distribution, at least 75 percent of the values will fall within ± 2 standard deviations from the mean of the distribution, and at least 89 percent of the values will lie within ± 3 standard deviations from the mean.

We can measure with even more precision the percentage of items that fall within specific ranges under a symmetrical, bell-shaped curve such as the one in Figure 3-12. In these cases, we can say that:

1. About 68 percent of the values in the population will fall within ± 1 standard deviation from the mean.
2. About 95 percent of the values will lie within ± 2 standard deviations from the mean.
3. About 99 percent of the values will be in an interval ranging from 3 standard deviations below the mean to 3 standard deviations above the mean.

In the light of Chebyshev's theorem, let's analyze the data in Table 3-19. There, the mean impurity of the 15 vials of com-

Using Chebyshev's theorem

 pound is 0.166 percent, and the standard deviation is 0.058 percent. Chebyshev's theorem tells us that at least 75 percent of the values (at least 11 of our 15 items) are between $0.166-2(0.058)=0.050$ and $0.166+2(0.058)=0.282$. In fact, 93 percent of the values $(14$ of the 15 values) are actually in that interval. Notice that the distribution is reasonably symmetrical and that 93 percent is close to the theoretical 95 percent for an interval of plus and minus 2 standard deviations from the mean of a bell-shaped curve.The standard deviation is also useful in describing how far individual items in a distribution depart from the mean of the

Concept of the standard score

 distribution. A measure called the standard score gives us the number of standard deviations a particular observation lies below or above the mean. If we let x symbolize the observation, the standard score computed from population data isStandard Score

$$
\begin{equation*}
\text { Population standard score }=\frac{x-\mu}{\sigma} \tag{3-14}
\end{equation*}
$$

where

- $x=$ observation from the population
- $\mu=$ population mean
- $\sigma=$ population standard deviation

Suppose we observe a vial of compound that is 0.108 percent impure. Because our population has a mean of 0.166 and a standard deviation of 0.058 , an observation of 0.108 would have a standard score of -1 :

$$
\begin{align*}
\text { Standard score } & =\frac{x-\mu}{\sigma} \tag{3-14}\\
& =\frac{0.108-0.166}{0.058} \\
& =-\frac{0.058}{0.058} \\
& =-1
\end{align*}
$$

An observed impurity of 0.282 percent would have a standard score of +2 :

$$
\begin{align*}
\text { Standard score } & =\frac{x-\mu}{\sigma} \tag{3-14}\\
& =\frac{0.282-0.166}{0.058} \\
& =\frac{0.116}{0.058} \\
& =2
\end{align*}
$$

The standard score indicates that an impurity of 0.282 percent
Interpreting the standard score deviates from the mean by $2(0.058)=0.116$ unit, which is equal to +2 in terms of the number of standard deviations away from the mean.

Calculation of Variance and Standard Deviation Using Grouped Data

In our chapter-opening example, data on sales of 100 fast-food restaurants were already grouped in a frequency distribution. With such data, we can use the following formulas to calculate the variance and the standard deviation:

Calculating the variance and standard deviation for grouped data

Variance of Grouped Data

$$
\begin{equation*}
\sigma^{2}=\frac{\Sigma f(x-\mu)^{2}}{N}=\frac{\Sigma f x^{2}}{N}-\mu^{2} \tag{3-15}
\end{equation*}
$$

Standard Deviation Grouped Data
$\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{\Sigma f(x-\mu)^{2}}{N}}=\sqrt{\frac{\Sigma f x^{2}}{N}}-\mu^{2}$

where

- $\sigma^{2}=$ population variance
- $\sigma=$ population standard deviation
- $f=$ frequency of each of the classes
- $x=$ midpoint for each class
- $\mu=$ population mean
- $N=$ size of the population

Table 3-20 shows how to apply these equations to find the variance and standard deviation of the sales of 100 fast-food restaurants.

We leave it as an exercise for the curious reader to verify that the second half of Equation 3-15, $\frac{\Sigma f x^{2}}{N}-\mu^{2}$, will yield the same value of σ^{2}.

Now we are ready to compute the sample statistics that are analogous to the population variance σ^{2} and the population standard deviation σ. These are the sample variance σ^{2} and the

Switching to sample variance and sample standard deviation sample standard deviation s. In the next section, you'll notice we are changing from Greek letters (which denote population parameters) to the Roman letters of sample statistics.

Sample Standard Deviation

To compute the sample variance and the sample standard deviation, we use the same formulas Equations 3-12 and 3-13, replacing μ with \bar{x} and N with $n-1$. The formulas look like this: look like this.

Computing the sample standard deviation

Sample Variance

$$
\begin{equation*}
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1}=\frac{\Sigma x^{2}}{n-1}-\frac{n \bar{x}^{2}}{n-1} \tag{3-17}
\end{equation*}
$$

Sample Standard Deviation

$$
\begin{equation*}
s=\sqrt{s^{2}}=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\sum x^{2}}{n-1}-\frac{n \bar{x}^{2}}{n-1}} \tag{3-18}
\end{equation*}
$$

TABLE 3-20 DETERMINATION OF THE VARIANCE AND STANDARD DEVIATION OF SALES OF 100 FAST-FOOD RESTAURANTS IN THE EASTERN DISTRICT (OOOS OMITTED)

where

- $s^{2}=$ sample variance
- $s=$ sample standard deviation
- $x=$ value of each of the n observations
- $\bar{x}=$ mean of the sample
- $n-1=$ number of observations in the sample minus 1

Why do we use $n-1$ as the denominator instead of n ? Use of $n-1$ as the denominator Statisticians can prove that if we take many samples from a given population, find the sample variance (s^{2}) for each sample, and average each of these together, then this average tends not to equal the population variance, σ^{2}, unless we use $n-1$ as the denominator. In Chapter 7, we shall learn the statistical explanation of why this is true.

Equations 3-17 and 3-18 enable us to find the sample variance and the sample standard deviation of the annual Blue Cross-Blue Shield payments to Cumberland Hospital in Table 3-21; note that both halves of Equation 3-17 yield the same result.

Calculating sample variance and standard deviation for hospital data

TABLE 3-21 DETERMINATION OF THE SAMPLE VARIANCE AND STANDARD DEVIATION OF ANNUAL BLUE CROSS-BLUE SHIELD PAYMENTS TO CUMBERLAND HOSPITAL (OOOS OMITTED)

Just as we used the population standard deviation to derive population standard scores, we may also use the sample deviation to compute sample standard scores. These sample standard

Computing sample standard

Scores

 scores tell us how many standard deviations a particular sample observation lies below or above the sample mean. The appropriate formula is
Standard Score of an Item in a Sample
 $$
\begin{equation*} \text { Sample standard score }=\frac{x-\bar{x}}{s} \tag{3-19} \end{equation*}
$$

where

- $x=$ observation from the sample
- $\bar{x}=$ sample mean
- $s=$ sample standard deviation

In the example we just did, we see that the observation 863 corresponds to a standard score of -1.28 :

$$
\begin{align*}
\text { Sample standard score } & =\frac{x-\bar{x}}{s} \tag{3-19}\\
& =\frac{863-1,351}{380.64} \\
& =\frac{-488}{380.64} \\
& =-1.28
\end{align*}
$$

This section has demonstrated why the standard deviation is the measure of dispersion used most often. We can use it to compare distributions and to compute standard scores, an important element of statistical inference to be discussed later. Like the variance, the standard deviation takes into account every observation in the data set. But the standard deviation has some disadvantages, too. It is not as easy to calculate as the range, and it cannot be computed from open-ended distributions. In addition, extreme values in the data set distort the value of the standard deviation, although to a lesser extent than they do the range.

HINTS \& ASSUMPTIONS

We assume when we calculate and use the standard deviation that there are not too many very large or very small values in the data set because we know that the standard deviation uses every value, and such extreme values will distort the answer. Hint: Forgetting whether to use N or $n-1$ as the denominator for samples and populations can be avoided by associating the smaller value ($n-1$) with the smaller set (the sample).

EXERCISES 3.9

Self-Check Exercises

SC 3-13 Talent, Ltd., a Hollywood casting company, is selecting a group of extras for a movie. The ages of the first 20 men to be interviewed are

50	56	55	49	52	57	56	57	56	59
54	55	61	60	51	59	62	52	54	49

The director of the movie wants men whose ages are fairly tightly grouped around 55 years. Being a statistics buff of sorts, the director suggests that a standard deviation of 3 years would be acceptable. Does this group of extras qualify?
SC 3-14 In an attempt to estimate potential future demand, the National Motor Company did a study asking married couples how many cars the average energy-minded family should own in 1998. For each couple, National averaged the husband's and wife's responses to get the overall couple response. The answers were then tabulated:

Number of cars	0	0.5	1.0	1.5	2.0	2.5
Frequency	2	14	23	7	4	2

(a) Calculate the variance and the standard deviation.
(b) Since the distribution is roughly bell-shaped, how many of the observations should theoretically fall between 0.5 and 1.5 ? Between 0 and 2? How many actually do fall in those intervals?

Applications

3-61 The head chef of The Flying Taco has just received two dozen tomatoes from her supplier, but she isn't ready to accept them. She knows from the invoice that the average weight of a tomato is 7.5 ounces, but she insists that all be of uniform weight. She will accept them only if the average weight is 7.5 ounces and the standard deviation is less than 0.5 ounce. Here are the weights of the tomatoes

6.3	7.2	7.3	8.1	7.8	6.8	7.5	7.8	7.2	7.5	8.1	8.2
8.0	7.4	7.6	7.7	7.6	7.4	7.5	8.4	7.4	7.6	6.2	7.4

What is the chef's decision and why?
3-62 These data are a sample of the daily production rate of fiberglass boats from Hydrosport, Ltd., a Miami manufacturer:

17	21	18	27	17	21	20	22	18	23

The company production manager feels that a standard deviation of more than three boats a day indicates unacceptable production-rate variations. Should she be concerned about plantproduction rates?
3-63 A set of 60 observations has a mean of 66.8 , a variance of 12.60 , and an unknown distribution shape.
(a) Between what values should at least 75 percent of the observations fall, according to Chebyshev's theorem?
(b) If the distribution is symmetrical and bell-shaped, approximately how many observations should be found in the interval 59.7 to 73.9 ?
(c) Find the standard scores for the following observations from the distribution: 61.45, 75.37, 84.65, and 51.50.

3-64 The number of checks cashed each day at the five branches of The Bank of Orange County during the past month had the following frequency distribution:

Class	Frequency
$0-199$	10
$200-399$	13
$400-599$	17
$600-799$	42
$800-999$	18

Hank Spivey, director of operations for the bank, knows that a standard deviation in check cashing of more than 200 checks per day creates staffing and organizational problems at the branches because of the uneven workload. Should Hank worry about staffing next month?
3-65 The Federal Reserve Board has given permission to all member banks to raise interest rates $1 / 2$ percent for all depositors. Old rates for passbook savings were $51 / 4$ percent; for certificates of deposit (CDs): 1-year CD, $71 / 2$ percent; 18 -month CD, $83 / 4$ percent; 2 -year CD, $91 / 2$ percent; 3 -year CD, $101 / 2$ percent; and 5 -year CD, 11 percent. The president of the First State Bank wants to know what the characteristics of the new distribution of rates will be if a full $1 / 2$ percent is added to all rates. How are the new characteristics related to the old ones?
3-66 The administrator of a Georgia hospital surveyed the number of days 200 randomly chosen patients stayed in the hospital following an operation. The data are:

Hospital stay in days	$1-3$	$4-6$	$7-9$	$10-12$	$13-15$	$16-18$	$19-21$	$22-24$
Frequency	18	90	44	21	9	9	4	5

(a) Calculate the standard deviation and mean.
(b) According to Chebyshev's theorem, how many stays should be between 0 and 17 days? How many are actually in that interval?
(c) Because the distribution is roughly bell-shaped, how many stays can we expect between 0 and 17 days?
3-67 FundInfo provides information to its subscribers to enable them to evaluate the performance of mutual funds they are considering as potential investment vehicles. A recent survey of funds whose stated investment goal was growth and income produced the following data on total annual rate of return over the past five years:

| Annual return (\%) | $11.0-11.9$ | $12.0-12.9$ | $13.0-13.9$ | $14.0-14.9$ | $15.0-15.9$ | $16.0-16.9$ | $17,0-17.9$ | $18.0-18.9$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 2 | 2 | 8 | 10 | 11 | 8 | 3 | 1 |

(a) Calculate the mean, variance, and standard deviation of the annual rate of return for this sample of 45 funds.
(b) According to Chebyshev's theorem, between what values should at least 75 percent of the sample observations fall? What percentage of the observations actually do fall in that interval?
(c) Because the distribution is roughly bell-shaped, between what values would you expect to find 68 percent of the observations? What percentage of the observations actually do fall in that interval?
3-68 Nell Berman, owner of the Earthbred Bakery, said that the average weekly production level of her company was 11,398 loaves, and the variance was 49,729 . If the data used to compute the results were collected for 32 weeks, during how many weeks was the production level below 11,175 ? Above 11,844 ?
3-69 The Creative Illusion Advertising Company has three offices in three cities. Wage rates differ from state to state. In the Washington, D.C. office, the average wage increase for the past year was $\$ 1,500$, and the standard deviation was $\$ 400$. In the New York office, the average raise was $\$ 3,760$, and the standard deviation was $\$ 622$. In Durham, N.C., the average increase was $\$ 850$, and the standard deviation was $\$ 95$. Three employees were interviewed. The Washington employee received a raise of $\$ 1,100$; the New York employee, a raise of $\$ 3,200$; and the Durham employee, a raise of $\$ 500$. Which of the three had the smallest raise in relation to the mean and standard deviation of his office?
3-70 American Foods heavily markets three different products nationally. One of the underlying objectives of each of the product's advertisements is to make consumers recognize that American Foods makes the product. To measure how well each ad implants recognition, a group of consumers was asked to identify as quickly as possible the company responsible for a long list of products. The first American Foods product had an average latency of 2.5 seconds, and a standard deviation of 0.004 second. The second had an average latency of 2.8 seconds, and a standard deviation of 0.006 second. The third had an average latency of 3.7 seconds, and a standard deviation of 0.09 second. One particular subject had the following latencies: 2.495 for the first, 2.79 for the second, and 3.90 for the third. For which product was this subject farthest from average performance, in standard deviation units?
3-71 Sid Levinson is a doctor who specializes in the knowledge and effective use of pain-killing drugs for the seriously ill. In order to know approximately how many nurses and office personnel to employ, he has begun to keep track of the number of patients he sees each week. Each week his office manager records the number of seriously ill patients and the number of routine patients. Sid has reason to believe that the number of routine patients per week would look like a bell-shaped curve if he had enough data. (This is not true of seriously ill patients.) However, he has been collecting data for only the past five weeks.

Seriously ill patients	33	50	22	27	48
Routine patients	34	31	37	36	27

(a) Calculate the mean and variance for the number of seriously ill patients per week. Use Chebyshev's theorem to find boundaries within which the "middle 75 percent" of numbers of seriously ill patients per week should fall.
(b) Calculate the mean, variance, and standard deviation for the number of routine patients per week. Within what boundaries should the "middle 68 percent" of these weekly numbers fall?
3-72 The superintendent of any local school district has two major problems: A tough job dealing with the elected school board is the first, and the second is the need to be always prepared to look for a new job because of the first problem. Tom Langley, superintendent of School District 18 , is no exception. He has learned the value of understanding all numbers in any budget
and being able to use them to his advantage. This year, the school board has proposed a media research budget of $\$ 350,000$. From past experience, Tom knows that actual spending always exceeds the budget proposal, and the amount by which it exceeds the proposal has a mean of $\$ 40,000$ and variance of $100,000,000$ dollars squared. Tom learned about Chebyshev's theorem in college, and he thinks that this might be useful in finding a range of values within which the actual expenditure would fall 75 percent of the time in years when the budget proposal is the same as this year. Do Tom a favor and find this range.
3-73 Bea Reele, a well-known clinical psychologist, keeps very accurate data on all her patients. From these data, she has developed four categories within which to place all her patients: child, young adult, adult, and elderly. For each category, she has computed the mean IQ and the variance of IQs within that category. These numbers are given in the following table. If on a certain day Bea saw four patients (one from each category), and the IQs of those patients were as follows: child, 90 ; young adult, 92 ; adult, 100 ; elderly, 98 ; then which of the patients had the IQ farthest above the mean, in standard deviation units, for that particular category?

Category	Mean IQ	IQ Variance
Child	110	81
Young adult	90	64
Adult	95	49
Elderly	90	121

Worked-Out Answers to Self-Check Exercises

SC 3-13	\boldsymbol{x}	$\boldsymbol{x}-\overline{\boldsymbol{x}}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})^{2}$	\boldsymbol{x}	$\boldsymbol{x}-\overline{\boldsymbol{x}}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})^{\mathbf{2}}$
	50	-5.2	27.04	54	-1.2	1.44
56	0.8	0.64	55	-0.2	0.04	
55	-0.2	0.04	61	5.8	33.64	
49	-6.2	38.44	60	4.8	23.04	
52	-3.2	10.24	51	-4.2	17.64	
57	1.8	3.24	59	3.8	14.44	
56	0.8	0.64	62	6.8	46.24	
	1.8	3.24	52	-3.2	10.24	
	57	0.8	0.64	54	-1.2	1.44
56	3.8	14.44	49	-6.2	38.44	
59			$\mathbf{1 , 1 0 4}$		$\mathbf{2 8 5 . 2 0}$	

$\bar{x}=\frac{\Sigma x}{n}=\frac{1,104}{20}=55.2$ years, which is close to the desired 55 years $s=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{285.20}{19}}=3.874$ years, which shows more variability than desired

SC 3-14 (a)	\# of cars \boldsymbol{x}	Frequency f	$f \times x$	$\boldsymbol{x}-\bar{x}$	$(x-\bar{x})^{2}$	$f(x-\bar{x})^{2}$
	0	2	0	-1.0288	1.0585	2.1170
	0.5	14	7	-0.5288	0.2797	3.9155
	1	23	23	-0.0288	0.0008	0.0191
	1.5	7	10.5	0.4712	0.2220	1.5539
	2	4	8	0.9712	0.9431	3.7726
	2.5	2	5	1.4712	2.1643	4.3286
		52	53.5			15.7067
$\bar{x}=\frac{\Sigma x}{n}=\frac{53.5}{52} 1.0288 \mathrm{cars}$						
$s^{2}=\frac{\Sigma f(x-\bar{x})^{2}}{n-1}=\frac{15.707}{51}=0.3080 \quad \text { so } \quad s=\sqrt{0.3080}=0.55 \mathrm{car}$						

(b) $(0.5,1.5)$ is approximately $\bar{x} \pm s$, so about 68 percent of the data, or $0.68(52)=35.36$ observations should fall in this range. In fact, 44 observations fall into this interval.
$(0,2)$ is approximately $\bar{x} \pm 2 s$, so about 95 percent of the data, or $0.95(52)=49.4$ observations should fall in this range. In fact, 50 observations fall into this interval.

3.10 RELATIVE DISPERSION: THE COEFFICIENT OF VARIATION

The standard deviation is an absolute measure of dispersion that expresses variation in the same units as the original data. The annual Blue Cross-Blue Shield payments to Cumberland Hospital (Table 3-21) have a standard deviation of $\$ 380,640$. The annual Blue Cross-Blue Shield payments to Valley Falls Hospital (Table 3-16) have a standard deviation (which you can compute) of $\$ 57,390$. Can we compare the values of these two standard deviations? Unfortunately, no.

The standard deviation cannot be the sole basis for comparing two distributions. If we have a standard deviation of 10 and a mean of 5, the values vary by an amount twice as large as the

Shortcomings of the standard deviation

 mean itself. On the other hand, if we have a standard deviation of 10 and a mean of 5,000, the variation relative to the mean is insignificant. Therefore, we cannot know the dispersion of a set of data until we know the standard deviation, the mean, and how the standard deviation compares with the mean.What we need is a relative measure that will give us a feel for the magnitude of the deviation relative to the magnitude of the

The coefficient of variation, a relative measure mean. The coefficient of variation is one such relative measure of dispersion. It relates the standard deviation and the mean by expressing the standard deviation as a percentage of the mean. The unit of measure, then, is "percent" rather than the same units as the original data. For a population, the formula for the coefficient of variation is

Coefficient of Variation
Standard deviation of the population
Population coefficient of variation $=\frac{\sigma}{\mu}(100)$
Mean of the population

Using this formula in an example, we may suppose that each day, laboratory technician A completes on average 40 analyses with a standard deviation of 5. Technician B completes on average 160 analyses per day with a standard deviation of 15 . Which employee shows less variability?

At first glance, it appears that technician B has three times more variation in the output rate than technician A. But B completes analyses at a rate four times faster than A. Taking all this information into account, we can compute the coefficient of variation for both technicians:

$$
\begin{align*}
\text { Coefficient of variation } & =\frac{\sigma}{\mu}(100) \tag{3-20}\\
& \left.=\frac{5}{40}(100) \quad \begin{array}{l}
\text { Computing the coefficient of } \\
\\
\\
\end{array}\right)=12.5 \% \leftarrow \text { For technician A }
\end{align*}
$$

and

$$
\begin{aligned}
\text { Coefficient of variation } & =\frac{15}{160}(100) \\
& =9.4 \% \leftarrow \text { For technician B }
\end{aligned}
$$

So we find that technician B, who has more absolute variation in output than technician A, has less relative variation because the mean output for B is much greater than for A .

For large data sets, we use the computer to calculate our measures of central tendency and variability. In Figure 3-13, we have used Minitab to compute some of these summary statistics for the grade data in Appendix 10. The statistics are

Using the computer to compute measures of central tendency and variability shown for each section as well as for the course as a whole.
In Figure 3-14, we have used Minitab to calculate several measures of central tendency and variability for the earnings data in Appendix 11, The statistics are given for all 224 companies together, and they are also broken down by stock exchange ($1=$ OTC, $2=$ ASE, $3=$ NYSE $)$. The statistic TRMEAN is a "trimmed mean," a mean calculated with the top 5 percent and bottom 5 percent of the data omitted. This helps to alleviate the distortion caused by the extreme values from which the ordinary arithmetic mean suffers.

HINTS \& ASSUMPTIONS

The concept and usefulness of the coefficient of variation are quickly evident if you try to compare overweight men with overweight women. Suppose a group of men and women are all 20 pounds overweight. The 20 pounds is not a good measure of the excessive weight. Average weight for men is about 160 pounds, and average weight for women is about 120 pounds. Using a simple ratio, we can see that the women are $20 / 120$, or about 16.7 percent overweight but the men are $20 / 160$, or about 12.5 percent overweight. Although the coefficient of variation is a bit more complex than our simple ratio example, the concept is the same: We use it to compare the amount of variation in data groups that have different means. Warning: Don't compare the dispersion in data sets by using their standard deviations unless their means are close to each other.

EXERCISES 3.10

Self-Check Exercises

SC 3-15 Bassart Electronics is considering employing one of two training programs. Two groups were trained for the same task. Group 1 was trained by program A; group 2, by program B. For the first group, the times required to train the employees had an average of 32.11 hours and a variance of 68.09. In the second group, the average was 19.75 hours and the variance was 71.14. Which training program has less relative variability in its performance?
SC 3-16 Southeastern Stereos, a wholesaler, was contemplating becoming the supplier to three retailers, but inventory shortages have forced Southeastern to select only one. Southeastern's credit manager is evaluating the credit record of these three retailers. Over the past 5 years, these retailers' accounts receivable have been outstanding for the following average number of days. The credit manager feels that consistency, in addition to lowest average, is important. Based on relative dispersion, which retailer would make the best customer?

Lee	62.2	61.8	63.4	63.0	61.7
Forrest	62.5	61.9	62.8	63.0	60.7
Davis	62.0	61.9	63.0	63.9	61.5

Applications

3-74 The weights of the Baltimore Bullets professional football team have a mean of 224 pounds with a standard deviation of 18 pounds, while the mean weight and standard deviation of their Sunday opponent, the Chicago Trailblazers, are 195 and 12, respectively. Which team exhibits the greater relative dispersion in weights?
3-75 The university has decided to test three new kinds of lightbulbs. They have three identical rooms to use in the experiment. Bulb 1 has an average life-time of 1,470 hours and a variance of 156 . Bulb 2 has an average lifetime of 1,400 hours and a variance of 81 . Bulb 3 has an average lifetime of 1,350 hours and a standard deviation of 6 hours. Rank the bulbs in terms of relative variability. Which was the best bulb?
3-76 Students' ages in the regular daytime M.B.A. program and the evening program of Central University are described by these two samples:

Regular M.B.A.	23	29	27	22	24	21	25	26	27	24
Evening M.B.A.	27	34	30	29	28	30	34	35	28	29

If homogeneity of the class is a positive factor in learning, use a measure of relative variability to suggest which of the two groups will be easier to teach.
3-77 There are a number of possible measures of sales performance, including how consistent a salesperson is in meeting established sales goals. The data that follow represent the percentage of goal met by each of three salespeople over the last 5 years.

Patricia	88	68	89	92	103
John	76	88	90	86	79
Frank	104	88	118	88	123

(a) Which salesperson is the most consistent?
(b) Comment on the adequacy of using a measure of consistency along with percentage of sales goal met to evaluate sales performance.
(c) Can you suggest a more appropriate alternative measure of consistency?

3-78 The board of directors of Gothic Products is considering acquiring one of two companies and is closely examining the management of each company in regard to their inclinations toward risk. During the past five years, the first company's returns on investments had an average of 28.0 percent and a standard deviation of 5.3 percent. The second company's returns on investments had an average of 37.8 percent and a standard deviation of 4.8 percent. If we consider risk to be associated with greater relative dispersion, which of these two companies has pursued a riskier strategy?
3-79 A drug company that supplies hospitals with premeasured doses of certain medications uses different machines for medications requiring different dosage amounts. One machine, designed to produce doses of 100 cc , has as its mean dose 100 cc , and a standard deviation of 5.2 cc . Another machine produces premeasured amounts of 180 cc of medication and has a standard deviation of 8.6 cc . Which machine has the lower accuracy from the standpoint of relative dispersion?
3-80 HumanPower, the temporary employment agency, has tested many people's data entry skills. Infotech needs a data entry person, and the person needs to be not only quick but also consistent. HumanPower pulls the speed records for 4 employees with the data given below in terms of number of correct entries per minute. Which employee is best for Infotech based on relative dispersion?

John	63	66	68	62	69	72
Jeff	68	67	66	67	69	
Mary	62	79	75	59	72	84
Tammy	64	68	58	57	59	

3-81 Wyatt Seed Company sells three grades of Early White Sugar corn seed, distinguished according to the consistency of germination of the seeds. The state seed testing laboratory has a sample of each grade of seed and its test results on the number of seeds that germinated out of packages of 100 are as follows:

Grade I (Regular)	88	91	92	89	79
Grade II (Extra)	87	92	88	90	92
Grade III (Super)	90	89	79	93	88

Does Wyatt's grading of its seeds make sense?

3-82 Sunray Appliance Company has just completed a study of three possible assembly-line configurations for producing its best-selling two-slice toaster. Configuration I has yielded a mean time to construct a toaster of 34.8 minutes, and a standard deviation of 4.8 minutes. Configuration II has yielded a mean of 25.5 minutes, and a standard deviation of 7.5 minutes. Configuration III has yielded a mean of 37.5 minutes, and a standard deviation of 3.8 minutes. Which assembly-line configuration has the least relative variation in the time it takes to construct a toaster?

Worked-Out Answers to Self-Check Exercises

SC 3-15 Program A: CV $=\frac{\sigma}{\mu}(100)=\frac{\sqrt{68.09}(100)}{32.11}=25.7$ percent
Program B: CV $=\frac{\sigma}{\mu}(100)=\frac{\sqrt{71.14}(100)}{19.75}=42.7$ percent
Program A has less relative variability.
SC 3-16 Lee: $\bar{x}=62.42 \quad s=0.7497 \quad \mathrm{CV}=(s / \bar{x})(100)=\frac{0.7497(100)}{62.42}=1.20$ percent
Forrest: $\bar{x}=62.18 \quad s=0.9257 \quad \mathrm{CV}=(s / \bar{x})(100)=\frac{0.9257(100)}{62.18}=1.49$ percent
Davis: $\bar{x}=62.46 \quad s=0.9762 \quad \mathrm{CV}=(s / \bar{x})(100)=\frac{0.9762(100)}{62.46}=1.56$ percent
Based on relative dispersion, Lee would be the best customer, but there really isn't much difference among the three of them.

3.11 DESCRIPTIVE STATISTICS USING MSEXCEL \& SPSS

Above data is sample of daily production in meters of 30 carpet looms for calculating measure of central tendency and dispersion.

For Measure of central tendency and dispersion go to Data>Data Analysis>Descriptive Statistics>Give Data Range>Select summary statistics and CI for mean

Data Analysis		8	83
Analysis Tools		OK	
Anova: Single Factor	-		
Anova: Two-Factor With Replication		Cancel	
Anova: Two-Factor Without Replication	E		
Correlation	=	Help	
Covariance			
F-Test Two-Sample for Variances			
Fourier Analysis			
Histogram	-		

Descriptive Statistics			?	83
Input			OK	
Input Range:	\$A\$3:\$F\$7	殹		
Grouped By:	(0) Columns		Cance	
	- Rows		Help	
\square Labels in first row				
Output options				
\bigcirc Output Range	\square [戓			
(O) New Worksheet Ply:				
- New Workbook				
\checkmark Summary statistics				
V Confidence Level for Mean: 95		\%		
$\square \mathrm{K}$ th Largest:	1			
$\square \mathrm{Kth}$ Smallest:	1			

For calculating measure of central tendency and dispersion in SPSS 16．0 Go to Analyze＞Descriptive Statistics $>$ Frequencies $>$ In statistics select desired measure of central tendency and measure of dispersion．

Tㄱt＊Untitle	ataset0］－SPS	ta Edir													－	23
Eile Edit	Data Ir	orm	Graph	res	Wind											
回回是	क त	晨	＊	戈												
3：															6 of 6 V	riables
	mt＿loom	var														
1	16.20															－
2	15.80															
3	15.80															
4	15.80															
5	16.30															
6	16.80															
7	16.00															
8	16.40															
9	15.20															
10	15.90															
11	15.90															
12	16.00															
13	16.30															
14	16.00															
15	16.40															
16	15.60															
17	15.70															
18	16.00															
19	16.20															
20	16.10															
21	15.90															
22	15.90															
23	16.80															
24	15.40															
25	15.70															
26	16.60															－
	－					－										－
Data View	Variable View									－						
													oces			

STATISTICS AT WORK

Loveland Computers

Case 3: Central Tendency and Dispersion "Not bad for a few days' work, Lee," Uncle Walter congratulated his new assistant as he flipped through 12 pages of tables, charts, and graphs. Monday morning had come all too soon for Lee.
"Well, Nunc," replied Lee, with a familiarity possible only in a family firm, "it took a few allnighters. But I've set things up so that we won't have to go through this kind of agony in the future. I've archived all the old data on diskettes in a common format, and I've kept the last 3 years on the hard drive. More important, I've set up some common reporting formats for each product line so the data will be collected in a consistent manner from here on out. And with the 3D spreadsheet, I can easily sum them together and give you data by month or by quarter." Warming to his audience, Lee flipped to the last page and showed a simple pie chart. "Here's the beauty of this business: You can show those New Yorkers that your average gross margin (you know, revenue minus your cost of goods sold) is 28 percent. That should impress them."
"Well maybe yes and maybe no," commented Gratia Delaguardia, Walter Azko's partner, who had just walked in. If Walter was known for his charm and his "street smarts," Gratia certainly earned the title of "the brains" of this outfit. "You're probably mixing up apples and oranges there. Some of the low-speed PCs don't have that large a gross margin any more. The profit is a little thin, but at least it's predictable. With the new technologies, we make a huge margin on our 'hit' products, but there are others where we had to cut prices to get rid of them. You'll remember our first 'portable' that weighed more than 50 pounds, Walt."
"I try to forget that one," responded the CEO tersely. "But, Lee, Gratia has a point. Don't you think you ought to break out new products-say, products within their first 6 months on sale-versus the
established lines. See if the gross margins look different and whether they're all over the place like Gratia says. I'm off to the airport to pick up the investment folks. See what you can whip up by the time I get back."

Study Questions: The spreadsheet program Lee is using has many built-in statistical functions. Which ones should Lee use to answer the questions about gross margins? How might the data be presented, and how will this help the new investors in their decision making? What limitations are there on assuming a bell-shaped distribution for "percentage" data?

CHAPTER REVIEW

Terms Introduced in Chapter 3

Bimodal Distribution A distribution of data points in which two values occur more frequently than the rest of the values in the data set.
Boxplot A graphical EDA technique used to highlight the center and extremes of a data set.
Chebyshev's Theorem No matter what the shape of a distribution, at least 75 percent of the values in the population will fall within 2 standard deviations of the mean and at least 89 percent will fall within 3 standard deviations.
Coding A method of calculating the mean for grouped data by recoding values of class midpoints to more simple values.
Coefficient of Variation A relative measure of dispersion, comparable across distributions, that expresses the standard deviation as a percentage of the mean.
Deciles Fractiles that divide the data into 10 equal parts.
Dispersion The spread or variability in a set of data.
Distance Measure A measure of dispersion in terms of the difference between two values in the data set.
Exploratory Data Analysis (EDA) Methods for analyzing data that require very few prior assumptions. Fractile In a frequency distribution, the location of a value at or above a given fraction of the data.
Geometric Mean A measure of central tendency used to measure the average rate of change or growth for some quantity, computed by taking the nth root of the product of n values representing change.
Interfractile Range A measure of the spread between two fractiles in a distribution, that is, the difference between the values of two fractiles.
Interquartile Range The difference between the values of the first and the third quartiles; this difference indicates the range of the middle half of the data set.
Kurtosis The degree of peakedness of a distribution of points.
Mean A central tendency measure representing the arithmetic average of a set of observations.
Measure of Central Tendency A measure indicating the value to be expected of a typical or middle data point.
Measure of Dispersion A measure describing how the observations in a data set are scattered or spread out.
Median The middle point of a data set, a measure of location that divides the data set into halves.
Median Class The class in a frequency distribution that contains the median value for a data set.
Mode The value most often repeated in the data set. It is represented by the highest point in the distribution curve of a data set.
Parameters Numerical values that describe the characteristics of a whole population, commonly represented by Greek letters.

Percentiles Fractiles that divide the data into 100 equal parts.
Quartiles Fractiles that divide the data into four equal parts.
Range The distance between the highest and lowest values in a data set.
Skewness The extent to which a distribution of data points is concentrated at one end or the other; the lack of symmetry.
Standard Deviation The positive square root of the variance; a measure of dispersion in the same units as the original data, rather than in the squared units of the variance.
Standard Score Expressing an observation in terms of standard deviation units above or below the mean; that is, the transformation of an observation by subtracting the mean and dividing by the standard deviation.
Statistics Numerical measures describing the characteristics of a sample. Represented by Roman letters. Stem and Leaf Display A histogram-like display used in EDA to group data, while still displaying all the original values.
Summary Statistics Single numbers that describe certain characteristics of a data set.
Symmetrical A characteristic of a distribution in which each half is the mirror image of the other half. Variance A measure of the average squared distance between the mean and each item in the population. Weighted Mean An average calculated to take into account the importance of each value to the overall total, that is, an average in which each observation value is weighted by some index of its importance.

Equations Introduced in Chapter 3

3-1

$$
\begin{equation*}
\mu=\frac{\sum x}{N} \tag{p. 78}
\end{equation*}
$$

The population arithmetic mean is equal to the sum of the values of all the elements in the population ($\sum x$) divided by the number of elements in the population (N)

$$
\begin{equation*}
\bar{x}=\frac{\sum x}{n} \tag{p. 78}
\end{equation*}
$$

To calculate the sample arithmetic mean, sum the values of all the elements in the sample ($\sum x$) and divide by the number of elements in the sample (n).

$$
\begin{equation*}
\bar{x}=\frac{\sum(f \times x)}{n} \tag{p. 79}
\end{equation*}
$$

To find the sample arithmetic mean of grouped data, calculate the midpoints (x) for each class in the sample. Then multiply each midpoint by the frequency (f) of observations in the class, sum (Σ) all these results, and divide by the total number of observations in the sample (n).

$$
\begin{equation*}
\bar{x}=x_{0}+w \frac{\sum(u \times f)}{n} \tag{p. 81}
\end{equation*}
$$

This formula enables us to calculate the sample arithmetic mean of grouped data using codes to eliminate dealing with large or inconvenient midpoints. Assign these codes (u) as follows: Give the value of zero to the middle midpoint (called x_{0}), positive consecutive integers to midpoints larger than x_{0}, and negative consecutive integers to smaller midpoints. Then, multiply the code assigned to each class (u) by the frequency (f) of observations in the class and sum (Σ) all these products. Divide this result by the total number of observations in the sample (n),
multiply by the numerical width of the class interval (w), and add the value of the midpoint assigned the code zero $\left(x_{0}\right)$.

$$
\text { Range }=\begin{gather*}
\text { Value of highest } \tag{p. 114}\\
\text { observation }
\end{gathered}-\begin{gathered}
\text { Value of lowest } \\
\text { observation }
\end{gather*}
$$

The range is the difference between the highest and lowest values in a frequency distribution.

$$
\begin{equation*}
\text { Interquartile range }=Q_{3}-Q_{1} \tag{p. 115}
\end{equation*}
$$

The interquartile range measures approximately how far from the median we must go on either side before we can include one-half the values of the data set. To compute this range, divide the data into four equal parts. The quartiles (Q) are the highest values in each of these four parts. The interquartile range is the difference between the values of the first and third quartiles $\left(Q_{1}\right.$ and $\left.Q_{3}\right)$.

$$
\begin{equation*}
\sigma^{2}=\frac{\Sigma(x-\mu)^{2}}{N}=\frac{\Sigma x^{2}}{N}-\mu^{2} \tag{p. 119}
\end{equation*}
$$

This formula enables us to calculate the population variance, a measure of the average squared distance between the mean and each item in the population. The middle expression, $\frac{\Sigma(x-\mu)^{2}}{N}$, is the definition of σ^{2}. The last expression, $\frac{\Sigma x^{2}}{N}-\mu^{2}$, is mathematically equivalent to the definition but is often much more convenient to use because it frees us from calculating the deviations from the mean.

The population standard deviation, σ, is the square root of the population variance. It is a more useful parameter than the variance because it is expressed in the same units as the data (whereas the units of the variance are the squares of the units of the data). The standard deviation is always the positive square root of the variance.

$$
\begin{equation*}
\text { Population standard score }=\frac{x-\mu}{\sigma} \tag{p. 122}
\end{equation*}
$$

The standard score of an observation is the number of standard deviations the observation lies below or above the mean of the distribution. The standard score enables us to make comparisons between distribution items that differ in order of magnitude or in the units used. Use Equation 3-14 to find the standard score of an item in a population.

$$
\begin{equation*}
\sigma^{2}=\frac{\Sigma f(x-\mu)^{2}}{N}=\frac{\Sigma f x^{2}}{N}-\mu^{2} \tag{p. 123}
\end{equation*}
$$

This formula in either form enables us to calculate the variance of data already grouped in a frequency distribution. Here, f represents the frequency of the class and x represents the midpoint.

$$
\begin{equation*}
\sigma=\sqrt{\sigma^{2}}=\sqrt{\frac{\Sigma f(x-\mu)^{2}}{N}}=\sqrt{\frac{\Sigma f x^{2}}{N}-\mu^{2}} \tag{p. 124}
\end{equation*}
$$

Take the square root of the variance and you have the standard deviation using grouped data.

$$
\begin{equation*}
s^{2}=\frac{\Sigma(x-\bar{x})^{2}}{n-1}=\frac{\Sigma x^{2}}{n-1}-\frac{n \bar{x}^{2}}{n-1} \tag{p. 124}
\end{equation*}
$$

To compute the sample variance, use the same formula as Equation 3-12, replacing μ with \bar{x} and N with $n-1$. Chapter 7 contains an explanation of why we use $n-1$ rather than n to calculate the sample variance.

The sample standard deviation is the square root of the sample variance. It is similar to Equation 3-13, except that μ is replaced by the sample mean \bar{x} and N is changed to $n-1$

$$
\begin{equation*}
s=\sqrt{s^{2}}=\sqrt{\frac{\Sigma(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{\Sigma x^{2}}{n-1}-\frac{n \bar{x}^{2}}{n-1}} \tag{p. 124}
\end{equation*}
$$

$$
\begin{equation*}
\text { Sample standard score }=\frac{x-\bar{x}}{s} \tag{p. 127}
\end{equation*}
$$

Use this equation to find the standard score of an item in a sample.

$$
\begin{equation*}
\text { Population coefficient of variation }=\frac{\sigma}{\mu}(100) \tag{p. 133}
\end{equation*}
$$

The coefficient of variation is a relative measure of dispersion that enables us to compare two distributions. It relates the standard deviation and the mean by expressing the standard deviation as a percentage of the mean.

Review and Application Exercises

3-83 The weights and measures department of a state agriculture department measured the amount of granola sold in 4-ounce packets and recorded the following data:

4.01	4.00	4.02	4.02	4.03	4.00	3.98	3.99	3.99	4.01
3.99	3.98	3.97	4.00	4.02	4.01	4.02	4.00	4.01	3.99

If the sample is typical of all granola snacks marketed by this manufacturer, what is the range of weights in 95 percent of the packages?
3-84 How would you react to this statement from a football fan: "The Rockland Raiders average 3.6 yards a carry in their ground game. Since they need only 10 yards for a first down, and they have four plays to get it, they can't miss if they just stick to their ground game."
3-85 How would you reply to the following statement: "Variability is not an important factor because even though the outcome is more uncertain, you still have an equal chance of falling either above or below the median. Therefore, on average, the outcome will be the same."
3-86 Following are three general sections of one year's defense budget, each of which was allocated the same amount of funding by Congress:
(a) Officer salaries (total).
(b) Aircraft maintenance.
(c) Food purchases (total).

Considering the distribution of possible outcomes for the funds actually spent in each of these areas, match each section to one of the curves in Figure 3-9. Support your answers.
3-87 Ed's Sports Equipment Company stocks two grades of fishing line. Data on each line are

Mean Test Strength (lb)	Standard Deviation	
Master	40	Exact value unknown, but estimated to be quite large
Super	30	Exact value unknown, but estimated to be quite small

If you are going fishing for bluefish, which have been averaging 25 pounds this season, with which line would you probably land more fish?
3-88 The VP of sales for Vanguard Products has been studying records regarding the performances of his sales reps. He has noticed that in the last 2 years, the average level of sales per sales rep has remained the same, while the distribution of the sales levels has widened. Salespeople's sales levels from this period have significantly larger variations from the mean than in any of the previous 2-year periods for which he has records. What conclusions might be drawn from these observations?
3-89 New cars sold in December at eight Ford dealers within 50 miles of Canton, Ohio, can be described by this data set:
(a) Compute the range, interquartile range, and standard deviation of these data.
(b) Which of the three measures you have computed in part (a) best describes the variability of these data?
3-90 Two economists are studying fluctuations in the price of gold. One is examining the period of 1968-1972. The other is examining the period of 1975-1979. What differences would you expect to find in the variability of their data?
3-91 The Downhill Ski Boot Company runs two assembly lines in its plant. The production manager is interested in improving the consistency of the line with the greater variation. Line number 1 has a monthly average of 11,350 units, and a standard deviation of 1,050 . Line number 2 has a monthly average of 9,935 , and a standard deviation of 1,010 . Which line has the greater relative dispersion?
3-92 The Fish and Game station on Lake Wylie keeps records of fish caught on the lake and reports its finding to the National Fish and Game Service. The catch in pounds for the last 20 days was:

101	132	145	144	130	88	156	188	169	130
90	140	130	139	99	100	208	192	165	216

Calculate the range, variance, and standard deviation for these data. In this instance, is the range a good measure of the variability? Why?
3-93 The owner of Records Anonymous, a large record retailer, uses two different formulas for predicting monthly sales. The first formula has an average miss of 700 records, and a standard deviation of 35 records. The second formula has an average miss of 300 records, and a standard deviation of 16 . Which formula is relatively less accurate?
3-94 Using the following population data, calculate the interquartile range, variance, and standard deviation. What do your answers tell you about the cost behavior of heating fuel?

Average							Heating Fuel Cost per Gallon for Eight States
1.89	1.66	1.77	1.83	1.71	1.68	1.69	1.73

3-95 The following are the average numbers of New York City police officers on duty each day between 8 P.m. and midnight in the borough of Manhattan:

Mon.	2,950	Wed.	2,900	Fri.	3,285	Sun.	2,975
Tues.	2,900	Thurs.	2,980	Sat.	3,430		

(a) Would either the variance or the standard deviation be a good measure of the variability of these data?
(b) What in the staffing pattern caused you to answer part (a) the way you did?

3-96 A psychologist wrote a computer program to simulate the way a person responds to a standard IQ test. To test the program, he gave the computer 15 different forms of a popular IQ test and computed its IQ from each form.

IQ Values				
134	136	137	138	138
143	144	144	145	146
146	146	147	148	153

(a) Calculate the mean and standard deviation of the IQ scores.
(b) According to Chebyshev's theorem, how many of the values should be between 132.44 and 153.56 ? How many are actually in that interval?
3-97 Liquid Concrete delivers ready-mixed concrete from 40 trucks. The number of cubic yards delivered by each truck on one day was as follows:

Cubic Yards										
11.9	12.8	14.6	15.8	13.7	9.9	18.8	16.9	10.4	9.1	
17.1	13.0	18.6	16.0	13.9	14.7	17.7	12.1	18.0	17.8	
19.0	13.3	12.4	9.3	14.2	15.0	19.3	10.6	11.2	9.6	
13.6	14.5	19.6	16.6	12.7	15.3	10.9	18.3	17.4	16.3	

List the values in each decile. Eighty percent of trucks delivered fewer than \qquad cubic yards.
Baseball attendance at the Baltimore Eagles' last 10 home games looked like this:

20,100	24,500	31,600	28,400	49,500
19,350	25,600	30,600	11,300	28,560

(a) Compute the range, variance, and standard deviation for these data.
(b) Are any of your answers in part (a) an accurate portrayal of the variability in the attendance data?
(c) What other measure of variability might be a better measure?
(d) Compute the value of the measure you suggest in part (c).

3-99 Matthews, Young and Associates, a Chapel Hill consulting firm, has these records indicating the number of days each of its ten staff consultants billed last year:

$$
\begin{array}{llllllllll}
212 & 220 & 230 & 210 & 228 & 229 & 231 & 219 & 221 & 222
\end{array}
$$

(a) Without computing the value of any of these measures, which of them would you guess would give you more information about this distribution: range or standard deviation?
(b) Considering the difficulty and time of computing each of the measures you reviewed in part (a), which one would you suggest is better?
(c) What will cause you to change your mind about your choice?

3-100 Larsen Equipment Rental provides contractors with tools they need for just a few days, such as concrete saws. When equipment is broken during a rental, it must be taken out of service until a repair is made. Often this can be done quickly, but there are sometimes delays while parts are ordered. Analysis of time lost for servicing is useful in planning for inventory. The records of downtime for last year were:

Equipment Group	Days Out of Service
1	2
2	19
3	14
4	21
5	5
6	7
7	11

Equipment Group	Days Out of Service
8	8
9	29
10	6
11	0
12	4
13	4
14	10

(a) What was last year's mean downtime for the equipment groups?
(b) What was the median?

3-101 Larsen (see Exercise 3-102) has just gotten the following additional information:

Equipment Group	Pieces of Machinery		Equipment Group	Pieces of Machinery
1	1	8	5	
2	3	9	8	
3	1	10	2	
4	4	11	2	
5	2	12	6	
6	1	13	1	
7	1	14	1	

(a) What is the average downtime per piece of machinery?
(b) What is the average downtime per piece of machinery for each group when classified by group?
(c) How many groups had a higher-than-average downtime per piece of machinery?

3-102 Compare and contrast the central position and skewness of the distributions of the readership volume in numbers of readers per issue for all nationally distributed
(a) Monthly magazines.
(b) Weekly news magazines.
(c) Monthly medical journals.

3-103 Compare and contrast the central tendency and skewness of the distributions of the amount of taxes paid (in dollars) for all
(a) Individuals filing federal returns in the United States, where the top tax bracket is 28 percent.
(b) Individuals paying state income taxes in North Carolina, where the top tax bracket is 7 percent.
(c) Individuals paying airport taxes (contained in the price of the airplane ticket) at JFK International Airport in New York City.
3-104 Allison Barrett does statistical analyses for an automobile racing team. Here are the fuel consumption figures in miles per gallon for the team's cars in recent races:

4.77	6.11	6.11	5.05	5.99	4.91	5.27	6.01
5.75	4.89	6.05	5.22	6.02	5.24	6.11	5.02

(a) Calculate the median fuel consumption.
(b) Calculate the mean fuel consumption.
(c) Group the data into five equally sized classes. What is the fuel consumption value of the modal class?
(d) Which of the three measures of central tendency is best for Allison to use when she orders fuel? Explain.

3-105 Claire Chavez, an Internal Revenue Service analyst, has been asked to describe the "average" American taxpayer in terms of gross annual income. She has summary data grouping taxpayers into different income classes. Which measure of central tendency should she use?
3-106 Emmot Bulb Co. sells a grab bag of flower bulbs. The bags are sold by weight; thus, the number of bulbs in each can vary depending on the varieties included. The number of bulbs in each of 20 bags sampled were:

21	33	37	56	47
36	23	26	33	37
25	33	32	47	34
26	37	37	43	45

(a) What are the mean and median number of bulbs per bag?
(b) Based on your answer, what can you conclude about the shape of the distribution of number of bulbs per bag?
3-107 An engineer tested nine samples of each of three designs of a certain bearing for a new electrical winch. The following data are the number of hours it took for each bearing to fail when the winch motor was run continuously at maximum output, with a load on the winch equivalent to 1.9 times the intended capacity.

Design		
\mathbf{A}	B	C
16	18	31
16	27	16
53	23	42
15	21	20
31	22	18
17	26	17
14	39	16
30	17	15
20	28	19

(a) Calculate the mean and median for each group.
(b) Based on your answer, which design is best and why?

3-108 Table Spice Co. is installing a screener in one stage of its new processing plant to separate leaves, dirt, and insect parts from a certain expensive spice seed that it receives in bulk from growers. The firm can use a coarse 3.5-millimeter mesh screen or a finer 3-millimeter mesh. The smaller mesh will remove more debris but also will remove more seeds. The larger mesh will pass debris and remove fewer seeds. Table Spice has the following information from a sample of pieces of debris.

Debris Size (in millimeters)	Frequency
1.0 or less	12
$1.01-1.5$	129
$1.51-2.0$	186
$2.01-2.5$	275
$2.51-3.0$	341
$3.01-3.5$	422
$3.51-4.0$	6,287
$4.01-4.5$	8,163
$4.51-5.0$	6,212
$5.01-5.5$	2,416
more than 5.5	1,019

(a) What are the median debris size and the modal class size?
(b) Which screen would you use based on part (a) if you wanted to remove at least half of the debris?
3-109 The following is the average amount of money each major airline operator spend per passenger on baggage handling:

Airlines	Amount (in Rs '00)
Katar Airlines	3.17
Lusiana Airlines	6.00
Go-Deigo Airlines	2.41
Splice Jet	7.93
Indiana Airlines	5.90
East-West Airlines	1.76
India Konnect Airlines	0.98
Ethos Airlines	6.77
Air Malaya	7.15

What is the mean baggage handling cost per passenger? What is the median baggage handling cost per passenger? A new airline is planning to start operations. Which of the above two average it should consider for planning purpose and why?

Questions on Running Case: SURYA Bank Pvt. Ltd.

1. Calculate the mean, variance, coefficient of skewness and kurtosis for the different modes which help in creating the customer awareness about e-banking. Compare the results of the different modes of creating awareness (Q4).
2. Which of the e-banking facilities, on an average, influences the customer most while selecting the bank?(Q7)
3. Which facility has the highest variability (Q7).
4. Comment on the average satisfaction level of the customers with the e-services provided by their banks. Also calculate the variance and coefficient of skewness of the satisfaction level of the customers (Q12).

Flow Charts: Measures of Central Tendency and Dispersion

Flow Charts: Measures of Central Tendency and Dispersion

Probability I: Introductory Ideas

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To examine the use of probability theory in decision making
- To explain the different ways probabilities arise
- To use probabilities to take new information into account: the definition and use of Bayes'
- To develop rules for calculating different kinds of probabilities theorem

CHAPTER CONTENTS

4.1 Probability: The Study of Odds and
Ends
154
4.2 Basic Terminology in Probability 155
4.3 Three Types of Probability 157
4.4 Probability Rules 164
4.5 Probabilities under Conditions of Statistical Independence 170
4.6 Probabilities under Conditions of Statistical Dependence 179
4.7 Revising Prior Estimates of Probabilities: Bayes' Theorem 188

- Statistics at Work 196
- Terms Introduced in Chapter 4197
- Equations Introduced in Chapter 4198
- Review and Application Exercises 199
- Flow Chart: Probability I: Introductory Ideas 206

Gamblers have used odds to make bets during most of recorded history. But it wasn't until the seventeenth century that French nobleman Antoine Gombauld (1607-1684) sought a mathematical basis for success at the dice tables. He asked French mathematician Blaise Pascal (1623-1662), "What are the odds of rolling two sixes at least once in twenty-four rolls of a pair of dice?" Pascal solved the problem, having become as interested in the idea of probabilities as was Gombauld. They shared their ideas with the famous mathematician Pierre de Fermat (1601-1665), and the letters written by these three constitute the first academic journal in probability theory. We have no record of the degree of success enjoyed by these gentlemen at the dice tables, but we do know that their curiosity and research introduced many of the concepts we shall study in this chapter and the next.

4.1 PROBABILITY: THE STUDY OF ODDS AND ENDS

Jacob Bernoulli (1654-1705), Abraham de Moivre (1667-1754),

Early probability theorists

 the Reverend Thomas Bayes (1702-1761), and Joseph Lagrange (1736-1813) developed probability formulas and techniques. In the nineteenth century, Pierre Simon, Marquis de Laplace (1749-1827), unified all these early ideas and compiled the first general theory of probability.Probability theory was successfully applied at the gambling tables and, more relevant to our study, eventually to social and

Need for probability theory economic problems. The insurance industry, which emerged in the nineteenth century, required precise knowledge about the risk of loss in order to calculate premiums. Within 50 years, many learning centers were studying probability as a tool for understanding social phenomena. Today, the mathematical theory of probability is the basis for statistical applications in both social and decision-making research.

Probability is a part of our everyday lives. In personal and man- Examples of the use of agerial decisions, we face uncertainty and use probability theory whether or not we admit the use of something so sophisticated.
probability theory When we hear a weather forecast of a 70 percent chance of rain, we change our plans from a picnic to a pool game. Playing bridge, we make some probability estimate before attempting a finesse. Managers who deal with inventories of highly styled women's clothing must wonder about the chances that sales will reach or exceed a certain level, and the buyer who stocks up on skateboards considers the probability of the life of this particular fad. Before Muhammad Ali's highly publicized fight with Leon Spinks, Ali was reputed to have said, "I'll give you odds I'm still the greatest when it's over." And when you begin to study for the inevitable quiz attached to the use of this book, you may ask yourself, "What are the chances the professor will ask us to recall something about the history of probability theory?"

We live in a world in which we are unable to forecast the future with complete certainty. Our need to cope with uncertainty leads us to the study and use of probability theory. In many instances, we, as concerned citizens, will have some knowledge about the possible outcomes of a decision. By organizing this information and considering it systematically, we will be able to recognize our assumptions, communicate our reasoning to others, and make a sounder decision than we could by using a shot-in-the-dark approach.

EXERCISES 4.1

Applications

4-1 The insurance industry uses probability theory to calculate premium rates, but life insurers know for certain that every policyholder is going to die. Does this mean that probability theory does not apply to the life insurance business? Explain.
4-2 "Use of this product may be hazardous to your health. This product contains saccharin, which has been determined to cause cancer in laboratory animals." How might probability theory have played a part in this statement?
4-3 Is there really any such thing as an "uncalculated risk"? Explain.
4-4 A well-known soft drink company decides to alter the formula of its oldest and most popular product. How might probability theory be involved in such a decision?

4.2 BASIC TERMINOLOGY IN PROBABILITY

In our day-to-day life involving decision-making problems, we encounter two broad types of problems. These problems can be categorized into two types of models: Deterministic Models and Random or Probabilistic Models. Deterministic Models cover those situations, where everything related to the situation is known with certainty to the decision-maker, when decision is to be made. Whereas in Probabilistic Models, the totality of the outcomes is known but it can not be certain, which particular outcome will appear. So, there is always some uncertainty involved in decision-making.

In Deterministic Models, frequency distribution or descriptive statistics measures are used to arrive at a decision. Similarly, in random situations, probability and probability distributions are used to make decisions. So, probability can also be defined as a measure of uncertainty.

In general, probability is the chance something will happen. Probabilities are expressed as fractions $(1 / 6,1 / 2,8 / 9)$ or as decimals $(0.167,0.500,0.889)$ between zero and 1 . Assigning a probability of zero means that something can never happen; a probability of 1 indicates that something will always happen.

In probability theory, an event is one or more of the possible outcomes of doing something. If we toss a coin, getting a tail would be an event, and getting a head would be another event. Similarly, if we are drawing from a deck of cards, selecting the ace of spades would be an event. An example of an event closer to your life, perhaps, is being picked from a class of 100 students to answer a question. When we hear the frightening predictions of highway traffic deaths, we hope not to be one of those events.

The activity that produces such an event is referred to in prob- An experiment ability theory as an experiment. Using this formal language, we

An event

 could ask the question, "In a coin-toss experiment, what is the probability of the event head?" And, of course, if it is a fair coin with an equal chance of coming down on either side (and no chance of landing on its edge), we would answer " $1 / 2$ " or " 0.5 ." The set of all possible outcomes of an experiment is called the sample space for the experiment. In the coin-toss experiment, the sample space is$$
S=\{\text { head, tail }\}
$$

In the card-drawing experiment, the sample space has 52 members: ace of hearts, deuce of hearts, and so on.

Most of us are less excited about coins or cards than we are interested in questions such as "What are the chances of making that plane connection?" or "What are my chances of getting a second job interview?" In short, we are concerned with the chances that an event will happen.

Events are said to be mutually exclusive if one and only one of them can take place at a time. Consider again our example of the

Mutually exclusive events

 coin. We have two possible outcomes, heads and tails. On any toss, either heads or tails may turn up, but not both. As a result, the events heads and tails on a single toss are said to be mutually exclusive. Similarly, you will either pass or fail this course or, before the course is over, you may drop it without a grade. Only one of those three outcomes can happen; they are said to be mutually exclusive events. The crucial question to ask in deciding whether events are really mutually exclusive is, "Can two or more of these events occur at one time?" If the answer is yes, the events are not mutually exclusive.When a list of the possible events that can result from an experi- A collectively exhaustive list ment includes every possible outcome, the list is said to be collectively exhaustive. In our coin example, the list "head and tail" is collectively exhaustive (unless, of course, the coin stands on its edge when we toss it). In the US presidential campaign, the list of outcomes "Democratic candidate and Republican candidate" is not a collectively exhaustive list of outcomes, because an independent candidate or the candidate of another party could conceivably win.

Let us consider a situation, total number of possible outcomes related to the situation is " N ", out of them " m " are the number of outcomes where the desired event " E " has occurred. So, "N-m" is

Odd in favor and against

 the number of outcomes where the desired event has not occurred.Hence, we may define:
Odds in favor of happening of $\mathrm{E}=\mathrm{m}: \mathrm{N}-\mathrm{m}$
Odds against the happening of $\mathrm{E}=\mathrm{N}-\mathrm{m}: \mathrm{m}$
This concept is related to the concept of Probability as:
Probability of happening of the event $\mathrm{E}=\mathrm{m} / \mathrm{N}$
Ex: A cricket match is to be played between two teams CX Club and TE Club. A cricket analyst has predicated that the odds in favor of CX Club winning the match are $4: 3$. This prediction is based upon the historical records and upon the current strengths and weaknesses of the two teams. So, if a cricket fan is interested in knowing the chances that CX will win the match, then the desired chances would be $4 / 7$.

EXERCISES 4.2

Self-Check Exercises

SC 4-1 Give a collectively exhaustive list of the possible outcomes of tossing two dice.
SC 4-2 Give the probability for each of the following totals in the rolling of two dice: 1, 2, 5, 6, 7, 10, and 11 .

Basic Concepts

4-5 Which of the following are pairs of mutually exclusive events in the drawing of one card from a standard deck of 52?
(a) A heart and a queen.
(b) A club and a red card.
(c) An even number and a spade.
(d) An ace and an even number.

Which of the following are mutually exclusive outcomes in the rolling of two dice?
(a) A total of 5 points and a 5 on one die.
(b) A total of 7 points and an even number of points on both dice.
(c) A total of 8 points and an odd number of points on both dice.
(d) A total of 9 points and a 2 on one die.
(e) A total of 10 points and a 4 on one die.

Applications

4-6 Consider a stack of nine cards, all spades, numbered 2 through 10, and a die. Give a collectively exhaustive list of the possible outcomes of rolling the die and picking one card. How many elements are there in the sample space?
4-7 Consider the stack of cards and the die discussed in Exercise 4-6. Give the probability for each of the following totals in the sum of the roll of the die and the value of the card drawn:

$$
\begin{array}{lllllll}
2 & 3 & 8 & 9 & 12 & 14 & 16
\end{array}
$$

4-8 In a recent meeting of labour union members supporting Dheeraj Dheer for union president, Dheer's leading supporter said "chances are good" that Dheer will defeat the single opponent facing him in the election.
(a) What are the "events" that could take place with regard to the election?
(b) Is your list collectively exhaustive? Are the events in your list mutually exclusive?
(c) Disregarding the supporter's comments and knowing no additional information, what probabilities would you assign to each of your events?

Worked-Out Answers to Self-Check Exercises

SC 4-1 (Die 1, Die 2)

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	$(1,5)$	$(1,6)$
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	$(2,5)$	$(2,6)$
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	$(3,5)$	$(3,6)$
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$
$(5,1)$	$(5,2)$	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$
$(6,1)$	$(6,2)$	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$

SC 4-2 $P(1)=0 / 36, P(2)=1 / 36, P(5)=4 / 36, P(6)=5 / 36, P(7)=6 / 36, P(10)=3 / 36, P(11)=2 / 36$.

4.3 THREE TYPES OF PROBABILITY

There are three basic ways of classifying probability. These three represent rather different conceptual approaches to the study of probability theory; in fact, experts disagree about which approach is the proper one to use. Let us begin by defining the

1. Classical approach
2. Relative frequency approach
3. Subjective approach

Classical Probability

Classical probability defines the probability that an event will occur as Classical probability defined

Probability of an Event

$$
\begin{equation*}
\text { Probability of an event }=\frac{\text { number of outcomes where the event occurs }}{\text { total number of possible outcomes }} \tag{4-1}
\end{equation*}
$$

It must be emphasized that in order for Eq. 4-1 to be valid, each of the possible outcomes must be equally likely. This is a rather complex way of defining something that may seem intuitively obvious to us, but we can use it to write our coin-toss and dice-rolling examples in symbolic form. First, we would state the question, "What is the probability of getting a head on one toss?" as
P(Head)

Then, using formal terms, we get

$$
\begin{aligned}
\mathrm{P}(\text { Head }) & =\frac{1}{1+1} \text { ind this case, the number hat will produce a head) }_{\text {Total number of possible outcomes }}^{\text {of one toss (a head or a tail) }} \\
& =0.5 \text { or } \frac{1}{2}
\end{aligned}
$$

And for the dice-rolling example:

$$
\left.\begin{array}{rl}
\mathrm{P}(5) & =\frac{1 \longleftarrow}{1+1+1+1+1+1} \\
& \begin{array}{l}
\text { Number of outcomes of one roll } \\
\text { of the die that will produce a } 5
\end{array} \\
& =\frac{1}{6}
\end{array} \begin{array}{l}
\text { one number of possible outcomes of the die (getting a } 1, \mathrm{a} 2, \mathrm{a} 3, \\
\mathrm{a} 4, \mathrm{a} 5, \text { or a } 6 \text {) }
\end{array}\right)
$$

Classical probability is often called a priori probability because if we keep using orderly examples such as fair coins, unbiased dice,

A priori probability

 and standard decks of cards, we can state the answer in advance (a priori) without tossing a coin, rolling a die, or drawing a card. We do not have to perform experiments to make our probability statements about fair coins, standard card decks, and unbiased dice. Instead, we can make statements based on logical reasoning before any experiments take place.This approach assumes a number of assumptions, in defining the probability. So, if those assumptions are included then the complete definition should be: Probability of an event may be defined as the ratio of number of outcomes where the event occurs (favorable out-

Shortcomings of the classical approach

 comes) to the total number of possible outcomes, provided these outcomes are equally likely (the chances of happening of all outcomes are equal), exhaustive (the totality of all outcomes are known and defined) and mutually exclusive (happening of one outcome results in non-happening of others). If these assumptions related to the outcomes are not followed, then this approach can not be applied in determining the probability.This approach to probability is useful when we deal with card games, dice games, coin tosses, and the like, but has serious problems when we try to apply it to the less orderly decision problems we encounter in management. The classical approach to probability assumes a world that does not exist. It assumes away situations that are very unlikely but that could conceivably happen. Such occurrences as
a coin landing on its edge, your classroom burning down during a discussion of probabilities, and your eating pizza while on a business trip at the North Pole are all extremely unlikely but not impossible. Nevertheless, the classical approach assumes them all away. Classical probability also assumes a kind of symmetry about the world, and that assumption can get us into trouble. Real-life situations, disorderly and unlikely as they often are, make it useful to define probabilities in other ways.

Relative Frequency of Occurrence

Suppose we begin asking ourselves complex questions such as, "What is the probability that I will live to be 85 ?" or "What are the chances that I will blow one of my stereo speakers if I turn my 200-watt amplifier up to wide open?" or "What is the probability that the location of a new paper plant on the river near our town will cause a substantial fish kill?" We quickly see that we may not be able to state in advance, without experimentation, what these probabilities are. Other approaches may be more useful.

In the 1800s, British statisticians, interested in a theoretical foundation for calculating risk of losses in life insurance and com-

Probability redefined

 mercial insurance, began defining probabilities from statistical data collected on births and deaths. Today, this approach is called the relative frequency of occurrence. It defines probability as either:1. The observed relative frequency of an event in a very large number of trials, or
2. The proportion of times that an event occurs in the long run when conditions are stable.

This method uses the relative frequencies of past occurrences as probabilities. We determine how often something has happened in the past and use that figure to predict the probability that it will

Using the relative frequency of occurrence approach happen again in the future. Let us look at an example. Suppose an insurance company knows from past actuarial data that of all males 40 years old, about 60 out of every 100,000 will die within a 1 -year period. Using this method, the company estimates the probability of death for that age group as

$$
\frac{60}{100,000} \text {, or } 0.0006
$$

A second characteristic of probabilities established by the relative frequency of occurrence method can be shown by tossing one of our

More trials, greater accuracy fair coins 300 times. Figure 4-1 illustrates the outcomes of these 300 tosses. Here we can see that although the proportion of heads was far from 0.5 in the first 100 tosses, it seemed to stabilize and approach 0.5 as the number of tosses increased. In statistical language, we would say that the relative frequency becomes stable as the number of tosses becomes large (if we are tossing the coin under uniform conditions). Thus, when we use the relative frequency approach to establish probabilities, our probability figure will gain accuracy as we increase the number of observations. Of course, this improved accuracy is not free; although more tosses of our coin will produce a more accurate probability of heads occurring, we must bear the time and the cost of additional observations.

Suppose an event is capable of being repeated sufficiently large number of times "N", and the frequency of the desired outcome is " f ". Then relative frequency of the outcome is " f / N ". The limiting value of the relative frequency can be used to define probability of the outcome.

One difficulty with the relative frequency approach is that people A limitation of relative often use it without evaluating a sufficient number of outcomes. If you heard someone say, "My aunt and uncle got the flu this year,

frequency

FIGURE 4-1 RELATIVE FREQUENCY OF OCCURRENCE OF HEADS IN 300 TOSSES OF A FAIR COIN
and they are both over 65, so everyone in that age bracket will probably get the flu," you would know that your friend did not base his assumptions on enough evidence. His observations were insufficient data for establishing a relative frequency of occurrence probability.

This approach of defining probability is better then the Classical Approach, as it is not based on assumptions of mutually exclusive, equally likely and exhaustive. The drawback of using this approach is that it requires the event to be capable of being repeated large number of times. Moreover, one cannot be certain that after how many occurrences, the relative frequency may stabilize. In the real and business world, we have to take decisions on those events which occur only once or not so frequent and the environmental conditions related to the situation might change. These factors restrict the use of this approach in real life decision making.

But what about a different kind of estimate, one that seems not to be based on statistics at all? Suppose your school's basketball team lost the first ten games of the year. You were a loyal fan, however, and bet $\$ 100$ that your team would beat Indiana's in the eleventh game. To everyone's surprise, you won your bet. We would have difficulty convincing you that you were statistically incorrect. And you would be right to be skeptical about our argument. Perhaps, without knowing that you did so, you may have based your bet on the statistical foundation described in the next approach to establishing probabilities.

Subjective Probabilities

The relative frequency approach cannot deal with specific or unique

Subjective probability defined

 situations, which are typical of the business or management world.So, the probability approach dealing with such unique situations should be based upon some belief or educated guess of the decision maker.

Subjective probabilities are based on the beliefs of the person making the probability assessment. In fact, subjective probability can be defined as the probability assigned to an event by an individual, based on whatever evidence is available. This evidence may be in the form of relative frequency of past occurrences, or it may be just an educated guess. Probably the earliest subjective probability estimate of the likelihood of rain occurred when someone's parents said, "My corns hurt; I think we're in for a downpour." Subjective assessments of probability permit the widest flexibility of the three concepts we have discussed. The decision maker can use whatever evidence is available and temper this with personal feelings about the situation.

Subjective probability assignments are often found when events occur only once or at most a very few times. Say that it is your job to interview and select a new social services caseworker. You have narrowed your choice to three people. Each has an attractive appearance, a high level of energy, abounding self-confidence, a record of past accomplishments, and a state of mind that seems to welcome challenges. What are the chances each will relate to clients successfully? Answering this question and choosing among the three will require you to assign a subjective probability to each person's potential.

Here is one more illustration of this kind of probability assignment. A judge is deciding whether to allow the construction

Using the subjective approach

 of a nuclear power plant on a site where there is some evidence of a geological fault. He must ask himself, "What is the probability of a major nuclear accident at this location?" The fact that there is no relative frequency of occurrence evidence of previous accidents at this location does not excuse him from making a decision. He must use his best judgment in trying to determine the subjective probabilities of a nuclear accident.Because most higher-level social and managerial decisions are concerned with specific, unique situations, rather than with a long series of identical situations, decision makers at this level make considerable use of subjective probabilities.

The subjective approach to assigning probabilities was introduced in 1926 by Frank Ramsey in his book The Foundation of Mathematics and Other Logical Essays. The concept was further developed by Bernard Koopman, Richard Good, and Leonard Savage, names that appeared regularly in advanced work in this field. Professor Savage pointed out that two reasonable people faced with the same evidence could easily come up with quite different subjective probabilities for the same event. The two people who made opposing bets on the outcome of the Indiana basketball game would understand quite well what he meant.

HINTS \& ASSUMPTIONS

Warning: In classical probability problems, be sure to check whether the situation is "with replacement" after each draw or "without replacement." The chance of drawing an ace from a 52 -card deck on the first draw is $4 / 52$, or about .077. If you draw one and it is replaced, the odds of drawing an ace on the second draw are the same, $4 / 52$. However, without replacement, the odds change to $4 / 51$ if the first card was not an ace, or to $3 / 51$ if the first card was an ace. In assigning subjective probabilities, it's normal for two different people to come up with different probabilities for the same event; that's the result of experience and time (we often call this combination "wisdom"). In assigning probabilities using the relative frequency of occurrence method, be sure you have observed an adequate number of outcomes. Just because red hasn't come up in 9 spins of the roulette wheel, you shouldn't bet next semester's tuition on black this spin!

EXERCISES 4.3

Self-Check Exercises

SC 4-3 The leader of MP Fiber Plant, Siddharth, has drafted a set of wage and benefit demands to be presented to management. To get an idea of worker support for the package, he randomly polls the two largest groups of workers at his plant, the machinists (M) and the inspectors (I). He polls 30 of each group with the following results:

Opinion of Package	M	I
Strongly support	9	10
Mildly support	11	3
Undecided	2	2
Mildly oppose	4	8
Strongly oppose	$\frac{4}{30}$	$\frac{7}{\mathbf{3 0}}$

(a) What is the probability that a machinist randomly selected from the polled group mildly supports the package?
(b) What is the probability that an inspector randomly selected from the polled group is undecided about the package?
(c) What is the probability that a worker (machinist or inspector) randomly selected from the polled group strongly or mildly supports the package?
(d) What types of probability estimates are these?

SC 4-4 Classify the following probability estimates as to their type (classical, relative frequency, or subjective):
(a) The probability of scoring on a penalty shot in hockey is 0.47 .
(b) The probability that the current mayor will resign is 0.85 .
(c) The probability of rolling two sixes with two dice is $1 / 36$.
(d) The probability that a president elected in a year ending in zero will die in office is $7 / 10$.
(e) The probability that you will go to Europe this year is 0.14 .

Basic Concepts

4-9 Determine the probabilities of the following events in drawing a card from a standard deck of 52 cards:
(a) A seven.
(b) A black card.
(c) An ace or a king.
(d) A black two or a black three.
(e) A red face card (king, queen, or jack).

What type of probability estimates are these?
4-10 During a recent bridge game, once the lead card had been played and the dummy's hand revealed, the declarer took a moment to count up the number of cards in each suit with the results given below:

Suit	We	They
Spades	6	7
Hearts	8	5
Diamonds	4	9
Clubs	$\frac{8}{\mathbf{2 6}}$	$\frac{5}{\mathbf{2 6}}$

(a) What is the probability that a card randomly selected from the We team's hand is a spade?
(b) What is the probability that a card randomly selected from the They team's hand is a club?
(c) What is the probability that a card randomly selected from all the cards is either a spade or heart?
(d) If this type of analysis were repeated for every hand many times, what would be the longrun probability that a card drawn from the We team's hand is a spade?

Applications

4-11 Below is a frequency distribution of annual sales commissions from a survey of 300 media salespeople.

Annual Commission	Frequency
₹ $0-4,999$	15
$5,000-9,999$	25
$10,000-14,999$	35
$15,000-19,999$	125
$20,000-24,999$	70
$25,000+$	30

Based on this information, what is the probability that a media salesperson makes a commission: (a) between ₹ 5,000 and ₹ 10,000 , (b) less than ₹ 15,000 , (c) more than ₹ 20,000 , and (d) between ₹ 15,000 and ₹ 20,000 .
4-12 The finance minister, Mr Singh, is preparing to make his annual budget to the parliament and is speculating about his chances of getting all or part of his requested budget approved. From his 20 years of experience in making these requests, he has deduced that his chances of getting between 50 and 74 percent of his budget approved are twice as good as those of getting between 75 and 99 percent approved, and two and one-half times as good as those of getting between 25 and 49 percent approved. Further, the general believes that there is no chance of less than 25 percent of his budget being approved. Finally, the entire budget has been approved only once during the general's tenure, and the general does not expect this pattern to change. What are the probabilities of 0-24 percent, 25-49 percent, 50-74 percent, 75-99 percent, and 100 percent approval, according to the general?
4-13 The office manager of an insurance company has the following data on the functioning of the copiers in the office:

Copier	Days Functioning	Days Out of Service
1	209	51
2	217	43
3	258	2
4	229	31
5	247	13

What is the probability of a copier being out of service based on these data?
4-14 Classify the following probability estimates as classical, relative frequency, or subjective:
(a) The probability the Cubs will win the World Series this year is 0.175 .
(b) The probability tuition will increase next year is 0.95 .
(c) The probability that you will win the lottery is 0.00062 .
(d) The probability a randomly selected flight will arrive on time is 0.875 .
(e) The probability of tossing a coin twice and observing two heads is 0.25 .
(f) The probability that your car will start on a very cold day is 0.97 .

Worked-Out Answers to Self-Check Exercises

SC 4-3 (a) $P($ Machinist mildly supports $)=\frac{\text { number of machinists in "mildly support" class }}{\text { total number of machinists polled }}=11 / 30$
(b) $\mathrm{P}($ Inspector undecided $)=\frac{\text { number of inspectors in "undecided" class }}{\text { total number of inspectors polled }}=2 / 30=1 / 15$

(c) | | Opinion |
| :---: | :---: |
| | Frequency (combined) |

MS 14
U 4
MO 12
SO $\quad \underline{11}$
60
$\mathrm{P}($ Strongly or mildly support $)=(19+14) / 60=33 / 60=11 / 20$
(d) Relative frequency.
SC 4-4
(a) Relative frequency.
(b) Subjective.
(c) Classical.
(d) Relative frequency.
(e) Subjective.

4.4 PROBABILITY RULES

Most managers who use probabilities are concerned with two conditions:

1. The case where one event or another will occur
2. The situation where two or more events will both occur

We are interested in the first case when we ask, "What is the probability that today's demand will exceed our inventory?" To illustrate the second situation, we could ask, "What is the probability that today's demand will exceed our inventory and that more than 10 percent of our sales force will not report for work?" In the sections to follow, we shall illustrate methods of determining answers to questions such as these under a variety of conditions.

Some Commonly Used Symbols, Definitions, and Rules

Symbol for a Marginal Probability In probability theory, we use symbols to simplify the presentation of ideas. As we discussed earlier in this chapter, the probability of the event A is expressed as

FIGURE 4-2 SOME VENN DIAGRAMS

A single probability means that only one event can take place. It is called a marginal or unconditional probability. To illustrate, let us suppose that 50 members of a school class drew tickets to see which

Marginal or unconditional probability student would get a free trip to the National Rock Festival. Any one of the students could calculate his or her chances of winning as:

$$
\begin{aligned}
\mathrm{P}(\text { Winning }) & =\frac{1}{50} \\
& =0.02
\end{aligned}
$$

In this case, a student's chance is 1 in 50 because we are certain that the possible events are mutually exclusive, that is, only one student can win at a time.

There is a nice diagrammatic way to illustrate this example and other probability concepts. We use a pictorial representation called

Venn diagrams

 a Venn diagram, after the nineteenth-century English mathematician John Venn. In these diagrams, the entire sample space is represented by a rectangle, and events are represented by parts of the rectangle. If two events are mutually exclusive, their parts of the rectangle will not overlap each other, as shown in Figure 4-2(a). If two events are not mutually exclusive, their parts of the rectangle will overlap, as in Figure 4-2(b).Because probabilities behave a lot like areas, we shall let the rectangle have an area of 1 (because the probability of something happening is 1). Then the probability of an event is the area of its part of the rectangle. Figure 4-2(c) illustrates this for the National Rock Festival example. There the rectangle is divided into 50 equal, nonoverlapping parts.

Addition Rule of Probabilistic Events If two events are not mutually exclusive, it is possible for both events to occur. In these cases, our addition rule must be modified. For example, what is

Probability of one or more

 events not mutually exclusive the probability of drawing either an ace or a heart from a deck of cards? Obviously, the events ace and heart can occur together because we could draw the ace of hearts. Thus, ace and heart are not mutually exclusive events. We must adjust our Equation 4-3 to avoid double counting, that is, we have to reduce the probability of drawing either an ace or a heart by the chance that we could draw both of them together. As a result, the correct equation for the probability of one or more of two events that are not mutually exclusive is| Addition Rule of Probabilistic Events | |
| :---: | :---: |
| Probability of A happening Probability of A and B
 happening together
 $\mathrm{P}(A$ or $B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A B)$
 Probability of A or B Probability of
 happening when A and B
 are not mutually exclusive | [4-2] |

A Venn diagram illustrating Equation 4-2 is given in Figure 4-3. There, the event A or B is outlined with a heavy line. The event A and B is the cross-hatched wedge in the middle. If we add the areas of circles A and B, we double count the area of the wedge, and so we must subtract it to make sure it is counted only once.

Using Equation 4-2 to determine the probability of drawing either an ace or a heart, we can calculate:

$$
\begin{aligned}
\mathrm{P}(\text { Ace or Heart }) & =\mathrm{P}(\text { Ace })+\mathrm{P}(\text { Heart })-\mathrm{P}(\text { Ace and Heart }) \\
& =\frac{4}{52}+\frac{13}{52}-\frac{1}{52} \\
& =\frac{16}{52} \text { or } \frac{4}{13}
\end{aligned}
$$

FIGURE 4-3 VENN DIAGRAM FOR THE ADDITION RULE FOR TWO EVENTS NOT MUTUALLY EXCLUSIVE

Let's do a second example. The employees of a certain company have elected five of their number to represent them on the employee-management productivity council. Profiles of the five are as follows:

1. male	age 30
2. male	32
3. female	45
4. female	20
5. male	40

This group decides to elect a spokesperson by drawing a name from a hat. Our question is, "What is the probability the spokesperson will be either female or over 35?" Using Equation 4-2, we can set up the solution to our question like this:
$\mathrm{P}($ Female or Over 35$)=\mathrm{P}($ Female $)+\mathrm{P}($ Over 35$)-\mathrm{P}($ Female and Over 35$)$

$$
=\frac{2}{5}+\frac{2}{5}-\frac{1}{5}=\frac{3}{5}
$$

We can check our work by inspection and see that of the five people in the group, three would fit the requirements of being either female or over 35 .

Addition Rule for Mutually Exclusive Events Often, however, we are interested in the probability that one thing or another will

Probability of one or more mutually exclusive events occur. If these two events are mutually exclusive, we can express this probability using the addition rule for mutually exclusive events. This rule is expressed symbolically as

and is calculated as follows:

Probability of Either A or B Happening
 $$
\begin{equation*} \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B) \tag{4-3} \end{equation*}
$$

This addition rule is illustrated by the Venn diagram in Figure 4-4, where we note that the area in the two circles together (denoting the event A or B) is the sum of the areas of the circle denoting the event A and the circle denoting the event B.

Now to use this formula in an example. Five equally capable students are waiting for a summer job interview with a company that has announced that it will hire only one of the five by random drawing. The group consists of Amit, Hafsa, John, Harleen, and Prakash. If our question is, "What is the probability that John will be the candidate?" we can use Equation 4-1 and give the answer.

$$
\begin{aligned}
\mathrm{P}(\text { John }) & =\frac{1}{5} \\
& =0.02
\end{aligned}
$$

However, if we ask, "What is the probability that either John or Harleen will be

FIGURE 4-4 VENN DIAGRAM FOR THE ADDITION RULE FOR MUTUALLY EXCLUSIVE EVENTS the candidate?" we would use Equation 4-3:

$$
\begin{aligned}
\mathrm{P}(\text { John or Harleen }) & =\mathrm{P}(\text { John })+\mathrm{P}(\text { Harleen }) \\
& =\frac{1}{5}+\frac{1}{5} \\
& =\frac{2}{5}=0.4
\end{aligned}
$$

Let's calculate the probability of two or more events happening once more. Table 4-1 contains data on the sizes of families in a certain town. We are interested in the question, "What is the probability that a family chosen at random from this town will have four or more children (that is, four, five, six or more children)?" Using Equation 4-3, we can calculate the answer as

$$
\begin{aligned}
\mathrm{P}(4,5,6 \text { or more }) & =\mathrm{P}(4)+\mathrm{P}(5)+\mathrm{P}(6 \text { or more }) \\
& =0.15+0.10+0.05=0.30
\end{aligned}
$$

There is an important special case of Equation 4-3. For any event A, either A happens or it doesn't. So the events A and not A are exclusive and exhaustive. Applying Equation 4-3 yields the result

$$
\mathrm{P}(A)+\mathrm{P}(\text { not } A)=1
$$

or, equivalently,

$$
\mathrm{P}(A)=1-\mathrm{P}(\text { not } A)
$$

For example, referring back to Table 4-1, the probability of a family's having five or fewer children is most easily obtained by subtracting from 1 the probability of the family's having six or more children, and thus is seen to be 0.95 .

TABLE 4.1 FAMILY-SIZE DATA

NUMBER OF CHILDREN	0	1	2	3	4	5	6 or more
PROPORTION OF FAMILIES HAVING THIS MANY CHILDREN	0.05	0.10	0.30	0.25	0.15	0.10	0.05

HINTS \& ASSUMPTIONS

John Venn's diagrams are a useful way to avoid errors when you apply the addition rule for events that are and are not mutually exclusive. The most common error here is double counting. Hint: In applying the addition rule for mutually exclusive events, we're looking for a probability of one event or another and overlap is not a problem. However, with non-mutually exclusive events, both can occur together and we need to reduce our probability by the chance that they could. Thus, we subtract the overlap or cross-hatched area in the Venn diagram to get the correct value.

EXERCISES 4.4

Self-Check Exercises

SC 4-5 From the following Venn diagram, which indicates the number of outcomes of an experiment corresponding to each event and the number of outcomes that do not correspond to either event, give the probabilities indicated.

SC 4-6 Samreen, an owner of a big business house, is considering to purchase one of the two pumping stations. The cost of purchase of both is same but the main concern is chances of failure of the pumping stations under consideration. Each station is susceptible to two kinds of failure: pump failure and leakage. When either (or both) occur, the station must be shut down. The data at hand indicate that the following probabilities prevail:

Station	P(Pump Failure)	P(Leakage)	P(Both)
1	0.07	0.10	0
2	0.09	0.12	0.06

Recommend, which pumping station, should be purchased by Samreen. Justify your answer.

Basic Concepts

4-15 From the following Venn diagram, which indicates the number of outcomes of an experiment corresponding to each event and the number of outcomes that do not correspond to either event, give the probabilities indicated:

4-16 Using this Venn diagram, give the probabilities indicated:

4-17 In this section, two expressions were developed for the probability of either of two events, A or B, occurring. Referring to Equations 4-2 and 4-3:
(a) What can you say about the probability of A and B occurring simultaneously when A and B are mutually exclusive?
(b) Develop an expression for the probability that at least one of three events, A, B, or C, could occur, that is, $\mathrm{P}(A$ or B or $C)$. Do not assume that A, B, and C are mutually exclusive of each other.
(c) Rewrite your expression for the case in which A and B are mutually exclusive, but A and C and B and C are not mutually exclusive.
(d) Rewrite your expression for the case in which A and B and A and C are mutually exclusive, but not B and C.
(e) Rewrite your expression for the case in which A, B, and C are mutually exclusive of the others.

Applications

4.18 An employee at Infotech must enter product information into the computer. The employee may use a light pen that transmits the information to the PC along with the keyboard to issue commands, or fill out a bubble sheet and feed it directly into the old mainframe. Historically, we know the following probabilities:
$\mathrm{P}($ Light pen will fail $)=0.025$
$\mathrm{P}(\mathrm{PC}$ keyboard will fail $)=0.15$
$\mathrm{P}($ Light pen and PC keyboard will fail $)=0.005$
$\mathrm{P}($ Mainframe will fail $)=0.25$

Data can be entered into the PC only if both the light pen and keyboard are functioning.
(a) What is the probability that the employee can use the PC to enter data?
(b) What is the probability that either the PC fails or the mainframe fails? Assume they cannot both fail at the same time.
4-19 The HAL Corporation wishes to improve the resistance of its personal computer to disk-drive and keyboard failures. At present, the design of the computer is such that disk-drive failures occur only one-third as often as keyboard failures. The probability of simultaneous disk-drive and keyboard failures is 0.05 . If the computer is 80 percent resistant to disk-drive and/or keyboard failure, how low must the disk-drive failure probability be?
4-20 The Herr-McFee Company, which produces nuclear fuel rods, must X-ray and inspect each rod before shipping. Karen Wood, an inspector, has noted that for every 1,000 fuel rods she inspects, 10 have interior flaws, 8 have casing flaws, and 5 have both flaws. In her quarterly report, Karen must include the probability of flaws in fuel rods. What is this probability?

Worked-Out Answers to Self-Check Exercises

SC 4-5 $\quad \mathrm{P}(A)=14 / 50=0.28 \quad \mathrm{P}(B)=19 / 50=0.38$

$$
\mathrm{P}(A \text { or } B)=\frac{14}{50}+\frac{19}{50}-\frac{6}{50}=0.54
$$

SC 4-6 $\quad \mathrm{P}($ Failure $)=\mathrm{P}($ Pump failure or leakage $)$
Station 1: $0.07+0.1-0=0.17 \quad$ Station 2: $0.09+0.12-0.06=0.15$
Thus, Station 1 has the higher probability of being shut down. So, Station 2 should be taken over by Samreen.

4.5 PROBABILITIES UNDER CONDITIONS OF STATISTICAL INDEPENDENCE

When two events happen, the outcome of the first event may or may not have an effect on the outcome of the second event. That is, the

Independence defined

events may be either dependent or independent. In this section, we examine events that are statistically independent: The occurrence of one event has no effect on the probability of the occurrence of any other event. There are three types of probabilities under statistical independence:

1. Marginal
2. Joint
3. Conditional

Marginal Probabilities under Statistical Independence

As we explained previously, a marginal or unconditional probability is the simple probability of the occurrence of an event. In a fair coin toss, $\mathrm{P}(H)=0.5$, and $\mathrm{P}(T)=0.5$; that is, the probability of heads

Marginal probability of independent events equals 0.5 and the probability of tails equals 0.5 . This is true for every toss, no matter how many tosses have been made or what their outcomes have been. Every toss stands alone and is in no way connected
with any other toss. Thus, the outcome of each toss of a fair coin is an event that is statistically independent of the outcomes of every other toss of the coin.

Imagine that we have a biased or unfair coin that has been altered in such a way that heads occurs 0.90 of the time and tails 0.10 of the time. On each individual toss, $\mathrm{P}(H)=0.90$, and $\mathrm{P}(T)=0.10$. The outcome of any particular toss is completely unrelated to the outcomes of the tosses that may precede or follow it. The outcomes of several tosses of this coin are statistically independent events too, even though the coin is biased.

Joint Probabilities under Statistical Independence

The probability of two or more independent events occurring together or in succession is the product of their marginal probabilities. Mathematically, this is stated (for two events):

Multiplication rule for joint, independent events

Joint Probability of Two Independent Events
 $$
\begin{equation*} \mathrm{P}(A B)=\mathrm{P}(\mathrm{~A}) \times \mathrm{P}(B) \tag{4-4} \end{equation*}
$$

where

- $\mathrm{P}(A B)=$ probability of events A and B occurring together or in succession; this is known as a joint probability
- $\mathrm{P}(A)=$ marginal probability of event A occurring
- $\mathrm{P}(B)=$ marginal probability of event B occurring

In terms of the fair coin example, the probability of heads on two The fair coin example successive tosses is the probability of heads on the first toss (which we shall call H_{1}) times the probability of heads on the second toss $\left(H_{2}\right)$. That is, $\mathrm{P}\left(H_{1} H_{2}\right)=\mathrm{P}\left(H_{1}\right) \times \mathrm{P}\left(H_{2}\right)$. We have shown that the events are statistically independent, because the probability of any outcome is not affected by any preceding outcome. Therefore, the probability of heads on any toss is 0.5 , and $\mathrm{P}\left(H_{1} H_{2}\right)=0.5 \times 0.5=0.25$. Thus, the probability of heads on two successive tosses is 0.25 .

Likewise, the probability of getting three heads on three successive tosses is $\mathrm{P}\left(H_{1} H_{2} H_{3}\right)=0.5 \times 0.5$ $\times 0.5=0.125$.

Assume next that we are going to toss an unfair coin that has $\mathrm{P}(H)=0.8$ and $\mathrm{P}(T)=0.2$. The events (outcomes) are independent, because the probabilities of all tosses are exactly the same-the individual tosses are completely separate and in no way affected by any other toss or outcome. Suppose our question is, "What is the probability of getting three heads on three successive tosses?" We use Equation 4-4 and discover that:

$$
\mathrm{P}\left(H_{1} H_{2} H_{3}\right)=\mathrm{P}\left(H_{1}\right) \times \mathrm{P}\left(H_{2}\right) \times \mathrm{P}\left(H_{3}\right)=0.8 \times 0.8 \times 0.8=0.512
$$

Now let us ask the probability of getting three tails on three successive tosses:

$$
\mathrm{P}\left(T_{1} T_{2} T_{3}\right)=\mathrm{P}\left(T_{1}\right) \times \mathrm{P}\left(T_{2}\right) \times \mathrm{P}\left(T_{3}\right)=0.2 \times 0.2 \times 0.2=0.008
$$

Note that these two probabilities do not add up to 1 because the events $H_{1} H_{2} H_{3}$ and $T_{1} T_{2} T_{3}$ do not constitute a collectively exhaustive list. They are mutually exclusive, because if one occurs, the other cannot.

FIGURE 4-5 PROBABILITY TREE OF ONE TOSS

We can make the probabilities of events even more explicit using a probability tree. Figure $4-5$ is a probability tree showing the possible outcomes and their respective probabilities for one toss of a fair coin.

For toss 1, we have two possible outcomes, heads and tails, each with a probability of 0.5 . Assume that the

Constructing a probability tree
Constructing a probability tres
 One toss, two possible outcomes outcome of toss 1 is heads. We toss again. The second toss has two possible outcomes, heads and tails, each with a probability of 0.5 . In Figure $4-6$, we add these two branches of the tree.
Next we consider the possibility that the outcome of toss 1 is tails. Then the second toss must stem from the lower branch representing toss 1. Thus, in Figure 4-7, we add two more branches to the

Two tosses, four possible outcomes tree. Notice that on two tosses, we have four possible outcomes:
$H_{1} H_{2}, H_{1} T_{2}, T_{1} H_{2}$, and $T_{1} T_{2}$ (remember the subscripts indicate the toss number, so that T_{2}, for example, means tails on toss 2). Thus, after two tosses, we may arrive at any one of four possible points. Because we are going to toss three times, we must add more branches to the tree.

Assuming that we have had heads on the first two tosses, we are Three tosses, eight possible now ready to begin adding branches for the third toss. As before, the

outcomes

 two possible outcomes are heads and tails, each with a probabilityof 0.5 . The first step is shown in Figure 4-8. The additional branches are added in exactly the same manner. The completed probability tree is shown in Figure 4-9. Notice that both heads and tails have a probability of 0.5 of occurring no matter how far from the origin (first toss) any particular toss may be. This follows from our definition of independence: No event is affected by the events preceding or following it.

FIGURE 4-7 PROBABILITY TREE OF TWO TOSSES

FIGURE 4-8 PROBABILITY TREE OF PARTIAL THIRD TOSS

FIGURE 4-9 COMPLETED PROBABILITY TREE

Suppose we are going to toss a fair coin and want to know the probability that all three tosses will result in heads. Expressing the

All tosses are independent

 problem symbolically, we want to know $\mathrm{P}\left(H_{1} H_{2} H_{3}\right)$. From the mathematical definition of the joint probability of independent events, we know that$$
\mathrm{P}\left(H_{1} H_{2} H_{3}\right)=\mathrm{P}\left(H_{1}\right) \times \mathrm{P}\left(H_{2}\right) \times \mathrm{P}\left(\mathrm{H}_{3}\right)=0.5 \times 0.5 \times 0.5=0.125
$$

We could have read this answer from the probability tree in Figure 4-9 by following the branches giving $H_{1} H_{2} H_{3}$.

Try solving these problems using the probability tree in Figure 4-9.
Example 1 What is the probability of getting tails, heads, tails in

Outcomes in a particular order

 that order on three successive tosses of a fair coin?Solution $\mathrm{P}\left(T_{1} H_{2} T_{3}\right)=\mathrm{P}\left(T_{1}\right) \times \mathrm{P}\left(H_{2}\right) \times \mathrm{P}\left(T_{3}\right)=0.125$. Following the prescribed path on the probability tree will give us the same answer.

Example 2 What is the probability of getting tails, tails, heads in that order on three successive tosses of a fair coin?

Solution If we follow the branches giving tails on the first toss, tails on the second toss, and heads on the third toss, we arrive at the probability of 0.125 . Thus, $\mathrm{P}\left(T_{1} T_{2} H_{3}\right)=0.125$.

It is important to notice that the probability of arriving at a given point by a given route is not the same as the probability of, say, heads on the third toss. $\mathrm{P}\left(H_{1} T_{2} H_{3}\right)=0.125$, but $\mathrm{P}\left(H_{3}\right)=0.5$. The first is a case of joint probability that is, the probability of getting heads on the first toss, tails on the second, and heads on the third. The latter, by contrast, is simply the marginal probability of getting heads on a particular toss, in this instance toss 3 .

Notice that the sum of the probabilities of all the possible outcomes for each toss is 1 . This results from the fact that we have mutually exclusive and collectively exhaustive lists of outcomes. These are given in Table 4-2.

TABLE 4-2 LISTS OF OUTCOMES

1 Toss		2 Tosses		3 Tosses	
Possible Outcomes	Probability	Possible Outcomes	Probability	Possible Outcomes	Probability
H_{1}	0.5	$H_{1} H_{2}$	0.25	$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{H}_{3}$	0.125
T_{1}	0.5	$H_{1} T_{2}$	0.25	$\mathrm{H}_{1} \mathrm{H}_{2} \mathrm{~T}_{3}$	0.125
The sum of the probabilities of all the possible outcomes must always equal 1	$\lambda^{1.0}$	$T_{1} H_{2}$	0.25	$H_{1} T_{2} H_{3}$	0.125
		$T_{1} T_{2}$	$\underline{0.25}$	$T_{1} H_{2} H_{3}$	0.125
			$\rightarrow \mathbf{1 . 0 0}$	$T_{1} H_{2} T_{3}$	0.125
				$T_{1} T_{2} H_{3}$	0.125
				$T_{1} T_{2} T_{3}$	0.125
					0.125
					1.000

Example 3 What is the probability of at least two heads on three Outcomes in terms of "at least" tosses?

Solution Recalling that the probabilities of mutually exclusive events are additive, we can note the possible ways that at least two heads on three tosses can occur, and we can sum their individual probabilities. The outcomes satisfying the requirement are $H_{1} H_{2} H_{3}, H_{1} H_{2} T_{3}, H_{1} T_{2} H_{3}$, and $T_{1} H_{2} H_{3}$. Because each of these has an individual probability of 0.125 , the sum is 0.5 . Thus, the probability of at least two heads on three tosses is 0.5 .

Example 4 What is the probability of at least one tail on three tosses?
Solution There is only one case in which no tails occur, namely $H_{1} H_{2} H_{3}$. Therefore, we can simply subtract for the answer:

$$
1-\mathrm{P}\left(H_{1} H_{2} H_{3}\right)=1-0.125=0.875
$$

The probability of at least one tail occurring in three successive tosses is 0.875 .
Example 5 What is the probability of at least one head on two tosses?
Solution The possible ways at least one head may occur are $H_{1} H_{2}, H_{1} T_{2}, T_{1} H_{2}$. Each of these has a probability of 0.25 . Therefore, the probability of at least one head on two tosses is 0.75 . Alternatively, we could consider the case in which no head occurs-namely, $T_{1} T_{2}$-and subtract its probability from 1; that is,

$$
1-\mathrm{P}\left(T_{1} T_{2}\right)=1-0.25=0.75
$$

Conditional Probabilities under Statistical Independence

Thus far, we have considered two types of probabilities, Conditional probability marginal (or unconditional) probability and joint probability. Symbolically, marginal probability is $\mathrm{P}(A)$ and joint probability is $\mathrm{P}(A B)$. Besides these two, there is one other type of probability, known as conditional probability. Symbolically, conditional probability is written

and is read, "the probability of event B given that event A has occurred."
Conditional probability is the probability that a second event (B) will occur if a first event (A) has already happened.

For statistically independent events, the conditional probability of event B given that event A has occurred is simply the probability Conditional probability of of event B :

Conditional Probability for Statistically independent Events

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\mathrm{P}(B) \tag{4-5}
\end{equation*}
$$

At first glance, this may seem to be contradictory. Remember, however, that by definition, independent events are those whose probabilities are in no way affected by the occurrence of each other. In fact, statistical independence is defined symbolically as the condition in which $\mathrm{P}(B \mid A)=\mathrm{P}(B)$.

We can understand conditional probability better by solving an illustrative problem. Our question is, "What is the probability that the second toss of a fair coin will result in heads, given that heads resulted on the first toss?" Symbolically, this is written as $\mathrm{P}\left(H_{2} \mid H_{1}\right)$. Remember that for two independent events, the results of the first toss have absolutely no effect on the results of the second toss. Because the probabilities of heads and tails are identical for every toss, the probability of heads on the second toss is 0.5 . Thus, we must say that $\mathrm{P}\left(H_{2} \mid H_{1}\right)=0.5$.

Table 4-3 summarizes the three types of probabilities and their mathematical formulas under

TABLE 4-3 PROBABILITIES UNDER STATISTICAL INDEPENDENCE

Type of Probability	Symbol	Formula
Marginal	$\mathrm{P}(A)$	$\mathrm{P}(A)$
Joint	$\mathrm{P}(A B)$	$\mathrm{P}(A) \times \mathrm{P}(B)$
Conditional	$\mathrm{P}(B \mid A)$	$\mathrm{P}(B)$

HINTS \& ASSUMPTIONS

Warning: In statistical independence, our assumption is that events are not related. In a series of coin toss examples, this is true, but in a series of business decisions, there may be a relationship among them. At the very least, you learn from the outcome of each decision and that knowledge affects your next decision. Before calculating conditional or joint probabilities in business situations while assuming independence, be careful you have considered some of the ways that experience affects future judgment.

EXERCISES 4.5

Self-Check Exercise

SC 4-7 What is the probability that in selecting two cards one at a time from a deck with replacement, the second card is
(a) A face card, given that the first card was red?
(b) An ace, given that the first card was a face card?
(c) A black jack, given that the first card was a red ace?

SC 4-8 Rahman, who is the Chief Superintendent of the Central Jail, has been reviewing the prison records on attempted escapes by inmates. He has data covering the last 45 years that the prison has been open, arranged by seasons. The data are summarized in the table:

Attempted Escapes	Winter	Spring	Summer	Fall
0	3	2	1	0
$1-5$	15	10	11	12
$6-10$	15	12	11	16
$11-15$	5	8	7	7
$16-20$	3	4	6	5
$21-25$	2	4	5	3
More than 25	$\underline{2}$	$\frac{5}{\mathbf{4 5}}$	$\frac{4}{\mathbf{4 5}}$	$\frac{2}{\mathbf{4 5}}$

(a) What is the probability that in a year selected at random, the number of escapes was between 16 and 20 during the winter?
(b) What is the probability that more than 10 escapes were attempted during a randomly chosen summer season?
(c) What is the probability that between 11 and 20 escapes were attempted during a randomly chosen season? (Hint: Group the data together.)

Basic Concepts

4-21 What is the probability that a couple's second child will be
(a) A boy, given that their first child was a girl?
(b) A girl, given that their first child was a girl?

4-22 In rolling two dice, what is the probability of rolling
(a) A total of 7 on the first roll, followed by a total of 11 on the second roll?
(b) A total of 21 on the first two rolls combined?
(c) A total of 6 on the first three rolls combined?

4-23 A bag contains 32 marbles: 4 are red, 9 are black, 12 are blue, 6 are yellow, and 1 is purple. Marbles are drawn one at a time with replacement. What is the probability that
(a) The second marble is yellow given the first one was yellow?
(b) The second marble is yellow given the first one was black?
(c) The third marble is purple given both the first and second were purple?

4-24 George, Richard, Paul, and John play the following game. Each man takes one of four balls numbered 1 through 4 from an urn. The man who draws ball 4 loses. The other three return their balls to the urn and draw again. Now the one who draws ball 3 loses. The other two return their balls to the urn and draw again. The man who draws ball 1 wins the game.
(a) What is the probability that John does not lose in the first two draws?
(b) What is the probability that Paul wins the game?

Applications

4-25 The health department routinely conducts two independent inspections of each restaurant, with the restaurant passing only if both inspectors pass it. Inspector A is very experienced, and, hence, passes only 2 percent of restaurants that actually do have health code violations.

Inspector B is less experienced and passes 7 percent of restaurants with violations. What is the probability that
(a) Inspector A passes a restaurant, given that inspector B has found a violation?
(b) Inspector B passes a restaurant with a violation, given that inspector A passes it?
(c) A restaurant with a violation is passed by the health department?

4-26 The four floodgates of a small hydroelectric dam fail and are repaired independently of each other. From experience, it's known that each floodgate is out of order 4 percent of the time.
(a) If floodgate 1 is out of order, what is the probability that floodgates 2 and 3 are out of order?
(b) During a tour of the dam, you are told that the chances of all four floodgates being out of order are less than 1 in $5,000,000$. Is this statement true?
4-27 Sridharan is preparing a report that his employer, the Titre Corporation, will eventually deliver to the Ministry of Small and Medium Enterprises (MSME). First, the report must be approved by Sridharan's group leader, department head, and division chief (in that order). Sridharan knows from experience that the three managers act independently. Further, he knows that his group leader approves 85 percent of his reports, his department head approves 80 percent of the reports written by Sridharan that reach him, and his division chief approves 82 percent of Sridharan's work.
(a) What is the probability that the first version of Sridharan's report is submitted to the MSME?
(b) What is the probability that the first version of Sridharan's report is approved by his group leader and department head, but is not approved by his division chief?
4-28 A grocery store is reviewing its restocking policies and has analyzed the number of half-liter containers of orange juice sold each day for the past month. The data are given below:

Number Sold	Morning	Afternoon	Evening
$0-19$	3	8	2
$20-39$	3	4	3
$40-59$	12	6	4
$60-79$	4	9	9
$80-99$	5	3	6
100 or more	$\frac{3}{\mathbf{3 0}}$	$\underline{0}$	$\mathbf{3 0}$

(a) What is the probability that on a randomly selected day the number of cartons of orange juice sold in the evening is between 80 and $99 ?$
(b) What is the probability that 39 or fewer cartons were sold during a randomly selected afternoon?
(c) What is the probability that either $0-19$ or 100 or more cartons were sold in a randomly selected morning?
4-29 Rahul Saxena, the Advertising Chief of the advertising agency, Triyakaa Concepts, has just launched a publicity campaign for a new restaurant in town, Spice N Chilly. Rahul has just installed four billboards on a highway outside of town, and he knows from experience the probabilities that each will be noticed by a randomly chosen motorist. The probability of the first billboard's being noticed by a motorist is 0.75 . The probability of the second's being noticed is 0.82 , the third has a probability of 0.87 of being noticed, and the probability of the fourth sign's being noticed is 0.9 . Assuming that the event that a motorist notices any
particular billboard is independent of whether or not he notices the others, what is the probability that
(a) All four billboards will be noticed by a randomly chosen motorist?
(b) The first and fourth, but not the second and third billboards will be noticed?
(c) Exactly one of the billboards will be noticed?
(d) None of the billboards will be noticed?
(e) The third and fourth billboards won't be noticed?

Worked-Out Answers to Self-Check Exercises

SC 4-7 (a) $\mathrm{P}\left(\right.$ Face $\left._{2} \mid \operatorname{Red}_{1}\right)=12 / 52=3 / 13$
(b) $\mathrm{P}\left(\mathrm{Ace}_{2} \mid\right.$ Face $\left._{1}\right)=4 / 52=1 / 13$
(c) $\mathrm{P}\left(\right.$ Black jack $_{2} \mid$ Red ace $\left._{1}\right)=2 / 52=1 / 26$

SC 4-8 (a) $3 / 45=1 / 15$
(b) $(7+6+5+4) / 45=22 / 45$
(c) $(8+12+13+12) / 180=45 / 180=1 / 4$

4.6 PROBABILITIES UNDER CONDITIONS OF STATISTICAL DEPENDENCE

Statistical dependence exists when the probability of some Dependence defined event is dependent on or affected by the occurrence of some
-
other event. Just as with independent events, the types of probabilities under statistical dependence are

1. Conditional
2. Joint
3. Marginal

Conditional Probabilities under Statistical Dependence

Conditional and joint probabilities under statistical dependence are more involved than marginal probabilities are. We shall discuss conditional probabilities first, because the concept of joint probabilities is best illustrated by using conditional probabilities as a basis.

Assume that we have one box containing 10 balls distributed as follows:

Examples of conditional

- Three are colored and dotted.
- One is colored and striped.
- Two are gray and dotted.
- Four are gray and striped.

The probability of drawing any one ball from this box is 0.1 , since there are 10 balls, each with equal probability of being drawn. The discussion of the following examples will be facilitated by reference to Table 4-4 and to Figure 4-10, which shows the contents of the box in diagram form.

Example 1 Suppose someone draws a colored ball from the box. What is the probability that it is dotted? What is the probability it is striped?

TABLE 4-4 COLOR AND CONFIGURATION OF 10 BALLS
$\left.\begin{array}{cc}\hline \text { Event } & \text { Probability of Event } \\ \hline 1 & 0.1 \\ 2 & 0.1 \\ 3 & 0.1\end{array}\right\}$ colored and dotted

FIGURE 4-10 CONTENTS OF THE BOX

Solution This question can be expressed symbolically as $\mathrm{P}(D \mid C)$, or "What is the conditional probability that this ball is dotted, given that it is colored?"

We have been told that the ball that was drawn is colored. Therefore, to calculate the probability that the ball is dotted, we will ignore all the gray balls and concern ourselves with the colored balls only. In diagram form, we consider only what is shown in Figure 4-11.

From the statement of the problem, we know that there are four colored balls, three of which are dotted and one of which is striped. Our problem is now to find the simple probabilities of dotted and striped. To do so, we divide the number of balls in each category by the total number of colored balls:

$$
\begin{aligned}
& \mathrm{P}(D \mid C)=\frac{3}{5}=0.75 \\
& \mathrm{P}(S \mid C)=\frac{1}{4}=0.25
\end{aligned}
$$

FIGURE 4-11 PROBABILITY OF DOTTED AND STRIPED, GIVEN COLORED

In other words, three-fourths of the colored balls are dotted and one-fourth of the colored balls are striped. Thus, the probability of dotted, given that the ball is colored, is 0.75 . Likewise, the probability of striped, given that the ball is colored, is 0.25 .

Now we can see how our reasoning will enable us to develop the formula for conditional probability under statistical dependence. We can first assure ourselves that these events are statistically dependent by observing that the color of the balls determines the probabilities that they are either striped or dotted. For example, a gray ball is more likely to be striped than a colored ball is. Since color affects the probability of striped or dotted, these two events are dependent.

To calculate the probability of dotted given colored, $\mathrm{P}(D \mid C)$, we divided the probability of colored and dotted balls (3 out of 10 , or 0.3) by the probability of colored balls (4 out of 10 , or 0.4):

$$
\mathrm{P}(D \mid C)=\frac{\mathrm{P}(D C)}{\mathrm{P}(C)}
$$

Expressed as a general formula using the letters A and B to represent the two events, the equation is

Conditional Probability for Statistically Dependent Events

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B A)}{\mathrm{P}(A)} \tag{4-6}
\end{equation*}
$$

This is the formula for conditional probability under statistical dependence.
Example 2 Continuing with our example of the colored and gray balls, let's answer the questions, "What is $\mathrm{P}(D \mid G)$?" and "What is $\mathrm{P}(S \mid G)$?"

Solution

$$
\begin{aligned}
& \mathrm{P}(D \mid G)=\frac{\mathrm{P}(D G)}{\mathrm{P}(G)}=\frac{0.2}{0.6}=\frac{1}{3} \\
& \mathrm{P}(S \mid G)=\frac{\mathrm{P}(S G)}{\mathrm{P}(G)}=\frac{0.4}{0.6}=\frac{2}{3}
\end{aligned}
$$

1.0

The problem is shown diagrammatically in Figure 4-12.
The total probability of gray is 0.6 (6 out of 10 balls). To determine the probability that the ball (which we know is gray) will be dotted, we divide the probability of gray and dotted (0.2) by the probability of gray (0.6), or $0.2 / 0.6=1 / 3$. Similarly, to determine the probability that the ball will be striped, we divide the probability of gray and striped (0.4) by the probability of gray (0.6), or $0.4 / 0.6=2 / 3$.

Example 3 Calculate $\mathrm{P}(G \mid D)$ and $\mathrm{P}(C \mid D)$.

Solution Figure 4-13 shows the contents of the box arranged according to the striped or dotted markings on the balls. Because we have been told that the ball that was drawn is dotted, we can disregard striped and consider only dotted.

Now see Figure 4-14, showing the probabilities of colored and gray, given dotted. Notice that the relative proportions of the two are 0.4 to 0.6 . The calculations used to arrive at these proportions were

FIGURE 4-13 CONTENTS OF THE BOX ARRANGED BY CONFIGURATION, STRIPED AND DOTTED

$$
\begin{aligned}
& \mathrm{P}(G \mid D)=\frac{\mathrm{P}(G D)}{\mathrm{P}(D)}=\frac{0.2}{0.5}=0.4 \\
& \mathrm{P}(C \mid D)=\frac{\mathrm{P}(C D)}{\mathrm{P}(D)}=\frac{0.3}{0.5}=0.6
\end{aligned}
$$

$\overline{1.0}$

Example 4 Calculate $\mathrm{P}(C \mid S)$ and $\mathrm{P}(G \mid S)$.
Solution

$$
\begin{aligned}
& \mathrm{P}(C \mid S)=\frac{\mathrm{P}(C S)}{\mathrm{P}(S)}=\frac{0.1}{0.5}=0.2 \\
& \mathrm{P}(G \mid S)=\frac{\mathrm{P}(G S)}{\mathrm{P}(S)}=\frac{0.4}{0.5}=0.8
\end{aligned}
$$

1.0

Joint Probabilities under Statistical Dependence

FIGURE 4-14 PROBABILITY OF COLORED AND GRAY, GIVEN DOTTED
We have shown that the formula for conditional probability under conditions of statistical dependence is

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B A)}{\mathrm{P}(A)} \tag{4-6}
\end{equation*}
$$

If we solve this for $\mathrm{P}(B A)$ by cross multiplication, we have the formula for joint probability under conditions of statistical dependence:

Joint Probability for Statistically Dependent Events	
Probability that event A will happen	[4-7]

Notice that this formula is not $\mathrm{P}(B A)=\mathrm{P}(B) \times \mathrm{P}(A)$, as it would be under conditions of statistical independence.

Converting the general formula $\mathrm{P}(B A)=\mathrm{P}(B \mid A) \times \mathrm{P}(A)$ to our example and to the terms of colored, gray, dotted, and striped, we have $\mathrm{P}(C D)=\mathrm{P}(C \mid D) \times \mathrm{P}(D)$, or $\mathrm{P}(C D)=0.6 \times 0.5=0.3$. Here, 0.6 is the

[^2]probability of colored, given dotted (computed in Example 3 above) and 0.5 is the probability of dotted (also computed in Example 3).
$\mathrm{P}(C D)=0.3$ can be verified in Table 4-4, where we originally arrived at the probability by inspection: Three balls out of 10 are colored and dotted.

The following joint probabilities are computed in the same man- Several examples ner and can also be substantiated by reference to Table 4-4.

$$
\begin{aligned}
\mathrm{P}(C S) & =\mathrm{P}(C \mid S) \times \mathrm{P}(S)=0.2 \times 0.5=0.1 \\
\mathrm{P}(G D) & =\mathrm{P}(G \mid D) \times \mathrm{P}(D)=0.4 \times 0.5=0.2 \\
\mathrm{P}(G S) & =\mathrm{P}(G \mid S) \times \mathrm{P}(S)=0.8 \times 0.5=0.4
\end{aligned}
$$

Marginal Probabilities under Statistical Dependence

Marginal probabilities under statistical dependence are computed by summing up the probabilities of all the joint events in which the simple event occurs. In the example above, we can compute the marginal probability of the event colored by summing the probabilities of the two joint events in which colored occurred:

$$
\mathrm{P}(C)=\mathrm{P}(C D)+\mathrm{P}(C S)=0.3+0.1=0.4
$$

Similarly, the marginal probability of the event gray can be computed by summing the probabilities of the two joint events in which gray occurred:

$$
\mathrm{P}(G)=\mathrm{P}(G D)+\mathrm{P}(G S)=0.2+0.4=0.6
$$

In like manner, we can compute the marginal probability of the event dotted by summing the probabilities of the two joint events in which dotted occurred:

$$
\mathrm{P}(D)=\mathrm{P}(C D)+\mathrm{P}(G D)=0.3+0.2=0.5
$$

And, finally, the marginal probability of the event striped can be computed by summing the probabilities of the two joint events in which gray occurred:

$$
\mathrm{P}(S)=\mathrm{P}(C S)+\mathrm{P}(G S)=0.1+0.4=0.5
$$

These four marginal probabilities, $\mathrm{P}(C)=0.4, \mathrm{P}(G)=0.6, \mathrm{P}(D)=0.5$, and $\mathrm{P}(S)=0.5$, can be verified by inspection of Table 4-4 on page 180.

We have now considered the three types of probability (conditional, joint, and marginal) under conditions of statistical dependence. Table 4-5 provides a résumé of our development of probabilities under both statistical independence and statistical dependence.

Example Department of Social Welfare has recently carried out a socio-economic survey of a village. The information collected is related to the gender of the respondent and level of education (graduation). 1000 respondents were surveyed. The results are presented in the following table:

	Educational Qualification		
Gender	Undergraduate	Graduate	Total
Male	150	450	600
Female	150	250	400
Total	300	700	1000

TABLE 4-5 PROBABILITIES UNDER STATISTICAL INDEPENDENCE AND DEPENDENCE

Type of Probability	Symbol	Formula under Statistical Independence	Formula under Statistical Dependence
Marginal	$\mathrm{P}(A)$	$\mathrm{P}(A)$	Sum of the probabilities of the joint events in which A occurs
Joint	$\mathrm{P}(A B)$	$\mathrm{P}(A) \times \mathrm{P}(B)$	$\mathrm{P}(A \mid B) \times \mathrm{P}(B)$
Conditional	or $\mathrm{P}(B A)$	$\mathrm{P}(B) \times \mathrm{P}(A)$	$\mathrm{P}(B \mid A) \times \mathrm{P}(A)$
	$\mathrm{P}(B \mid A)$	$\mathrm{P}(B)$	$\frac{\mathrm{P}(B A)}{\mathrm{P}(A)}$
	or $\mathrm{P}(A \mid B)$	$\mathrm{P}(A)$	$\frac{\mathrm{P}(A B)}{\mathrm{P}(B)}$

A respondent has been selected randomly, what are the chances that -
(a) The respondent will be Undergraduate (U)-

$$
P(U)=300 / 1000=0.3
$$

(b) The respondent will be Graduate (G),

$$
P(G)=700 / 1000=0.7
$$

(c) The respondent will be Female (F),

$$
P(F)=400 / 1000=0.4
$$

These are the examples of Unconditional Probability. They are termed as unconditional because no condition is imposed on any event.
(d) The respondent will be Male-Graduate (MG)

$$
P(\text { Male \& Graduate })=P(M G)=450 / 1000=0.45
$$

(e) The respondent will be Undergraduate-Female (UF)

$$
P(\text { Undergraduate and Female })=P(U F)=150 / 1000=0.15
$$

The above two cases (d) and (e) are examples of Joint Probability.
(f) A randomly selected Female will be Graduate (G/F):

Here a condition has been imposed that randomly selected respondent has been Female. So, this is an example of Conditional Probability. In this case, we have to find out the probability of being Graduate, under the condition that the respondent should be Female. Hence consideration should be from a total of 400 (Female respondents only)

So, Probability of the respondent being Graduate, given Female-

$$
P(G / F)=250 / 400=0.625
$$

The above concept can also be explained as under:
Probability of the respondent being Female,

$$
P(F)=400 / 1000=0.40
$$

Probability of Female-Graduate

$$
\mathrm{P}(\text { Graduate \& Female })=\mathrm{P}(\mathrm{GF})=250 / 1000=0.25
$$

So,

$$
\mathrm{P}(\mathrm{G} / \mathrm{F})=\mathrm{P}(\mathrm{G} \text { and } \mathrm{F}) / \mathrm{P}(\mathrm{~F})=0.25 / 0.40=0.625
$$

(g) A randomly selected Undergraduate will be Male (M/U)):

Probability of the respondent being Male, given Undergraduate,

$$
\mathrm{P}(\mathrm{M} / \mathrm{U})=150 / 300=0.50
$$

Alternatively,
Probability of the respondent being Undergraduate,

$$
P(U)=300 / 1000=0.30
$$

Probability of the respondent being Male-Undergraduate-

$$
P(\text { Male \& Undergraduate })=P(M U)=150 / 1000=0.15
$$

So,

$$
\mathrm{P}(\mathrm{M} / \mathrm{U})=\mathrm{P}(\mathrm{M} \text { and } \mathrm{U}) / \mathrm{P}(\mathrm{U})=0.15 / 0.30=0.50
$$

HINTS \& ASSUMPTIONS

Hint: Distinguish between conditional probability and joint probability by careful use of terms given that and both ... and: $P(A \mid B)$ is "the probability that A will occur given that B has occurred" and $\mathrm{P}(A B)$ is "the probability that both A and B will occur." And the marginal probability $\mathrm{P}(\mathrm{A})$ is the "probability that A will occur, whether or not B happens."

EXERCISES 4.6

Self-Check Exercises
SC 4-9 According to a survey, the probability that a family owns two cars if its annual income is greater than $₹ 6,00,000$ is 0.75 . Of the households surveyed, 60 percent had incomes over $₹ 6,00,000$ and 52 percent had two cars. What is the probability that a family has two cars and an income over ₹ $6,00,000$ a year?

SC 4-10 Friendly's Department Store has been the target of many shoplifters during the past month, but owing to increased security precautions, 250 shoplifters have been caught. Each shoplifter's sex is noted; also noted is whether the perpetrator was a first-time or repeat offender. The data are summarized in the table.

Sex	First-Time Offender	Repeat Offender
Male	60	70
Female	$\underline{44}$	$\underline{76}$
	$\mathbf{1 0 4}$	$\mathbf{1 4 6}$

Assuming that an apprehended shoplifter is chosen at random, find
(a) The probability that the shoplifter is male.
(b) The probability that the shoplifter is a first-time offender, given that the shoplifter is male.
(c) The probability that the shoplifter is female, given that the shoplifter is a repeat offender.
(d) The probability that the shoplifter is female, given that the shoplifter is a first-time offender.
(e) The probability that the shoplifter is both male and a repeat offender.

Basic Concepts

4-30 Two events, A and B, are statistically dependent. If $\mathrm{P}(A)=0.39, \mathrm{P}(B)=0.21$, and $\mathrm{P}(A$ or $B)=0.47$, find the probability that
(a) Neither A nor B will occur.
(b) Both A and B will occur.
(c) B will occur, given that A has occurred.
(d) A will occur, given that B has occurred.

4-31 Given that $\mathrm{P}(A)=3 / 14, \mathrm{P}(B)=1 / 6, \mathrm{P}(C)=1 / 3, \mathrm{P}(A C)=1 / 7$, and $P(B \mid C)=5 / 21$, find the following probabilities: $\mathrm{P}(A \mid C), \mathrm{P}(C \mid A), \mathrm{P}(B C), \mathrm{P}(C \mid B)$.
4-32 Assume that for two events A and $B, \mathrm{P}(A)=0.65, \mathrm{P}(B)=0.80, \mathrm{P}(A \mid B)=\mathrm{P}(A)$, and $\mathrm{P}(B \mid A)=0.85$. Is this a consistent assignment of probabilities? Explain.

Applications

4-33 At a soup kitchen, a social worker gathers the following data. Of those visiting the kitchen, 59 percent are men, 32 percent are alcoholics, and 21 percent are male alcoholics. What is the probability that a random male visitor to the kitchen is an alcoholic?
4-34 During a study of auto accidents, the Highway Safety Council found that 60 percent of all accidents occur at night, 52 percent are alcohol-related, and 37 percent occur at night and are alcohol-related.
(a) What is the probability that an accident was alcohol-related, given that it occurred at night?
(b) What is the probability that an accident occurred at night, given that it was alcohol-related?

4-35 If a hurricane forms in the eastern half of the Bay of Bengal, there is a 76 percent chance that it will strike the western coast of Maharashtra. From data gathered over the past 50 years, it has been determined that the probability of a hurricane's occurring in this area in any given year is 0.85 . What is the probability that a hurricane will occur in the eastern Bay of Bengal and strike Maharashtra this year?

4-36 A company is considering upgrading its computer system, and a major portion of the upgrade is a new operating system. The company has asked an engineer for an evaluation of the operating system. Suppose the probability of a favorable evaluation is 0.65 . If the probability the company will upgrade its system given a favorable evaluation is 0.85 , what is the probability that the company will upgrade and receive a favorable evaluation?
4-37 The university's library has been randomly surveying patrons over the last month to see who is using the library and what services they have been using. Patrons are classified as undergraduate, graduate, or faculty. Services are classified as reference, periodicals, or books. The data for 350 people are given below. Assume a patron uses only one service per visit.

Patron	Reference	Periodicals	Books
Undergraduate	44	26	72
Graduate	24	61	20
Faculty	$\underline{16}$	$\underline{69}$	$\underline{18}$
	$\mathbf{8 4}$	$\mathbf{1 5 6}$	$\mathbf{1 1 0}$

Find the probability that a randomly chosen patron
(a) Is a graduate student.
(b) Visited the periodicals section, given the patron is a graduate student.
(c) Is a faculty member, given a reference section visit.
(d) Is an undergraduate who visited the book section.

4-38 The southeast regional manager of General Express, a private parcel-delivery firm, is worried about the likelihood of strikes by some of his employees. He has learned that the probability of a strike by his pilots is 0.75 and the probability of a strike by his drivers is 0.65 . Further, he knows that if the drivers strike, there is a 90 percent chance that the pilots will strike in sympathy.
(a) What is the probability of both groups' striking?
(b) If the pilots strike, what is the probability that the drivers will strike in sympathy?

4-39 National Horticulture Board has been entrusted with the responsibility of sending good quality mangoes to overseas. For this purpose, an inspection is conducted on 10,000 boxes of mangoes from Malihabad and Hyderabad for exports. The inspection of boxes gave the following information:-

	Number of Boxes with		
	Number of Boxes	Damaged Fruit	Overripe Fruit
Malihabad	6000	200	840
Hyderabad	4000	365	295

(a) What are the chances that a selected box will contain damaged or overripe fruit?
(b) A randomly selected box contains overripe fruit, what is the probability that it has came from Hyderabad?
4-40 Fragnance Soaps Pvt Ltd is a leading soap manufacturing company in India. "Active" is a well-known brand of the company. Company conducted a survey to find out preference for this brand. The marketing research responses are as shown in the following table:

Prefer	Ahmedabad	Gwalior	Raipur	Lucknow
Yes	55	40	80	75
No	40	30	20	90
No Opinion	5	10	20	35

If a customer is selected at random, what is the probability?
(a) That he or she prefers active?
(b) The consumer prefers Active and is from Ahmadabad?
(c) The consumer prefers Active given he is from Lucknow?
(d) That he is from Raipur and has no opinion?

Worked-Out Answers to Self-Check Exercises

SC 4-9 Let $I=$ income $>\$ 35,000 C=2$ cars.

$$
\mathrm{P}(C \text { and } I)=P(C \mid I) \mathrm{P}(I)=(0.75)(0.6)=0.45
$$

SC 4-10 $M / W=$ shoplifter is male/female; $F / R=$ shoplifter is first-time/repeat offender.
(a) $\mathrm{P}(M)=(60+70) / 250=0.520$
(b) $\mathrm{P}(F \mid M)=\mathrm{P}(F$ and $M) / \mathrm{P}(M)=(60 / 250) /(130 / 250)=0.462$
(c) $\mathrm{P}(W \mid R)=\mathrm{P}(W$ and $R) / \mathrm{P}(R)=(76 / 250) /(146 / 250)=0.521$
(d) $\mathrm{P}(W \mid F)=\mathrm{P}(W$ and $F) / \mathrm{P}(F)=(44 / 250) /(104 / 250)=0.423$
(e) $\mathrm{P}(M$ and $R)=70 / 250=0.280$

4.7 REVISING PRIOR ESTIMATES OF PROBABILITIES: BAYES' THEOREM

At the beginning of the baseball season, the fans of last year's pennant winner thought their team had a good chance of winning again. As the season progressed, however, injuries side lined the shortstop and the team's chief rival drafted a terrific home run hitter. The team began to lose. Late in the season, the fans realized that they must alter their prior probabilities of winning.

A similar situation often occurs in business. If a manager of a boutique finds that most of the purple and chartreuse ski jackets that she thought would sell so well are hanging on the rack, she must revise her prior probabilities and order a different color combination or have a sale.

In both these cases, certain probabilities were altered after the people involved got additional information. The new probabilities Posterior probabilities defined are known as revised, or posterior, probabilities. Because probabilities can be revised as more information is gained, probability theory is of great value in managerial decision making.

The origin of the concept of obtaining posterior probabilities with limited information is attributable to the Reverend Thomas Bayes (1702-1761), and the basic formula for conditional probability under dependence

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B A)}{\mathrm{P}(A)} \tag{4-6}
\end{equation*}
$$

is called Bayes' Theorem.

Bayes, an Englishman, was a Presbyterian minister and a competent mathematician. He pondered how he might prove the existence of God by examining whatever evidence the world about him provided. Attempting to show "that the Principal End of the Divine Providence . . . is the Happiness of His Creatures," the Reverend Bayes used mathematics to study God. Unfortunately, the theological implications of his findings so alarmed the good Reverend Bayes that he refused to permit publication of his work during his lifetime. Nevertheless, his work outlived him, and modern decision theory is often called Bayesian decision theory in his honor.

Bayes' theorem offers a powerful statistical method of evaluat-

Value of Bayes' theorem

 ing new information and revising our prior estimates (based upon limited information only) of the probability that things are in one state or another. If correctly used, it makes it unnecessary to gather masses of data over long periods of time in order to make good decisions based on probabilities.
Calculating Posterior Probabilities

Assume, as a first example of revising prior probabilities, that we have equal numbers of two types of deformed (biased or weighted) dice in a bowl. On half of them, ace (or one dot) comes up 40 percent of the time; therefore $\mathrm{P}(\mathrm{ace})=0.4$. On the other half, ace comes up 70 percent of the time; $\mathrm{P}($ ace $)=0.7$. Let us call the former type

Finding a new posterior estimate

Revising probabilities based on one outcome 1 and the latter type 2 . One die is drawn, rolled once, and comes up ace. What is the probability that it is a type 1 die? Knowing the bowl contains the same number of both types of dice, we might incorrectly answer that the probability is one-half; but we can do better than this. To answer the question correctly, we set up Table 4-6.

The sum of the probabilities of the elementary events (drawing either a type 1 or a type 2 die) is 1.0 because there are only two types of dice. The probability of each type is 0.5 . The two types constitute a mutually exclusive and collectively exhaustive list.

The sum of the P (ace | elementary event) column does not equal 1.0. The figures 0.4 and 0.7 simply represent the conditional probabilities of getting an ace, given type 1 and type 2 dice, respectively.

The fourth column shows the joint probability of ace and type 1 occurring together $(0.4 \times 0.5=0.20)$, and the joint probability of ace and type 2 occurring together $(0.7 \times 0.5=0.35)$. The sum of these joint probabilities (0.55) is the marginal probability of getting an ace. Notice that in each case, the joint probability was obtained by using the formula

$$
\begin{equation*}
\mathrm{P}(A B)=\mathrm{P}(A \mid B) \times \mathrm{P}(B) \tag{4-7}
\end{equation*}
$$

TABLE 4-6 FINDING THE MARGINAL PROBABILITY OF GETTING AN ACE

Elementary Event	Probability of Elementary Event	P(Ace Elementary Event)	P(Ace, Elementary Event)*
Type 1	0.5	0.4	$0.4 \times 0.5=0.20$
Type 2	$\underline{0.5}$	0.7	$0.7 \times 0.5=0.35$
	$\underline{\mathbf{1 . 0}}$		$\mathbf{P}($ ace $)=\overline{\mathbf{0 . 5 5}}$

[^3]To find the probability that the die we have drawn is type 1, we use the formula for conditional probability under statistical dependence:

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\frac{\mathrm{P}(B A)}{\mathrm{P}(A)} \tag{4-6}
\end{equation*}
$$

Converting to our problem, we have

$$
\mathrm{P}(\text { type } 1 \mid \text { ace })=\frac{\mathrm{P}(\text { type } 1, \text { ace })}{\mathrm{P}(\text { ace })}
$$

or

$$
\mathrm{P}(\text { type } 1 \mid \text { ace })=\frac{0.20}{0.55}=0.364
$$

Thus, the probability that we have drawn a type 1 die is 0.364 .
Let us compute the probability that the die is type 2 :

$$
\mathrm{P}(\text { type 2|ace }) \frac{\mathrm{P}(\text { type 2, ace })}{P(\text { ace })}=\frac{0.35}{0.55}=0.636
$$

What have we accomplished with one additional piece of infor- Conclusion after one roll mation made available to us? What inferences have we been able to draw from one roll of the die? Before we rolled this die, the best we could say was that there is a 0.5 chance it is a type 1 die and a 0.5 chance it is a type 2 die. However, after rolling the die, we have been able to alter, or revise, our prior probability estimate. Our new posterior estimate is that there is a higher probability (0.636) that the die we have in our hand is a type 2 than that it is a type 1 (only 0.364).

Posterior Probabilities with More Information

We may feel that one roll of the die is not sufficient to indicate its characteristics (whether it is type 1 or type 2). In this case, we can obtain additional information by rolling the die again. (Obtaining more information in most decision-making situations, of course, is more complicated and time-consuming.) Assume that the same die is rolled a second time and again comes up ace. What is the further revised probability that the die is type 1? To determine this answer, see Table 4-7.

TABLE 4-7 FINDING THE MARGINAL PROBABILITY OF TWO ACES ON TWO SUCCESSIVE ROLLS

Elementary Event	Probability of Elementary Event	P(Ace\| Elementary Event)	P(2Aces Elementary Event)	$\mathbf{P}(2$ Aces, Elementary Event)
Type 1	0.5	0.4	0.16	$0.16 \times 0.5=0.080$
Type 2	0.5	0.7	0.49	$0.49 \times 0.5=0.245$
	1.0			$\mathbf{P}(\mathbf{2}$ aces) $=\mathbf{0 . 3 2 5}$

We have one new column in this table. $\mathrm{P}(2$ aces | elementary event). This column gives the joint probability of two aces on two successive rolls if the die is type 1 and if it is type 2: $\mathrm{P}(2$ aces |type 1$)$ $=0.4 \times 0.4=0.16$, and $\mathrm{P}(2$ aces \mid type 2$)=0.7 \times 0.7=0.49$. In the last column, we see the joint probabilities of two aces on two successive rolls and the elementary events (type 1 and type 2). That is, $\mathrm{P}(2$ aces, type 1$)$ is equal to $\mathrm{P}(2$ aces \mid type 1$)$ times the probability of type 1 , or $0.16 \times 0.5=0.080$, and $\mathrm{P}(2$ aces, type 2$)$ is equal to $\mathrm{P}(2$ aces \mid type 2$)$ times the probability of type 2 , or $0.49 \times 0.5=0.245$. The sum of these (0.325) is the marginal probability of two aces on two successive rolls.

We are now ready to compute the probability that the die we have drawn is type 1 , given an ace on each of two successive rolls. Using the same general formula as before, we convert to

$$
\mathrm{P}(\text { type } 1 \mid 2 \text { aces })=\frac{\mathrm{P}(\text { type } 1,2 \text { aces })}{\mathrm{P}(2 \text { aces })}=\frac{0.080}{0.325}=0.246
$$

Similarly,

$$
\mathrm{P}(\text { type } 2 \mid 2 \text { aces })=\frac{\mathrm{P}(\text { type } 2,2 \text { aces })}{\mathrm{P}(2 \text { aces })}=\frac{0.245}{0.325}=0.754
$$

What have we accomplished with two rolls? When we first drew the die, all we knew was that there was a probability of 0.5 that it was type 1 and a probability of 0.5 that it was type 2 . In other words, there was a $50-50$ chance that it was either type 1 or type 2 . After rolling the die once and getting an ace, we revised these original probabilities to the following:

Probability that it is type 1 , given that an ace was rolled $=0.364$
Probability that it is type 2 , given that an ace was rolled $=0.636$
After the second roll (another ace), we revised the probabilities again:
Probability that it is type 1 , given that two aces were rolled $=0.246$
Probability that it is type 2 , given that two aces were rolled $=0.754$
We have thus changed the original probabilities from 0.5 for each type to 0.246 for type 1 and 0.754 for type 2 . This means that if a die turns up ace on two successive rolls, we can now assign a probability of 0.754 that it is type 2 .

In both these experiments, we gained new information free of charge. We were able to roll the die twice, observe its behavior, and draw inferences from the behavior without any monetary cost. Obviously, there are few situations in which this is true, and managers must not only understand how to use new information to revise prior probabilities, but also be able to determine how much that information is worth to them before the fact. In many cases, the value of the information obtained may be considerably less than its cost.

A Problem with Three Pieces of Information

Consider the problem of a Little League baseball team that has been using an automatic pitching machine. If the machine is correctly set up-that is, properly adjusted-it will pitch strikes 85 percent of the time. If it is incorrectly set up, it will pitch strikes only 35 percent of the time. Past experience indicates that 75 percent of the setups of the machine are correctly done. After the machine has been set up at batting practice one day,
probability based on three trials

TABLE 4-8 POSTERIOR PROBABILITIES WITH THREE TRIALS

	$\mathbf{P}($ Event $)$ $(\mathbf{1})$	$\mathbf{P}(\mathbf{1}$ Strike\|Event) $\mathbf{(2)}$	$\mathbf{P}(\mathbf{3}$ Strikes \mid Event $)$ $\mathbf{(3)}$	$\mathbf{P}($ Event, 3 Strikes) $\mathbf{(4)}$
Event	0.75	0.85	0.6141	$0.6141 \times 0.75=0.4606$
Incorrect	0.25	0.35	0.0429	$0.429 \times 0.25=0.0107$
	$\mathbf{1 . 0 0}$			$\mathbf{P}(\mathbf{3}$ strikes $)=\mathbf{0 . 4 7 1 3}$

it throws three strikes on the first three pitches. What is the revised probability that the setup has been done correctly? Table 4-8 illustrates how we can answer this question.
We can interpret the numbered table headings in Table 4-8 as follows:

1. P (event) describes the individual probabilities of correct and incorrect. P (correct) $=0.75$ is given in the problem. Thus, we can compute

$$
\mathrm{P}(\text { incorrect })=1.00-\mathrm{P}(\text { correct })=1.00-0.75=0.25
$$

2. $\mathrm{P}(1$ strike | event) represents the probability of a strike given that the setup is correct or incorrect. These probabilities are given in the problem.
3. $\mathrm{P}(3$ strikes | event) is the probability of getting three strikes on three successive pitches, given the event, that is, given a correct or incorrect setup. The probabilities are computed as follows:

$$
\begin{aligned}
\mathrm{P}(3 \text { strikes } \mid \text { correct }) & =0.85 \times 0.85 \times 0.85=0.6141 \\
\mathrm{P}(3 \text { strikes } \mid \text { incorrect }) & =0.35 \times 0.35 \times 0.35=0.0429
\end{aligned}
$$

4. P (event, 3 strikes) is the probability of the joint occurrence of the event (correct or incorrect) and three strikes. We can compute the probability in the problem as follows:

$$
\begin{aligned}
\mathrm{P}(\text { correct, } 3 \text { strikes }) & =0.6141 \times 0.75=0.4606 \\
\mathrm{P}(\text { incorrect, } 3 \text { strikes }) & =0.0429 \times 0.25=0.0107
\end{aligned}
$$

Notice that if $A=$ event and $S=$ strikes, these last two probabilities conform to the general mathematical formula for joint probabilities under conditions of dependence: $\mathrm{P}(A S)=\mathrm{P}(S A)=\mathrm{P}(S \mid A) \times \mathrm{P}(A)$, Equation 4-7.

After finishing the computation in Table 4-8, we are ready to determine the revised probability that the machine is correctly set up. We use the general formula

$$
\begin{equation*}
\mathrm{P}(A \mid S)=\frac{\mathrm{P}(A S)}{\mathrm{P}(S)} \tag{4-6}
\end{equation*}
$$

and convert it to the terms and numbers in this problem:

$$
\begin{aligned}
\mathrm{P}(\text { correct } \mid 3 \text { strikes }) & =\frac{\mathrm{P}(\text { correct } 3 \text { strikes })}{\mathrm{P}(3 \text { strikes })} \\
& =\frac{0.4606}{0.4713}=0.9773
\end{aligned}
$$

The posterior probability that the machine is correctly set up is 0.9773 , or 97.73 percent. We have thus revised our original probability of a correct setup from 75 to 97.73 percent, based on three strikes being thrown in three pitches.

TABLE 4-9 POSTERIOR PROBABILITIES WITH INCONSISTENT OUTCOMES

Event	\mathbf{P} (Event)	P (S \| Event $)$	$\mathbf{P}($ SBSSS \mid Event $)$	$\mathbf{P}($ Event, SBSSS $)$
Correct	0.75	0.85	$0.85 \times 0.15 \times 0.85 \times 0.85 \times 0.85=0.07830$	$0.07830 \times 0.75=0.05873$
Incorrect	0.25	0.35	$0.35 \times 0.65 \times 0.35 \times 0.35 \times 0.35=0.00975$	$0.00975 \times 0.25=0.00244$
	$\overline{1.00}$			$\mathbf{P}($ SBSSS $)=\overline{\mathbf{0 . 0 6 1 1 7}}$
$\mathrm{P}($ correct setup \mid SBSSS $)=\frac{\mathrm{P}(\text { correct setup, } S \text { SSSS })}{}$				
P (SBSSS)				
$\underline{0.05873}$				
0.06117				
$=0.9601$				

Posterior Probabilities with Inconsistent Outcomes

In each of our problems so far, the behavior of the experiment was consistent: the die came up ace on two successive rolls, and the automatic machine three strikes on each of the first three pitches. In

An example with inconsistent outcomes most situations, we would expect a less consistent distribution of outcomes. In the case of the pitching machine, for example, we might find the five pitches to be: strike, ball, strike, strike, strike. Calculating our posterior probability that the machine is correctly set up in this case is really no more difficult than it was with a set of perfectly consistent outcomes. Using the notation $S=$ strike and $B=$ ball, we have solved this example in Table 4-9.

HINTS \& ASSUMPTIONS

Posteriori Probabilities under Bayes Theorem has an application utility, they provided revised estimates of priori probabilities (chances) to the decision maker using the additional information presented. This helps in more effective decision-making. So estimates of the probability, based on historical information, are revised using additional information.

Bayes' theorem is a formal procedure that lets decision makers combine classical probability theory with their best intuitive sense about what is likely to happen. Warning: The real value of Bayes' theorem is not in the algebra, but rather in the ability of informed managers to make good guesses about the future. Hint: In all situations in which Bayes' theorem will be used, first use all the historical data available to you, and then (and only then) add your own intuitive judgment to the process. Intuition used to make guesses about things that are already statistically welldescribed is misdirected.

EXERCISES 4.7

Self-Check Exercises

SC 4-11 Given: The probabilities of three events, A, B, and C, occurring are $\mathrm{P}(A)=0.35, \mathrm{P}(B)=0.45$, and $\mathrm{P}(C)=0.2$. Assuming that A, B, or C has occurred, the probabilities of another event, X, occurring are $\mathrm{P}(X \mid A)=0.8, \mathrm{P}(X \mid B)=0.65$, and $\mathrm{P}(X \mid C)=0.3$. Find $\mathrm{P}(A \mid X), \mathrm{P}(B \mid X)$, and $\mathrm{P}(C \mid X)$.

SC 4-12 A doctor has decided to prescribe two new drugs to 200 heart patients as follows: 50 get drug A, 50 get drug B, and 100 get both. The 200 patients were chosen so that each had an 80 percent chance of having a heart attack if given neither drug. Drug A reduces the probability of a heart attack by 35 percent, drug B reduces the probability by 20 percent, and the two drugs, when taken together, work independently. If a randomly selected patient in the program has a heart attack, what is the probability that the patient was given both drugs?

Basic Concept

4-41 Two related experiments are performed. The first has three possible, mutually exclusive outcomes: A, B, and C. The second has two possible, mutually exclusive outcomes: X and Y. We know $\mathrm{P}(A)=0.2$ and $\mathrm{P}(B)=0.65$. We also know the following conditional probabilities if the result of the second experiment is $X: \mathrm{P}(X \mid A)=0.75, \mathrm{P}(X \mid B)=0.60$, and $\mathrm{P}(X \mid C)=0.40$. Find $\mathrm{P}(A \mid X), \mathrm{P}(B \mid X)$, and $\mathrm{P}(C \mid X)$. What is the probability that the result of the second experiment is Y ?

Applications

4-42 Amit Singh, a credit manager at the National Bank, knows that the company uses three methods to encourage collection of delinquent accounts. From past collection records, he learns that 70 percent of the accounts are called on personally, 20 percent are phoned, and 10 percent are sent a letter. The probabilities of collecting an overdue amount from an account with the three methods are $0.75,0.60$, and 0.65 , respectively. Amit has just received payment from a pastdue account. What is the probability that this account
(a) Was called on personally?
(b) Received a phone call?
(c) Received a letter?

4-43 A public-interest group was planning to make a court challenge to auto insurance rates in one of three cities: New Delhi, Mumbai, or Chennai. The probability that it would choose New Delhi was 0.40 ; Mumbai, 0.35 ; and Chennai, 0.25 . The group also knew that it had a 60 percent chance of a favorable ruling if it chose Mumbai, 45 percent if it chose New Delhi, and 35 percent if it chose Chennai. If the group did receive a favorable ruling, which city did it most likely choose?
4-44 EconOcon is planning its company picnic. The only thing that will cancel the picnic is a thunderstorm. The Weather Service has predicted dry conditions with probability 0.2, moist conditions with probability 0.45 , and wet conditions with probability 0.35 . If the probability of a thunderstorm given dry conditions is 0.3 , given moist conditions is 0.6 , and given wet conditions is 0.8 , what is the probability of a thunderstorm? If we know the picnic was indeed canceled, what is the probability moist conditions were in effect?
4-45 An independent research group has been studying the chances that an accident at a nuclear power plant will result in radiation leakage. The group considers that the only possible types of accidents at a reactor are fire, mechanical failure, and human error, and that two or more accidents never occur together. It has performed studies that indicate that if there were a fire, a radiation leak would occur 20 percent of the time; if there were a mechanical failure, a
radiation leak would occur 50 percent of the time; and if there were a human error, a radiation leak would occur 10 percent of the time. Its studies have also shown that the probability of

- A fire and a radiation leak occurring together is 0.0010 .
- A mechanical failure and a radiation leak occurring together is 0.0015.
- A human error and a radiation leak occurring together is 0.0012 .
(a) What are the respective probabilities of a fire, mechanical failure, and human error?
(b) What are the respective probabilities that a radiation leak was caused by a fire, mechanical failure, and human error?
(c) What is the probability of a radiation leak?

4-46 A physical therapist of a national football team knows that the team will play 40 percent of its games on artificial turf this season. He also knows that a football player's chances of incurring a knee injury are 50 percent higher if he is playing on artificial turf instead of grass. If a player's probability of knee injury on artificial turf is 0.42 , what is the probability that
(a) A randomly selected football player incurs a knee injury?
(b) A randomly selected football player with a knee injury incurred the injury playing on grass?
4-47 The physical therapist from Exercise 4-45 is also interested in studying the relationship between foot injuries and position played. His data, gathered over a 3 -year period, are summarized in the following table:

	Offensive Line	Defensive Line	Offensive Backfield	Defensive Backfield
Number of players	45	56	24	20
Number injured	32	38	11	9

Given that a randomly selected player incurred a foot injury, what is the probability that he plays in the (a) offensive line, (b) defensive line, (c) offensive backfield, and (d) defensive backfield?
4-48 Namit Kapoor, marketing director for Alpha Motion Pictures, believes that the studio's upcoming release has a 60 percent chance of being a hit, a 25 percent chance of being a moderate success, and a 15 percent chance of being a flop. To test the accuracy of his opinion, Namit has scheduled two test screenings. After each screening, the audience rates the film on a scale of 1 to 10,10 being best. From his long experience in the industry, Namit Kapoor knows that 60 percent of the time, a hit picture will receive a rating of 7 or higher; 30 percent of the time, it will receive a rating of 4,5 , or 6 ; and 10 percent of the time, it will receive a rating of 3 or lower. For a moderately successful picture, the respective probabilities are $0.30,0.45$, and 0.25 ; for a flop, the respective probabilities are $0.15,0.35$, and 0.50 .
(a) If the first test screening produces a score of 6 , what is the probability that the film will be a hit?
(b) If the first test screening produces a score of 6 and the second screening yields a score of 2, what is the probability that the film will be a flop (assuming that the screening results are independent of each other)?

Worked-Out Answers to Self-Check Exercises

SC 4-11	Event	P(Event $)$	$\mathbf{P}(\boldsymbol{X} \mid$ Event $)$	$\mathbf{P}(\boldsymbol{X}$ and Event $)$	P(Event $\mid \boldsymbol{X})$
A	0.35	0.80	0.2800	$0.2800 / 0.6325=0.4427$	
B	0.45	0.65	0.2925	$0.2925 / 0.6325=0.4625$	
C	0.20	0.30	$\mathbf{P}(\boldsymbol{X})=\overline{\mathbf{0 . 6 3 2 5}}$	$0.0600 / 0.6325=0.0949$	

Thus, $\mathrm{P}(A \mid X)=0.4427, \mathrm{P}(B \mid X)=0.4625$, and $\mathrm{P}(C \mid X)=0.0949$.
SC 4-12 H = heart attack.

Event	$\mathbf{P}($ Event $)$	$\mathbf{P}(\boldsymbol{H} \mid$ Event $)$	$\mathbf{P}(\boldsymbol{H}$ and Event $)$	$\mathbf{P}($ Event $\mid \boldsymbol{H})$
A	0.25	$(0.8)(0.65)=0.520$	0.130	$0.130 / 0.498=0.2610$
B	0.25	$(0.8)(0.80)=0.640$	0.160	$0.160 / 0.498=0.3213$
$A \& B$	0.50	$(0.8)(0.65)(0.80)=0.416$	0.208	$0.208 / 0.498=0.4177$
			$\mathbf{P}(\boldsymbol{X})=\overline{\mathbf{0 . 4 9 8}}$	

Thus, $\mathrm{P}(A \& B \mid H)=0.4177$.

STATISTICS AT WORK

Loveland Computers

Case 4: Probability "Aren't you going to congratulate me, Uncle Walter?" Lee Azko asked the CEO of Loveland Computers as they waved goodbye to their new-found investment bankers who were boarding their corporate jet.
"Sure, Lee, it was pretty enough stuff. But you'll find out that in business, there's more to life than gathering data. You have to make decisions, too - and often you don't have all the data you'd like because you're trying to guess what will happen in the future, not what did happen in the past. Get in the car and I'll explain.
"When we first started Loveland Computers, it was pretty much a wholesaling business. We'd bring in the computers from Taiwan, Korea, or wherever, and just ship 'em out the door with a label on them. Now that still works for some of the low-end products, but the higher-end stuff needs to be customized, so we run an assembly line here. Now I won't call it a factory, because there isn't a single thing that we 'make' here. We buy the cases from one place, the hard drives from somewhere else, and so on. Then we run the assembly line to make the machines just the way customers want them."
"Why don't you just have all the gizmos loaded on all the PCs, uncle?"
"Not a bad question, but here's the reason we can't do that. In this game, price is very important. And if you load a machine with something that a customer is never going to use-for example, going to the expense of adding a very large hard drive to a machine that's going to be used in a local area network, where most of the data will be kept on a file server-you end up pricing yourself out of the market, or selling at a loss. We can't afford to do either of those things. When we get back to the office, I want you to see Nancy Rainwater-she's the head of Production. She needs some help figuring out this month's schedule. This should give you some experience with real decision making."

Nancy Rainwater had worked for Loveland Computers for 5 years. Although Nancy was short on book learning, growing up on a farm nearby, she had learned some important practical skills about managing
a workforce and getting work done on time. Her rise through the ranks to Production Supervisor had been rapid. Nancy explained her problem to Lee as follows.
"We have to decide whether to close the production line on Martin Luther King Day on the 20th of the month. Most of the workers on the line have children who will be off school that day. Your uncle, Mr. Azko, won't make it a paid vacation. But he might be open to closing the production line and letting people take the day off without pay if we can put in enough work days by the end of the month to meet our target production."
"Well, that shouldn't be too difficult to figure out-just count up the number of PCs produced on a typical day and divide that into the production target and see how many workdays you'll need," replied Lee with confidence.
"Well, I've already got that far. Not counting today, there are 19 workdays left until the end of the month, and I'll need 17 days to complete the target production."
"So let the workers take Martin Luther King Day off," Lee concluded.
"But there's more to it than that," Nancy continued. "This is 'colds and flu' season. If too many people call in sick-and believe me that happens when there's a 'bug' going around-I have to close the line for the day. I have records going back for a couple of years since I've been supervisor, and on an average winter day, there's a 1 in 30 chance that we'll have to close the line because of too many sick calls.
"And there's always a chance that we'll get a bad snowstorm—maybe even two-between now and the end of the month. Two years ago, two of the staff were in a terrible car wreck, trying to come to work on a day when the weather was real bad. So the company lawyer has told us to have a very tight 'snow day' policy. If the roads are dangerous, we close the line and lose that day's production. I'm not allowed to schedule weekend work to make up-that costs us time-and-a-half on wages and costs get out of line.
"I'd feel a lot better about closing the line for the holiday if I could be reasonably certain that we'd get in enough workdays by the end of the month. But I guess you don't have a crystal ball."
"Well, not a crystal ball, exactly. But I do have some ideas," Lee said, walking back toward the administrative offices, sketching something on a notepad. "By the way," said the younger Azko, turning back toward Nancy Rainwater, "What's your definition of 'reasonably certain?""

Study Questions: What was Lee sketching on the notepad? What type of calculation will Lee make and what additional information will be needed? What difference will it make if Nancy's definition of "reasonably certain" means to meet the required production goal " 75 percent of the time" or " 99 percent of the time"?

CHAPTER REVIEW

Terms Introduced in Chapter 4

A Priori Probability Probability estimate made prior to receiving new information.
Bayes' Theorem The formula for conditional probability under statistical dependence.
Classical Probability The number of outcomes favorable to the occurrence of an event divided by the total number of possible outcomes.
Collectively Exhaustive Events A list of events that represents all the possible outcomes of an experiment.

Conditional Probability The probability of one event occurring, given that another event has occurred.
Event One or more of the possible outcomes of doing something, or one of the possible outcomes from conducting an experiment.
Experiment The activity that results in, or produces, an event.
Joint Probability The probability of two events occurring together or in succession.
Marginal Probability The unconditional probability of one event occurring; the probability of a single event.
Mutually Exclusive Events Events that cannot happen together.
Posterior Probability A probability that has been revised after additional information was obtained.
Probability The chance that something will happen.
Probability Tree A graphical representation showing the possible outcomes of a series of experiments and their respective probabilities.
Relative Frequency of Occurrence The proportion of times that an event occurs in the long run when conditions are stable, or the observed relative frequency of an event in a very large number of trials.
Sample Space The set of all possible outcomes of an experiment.
Statistical Dependence The condition when the probability of some event is dependent on, or affected by, the occurrence of some other event.
Statistical Independence The condition when the occurrence of one event has no effect on the probability of occurrence of another event.
Subjective Probability Probabilities based on the personal beliefs of the person making the probability estimate.
Venn Diagram A pictorial representation of probability concepts in which the sample space is represented as a rectangle and the events in the sample space as portions of that rectangle.

Equations Introduced in Chapter 4

4-1 Probability of an event $=\frac{\text { number of outcomes where the event occurs }}{\text { total number of possible outcomes }}$
This is the definition of the classical probability that an event will occur.

$$
\begin{equation*}
\mathrm{P}(A)=\text { probability of event } A \text { happening } \tag{p. 164}
\end{equation*}
$$

A single probability refers to the probability of one particular event occurring, and it is called marginal probability.

$$
\begin{equation*}
\mathrm{P}(A \text { or } B)=\text { probability of either } A \text { or } B \text { happening } \tag{p. 167}
\end{equation*}
$$

This notation represents the probability that one event or the other will occur.
4-2

$$
\begin{equation*}
\mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A B) \tag{p. 166}
\end{equation*}
$$

The addition rule for events that are not mutually exclusive shows that the probability of A or B happening when A and B are not mutually exclusive is equal to the probability of event A
happening plus the probability of event B happening minus the probability of A and B happening together, symbolized $\mathrm{P}(A B)$.
where

- $\mathrm{P}(A B)=$ joint probability of events A and B occurring together or in succession
- $\mathrm{P}(A)=$ marginal probability of event A happening
- $\mathrm{P}(B)=$ marginal probability of event B happening

The joint probability of two or more independent events occurring together or in succession is the product of their marginal probabilities.

$$
\begin{equation*}
\mathrm{P}(B \mid A)=\text { probability of event } B \text {, given that event } A \text { has happened } \tag{p. 175}
\end{equation*}
$$

This notation shows conditional probability, the probability that a second event (B) will occur if a first event (A) has already happened.
and

$$
\begin{equation*}
\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A B)}{\mathrm{P}(B)} \tag{p. 181}
\end{equation*}
$$

For statistically dependent events, the conditional probability of event B, given that event A has occurred, is equal to the joint probability of events A and B divided by the marginal probability of event A.

$$
\begin{gather*}
\mathrm{P}(A B)=\mathrm{P}(A \mid B) \times \mathrm{P}(B) \\
\text { and } \\
\mathrm{P}(B A)=\mathrm{P}(B \mid A) \times \mathrm{P}(A) \tag{p. 182}
\end{gather*}
$$

Under conditions of statistical dependence, the joint probability of events A and B happening together or in succession is equal to the probability of event A, given that event B has already happened, multiplied by the probability that event B will happen.

Review and Application Exercises

4-49 Life insurance premiums are higher for older people, but auto insurance premiums are generally higher for younger people. What does this suggest about the risks and probabilities associated with these two areas of the insurance business?

4-50 "The chance of rain today is 80 percent." Which of the following best explains this statement?
(a) It will rain 80 percent of the day today.
(b) It will rain in 80 percent of the area to which this forecast applies today.
(c) In the past, weather conditions of this sort have produced rain in this area 80 percent of the time.
4-51 "There is a 0.25 probability that a restaurant in India will go out of business this year." When researchers make such statements, how have they arrived at their conclusions?
4-52 Using probability theory, explain the success of gambling and poker establishments.
4-53 Studies have shown that the chance of a new car being a "lemon" (one with multiple warranty problems) is greater for cars manufactured on Mondays and Fridays. Most consumers don't know on which day their car was manufactured. Assuming a 5-day production week, for a consumer taking a car at random from a dealer's lot,
(a) What is the chance of getting a car made on a Monday?
(b) What is the chance of getting a car made on Monday or Friday?
(c) What is the chance of getting a car made on Tuesday through Thursday?
(d) What type of probability estimates are these?

4-54 T. S. Khan, an engineer for Super Jet Aircraft, disagrees with his supervisor about the likelihood of landing-gear failure on the company's new airliner. Isaac contends that the probability of landing-gear failure is 0.12 , while his supervisor maintains that the probability is only 0.03 . The two agree that if the landing gear fails, the airplane will crash with probability 0.55 . Otherwise, the probability of a crash is only 0.06 . A test flight is conducted, and the airplane crashes.
(a) Using T. S. Khan's figure, what is the probability that the airplane's landing gear failed?
(b) Repeat part (a) using the supervisor's figure.

4-55 Which of the following pairs of events are mutually exclusive?
(a) A defense department contractor loses a major contract, and the same contractor increases its work force by 50 percent.
(b) A man is older than his uncle, and he is younger than his cousins.
(c) A baseball team loses its last game of the year, and it wins the World Series.
(d) A bank manager discovers that a teller has been embezzling, and she promotes the same teller.
4-56 The scheduling officer for a local police department is trying to decide whether to schedule additional patrol units in each of two neighborhoods. She knows that on any given day during the past year, the probabilities of major crimes and minor crimes being committed in the northern neighborhood were 0.478 and 0.602 , respectively, and that the corresponding probabilities in the southern neighborhood were 0.350 and 0.523 . Assume that major and minor crimes occur independently of each other and likewise that crimes in the two neighborhoods are independent of each other.
(a) What is the probability that no crime of either type is committed in the northern neighborhood on a given day?
(b) What is the probability that a crime of either type is committed in the southern neighborhood on a given day?
(c) What is the probability that no crime of either type is committed in either neighborhood on a given day?

4-57 The Environmental Protection Agency is trying to assess the pollution effect of a paper mill that is to be built near the capital city. In studies of six similar plants built during the last year, the EPA determined the following pollution factors:

Plant	1	2	3	4	5	6
Sulfur dioxide emission in parts per million (ppm)	15	12	18	16	11	19

EPA defines excessive pollution as a sulfur dioxide emission of 18 ppm or greater.
(a) Calculate the probability that the new plant will be an excessive sulfur dioxide polluter.
(b) Classify this probability according to the three types discussed in the chapter: classical, relative frequency, and subjective.
(c) How would you judge the accuracy of your result?

4-58 The Cancer Society of India is planning to mail out questionnaires concerning breast cancer. From past experience with questionnaires, the Cancer Society knows that only 15 percent of the people receiving questionnaires will respond. It also knows that 1.3 percent of the questionnaires mailed out will have a mistake in address and never be delivered, that 2.8 percent will be lost or destroyed by the post office, that 19 percent will be mailed to people who have moved, and that only 48 percent of those who move leave a forwarding address.
(a) Do the percentages in the problem represent classical, relative frequency, or subjective probability estimates?
(b) Find the probability that the Cancer Society will get a reply from a given questionnaire.

4-59 McCormick and Tryon, Inc., is a "shark watcher," hired by firms fearing takeover by larger companies. This firm has found that one of its clients, Pare and Oyd Co., is being considered for takeover by two firms. The first, Engulf and Devour, considered 20 such companies last year and took over 7. The second, R. A. Venus Corp., considered 15 such companies last year and took over 6. What is the probability of Pare and Oyd's being taken over this year, assuming that
(a) The acquisition rates of both Engulf and Devour and R. A. Venus are the same this year as they were last year?
(b) This year's acquisition rates are independent of last year's?

In each case, assume that only one firm may take over Pare and Oyd.
4-60 As the administrator of a hospital, Roseline Singh wants to know what the probability is that a person checking into the hospital will require X-ray treatment and will also have hospital insurance that will cover the X-ray treatment. She knows that during the past 5 years, 23 percent of the people entering the hospital required X-rays, and that during the same period, 72 percent of the people checking into the hospital had insurance that covered X-ray treatments. What is the correct probability? Do any additional assumptions need to be made?
4-61 An air traffic controller at Rajiv Gandhi International Airport, Hyderabad, must obey regulations that require her to divert one of two airplanes if the probability of the aircraft's colliding exceeds 0.025 . The controller has two inbound aircraft scheduled to arrive 10 minutes apart on the same runway. She knows that Flight 100, scheduled to arrive first, has a history of being on time, 5 minutes late, and 10 minutes late 95,3 , and 2 percent of the time, respectively. Further, she knows that Flight 200, scheduled to arrive second, has a history of being on time, 5 minutes early, and 10 minutes early 97,2 , and 1 percent of the time, respectively. The flights' timings are independent of each other.
(a) Must the controller divert one of the planes, based on this information?
(b) If she finds out that Flight 100 definitely will be 5 minutes late, must the controller divert one of the airplanes?
(c) If the controller finds out that Flight 200 definitely will be 5 minutes early, must she divert one of the airplanes?
4-62 In a staff meeting called to address the problem of returned checks at the supermarket where you are interning as a financial analyst, the bank reports that 12 percent of all checks are returned for insufficient funds, and of those, in 50 percent of cases, there was cash given back to the customer. Overall, 10 percent of customers ask for cash back at the end of their transaction with the store. For 1,000 customer visits, how many transactions will involve:
(a) Insufficient funds?
(b) Cash back to the customer?
(c) Both insufficient funds and cash back?
(d) Either insufficient funds or cash back?

4-63 Which of the following pairs of events are statistically independent?
(a) The times until failure of a calculator and of a second calculator marketed by a different firm.
(b) The life-spans of the current U.S. and Russian presidents.
(c) The amounts of settlements in asbestos poisoning cases in Dhanbad and Kishan Garh.
(d) The takeover of a company and a rise in the price of its stock.
(e) The frequency of organ donation in a community and the predominant religious orientation of that community.
4-64 Raman Singh, supervisor of customer relations for GLF Airlines, is studying his company's overbooking problem. He is concentrating on three late-night flights out of Indira Gandhi International in New Delhi. In the last year, 7, 8, and 5 percent of the passengers on the London, Dubai, and Singapore flights, respectively, have been bumped. Further, 55, 20, and 25 percent of the late-night GLF passengers at Indira Gandhi International take the London, Dubai, and Singapore flights, respectively. What is the probability that a bumped passenger was scheduled to be on the
(a) London flight?
(b) Dubai flight?
(c) Singapore flight?

4-65 An electronics manufacturer is considering expansion of its plant in the next 4 years. The decision depends on the increased production that will occur if either government or consumer sales increase. Specifically, the plant will be expanded if either (1) consumer sales increase 50 percent over the present sales level or (2) a major government contract is obtained. The company also believes that both these events will not happen in the same year. The planning director has obtained the following estimates:

- The probability of consumer sales increasing by 50 percent within $1,2,3$, and 4 years is $0.05,0.08,0.12$, and 0.16 , respectively.
- The probability of obtaining a major government contract within $1,2,3$, and 4 years is $0.08,0.15,0.25$, and 0.32 , respectively.
What is the probability that the plant will expand
(a) Within the next year (in year 1)?
(b) Between 1 and 2 years from now (in year 2)?
(c) Between 2 and 3 years from now (in year 3)?
(d) Between 3 and 4 years from now (in year 4)?
(e) At all in the next 4 years (assume at most one expansion)?

4-66 Cartoonist R. Pran sends his comics to his publisher via Union Postal Delivery. UPD uses rail and truck transportation in Mr. Pran part of the country. In UPD's 20 years of operation, only 2 percent of the packages carried by rail and only 3.5 percent of the packages carried by truck have been lost. Mr. Pran calls the claims manager to inform him that a package containing a week of comics has been lost. If UPD sends 60 percent of the packages in that area by rail, which mode of transportation was more likely used to carry the lost comics? How does the solution change if UPD loses only 2 percent of its packages, regardless of the mode of transportation?
4-67 Determine the probability that
(a) Both engines on a small airplane fail, given that each engine fails with probability 0.05 and that an engine is twice as likely to fail when it is the only engine working.
(b) An automobile is recalled for brake failure and has steering problems, given that 15 percent of that model were recalled for brake failure and 2 percent had steering problems.
(c) A citizen files his or her tax return and cheats on it, given that 70 percent of all citizens file returns and 25 percent of those who file cheat.
4-68 Two-fifths of clients at Show Me Realty come from an out-of-town referral network, the rest are local. The chances of selling a home on each showing are 0.075 and 0.053 for out-of-town and local clients, respectively. If a salesperson walks into Show Me's office and announces "It's a deal!" was the agent more likely to have conducted a showing for an out-of-town or local client?
4-69 A local Member of Parliament knows he will soon vote on a controversial bill. To learn his constituents' attitudes about the bill, he met with groups in three cities in his state. An aide jotted down the opinions of 15 attendees at each meeting:

Opinion	City		
	Sitapur	Lucknow	Kanpur
Strongly oppose	2	2	4
Slightly oppose	2	4	3
Neutral	3	3	5
Slightly support	2	3	2
Strongly support	$\underline{6}$	$\underline{3}$	$\underline{1}$
Total	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{1 5}$

(a) What is the probability that someone from Sitapur is neutral about the bill? Strongly opposed?
(b) What is the probability that someone in the three city groups strongly supports the bill?
(c) What is the probability that someone from the Lucknow or Kanpur groups is neutral or slightly opposed?
4-70 Marcia Lerner will graduate in 3 months with a master's degree in business administration. Her school's placement office indicates that the probability of receiving a job offer as the result of any given on-campus interview is about 0.07 and is statistically independent from interview to interview.
(a) What is the probability that marcia will not get a job offer in any of her next three interviews?
(b) If she has three interviews per month, what is the probability that she will have at least one job offer by the time she finishes school?
(c) What is the probability that in her next five interviews she will get job offers on the third and fifth interviews only?
4-71 BMT, Inc., is trying to decide which of two oil pumps to use in its new race car engine. One pump produces 75 pounds of pressure and the other 100. BMT knows the following probabilities associated with the pumps:

	Probability of Engine Failure Due to	
	Seized Bearings	Ruptured Head Gasket
Pump A	0.08	0.03
Pump B	0.02	0.11

(a) If seized bearings and ruptured head gaskets are mutually exclusive, which pump should BMT use?
(b) If BMT devises a greatly improved "rupture-proof" head gasket, should it change its decision?
4-72 Sandy Irick is the public relations director for a large pharmaceutical firm that has been attacked in the popular press for distributing an allegedly unsafe vaccine. The vaccine protects against a virulent contagious disease that has a 0.04 probability of killing an infected person. Twenty-five percent of the population has been vaccinated.

A researcher has told her the following: The probability of any unvaccinated individual acquiring the disease is 0.30 . Once vaccinated, the probability of acquiring the disease through normal means is zero. However, 2 percent of vaccinated people will show symptoms of the disease, and 3 percent of that group will die from it. Of people who are vaccinated and show no symptoms from the vaccination, 0.05 percent will die. Irick must draw some conclusions from these data for a staff meeting in 1 hour and a news conference later in the day.
(a) If a person is vaccinated, what is the probability of dying from the vaccine? If he was not vaccinated, what is the probability of dying?
(b) What is the probability of a randomly selected person dying from either the vaccine or the normally contracted disease?
4-73 The pressroom supervisor for a daily newspaper is being pressured to find ways to print the paper closer to distribution time, thus giving the editorial staff more leeway for last-minute changes. She has the option of running the presses at "normal" speed or at 110 percent of normal-"fast" speed. She estimates that they will run at the higher speed 60 percent of the time. The roll of paper (the newsprint "web") is twice as likely to tear at the higher speed, which would mean temporarily stopping the presses,
(a) If the web on a randomly selected printing run has a probability of 0.112 of tearing, what is the probability that the web will not tear at normal speed?
(b) If the probability of tearing on fast speed is 0.20 , what is the probability that a randomly selected torn web occurred on normal speed?
4-74 Refer to Exercise 4-73. The supervisor has noted that the web tore during each of the last four runs and that the speed of the press was not changed during these four runs. If the probabilities of tearing at fast and slow speeds were 0.14 and 0.07 , respectively, what is the revised probability that the press was operating at fast speed during the last four runs?

4-75 A restaurant is experiencing discontentment among its customers. Historically it is known that there are three factors responsible for discontent amongst the customers viz. food quality, services quality, and interior décor. By conducting an analysis, it assesses the probabilities of discontentment with the three factors as $0.40,0.35$ and 0.25 , respectively. By conducting a survey among customers, it also evaluates the probabilities of a customer going away discontented on account of these factors as $0.6,0.8$ and 0.5 , respectively. The restaurant manager knows that a customer is discontented, what is the probability that it is due to service quality?
4-76 An economist believes that the chances of the Indian Rupee appreciating during period of high economic growth is 0.70 , during moderate economic growth the chances of appreciation is 0.40 , and during low economic growth it is 0.20 . During any given time period the probability of high and moderate economic growth is 0.30 and 0.50 respectively. According to the RBI report the Rupee has been appreciating during the present period. What is the probability that the economy is experiencing a period of low economic growth?

Questions on Running Case: Academic Performance

In the MBA-I Trimester of a college, XML Management School, there are 50 students. Their academic performance along with their gender and subject-stream has been noted down. The information is presented in the data sheet provide in Disk (Case_Academic Performance-Data.xls)

Answer the following questions:

1. If a student is randomly selected, what are the chances that she will be a male?
2. What is the probability that a randomly selected student has taken commerce stream in graduation?
3. What is the probability that a randomly selected student will be female and have taken professional stream in graduation?
4. What is the probability that a randomly selected female student has taken science stream in graduation?
5. What is the probability that a randomly selected arts student will be male?
6. What is the probability that a randomly selected student have secured at least 75% marks both in XII and graduation?
7. What is the probability that a randomly selected student has obtained less than 70% marks in XII provided he/she has more than 80% marks in X?
8. What is the probability that a randomly selected female student have secured more than 80 percentile in CAT if she has above 75% marks in graduation?
9. Are the events 'being male' and 'having science stream in graduation' independent?
10. A randomly selected student is found to be female, what are the chances that she has her CAT percentile in between 75 and 90 ?
11. A randomly selected student has got less than 65% marks in graduation, which event has more probability that the student would be a male or female?

Flow Chart: Probability I: Introductory Ideas

Probability Distributions

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To introduce the probability distributions most commonly used in decision making
- To use the concept of expected value to make decisions
- To show which probability distribution to use and how to find its values
- To understand the limitations of each of the probability distributions you use

CHAPTER CONTENTS

5.1 What is a Probability Distribution? 208
5.2 Random Variables 212
5.3 Use of Expected Value in Decision
Making 218
5.4 The Binomial Distribution 222
5.5 The Poisson Distribution 230
5.6 The Normal Distribution: A Distribution of a Continuous Random Variable 238
5.7 Choosing the Correct Probability
Distribution 254

- Statistics at Work 255
- Terms Introduced in Chapter 5256
- Equations Introduced in Chapter 5257
- Review and Application Exercises 258
- Flow Chart: Probability Distribution 264

Modern filling machines are designed to work efficiently and with high reliability. Machines can fill toothpaste pumps to within 0.1 ounce of the desired level 80 percent of the time. A visitor to the plant, watching filled pumps being placed into cartons, asked, "What's the chance that exactly half the pumps in a carton selected at random will be filled to within 0.1 ounce of the desired level?" Although we cannot make an exact forecast, the ideas about probability distributions discussed in this chapter enable us to give a pretty good answer to the question.

5.1 WHAT IS A PROBABILITY DISTRIBUTION?

In Chapter 2, we described frequency distributions as a useful way of summarizing variations in observed data. We prepared frequency distributions by listing all the possible outcomes of an experiment and then indicating the observed frequency of each possible outcome. Probability distributions are related to frequency distributions. In fact, we can think of a probability distribution as a theoretical frequency distribution. Now, what does that mean? A theoretical frequency distribution is a probability distribution that describes how outcomes

Probability distributions and
 frequency distribution

 are expected to vary. Because these distributions deal with expectations, they are useful models in making inferences and decisions under conditions of uncertainty. Probability distribution is related to random experiments just like frequency distribution to deterministic experiments. Frequency distribution expresses distribution of frequencies over different values of the concerned variables while probability distribution expresses distribution of probability values over different values of concerned random variable. Frequency distribution is related to certainty in outcome while probability distribution to uncertainty. In later chapters, we will discuss the methods we use under these conditions.
Examples of Probability Distributions

To begin our study of probability distributions, let's go back to
Experiment using a fair coin the idea of a fair coin, which we introduced in Chapter 4. Suppose we toss a fair coin twice. Table 5-1 illustrates the possible outcomes from this two-toss experiment.

Now suppose that we are interested in formulating a probability distribution of the number of tails that could possibly result when we toss the coin twice. We would begin by noting any outcome that did not contain a tail. With a fair coin, that is only the third outcome in Table 5-1: H, H. Then we would note the outcomes containing only one tail (the second and fourth outcomes in Table 5-1) and, finally, we

TABLE 5-1 POSSIBLE OUTCOMES FROM TWO TOSSES OF A FAIR COIN

First Toss	Second Toss	Number of Tails on Two Tosses	Probability of the Four Possible Outcomes
T	T	2	$0.5 \times 0.5=0.25$
T	H	1	$0.5 \times 0.5=0.25$
H	H	0	$0.5 \times 0.5=0.25$
H	T	1	$0.5 \times 0.5=\underline{0.25}$
			$\mathbf{1 . 0 0}$

TABLE 5-2 PROBABILITY DISTRIBUTION OF THE POSSIBLE NUMBER OF TAILS FROM TWO TOSSES OF A FAIR COIN

Number of Tails, T	Tosses	Probability of This Outcome $\mathbf{P}(\boldsymbol{T})$
0	(H, H)	0.25
1	$(T, H)+(H, T)$	0.50
2	(T, T)	0.25

FIGURE 5-1 PROBABILITY DISTRIBUTION OF THE NUMBER OF TAILS IN TWO TOSSES OF A FAIR COIN
would note that the first outcome contains two tails. In Table 5-2, we rearrange the outcomes of Table 5-1 to emphasize the number of tails contained in each outcome. We must be careful to note at this point that Table 5-2 is not the actual outcome of tossing a fair coin twice. Rather, it is a theoretical outcome, that is, it represents the way in which we would expect our two-toss experiment to behave over time.

We can illustrate in graphic form the probability distribution in Table 5-2. To do this, we graph the number of tails we might see on two tosses against the probability that this number would happen. We show this graph in Figure 5-1.

Consider another example. A political candidate for local Voting Example office is considering the votes she can get in a coming election.
Assume that votes can take on only four possible values. If the candidate's assessment is like this:

Number of votes	1,000	2,000	3,000	4,000	
Probability this will happen	0.1	0.3	0.4	0.2	Total 1.0

then the graph of the probability distribution representing her expectations will be like the one shown in Figure 5-2.

FIGURE 5-2 PROBABILITY DISTRIBUTION OF THE NUMBER OF VOTES

Before we move on to other aspects of probability distributions, we should point out that a frequency distribution is a listing of the observed frequencies of all the outcomes of an experiment that actually occurred when the experiment was done, whereas a probability distribution is a listing of the probabilities of all the possible outcomes that could result if the experiment were done. Also, as we can see in the two examples we presented in Figures 5-1 and 5-2, probability distributions can be based on theoretical considerations (the tosses of a coin) or on a subjective assessment of the likelihood of certain outcomes (the candidate's estimate). Probability distributions can also be based on experience. Insurance company actuaries determine insurance premiums, for example, by using long years of experience with death rates to establish probabilities of dying among various age groups.

Conditions for Probability Distribution

[$X, p(X)]$ is said to constitute a probability distribution if:

1. X is a random variable
2. $p(x)>=0$
3. $\Sigma p(x)=1$.

Types of Probability Distributions

Probability distributions are classified as either discrete or con- Discrete probability distributions tinuous. In a discrete probability distribution, the variable under consideration is restricted to take only a limited number of values, which can be listed. An example of a discrete probability distribution is shown in Figure 5-2, where we expressed the candidate's ideas about the coming election. There, votes could take on only four possible values ($1,000,2,000,3,000$, or 4,000). Similarly, the probability that you were born in a given month is also discrete because there are only 12 possible values (the 12 months of the year).

In a continuous probability distribution, on the other hand, the variable under consideration is allowed to take on any value within a given range, so we cannot list all the possible values.

Continuous probability

 distributions Suppose we were examining the level of effluent in a variety of
Difference between frequency distributions and probability distributions

 streams, and we measured the level of effluent by parts of effluent per million parts of water. We would expect quite a continuous range of parts per million (ppm), all the way from very low levels in clear mountain streams to extremely high levels in polluted streams. In fact, it would be quite normal for the variable "parts per million" to take on an enormous number of values. We would call the distribution of this variable (ppm) a continuous distribution. Continuous distributions are convenient ways to represent discrete distributions that have many possible outcomes, all very close to each other.
EXERCISES 5.1

Basic Concepts

5-1 Based on the following graph of a probability distribution, construct the corresponding table.

5-2 In the last chapter, we looked at the possible outcomes of tossing two dice, and we calculated some probabilities associated with various outcomes. Construct a table and a graph of the probability distribution representing the outcomes (in terms of total numbers of dots showing on both dice) for this experiment.
5-3 Which of the following statements regarding probability distributions are correct?
(a) A probability distribution provides information about the long-run or expected frequency of each outcome of an experiment.
(b) The graph of a probability distribution has the possible outcomes of an experiment marked on the horizontal axis.
(c) A probability distribution lists the probabilities that each outcome is random.
(d) A probability distribution is always constructed from a set of observed frequencies like a frequency distribution.
(e) A probability distribution may be based on subjective estimates of the likelihood of certain outcomes.

Applications

5-4 Southport Autos offers a variety of luxury options on its cars. Because of the 6 - to 8 -week waiting period for customer orders, Padmanabha Pillai, the dealer, stocks his cars with a variety of options. Currently, he, who prides himself on being able to meet his customers' needs immediately, is worried because of an industrywide shortage of cars with V-8 engines. Padmanabha offers the following luxury combinations:

1. V-8 engine
2. Leather interior
3. Halogen headlights
4. Stereo cassette deck
electric sun roof halogen headlights power door locks stereo cassette deck
V-8 engine leather interior
V-8 engine power door locks

He thinks that combinations 2, 3, and 4 have an equal chance of being ordered, but that combination 1 is twice as likely to be ordered as any of these.
(a) What is the probability that any one customer ordering a luxury car will order one with a V-8 engine?
(b) Assume that two customers order luxury cars. Construct a table showing the probability distribution of the number of V-8 engines ordered.

5-5 Ritwik, a marketing analyst for Premium Car Company, believes that the company's new car, Auto King, has a 70 percent chance of being chosen to replace the official pool of cars of the Secretariat completely. However, there is one chance in five that the Secretariat administration is going to buy only enough Auto King cars to replace half of its 500 cars. Finally, there is one chance in 10 that the Secretariat administration will replace all of its old official cars with Auto Kings and will buy enough Auto Kings to expand its official car pool by 20 percent. Construct a table and draw a graph of the probability distribution of sales of Auto Kings to the Secretariat administration.

5.2 RANDOM VARIABLES

A variable is random if it takes on different values as a result of the outcomes of a random experiment. A random variable can be

Random variable defined

 either discrete or continuous. If a random variable is allowed to take on only a limited number of values, which can be listed, it is a discrete random variable. On the other hand, if it is allowed to assume any value within a given range, it is a continuous random variable.You can think of a random variable as a value or magnitude that changes from occurrence to occurrence in no predictable sequence. A breast cancer screening clinic, for example, has no way of knowing exactly how many women will be screened on any one day, so tomorrow's number of patients is a random variable. The values of a random variable are the numerical values corresponding to each possible outcome of the random experiment. If past daily records of the clinic indicate that the values of the random variable range from 100 to 115 patients daily, the random variable is a discrete random variable.

Table 5-3 illustrates the number of times each level has been reached during the last 100 days. Note that the table gives a frequency distribution. To the extent that we believe that the

Creating a probability distribution

 experience of the past 100 days has been typical, we can use this historical record to assign a probability to each possible number of patients and find a probability distribution. We have accomplished this in Table 5-4 by normalizing the observed frequency distribution (in this case, dividing each value in the right-hand column of Table 5-3 by 100, the total number of days for which the record has been kept). The probability distribution for the random variable "daily number screened" is illustrated graphically in Figure 5-3. Notice that the probability distribution for a random variable provides a probability for each possible value and that these probabilities must sum to 1 . Table 5-4 shows that both these requirements have been met. Furthermore, both Table 5-4 and Figure 5-3 give us information about the long-run frequency of occurrence of daily patient screenings we would expect to observe if this random "experiment" were repeated.
The Expected Value of a Random Variable

Suppose you toss a coin 10 times and get 7 heads, like this:

Heads	Tails	Total
7	3	10

"Hmm, strange," you say. You then ask a friend to try tossing the coin 20 times; she gets 15 heads and 5 tails. So now you have, in all, 22 heads and 8 tails out of 30 tosses.

TABLE 5-3 NUMBER OF WOMEN SCREENED DAILY DURING 100 DAYS

Number Screened	Number of Days This Level Was Observed
100	1
101	2
102	3
103	5
104	6
105	7
106	9
107	10
108	12
109	11
110	9
111	8
112	6
113	5
114	4
115	2
	$\mathbf{1 0 0}$

TABLE 5-4 PROBABILITY DISTRIBUTION FOR NUMBER OF WOMEN SCREENED

Number Screened (Value of the Random Variable)	Probability That the Random Variable Will Take on This Value
100	0.01
101	0.02
102	0.03
103	0.05
104	0.06
105	0.07
106	0.09
107	0.10
108	0.12
109	0.11
110	0.09
111	0.08
112	0.06
113	0.05
114	0.04
115	0.02
	$\mathbf{1 . 0 0}$

FIGURE 5-3 PROBABILITY DISTRIBUTION FOR THE DISCRETE RANDOM VARIABLE "DAILY NUMBER SCREENED"

What did you expect? Was it something closer to 15 heads and 15 tails (half and half)? Now suppose you turn the tossing over to a machine and get 792 heads and 208 tails out of 1,000 tosses of the same coin. You might now be suspicious of the coin because it didn't live up to what you expected.

Expected value is a fundamental idea in the study of probability distributions. For many years, the concept has been put to considerable practical use by the insurance industry, and in the last 40 years, it has been widely used by many others who must make decisions under conditions of uncertainty.

To obtain the expected value of a discrete random variable, we multiply each value that the random variable can assume by the

Calculating expected value

 probability of occurrence of that value and then sum these products. Table 5-5 illustrates this procedure for our clinic problem. The total in the table tells us that the expected value of the discrete random variable "number screened" is 108.02 women. What does this mean? It means that over a long period of time, the number of daily screenings should average about 108.02. Remember that an expected value of 108.02 does not mean that tomorrow exactly 108.02 women will visit the clinic.The clinic director would base her decisions on the expected value of daily screenings because the expected value is a weighted average of the outcomes she expects in the future. Expected value weights each possible outcome by the frequency with which it is expected to occur. Thus, more common occurrences are given more weight than are less common ones. As conditions change over time, the director would recompute the expected value of daily screenings and use this new figure as a basis for decision making.

In our clinic example, the director used past patients' records as the basis for calculating the expected value of daily screenings. The expected value can also be derived from the director's

Deriving expected value subjectively

 subjective assessments of the probability that the random variable will take on certain values. In that case, the expected value represents nothing more than her personal convictions about the possible outcome.In this section, we have worked with the probability distribution of a random variable in tabular form (Table 5-5) and in graphic form (Figure 5-3). In many situations, however, we will find it more convenient, in terms of the computations that must be done, to represent the probability distribution of a random variable in algebraic form. By doing this, we can make probability calculations by substituting numerical values directly into an algebraic formula. In the following sections, we shall illustrate some situations in which this is appropriate and the methods for accomplishing it.

HINTS \& ASSUMPTIONS

The expected value of a discrete random variable is nothing more than the weighted average of each possible outcome, multiplied by the probability of that outcome happening, just like we did it in Chapter 3. Warning: The use of the term expected can be misleading. For example, if we calculated the expected value of number of women to be screened to be 11 , we don't think exactly this many will show up tomorrow. We are saying that, absent any other information, 11 women is the best number we can come up with as a basis for planning how many nurses we'll need to screen them. Hint: If daily patterns in the data are discernible (more women on Monday than on Friday, for example) then build this into your decision. The same holds for monthly and seasonal patterns in the data.

TABLE 5-5 CALCULATING THE EXPECTED VALUE OF THE DISCRETE RANDOM VARIABLE "DAILY NUMBER SCREENED"

Possible Values of the Random Variable $(\mathbf{1})$	Probability That the Random Variable Will Take on These Values (2)	$(\mathbf{1}) \times(\mathbf{2})$
100	0.01	1.00
101	0.02	2.02
102	0.03	3.06
103	0.05	5.15
104	0.06	6.24
105	0.07	7.35
106	0.09	9.54
107	0.10	10.70
108	0.12	12.96
109	0.11	11.99
110	0.09	9.90
111	0.08	8.88
112	0.06	6.72
113	0.05	5.65
114	0.04	4.56
115	0.02	2.30
Expected value of the random variable "daily number screened" $\rightarrow \mathbf{1 0 8 . 0 2}$		

EXERCISES 5.2

Self-Check Exercises
SC 5-1 Construct a probability distribution based on the following frequency distribution.

Outcome	102	105	108	111	114	117
Frequency	10	20	45	15	20	15

(a) Draw a graph of the hypothetical probability distribution.
(b) Compute the expected value of the outcome.

SC 5-2 Dharmendra Saini, who frequently invests in the stock market, carefully studies any potential investment. He is currently examining the possibility of investing in the Trinity Power Company. Through studying past performance, Dharmendra has broken the potential results of the investment into five possible outcomes with accompanying probabilities. The outcomes are annual rates of return on a single share of stock that currently costs ₹ 150 . Find the expected value of the return for investing in a single share of Trinity Power.

Return on investment (₹)	0.00	10.00	15.00	25.00	50.00
Probability	0.20	0.25	0.30	0.15	0.10

If Dharmendra purchases stock whenever the expected rate of return exceeds 10 percent, will he purchase the stock, according to these data?

Basic Concepts

5-6 Construct a probability distribution based on the following frequency distribution:

Outcome	2	4	6	8	10	12	15
Frequency	24	22	16	12	7	3	1

(a) Draw a graph of the hypothetical probability distribution.
(b) Compute the expected value of the outcome.

5-7 From the following graph of a probability distribution
(a) Construct a table of the probability distribution.
(b) Find the expected value of the random variable.

Applications

5-8 Bill Johnson has just bought a VCR from Jim's Videotape Service at a cost of \$300. He now, has the option of buying an extended service warranty offering 5 years of coverage for $\$ 100$. After talking to friends and reading reports, Bill believes the following maintenance expenses could be incurred during the next five years:

Expense	0	50	100	150	200	250	300
Probability	0.35	0.25	0.15	0.10	0.08	0.05	0.02

Find the expected value of the anticipated maintenance costs. Should Bill pay $\$ 100$ for the warranty?
5-9 Raj Gandhi, supervisor of traffic signals for the Northern Division's State Highway Administration (SHA), must decide whether to install a traffic light at the reportedly dangerous intersection of State Highway SH-4 and State Highway SH-7. Toward this end, Raj has collected data on accidents at the intersection:

Number of Accidents												
Year	J	F	M	A	M	J	J	A	S	0	N	D
1995	10	8	10	6	9	12	2	10	10	0	7	10
1996	12	9	7	8	4	3	7	14	8	8	8	4

SHA policy is to install a traffic light at an intersection at which the monthly expected number of accidents is higher than 7 . According to this criterion, should Raj recommend that a traffic light be installed at this intersection?
5-10 Ankit Desai, the director of Overnight Delivery Inc., has become concerned about the number of first-class couriers lost by his firm. Because these couriers are carried by both truck and airplane, Ankit has broken down the lost couriers for the last year into those lost from trucks and those lost from airplanes. His data are as follows:

Number Lost from	J	F	M	A	M	J	J	A	S	O	N	D
Truck	4	5	2	3	2	1	3	5	4	7	0	1
Airplane	5	6	0	2	1	3	4	2	4	7	4	0

Ankit plans to investigate either the trucking or air division of the company, but not both. If he decides to investigate the division with the highest expected number of lost couriers per month, which will he investigate?

Worked-Out Answers to Self-Check Exercises

SC 5-1 (a)

(b)

Outcome $\mathbf{(1)}$	Frequency (2)	P(Outcome) $\mathbf{(3)}$	$(\mathbf{1}) \times(\mathbf{3})$
102	10	0.08	8.16
105	20	0.16	16.80
108	45	0.36	38.88
111	15	0.12	13.32
114	20	0.16	18.24
117	15	0.12	14.04
	$\overline{\mathbf{1 2 5}}$	$\overline{\mathbf{1 . 0 0}}$	$\overline{\mathbf{1 0 9 . 4 4}}=$ Expected outcome

SC 5-2

Return $\mathbf{(1)}$	P(Return) $(\mathbf{2})$	$\mathbf{(\mathbf { 1 }) \times (\mathbf { 2 })}$
0	0.20	0.00
10	0.25	2.50
15	0.30	4.50
25	0.15	3.75
50	0.10	5.00
	$\overline{\mathbf{1 . 0 0}}$	$\overline{\mathbf{1 5 . 7 5}}=$ Expected return

Dharmendra will purchase the stock because the expected return of ₹ 15.75 is greater than 10 percent of the $₹ 150$ purchase price.

5.3 USE OF EXPECTED VALUE IN DECISION MAKING

In the preceding section, we calculated the expected value of a random variable and noted that it can have significant value to decision makers. Now we need to take a moment to illustrate how decision makers combine the probabilities that a random variable will take on certain values with the monetary gain or loss that results when it does take on those values. Doing just this enables them to make intelligent decisions under uncertain conditions.

Combining Probabilities and Monetary Values

Let us look at the case of a fruit and vegetable wholesaler who sells

Wholesaler problem

 strawberries. This product has a very limited useful life. If not sold on the day of delivery, it is worthless. One case of strawberries costs $\$ 20$, and the wholesaler receives $\$ 50$ for it. The wholesaler cannot specify the number of cases customers will call for on any one day, but her analysis of past records has produced the information in Table 5-6.
Types of Losses Defined

Two types of losses are incurred by the wholesaler: (1) obsolescence losses, caused by stocking too much fruit on any one day and having to throw it away the next day; and (2) opportunity

Obsolescence and opportunity losses

 losses, caused by being out of strawberries any time that customers call for them. (Customers will not wait beyond the day a case is requested.)TABLE 5-6 SALES DURING 100 DAYS

Daily Sales	Number of Days Sold	Probability of Each Number Being Sold
10	15	0.15
11	20	0.20
12	40	0.40
13	25	0.25
	$\overline{\mathbf{1 0 0}}$	$\overline{\mathbf{1 . 0 0}}$

TABLE 5-7 CONDITIONAL LOSS TABLE

Possible Requests for Strawberries	Possible Stock Options			
	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
	$\$ 0$	$\$ 20$	$\$ 40$	$\$ 60$
	30	0	20	40
	60	30	0	20
13	90	60	30	0

Table 5-7 is a table of conditional losses. Each value in the table Table of conditional losses is conditional on a specific number of cases being stocked and a specific number being requested. The values in Table 5-7 include not only losses from decaying berries, but also those losses resulting from lost revenue when the wholesaler is unable to supply the requests she receives for the berries.

Neither of these two types of losses is incurred when the number of cases stocked on any one day is the same as the number of cases requested. When that happens, the wholesaler sells all she has stocked and incurs no losses. This situation is indicated by a shaded zero in the appropriate column. Figures above any zero represent losses arising from spoiled berries. In each case here, the number of cases stocked is greater than the numObsolescence losses ber requested. For example, if the wholesaler stocks 12 cases but receives requests for only 10 cases, she loses $\$ 40$ (or $\$ 20$ per case for spoiled strawberries).

Values below the colored zeros represent opportunity losses resulting from requests that cannot be filled. If only 10 cases are stocked on a day that 11 requests are received, the wholesaler suffers an opportunity loss of $\$ 30$ for the

Opportunity losses case she cannot sell ($\$ 50$ income per case that would have been received, minus $\$ 20$ cost, equals $\$ 30$).

Calculating Expected Losses

Examining each possible stock action, we can compute the expected loss. We do this by weighting each of the four possible loss figures in each column of Table 5-7 by the probabilities from Table 5-6. For a stock action of 10 cases, the expected loss is computed as in Table 5-8.

TABLE 5-8 EXPECTED LOSS FROM STOCKING 10 CASES

Possible Requests	Conditional Loss		Proability of This Many Requests		Expected Loss
10	$\$ 0$	\times	0.15	$=$	$\$ 0.00$
11	30	\times	0.20	$=$	6.00
12	60	\times	0.40	$=$	24.00
13	90	\times	0.25	$=$	22.50

The conditional losses in Table 5-8 are taken from the second column of Table 5-7 for a stock action of 10 cases. The fourth column total in Table 5-8 shows us that if 10 cases are stocked each day, over a long period of time, the average or expected loss will be $\$ 52.50$ a day. There is no guarantee that tomorrow's loss will be exactly $\$ 52.50$.

Tables 5-9 through 5-11 show the computations of the expected loss resulting from decisions to stock 11,12 , and 13 cases, respectively. The optimal stock action is the one that will minimize expected losses. This action calls for

Optimal solution

 the stocking of 12 cases each day, at which point the expected loss is minimized at $\$ 17.50$. We could just as easily have solved this problem by taking an alternative approach, that is, maximizing expected gain ($\$ 50$ received per case less $\$ 20$ cost per case) instead of minimizing expected loss. The answer, 12 cases, would have been the same.In our brief treatment of expected value, we have made quite a few assumptions. To name only two, we've assumed that demand for the product can take on only four values, and that the berries are worth nothing one day later. Both these assumptions reduce the value of the answer we got. In Chapter 17, you

TABLE 5-9 EXPECTED LOSS FROM STOCKING 11 CASES

Possible Requests	Conditional Loss		Probability of This Many Requests		Expected Loss
10	$\$ 20$	\times	0.15	$=$	$\$ 3.00$
11	0	\times	0.20	$=$	0.00
12	30	\times	0.40	$=$	12.00
13	60	\times	0.25	$=$	15.00
			$\overline{\mathbf{1 . 0 0}}$		$\overline{\mathbf{\$ 3 0 . 0 0}}$

TABLE 5-10 EXPECTED LOSS FROM STOCKING 12 CASES

Possible Requests	Conditional Loss	Probability of This Many Requests		Expected Loss	
10	$\$ 40$	\times	0.15	$=$	$\$ 6.00$
11	20	\times	0.20	$=$	4.00
12	0	\times	0.40	$=$	0.00
13	30	\times	$\underline{0.25}$	$=$	$\underline{7.50}$

$\overline{1.00}$ Minimum expected loss $\rightarrow \overline{\$ 17.50}$

TABLE 5.11 EXPECTED LOSS FROM STOCKING 13 CASES

Possible Requests	Conditional Loss		Probability of This Many Requests		Expected Loss
10	$\$ 60$	\times	0.15	$=$	$\$ 9.00$
11	40	\times	0.20	$=$	8.00
12	20	\times	0.40	$=$	8.00
13	0	\times	$\underline{0.25}$	$=$	0.00
			$\overline{\mathbf{1 . 0 0}}$		$\mathbf{\$ 2 5 . 0 0}$

will again encounter expected-value decision making, but there we will develop the ideas as a part of statistical decision theory (a broader use of statistical methods to make decisions), and we shall devote an entire chapter to expanding the basic ideas we have developed at this point.

HINTS \& ASSUMPTIONS

Warning: In our illustrative exercise, we've allowed the random variable to take on only our values. This is unrealistic in the real world and we did it here only to make the explanation easier. Any manager facing this problem in her job would know that demand might be as low as zero on a given day (weather, holidays) and as high as perhaps 50 cases on another day. Hint: With demand ranging from zero to 50 cases, it's a computational nightmare to solve this problem by the method we just used. But don't panic, we will introduce another method in Chapter 17 that can do this easily.

EXERCISES 5.3

Self-Check Exercise

SC 5-3 Mario, owner of Mario's Pizza Emporium, has a difficult decision on his hands. He has found that he always sells between one and four of his famous "everything but the kitchen sink" pizzas per night. These pizzas take so long to prepare, however, that Mario prepares all of them in advance and stores them in the refrigerator. Because the ingredients go bad within one day, Mario always throws out any unsold pizzas at the end of each evening. The cost of preparing each pizza is $\$ 7$, and Mario sells each one for $\$ 12$. In addition to the usual costs, Mario also calculates that each "everything but" pizza that is ordered but he cannot deliver due to insufficient stock costs him $\$ 5$ in future business. How many "everything but" pizzas should Mario stock each night in order to minimize expected loss if the number of pizzas ordered has the following probability distribution?

Number of pizzas demanded	1	2	3	4
Probability	0.40	0.30	0.20	0.10

Applications

5-11 The management of National Sports Stadium is trying to decide how many tickets to print for an upcoming hockey match. Each ticket costs ₹ 5 to print and sells for ₹ 25 . Any ticket unsold at the end of the game must be discarded. Based on the past records of such hockey matches occurring on this ground, the management of the National Sports Stadium has estimated the following probability distribution for the ticket sales:

Tickets sold	25,000	40,000	55,000	70,000
Probability	0.10	0.30	0.45	0.15

So, based on the above information related to four categories of ticket-sales, what suggestions would you give to the management with respect to the number of tickets to be printed for the next match?
5-12 Airport Rent-a-Car (ARC) is a locally operated business in competition with several major firms. ARC is planning a new deal for prospective customers who want to rent a car for only one day and will return it to the airport. For ₹ 35 , the company will rent a small economy car
to a customer, whose only of her expense is to fill the car with gas at day's end. ARC is planning to buy number of small cars from the manufacturer at a reduced price of ₹ 6,300 . The big question is how many to buy. Company executives have decided the following distribution of demands per day for the service:

Number of cars rented	13	14	15	16	17	18
Probability	0.08	0.15	0.22	0.25	0.21	0.09

The company intends to offer the plan 6 days a week (312 days per year) and anticipates that its variable cost per car per day will be ₹ 2.50 . After the end of one year, the company expects to sell the cars and recapture 50 percent of the original cost. Disregarding the time value of money and any noncash expenses, use the expected-loss method to determine the optimal number of cars for ARC to buy.

Worked-Out Answer to Self-Check Exercise

		Loss Table			
		Pizzas Demanded			
		$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
	Probability	$\mathbf{0 . 4}$	$\mathbf{0 . 3}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$
	Pizzas Stocked				Expected Loss
1	0	10	20	30	10.0
2	7	0	10	20	$6.8 \leftarrow$
3	14	7	0	10	8.7
4	21	14	7	0	14.0

Mario should stock two "everything but" pizzas each night.

5.4 THE BINOMIAL DISTRIBUTION

One widely used probability distribution of a discrete random The binomial distribution and variable is the binomial distribution. It describes a variety of processes of interest to managers. The binomial distribu-

Bernoulli processes

 tion describes discrete, not continuous, data, resulting from an experiment known as a Bernoulli process, after the seventeenth-century Swiss mathematician Jacob Bernoulli. The tossing of a fair coin a fixed number of times is a Bernoulli process, and the outcomes of such tosses can be represented by the binomial probability distribution. The success or failure of interviewees on an aptitude test may also be described by a Bernoulli process. On the other hand, the frequency distribution of the lives of fluorescent lights in a factory would be measured on a continuous scale of hours and would not qualify as a binomial distribution.
Use of the Bernoulli Process

We can use the outcomes of a fixed number of tosses of a fair coin as an example of a Bernoulli process. We can describe this process as follows:

1. Each trial (each toss, in this case) has only two possible outcomes: heads or tails, yes or no, success or failure.
2. The probability of the outcome of any trial (toss) remains fixed over time. With a fair coin, the probability of heads remains 0.5 each toss regardless of the number of times the coin is tossed.
3. The trials are statistically independent; that is, the outcome of one toss does not affect the outcome of any other toss.

Each Bernoulli process has its own characteristic probability. Take the situation in which historically seven-tenths of all people who applied for a certain type of job passed the job test. We

Characteristic probability defined

 would say that the characteristic probability here is 0.7 , but we could describe our testing results as Bernoulli only if we felt certain that the proportion of those passing the test (0.7) remained constant over time. The other characteristics of the Bernoulli process would also have to be met, of course. Each test would have only two outcomes (success or failure), and the results of each test would have to be statistically independent.In more formal language, the symbol p represents the probability of a success (in our example, $0.7)$, and the symbol $q(q=1-p)$, the probability of a failure (0.3). To represent a certain number of successes, we will use the symbol r, and to symbolize the total number of trials, we use the symbol n. In the situations we will be discussing, the number of trials is fixed before the experiment is begun.

Using this language in a simple problem, we can calculate the chances of getting exactly two heads (in any order) on three tosses of a fair coin. Symbolically, we express the values as follows:

- $p=$ characteristic probability or probability of success $=0.5$
- $q=1-p=$ probability of failure $=0.5$
- $r=$ number of successes desired $=2$
- $n=$ number of trials undertaken $=3$

We can solve the problem by using the binomial formula:

Binomial Formula

Binomial Formula
Probability of r successes in n trials $=\frac{n!}{r!(n-r)} p^{r} q^{n-r}$

Although this formula may look somewhat complicated, it can be used quite easily. The symbol! means factorial, which is computed as follows: 3 ! means $3 \times 2 \times 1$, or 6 . To calculate 5 !, we multiply $5 \times 4 \times$ $3 \times 2 \times 1=120$. Mathematicians define 0 ! as equal to 1 . Using the binomial formula to solve our problem, we discover
Probability of 2 successes in 3 trials $=\frac{3!}{2!(3-2)!}(0.5)^{2}(0.5)^{1}$

$$
\begin{aligned}
& =\frac{3 \times 2 \times 1}{(2 \times 1)(1 \times 1)}(0.5)^{2}(0.5) \\
& =\frac{6}{2}(0.25)(0.5)=0.375
\end{aligned}
$$

Thus, there is a 0.375 probability of getting two heads on three tosses of a fair coin.

By now you've probably recognized that we can use the binomial distribution to determine the probabilities for the toothpaste pump problem we introduced at the beginning of this chapter. Recall that historically, eight-tenths of the pumps were correctly filled (successes). If we want to compute the probability of getting exactly three of six pumps (half a carton) correctly filled, we can define our symbols this way:

$$
\begin{aligned}
p & =0.8 \\
q & =0.2 \\
r & =3 \\
n & =6
\end{aligned}
$$

and then use the binomial formula as follows:

$$
\begin{equation*}
\text { Probability of } r \text { successes in } n \text { trials }=\frac{n!}{r!(n-r)!} p^{r} q^{n-r} \tag{5-1}
\end{equation*}
$$

Probability of 3 out of 6 pumps correctly filled $=\frac{6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(3 \times 2 \times 1)}(0.8)^{3}(0.2)^{3}$

$$
\begin{aligned}
& =\frac{720}{6 \times 6}(0.512)(0.008) \\
& =(20)(0.512)(0.008) \\
& =0.08192
\end{aligned}
$$

Of course, we could have solved these two problems using the

Binomial tables are available

 probability trees we developed in Chapter 4, but for larger problems, trees become quite cumbersome. In fact, using the binomial formula (Equation 5-1) is no easy task when we have to compute the value of something like 19 factorial. For this reason, binomial probability tables have been developed, and we shall use them shortly.
Using the Binomial Tables

Earlier we recognized that it is tedious to calculate probabilities using the binomial formula when n is a large number. Fortunately, we can use Appendix Table 3 to determine binomial probabilities

Solving problems using the binomial tables

 quickly.To illustrate the use of the binomial tables, consider this problem. What is the probability that 8 of the 15 registered Democrats on Prince Street will fail to vote in the coming primary if the probability of any individual's not voting is 0.30 and if people decide independently of each other whether or not to vote? First, we represent the elements in this problem in binomial distribution notation:

$$
\begin{array}{ll}
n=15 & \text { number of registered Democrats } \\
p=0.30 & \text { probability that any one individual won't vote } \\
r=8 & \text { number of individuals who will fail to vote }
\end{array}
$$

Then, because the problem involves 15 trials, we must find the table corresponding to $n=15$. Because the probability of an indi-

How to use the binomial tables

 vidual's not voting is 0.30 , we look through the binomial tables until we find the column headed 0.30 . We then move down that column until we are opposite the $r=8$ row, where we read the answer 0.0348 . This is the probability of eight registered voters not voting.Suppose the problem had asked us to find the probability of eight or more registered voters not voting? We would have looked under the 0.30 column and added up the probabilities there from 8 to the bottom of the column like this:

8	0.0348
9	0.0116
10	0.0030
11	0.0006
12	0.0001
13	0.0000
	$\mathbf{0 . 0 5 0 1}$

The answer is that there is a 0.0501 probability of eight or more registered voters not voting.
Suppose now that the problem asked us to find the probability of fewer than eight non-voters. Again, we would have begun with the 0.30 column, but this time we would add the probabilities from 0 (the top of the $n=15$ column) down to 7 (the highest value less than 8), like this:

0	0.0047
1	0.0305
2	0.0916
3	0.1700
4	0.2186
5	0.2061
6	0.1472
7	$\mathbf{0 . 0 8 1 1}$
	$\mathbf{0 . 9 4 9 8}$

The answer is that there is a 0.9498 probability of fewer than eight nonvoters.
Because r (the number of nonvoters) is either 8 or more, or else fewer than 8 , it must be true that

$$
\mathrm{P}(r \geq 8)+\mathrm{P}(r<8)=1
$$

But according to the values we just calculated,

$$
\mathrm{P}(r \geq 8)+\mathrm{P}(r<8)=0.0501+0.9498=0.9999
$$

The slight difference between 1 and 0.9999 is due to rounding errors resulting from the fact that the binomial table gives the probabilities to only 4 decimal places of accuracy.

You will see that the binomial table probabilities at the tops of the columns of figures go only up to 0.50 . How do you solve problems with probabilities larger than 0.5 ? Simply go back through the binomial tables and look this time at the probability values at the bottoms of the columns; these go from 0.50 through 0.99 .

Measures of Central Tendency and Dispersion for the Binomial Distribution

Earlier in this chapter, we encountered the concept of the expected value or mean of a probability distribution. The binomial distribution has an expected value or mean (μ) and a

Computing the mean and the standard deviation standard deviation (σ), and we should be able to compute both these statistical measures. Intuitively, we can reason that if a certain machine produces good parts with a $p=0.5$, then, over time, the mean of the distribution of the number of good parts in the output would be 0.5 times the total output. If there is a 0.5 chance of tossing a head with a fair coin, over a large number of tosses, the mean of the binomial distribution of the number of heads would be 0.5 times the total number of tosses.

Symbolically, we can represent the mean of a binomial distribution as

Mean of a Binomial Distribution	
$\mu=n p$	$[5-2]$

The mean

where

- $n=$ number of trials
- $p=$ probability of success

And we can calculate the standard deviation of a binomial distribution by using the formula

Standard Deviation of a Binomial Distribution

$$
\begin{equation*}
\sigma=\sqrt{n p q} \tag{5-3}
\end{equation*}
$$

The standard deviation
where

- $n=$ number of trials
- $p=$ probability of success
- $q=$ probability of failure $=1-p$

To see how to use Equations 5-2 and 5-3, take the case of a packaging machine that produces 20 percent defective packages. If we take a random sample of 10 packages, we can compute the mean and the standard deviation of the binomial distribution of that process like this:

$$
\begin{align*}
\mu & =n p \tag{5-2}\\
& =(10)(0.2) \\
& =2 \leftarrow \text { Mean } \\
\sigma & =\sqrt{n p q} \tag{5-3}\\
& =\sqrt{(10)(0.2)(0.8)} \\
& =\sqrt{1.6} \\
& =1.265 \leftarrow \text { Standard deviation }
\end{align*}
$$

The important thing to note that standard deviation of the binomial distribution must always be less than that of its mean.

Meeting the Conditions for Using the Bernoulli Process

We need to be careful in the use of the binomial probability to make certain that the three conditions necessary for a Bernoulli process introduced earlier are met, particularly conditions 2 and 3. Condition 2 requires the probability of the outcome of any trial

Problems in applying the binomial distribution to real-life situations to remain fixed over time. In many industrial processes, however, it is extremely difficult to guarantee that this is indeed the case. Each time an industrial machine produces a part, for instance, there is some infinitesimal wear on the machine. If this wear accumulates beyond a reasonable point, the proportion of acceptable parts produced by the machine will be altered and condition 2 for the use of the binomial distribution may be violated. This problem is not present in a coin-toss experiment, but it is an integral consideration in all real applications of the binomial probability distribution.

Condition 3 requires that the trials of a Bernoulli process be statistically independent, that is, the outcome of one trial cannot affect in any way the outcome of any other trial. Here, too, we can encounter some problems in real applications. Consider an interviewing process in which high-potential candidates are being screened for top positions. If the interviewer has talked with five unacceptable candidates in a row, he may not view the sixth with complete impartiality. The trials, therefore, might not be statistically independent.

HINTS \& ASSUMPTIONS

Warning: One of the requirements for using a Bernoulli process is that the probability of the outcome must be fixed over time. This is a very difficult condition to meet in practice. Even a fully automatic machine making parts will experience some wear as the number of parts increases and this will affect the probability of producing acceptable parts. Still another condition for its use is that the trials (manufacture of parts in our machine example) be independent. This too is a condition that is hard to meet. If our machine produces a long series of bad parts, this could affect the position (or sharpness) of the metal-cutting tool in the machine. Here, as in every other situation, going from the textbook to the real world is often difficult, and smart managers use their experience and intuition to know when a Bernoulli process is appropriate.

EXERCISES 5.4

Self-Check Exercises

SC 5-4 For a binomial distribution with $n=12$ and $p=0.45$, use Appendix Table 3 to find
(a) $\mathrm{P}(r=8)$.
(b) $\mathrm{P}(r>4)$.
(c) $\mathrm{P}(r \leq 10)$.

SC 5-5 Find the mean and standard deviation of the following binomial distributions:
(a) $n=16, p=0.40$.
(b) $n=10, p=0.75$.
(c) $n=22, p=0.15$.
(d) $n=350, p=0.90$.
(e) $n=78, p=0.05$.

SC 5-6 The latest nationwide political poll indicates that for Indians who are randomly selected, the probability that they are with alliance ABC is 0.55 , the probability that they are with alliance PQR is 0.30 , and the probability that they are with alliance XYZ is 0.15 . Assuming that these probabilities are accurate, answer the following questions pertaining to a randomly chosen group of 10 Indians.
(a) What is the probability that four are with alliance PQR ?
(b) What is the probability that none are with alliance ABC ?
(c) What is the probability that two are with alliance XYZ?
(d) What is the probability that at least eight are with alliance PQR ?

Basic Concepts

5-13 For a binomial distribution with $n=7$ and $p=0.2$, find
(a) $\mathrm{P}(r=5)$.
(b) $\mathrm{P}(r>2)$.
(c) $\mathrm{P}(r<8)$.
(d) $\mathrm{P}(r \geq 4)$.

5-14 For a binomial distribution with $n=15$ and $p=0.2$, use Appendix Table 3 to find
(a) $\mathrm{P}(r=6)$.
(b) $\mathrm{P}(r \geq 11)$.
(c) $\mathrm{P}(r \leq 4)$.

5-15 Find the mean and standard deviation of the following binomial distributions:
(a) $n=15, p=0.20$.
(b) $n=8, p=0.42$.
(c) $n=72, p=0.06$.
(d) $n=29, p=0.49$.
(e) $n=642, p=0.21$.

5-16 For $n=8$ trials, compute the probability that $r \geq 1$ for each of the following values of p :
(a) $p=0.1$.
(b) $p=0.3$.
(c) $p=0.6$.
(d) $p=0.4$.

Applications

5-17 Harley Davidson, director of quality control for the Kyoto Motor company, is conducting his monthly spot check of automatic transmissions. In this procedure, 10 transmissions are removed from the pool of components and are checked for manufacturing defects. Historically,
only 2 percent of the transmissions have such flaws. (Assume that flaws occur independently in different transmissions.)
(a) What is the probability that Harley's sample contains more than two transmissions with manufacturing flaws?
(b) What is the probability that none of the selected transmissions has any manufacturing flaws?
5-18 Diane Bruns is the mayor of a large city. Lately, she has become concerned about the possibility that large numbers of people who are drawing unemployment checks are secretly employed. Her assistants estimate that 40 percent of unemployment beneficiaries fall into this category, but Ms. Bruns is not convinced. She asks one of her aides to conduct a quiet investigation of 10 randomly selected unemployment beneficiaries.
(a) If the mayor's assistants are correct, what is the probability that more than eight of the individuals investigated have jobs?
(b) If the mayor's assistants are correct, what is the probability that one or three of the investigated individuals have jobs?
5-19 A recent study of how IT professionals spend their leisure time surveyed workers employed more than 5 years. They determined the probability an employee has 2 weeks of vacation time to be 0.45 , 1 week of vacation time to be 0.10 , and 3 or more weeks to be 0.20 . Suppose 20 workers are selected at random. Answer the following questions without Appendix Table 3.
(a) What is the probability that 8 have 2 weeks of vacation time?
(b) What is the probability that only one worker has 1 week of vacation time?
(c) What is the probability that at most 2 of the workers have 3 or more weeks of vacation time?
(d) What is the probability that at least 2 workers have 1 week of vacation time?

5-20 Nagendra Kumar is in charge of the electronics section of a large department store. He has noticed that the probability that a customer who is just browsing will buy something is 0.3 . Suppose that 15 customers browse in the electronics section each hour. Use Appendix Table 3 in the back of the book to answer the following questions:
(a) What is the probability that at least one browsing customer will buy something during a specified hour?
(b) What is the probability that at least four browsing customers will buy something during a specified hour?
(c) What is the probability that no browsing customers will buy anything during a specified hour?
(d) What is the probability that no more than four browsing customers will buy something during a specified hour?

Worked-Out Answers to Self-Check Exercises

SC 5-4 Binomial $(n=12, p=0.45)$.
(a) $\mathrm{P}(r=8)=0.0762$
(b) $\mathrm{P}(r>4)=1-\mathrm{P}(r \leq 4)=1-(0.0008+0.0075+0.0339+0.0923+0.1700)=0.6955$
(c) $\mathrm{P}(r \leq 10)=1-\mathrm{P}(r \geq 11)=1-(0.0010+0.0001)=0.9989$

SC 5-5

	n	p	$\mu=n p$	$\sigma=\sqrt{n p q}$
(a)	16	0.40	6.4	1.960
(b)	10	0.75	7.5	1.369
(c)	22	0.15	3.3	1.675
(d)	350	0.90	315.0	5.612
(e)	78	0.05	3.9	1.925

SC 5-6 (a) $n=10, p=0.30, \mathrm{P}(r=4)=\left(\frac{10!}{4!6!}\right)(0.30)^{4}(0.70)^{6}=0.2001$
(b) $n=10, p=0.55, \mathrm{P}(r=0)=\left(\frac{10!}{0!10!}\right)(0.55)^{0}(0.45)^{10}=0.0003$
(c) $n=10, p=0.15, \mathrm{P}(r=2)=\left(\frac{10!}{2!8!}\right)(0.15)^{2}(0.85)^{8}=0.2759$
(d) $n=10, p=0.30, \mathrm{P}(r-8)=\mathrm{P}(r=8)+\mathrm{P}(r=9)+\mathrm{P}(r=10)$

$$
\begin{aligned}
& =\left(\frac{10!}{8!2!}\right)(0.30)^{8}(0.70)^{2}+\left(\frac{10!}{9!1!}\right)(0.30)^{9}(0.70)^{1}+\left(\frac{10!}{10!0!}\right)(0.30)^{10}(0.70)^{0} \\
& =0.00145+0.00014+0.00001=0.0016
\end{aligned}
$$

5.5 THE POISSON DISTRIBUTION

There are many discrete probability distributions, but our discussion will focus on only two: the, binomial, which we have just concluded, and the Poisson, which is the subject of this section. The Poisson distribution is named for Siméon Denis Poisson (1781-1840), a French mathematician who developed the distribution from studies during the latter part of his lifetime.

The Poisson distribution is used to describe a number of processes, including the distribution of telephone calls going through a switchboard system, the demand (needs) of patients for service

Examples of Poisson
 distributions

 at a health institution, the arrivals of trucks and cars at a tollbooth, and the number of accidents at an intersection. These examples all have a common element: They can be described by a discrete random variable that takes on integer (whole) values ($0,1,2,3,4,5$, and so on). The number of patients who arrive at a physician's office in a given interval of time will be $0,1,2$, $3,4,5$, or some other whole number. Similarly, if you count the number of cars arriving at a tollbooth on the New Jersey Turnpike during some 10 -minute period, the number will be $0,1,2,3,4,5$, and so on.
Characteristics of Processes That Produce a Poisson Probability Distribution

The number of vehicles passing through a single turnpike tollbooth at rush hour serves as an illustration of Poisson probability distribution characteristics:

Conditions leading to a Poisson probability distribution

1. The average (mean) number of vehicles that arrive per rush hour can be estimated from past traffic data.
2. If we divide the rush hour into periods (intervals) of one second each, we will find these statements to be true:
(a) The probability that exactly one vehicle will arrive at the single booth per second is a very small number and is constant for every one-second interval.
(b) The probability that two or more vehicles will arrive within a one-second interval is so small that we can assign it a zero value.
(c) The number of vehicles that arrive in a given one-second interval is independent of the time at which that one-second interval occurs during the rush hour.
(d) The number of arrivals in any one-second interval is not dependent on the number of arrivals in any other one-second interval.

Now, we can generalize from these four conditions described for our tollbooth example and apply them to other processes. If these new processes meet the same four conditions, then we can use a Poisson probability distribution to describe them.

In Poisson distribution, we observe only the occurrence of the event. So, in the case of Poisson distribution, we are simply concerned with and count only the happening of the event unlike the Binomial distribution where we are concerned with both the "happening (success)" as well as "non-happening (failure)" of the event.

Calculating Poisson Probabilities Using Appendix Table 4a

The Poisson probability distribution, as we have explained, is concerned with certain processes that can be described by a discrete random variable. The letter X usually represents that discrete random variable, and X can take on integer values ($0,1,2,3,4,5$, and so on). We use capital X to represent the random variable and lowercase x to represent a specific value that capital X can take. The probability of exactly x occurrences in a Poisson distribution is calculated with the formula

Poisson Formula	
$\mathrm{P}(x)=\frac{\lambda^{x} \times e^{-\lambda}}{x!}$	$[5-4]$

Poisson distribution formula

Look more closely at each part of this formula:

Suppose that we are investigating the safety of a dangerous intersection. Past police records indicate a mean of five accidents per month at this intersection. The number of accidents is

An example using the Poisson formula
distributed according to a Poisson distribution, and the Highway Safety Division wants us to calculate the probability in any month of exactly $0,1,2,3$, or 4 accidents. We can use Appendix Table 4 a to avoid having to calculate e 's to negative powers. Applying the formula

$$
\begin{equation*}
\mathrm{P}(x)=\frac{\lambda^{x} \times e^{-\lambda}}{x!} \tag{5-4}
\end{equation*}
$$

we can calculate the probability of no accidents:

$$
\begin{aligned}
\mathrm{P}(0) & =\frac{(5)^{0}\left(e^{-5}\right)}{0!} \\
& =\frac{(1)(0.00674)}{1} \\
& =0.00674
\end{aligned}
$$

For exactly one accident:

$$
\begin{aligned}
\mathrm{P}(1) & =\frac{(5)^{1} \times\left(e^{-5}\right)}{1!} \\
& =\frac{(5)(0.00674)}{1} \\
& =0.03370
\end{aligned}
$$

For exactly two accidents:

$$
\begin{aligned}
\mathrm{P}(2) & =\frac{(5)^{2}\left(e^{-5}\right)}{2!} \\
& =\frac{(25)(0.00674)}{2 \times 1} \\
& =0.08425
\end{aligned}
$$

For exactly three accidents:

$$
\begin{aligned}
P(3) & =\frac{(5)^{3}\left(e^{-5}\right)}{3!} \\
& =\frac{(125)(0.00674)}{3 \times 2 \times 1} \\
& =\frac{0.8425}{6} \\
& =0.14042
\end{aligned}
$$

Finally, for exactly four accidents:

$$
\begin{aligned}
P(4) & =\frac{(5)^{4}\left(e^{-5}\right)}{4!} \\
& =\frac{(625)(0.00674)}{4 \times 3 \times 2 \times 1} \\
& =\frac{4.2125}{24}=0.17552
\end{aligned}
$$

Our calculations will answer several questions. Perhaps we Using these results want to know the probability of 0,1 , or 2 accidents in any month. We find this by adding the probabilities of exactly 0,1 , and 2 accidents like this:

$$
\begin{aligned}
\mathrm{P}(0) & =0.00674 \\
\mathrm{P}(1) & =0.03370 \\
\mathrm{P}(2) & =0.08425 \\
\mathrm{P}(0 \text { or } 1 \text { or } 2) & =\overline{\mathbf{0 . 1 2 4 6 9}}
\end{aligned}
$$

We will take action to improve the intersection if the probability of more than three accidents per month exceeds 0.65 . Should we act? To solve this problem, we need to calculate the probability of having $0,1,2$, or 3 accidents and then subtract the sum from 1.0 to get the probability for more than 3 accidents. We begin like this:

$$
\begin{aligned}
\mathrm{P}(0) & =0.00674 \\
\mathrm{P}(\mathrm{l}) & =0.03370 \\
\mathrm{P}(2) & =0.08425 \\
\mathrm{P}(3) & =0.14042 \\
\mathrm{P}(3 \text { or fewer }) & =\mathbf{0 . 2 6 5 1 1}
\end{aligned}
$$

Because the Poisson probability of three or fewer accidents is 0.26511 , the probability of more than three must be $0.73489,(1.00000-0.26511)$. Because 0.73489 exceeds 0.65 , steps should be taken to improve the intersection.

We could continue calculating the probabilities for more than four accidents and eventually produce a Poisson probability distribution of the number of accidents per month at this intersection.

Constructing a Poisson
 probability distribution

 Table 5-12 illustrates such a distribution. To produce this table, we have used Equation 5-4. Try doing the calculations yourself for the probabilities beyond exactly four accidents. Figure 5-4 illustrates graphically the Poisson probability distribution of the number of accidents.
Looking Up Poisson Probabilities Using Appendix Table 4b

Fortunately, hand calculations of Poisson probabilities are not necessary. Appendix Table 4b produces the same result as hand calculation but avoids the tedious work.

Look again at our intersection problem first introduced on page 232. There we calculated the probability of four accidents this way:

$$
\begin{align*}
\mathrm{P}(x) & =\frac{\lambda^{x} \times e^{-\lambda}}{x!} \tag{5-4}\\
\mathrm{P}(4) & =\frac{(5)^{4}\left(e^{-5}\right)}{4!} \\
& =\frac{(625)(0.00674)}{4 \times 3 \times 2 \times 1} \\
& =0.17552
\end{align*}
$$

TABLE 5-12 POISSON PROBABILITY DISTRIBUTION OF ACCIDENTS PER MONTH

$\boldsymbol{x}=$ Number of Accidents	$\mathbf{P}(\boldsymbol{x})=$ Probability of Exactly That Number
0	0.00674
1	0.03370
2	0.08425
3	0.14042
4	0.17552
5	0.17552
6	0.14627
7	0.10448
8	0.06530
9	0.03628
10	0.01814
11	$\underline{0.00824}$
	$\mathbf{0 . 9 9 4 8 6} \leftarrow$ Probability of 0 through 11 accidents
12 or more	$\underline{0.00514} \leftarrow$ Probability of 12 or more $(1.0-0.99486)$
	$\mathbf{1 . 0 0 0 0 0}$

FIGURE 5-4 POISSON PROBABILITY DISTRIBUTION OF THE NUMBER OF ACCIDENTS

To use Appendix Table 4b all we need to know are the values for x and λ, in this instance 4 and 5, respectively. Now look in Appendix Table 4 b . First find the column headed 5 ; then come down the column until you are opposite 4 , and read the answer directly, 0.1755 . That's much less work isn't it?

One more example will make sure we've mastered this new method. On page 233, we calculated the Poisson probability of 0,1 , or 2 accidents as being 0.12469 . Finding this same result using Appendix

Table 4 b requires that we again look for the column headed 5, then come down that column, and add up the values we find beside 0,1 , and 2 like this:
0.0067 (Probability of 0 accidents)
0.0337 (Probability of 1 accident)
0.0842 (Probability of 2 accidents)
$\mathbf{0 . 1 2 4 6}$ (Probability of 0,1 , or 2 accidents)
Once again, the slight differences in the two answers are due to rounding errors.

Poisson Distribution as an Approximation of the Binomial Distribution

Sometimes, if we wish to avoid the tedious job of calculating binomial probability distributions, we can use the Poisson instead. The Poisson distribution can be a reasonable approximation of the binomial, but only under certain conditions. These

Using a modification of the Poisson formula to approximate binomial probabilities

 conditions occur when n is large and p is small, that is, when the number of trials is large and the binomial probability of success is small. The rule most often used by statisticians is that the Poisson is a good approximation of the binomial when \boldsymbol{n} is greater than or equal to 20 and \boldsymbol{p} is less than or equal to $\mathbf{0 . 0 5}$. In cases that meet these conditions, we can substitute the mean of the binomial distribution $(n p)$ in place of the mean of the Poisson distribution (λ) so that the formula becomesPoisson Probability Distribution as an Approximation of the Binomial

$$
\begin{equation*}
\mathrm{P}(x)=\frac{(n p)^{x} \times e^{-n p}}{x!} \tag{5-5}
\end{equation*}
$$

Let us use both the binomial probability formula (5-1) and the Poisson approximation formula (5-5) on the same problem to determine the extent to which the Poisson is a good approxima-

Comparing the Poisson and binomial formulas

 tion of the binomial. Say that we have a hospital with 20 kidney dialysis machines and that the chance of any one of them malfunctioning during any day is 0.02 . What is the probability that exactly three machines will be out of service on the same day? Table 5-13 shows the answers to this question. As we can see, the difference between the two probability distributions is slight (only about a 10 percent error, in this example).
HINTS \& ASSUMPTIONS

Poisson distribution should be used when the occurrence of the event is rare so that we are concerned with only the happening (success) of the event and count that only. Further, the Poisson distribution is a good approximation of the binomial distribution, but we qualify our assumption by requiring n to be greater than or equal to 20 and p to be less than or equal to 0.05 .

TABLE 5-13 COMPARISON OF POISSON AND BINOMIAL PROBABILITY

 APPROACHES TO THE KIDNEY DIALYSIS SITUATION| Poisson Approach | | Binomial Approach | |
| ---: | :--- | ---: | :--- |
| $P(x)$ | $=\frac{(n p)^{x} \times e^{-n p}}{x!}$ | $[5-5]$ | $P(r)=\frac{n!}{r!(n-r)!} p^{r} q^{n-r}$ |
| $P(3)$ | $=\frac{(20 \times 0.02)^{3} e^{-(20 \times 0.02)}}{3!}$ | $P(3)=\frac{20!}{3!(20-3)!}(0.02)^{3}(0.98)^{17}$ | |
| | $=\frac{(0.4)^{3} e^{-0.4}}{3 \times 2 \times 1}$ | | $=0.0065$ |
| | $=\frac{(0.064)(0.67032)}{6}$ | | |
| | $=0.00715$ | | |

EXERCISES 5.5

Self-Check Exercises

SC 5-7 Given $\lambda=4.2$, for a Poisson distribution, find
(a) $\mathrm{P}(x \leq 2)$.
(b) $\mathrm{P}(x \geq 5)$.
(c) $\mathrm{P}(x=8)$.

SC 5-8 Given a binomial distribution with $n=30$ trials and $p=0.04$, use the Poisson approximation to the binomial to find
(a) $\mathrm{P}(r=25)$.
(b) $\mathrm{P}(r=3)$.
(c) $\mathrm{P}(r=5)$.

Basic Concepts

5-21 Given a binomial distribution with $n=28$ trials and $p=0.025$, use the Poisson approximation to the binomial to find
(a) $\mathrm{P}(r \geq 3)$.
(b) $\mathrm{P}(r<5)$.
(c) $\mathrm{P}(r=9)$.

5-22 If the prices of new cars increase an average of four times every 3 years, find the probability of
(a) No price hikes in a randomly selected period of 3 years.
(b) Two price hikes.
(c) Four price hikes.
(d) Five or more.

5-23 Given a binomial distribution with $n=25$ and $p=0.032$, use the Poisson approximation to the binomial to find
(a) $\mathrm{P}(r=3)$
(b) $\mathrm{P}(r=5)$
(c) $\mathrm{P}(r \leq 2)$

5-24 Given $\lambda=6.1$ for a Poisson distribution, find
(a) $\mathrm{P}(x \leq 3)$
(b) $\mathrm{P}(x \geq 2)$
(c) $\mathrm{P}(x=6)$
(d) $\mathrm{P}(1 \leq x \leq 4)$

Applications

5-25 Concert pianist Donna Prima has become quite upset at the number of coughs occurring in the audience just before she begins to play. On her latest tour, Donna estimates that on average eight coughs occur just before the start of her performance. Ms. Prima has sworn to her conductor that if she hears more than five coughs at tonight's performance, she will refuse to play. What is the probability that she will play tonight?
5-26 In Lucknow Railway Station, recently there was a complaint about the accidents on its elevators and the resulting injuries, especially among the elderly people. According to the past records, on an average, five people met with an accident every week. The station incharge has requested the finance department to allocate extra funds for purchasing safety device to check the accidents on the elevators. The finance department has replied that the funds cannot be allocated unless the chances of more than three accidents on elevators in any week exceed 75 percent. Will the funds be allocated?
5-27 Southwestern Electronics has developed a new calculator that performs a series of functions not yet performed by any other calculator. The marketing department is planning to demonstrate this calculator to a group of potential customers, but it is worried about some initial problems, which have resulted in 4 percent of the new calculators developing mathematical inconsistencies. The marketing VP is planning on randomly selecting a group of calculators for this demonstration and is worried about the chances of selecting a calculator that could start malfunctioning. He believes that whether or not a calculator malfunctions is a Bernoulli process, and he is convinced that the probability of a malfunction is really about 0.04.
(a) Assuming that the VP selects exactly 50 calculators to use in the demonstration, and using the Poisson distribution as an approximation of the binomial, what is the chance of getting at least three calculators that malfunction?
(b) No calculators malfunctioning?

5-28 The District Family Court handles various kinds of disputes, but most are marital disputes. In fact, 96 percent of the disputes handled by the Family Court are of a marital nature.
(a) What is the probability that, out of 80 disputes handled by the Family Court, exactly seven are nonmarital?
(b) None are nonmarital?

5-29 The Government Press is responsible for printing this country's paper money. The GP has an impressively small frequency of printing errors; only 0.5 percent of all bills are too flawed for circulation. What is the probability that out of a batch of 1,000 bills
(a) None are too flawed for circulation?
(b) Ten are too flawed for circulation?
(c) Fifteen are too flawed for circulation?

Worked-Out Answers to Self-Check Exercises

SC 5-7 $\quad \lambda=4.2, e^{-4.2}=0.0150$.
(a) $\mathrm{P}(x \leq 2)=\mathrm{P}(x=0)+\mathrm{P}(x=1)+\mathrm{P}(x=2)$

$$
\begin{aligned}
& =\frac{(4.2)^{0} e^{-4.2}}{0!}+\frac{(4.2)^{1} e^{-4.2}}{1!}+\frac{(4.2)^{2} e^{-4.2}}{2!} \\
& =0.0150+0.0630+0.1323=0.2103
\end{aligned}
$$

(b) $\mathrm{P}(x \geq 5)=1-\mathrm{P}(x \leq 4)=1-\mathrm{P}(x=4)-\mathrm{P}(x=3)-\mathrm{P}(x \leq 2)$

$$
\begin{aligned}
& =1-\frac{(4.2)^{4} e^{-4.2}}{4!}-\frac{(4.2)^{3} e^{-4.2}}{3!}-0.2103 \\
& =1-0.1944-0.1852-0.2103=0.4101
\end{aligned}
$$

(c) $\mathrm{P}(x=8)=\frac{(4.2)^{8} e^{-4.2}}{8!}=0.0360$

SC 5-8 Binomial, $n=30, p=0.04 ; \lambda=n p=1.2 ; e^{-1.2}=0.30119$.
(a) $\mathrm{P}(r=25)=\frac{(1.2)^{25} e^{-1.2}}{25!}=0.0000$
(b) $\mathrm{P}(r=3)=\frac{(1.2)^{3} e^{-1.2}}{3!}=0.0867$
(c) $\mathrm{P}(r=5)=\frac{(1.2)^{5} e^{-1.2}}{5!}=0.0062$

5.6 THE NORMAL DISTRIBUTION: A DISTRIBUTION OF A CONTINUOUS RANDOM VARIABLE

So far in this chapter, we have been concerned with discrete
Continuous distribution defined probability distributions. In this section, we shall turn to cases in which the variable can take on any value within a given range and in which the probability distribution is continuous.

A very important continuous probability distribution is the normal distribution. Several mathematicians were instrumental in its development, including the eighteenth-century mathematicianastronomer Karl Gauss. In honor of his work, the normal probability distribution is often called the Gaussian distribution.

There are two basic reasons why the normal distribution occupies such a prominent place in statistics. First, it has some proper-

Importance of the normal distribution ties that make it applicable to a great many situations in which it is necessary to make inferences by taking samples. In Chapter 6, we will find that the normal distribution is a useful sampling distribution. Second, the normal distribution comes close to fitting the actual observed frequency distributions of many phenomena, including human characteristics (weights, heights, and IQs), outputs from physical processes (dimensions and yields), and other measures of interest to managers in both the public and private sectors.

FIGURE 5-5 FREQUENCY CURVE FOR THE NORMAL PROBABILITY DISTRIBUTION

Characteristics of the Normal Probability Distribution

Look for a moment at Figure 5-5. This diagram suggests several important features of a normal probability distribution:

1. The curve has a single peak; thus, it is unimodal. It has the bell shape that we described earlier.
2. The mean of a normally distributed population lies at the center of its normal curve.
3. Because of the symmetry of the normal probability distribution, the median and the mode of the distribution are also at the center; thus, for a normal curve, the mean, median, and mode are the same value.
4. The two tails of the normal probability distribution extend indefinitely and never touch the horizontal axis. (Graphically, of course, this is impossible to show.)

Most real-life populations do not extend forever in both directions, but for such populations the normal distribution is a convenient approximation. There is no single normal curve, but rather a family of normal curves. To define a particular normal prob-

Significance of the two parameters that describe a normal distribution ability distribution, we need only two parameters: the mean (μ) and the standard deviation (σ). In Table 5-14, each of the populations is described only by its mean and its standard deviation, and each has a particular normal curve.

Figure 5-6 shows three normal probability distributions, each of which has the same mean but a different standard deviation. Although these curves differ in appearance, all three are "normal curves."

TABLE 5-14 DIFFERENT NORMAL PROBABILITY DISTRIBUTIONS

Nature of the Population	Its Mean	Its Standard Deviation
Annual earnings of employees at one plant	$\$ 17,000 /$ year	$\$ 1,000$
Length of standard 8^{\prime} building lumber	8^{\prime}	$0.05^{\prime \prime}$
Air pollution in one community	2,500 particles per million	750 particles per million
Per capita income in a single developing country	$\$ 1,400$	$\$ 300$
Violent crimes per year in a given city	8,000	900

FIGURE 5-6 NORMAL PROBABILITY DISTRIBUTIONS WITH IDENTICAL MEANS BUT DIFFERENT STANDARD DEVIATIONS

Figure 5-7 illustrates a "family" of normal curves, all with the same standard deviation, but each with a different mean.

Finally, Figure 5-8 shows three different normal probability distributions, each with a different mean and a different standard deviation. The normal probability distributions illustrated in Figures 5-6, 5-7,

FIGURE 5-7 NORMAL PROBABILITY DISTRIBUTION WITH DIFFERENT MEANS BUT THE SAME STANDARD DEVIATION

FIGURE 5-8 THREE NORMAL PROBABILITY DISTRIBUTIONS, EACH WITH A DIFFERENT MEAN AND A DIFFERENT STANDARD DEVIATION
and 5-8 demonstrate that the normal curve can describe a large number of populations, differentiated only by the mean and/or the standard deviation.

Areas under the Normal Curve

No matter what the values of μ and σ are for a normal prob- Measuring the area under a ability distribution, the total area under the normal curve is 1.00 , normal curve so that we may think of areas under the curve as probabilities. Mathematically, it is true that

1. Approximately 68 percent of all the values in a normally distributed population lie within ± 1 standard deviation from the mean.
2. Approximately 95.5 percent of all the values in a normally distributed population lie within ± 2 standard deviations from the mean.
3. Approximately 99.7 percent of all the values in a normally distributed population lie within ± 3 standard deviations from the mean.

These three statements are shown graphically in Figure 5-9.

FIGURE 5-9 RELATIONSHIP BETWEEN THE AREA UNDER THE CURVE FOR A NORMAL PROBABILITY DISTRIBUTION AND THE DISTANCE FROM THE MEAN MEASURED IN STANDARD DEVIATIONS

Figure 5-9 shows three different ways of measuring the area under the normal curve. However, very few of the applications we shall make of the normal probability distribution involve intervals of exactly 1,2 , or 3 standard deviations (plus and minus) from the mean. What should we do about all these other cases? Fortunately, we can refer to statistical tables constructed for precisely these situations. They indicate portions of the area under the normal curve that are contained within any number of standard deviations (plus and minus) from the mean.

It is not possible or necessary to have a different table for every possible normal curve. Instead, we can use a table of the

Standard normal probability distribution

 standard normal probability distribution (a normal distribution with $(\mu=0$ and $\sigma=1)$ to find areas under any normal curve. With this table, we can determine the area, or probability, that the normally distributed random variable will lie within certain distances from the mean. These distances are defined in terms of standard deviations.We can better understand the concept of the standard normal probability distribution by examining the special relationship of the standard deviation to the normal curve. Look at Figure 5-10. Here we have illustrated two normal probability distributions, each with a different mean and a different standard deviation. Both area a and area b, the shaded areas under the curves, contain the same proportion of the total area under the normal curve. Why? Because both these areas are defined as being the area between the mean and one standard deviation to the right of the mean. All intervals containing the same number of standard deviations from the mean will contain the same proportion of the total area under the curve for any normal probability distribution. This makes possible the use of only one standard normal probability distribution table.

Let's find out what proportion of the total area under the curve is represented by colored areas in Figure 5-10. In Figure 5-9, we

Finding the percentage of the total area under the curve saw that an interval of one standard deviation (plus and minus) from the mean contained about 68 percent of the total area under the curve. In Figure 5-10, however, we are interested only in the area between the mean and 1 standard deviation to the right of the mean (plus, not plus and minus). This area must be half of 68 percent, or 34 percent, for both distributions.

One more example will reinforce our point. Look at the two normal probability distributions in Figure 5-11. Each of these has a different mean and a different standard deviation. The colored area under both curves, however, contains the same proportion of the total area under the curve. Why? Because both colored areas fall within 2 standard deviations (plus and minus) from the mean. Two

FIGURE 5-10 TWO INTERVALS, EACH ONE STANDARD DEVIATION TO THE RIGHT OF THE MEAN

FIGURE 5-11 TWO INTERVALS, EACH ± 2 STANDARD DEVIATIONS FROM THE MEAN
standard deviations (plus and minus) from the mean include the same proportion of the total area under any normal probability distribution. In this case, we can refer to Figure 5-9 again and see that the colored areas in both distributions in Figure 5-11 contain about 95.5 percent of the total area under the curve.

Using the Standard Normal Probability Distribution Table

Appendix Table 1 shows the area under the normal curve between the mean and any value of the normally distributed random variable. Notice in this table the location of the column labeled z. The value for z is derived from the formula

Standardizing a Normal Random Variable

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{5-6}
\end{equation*}
$$

Formula for measuring distances under the normal curve

FIGURE 5-12 NORMAL DISTRIBUTION ILLUSTRATING COMPARABILITY OF Z VALUES AND STANDARD DEVIATIONS
where

- $x=$ value of the random variable with which we are concerned
- $\mu=$ mean of the distribution of this random variable
- $\sigma=$ standard deviation of this distribution
- $z=$ number of standard deviations from x to the mean of this distribution

Why do we use z rather than "the number of standard deviations"? Normally distributed random variables take on many different units of measure: dollars, inches, parts per million, pounds, time. Because we shall use one table, Table 1 in the Appendix, we talk in terms of standard units (which really means standard deviations), and we denote them by the symbol z.

We can illustrate this graphically. In Figure 5-12, we see that the use of z is just a change of the scale of measurement on the horizontal axis.

The Standard Normal Probability Distribution Table, Appendix Table 1, is organized in terms of standard units, or z values. It gives the values for only half the area under the normal

Using z values

Standard Normal Probability
Distribution Table curve, beginning with 0.0 at the mean. Because the normal probability distribution is symmetrical (return to Figure 5-5 to review this point), the values true for one half of the curve are true for the other. We can use this one table for problems involving both sides of the normal curve. Working a few examples will help us to feel comfortable with the table.

Data for Examples We have a training program designed to upgrade the supervisory skills of production-line supervisors.

Using the table to find

 probabilities (examples) Because the program is self-administered, supervisors require different numbers of hours to complete the program. A study of past participants indicates that the mean length of time spent on the program is 500 hours and that this normally distributed random variable has a standard deviation of 100 hours.Example 1 What is the probability that a participant selected at random will require more than 500 hours to complete the program?

Solution In Figure 5-13, we see that half of the area under the curve is located on either side of the mean of 500 hours. Thus, we can deduce that the probability that the random variable will take on a value higher than 500 is the colored half, or 0.5 .

FIGURE 5-13 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL MORE THAN 500 HOURS IN COLOR

FIGURE 5-14 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL 500 TO 650 HOURS IN COLOR

Example 2 What is the probability that a candidate selected at random will take between 500 and 650 hours to complete the training program?
Solution We have shown this situation graphically in Figure 5-14. The probability that will answer this question is represented by the colored area between the mean (500 hours) and the x value in which we are interested (650 hours). Using Equation 5-6, we get a z value of

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{650-500}{100} \\
& =\frac{150}{100} \\
& =1.5 \text { standard deviations }
\end{align*}
$$

If we look up $z=1.5$ in Appendix Table 1, we find a probability of 0.4332 . Thus, the chance that a candidate selected at random would require between 500 and 650 hours to complete the training program is slightly higher than 0.4.

Example 3 What is the probability that a candidate selected at random will take more than 700 hours to complete the program?
Solution This situation is different from our previous examples. Look at Figure 5-15. We are interested in the colored area to the right of the value " 700 hours." How can we solve this problem? We can begin by using Equation 5-6:

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{700-500}{100} \\
& =\frac{200}{100} \\
& =2 \text { standard deviations }
\end{align*}
$$

FIGURE 5-15 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL ABOVE 700 HOURS IN COLOR

Looking in Appendix Table 1 for a z value of 2.0 , we find a probability of 0.4772 . That represents the probability the program will require between 500 and 700 hours. However, we want the probability it will take more than 700 hours (the colored area in Figure 5-18). Because the right half of the curve (between the mean and the right-hand tail) represents a probability of 0.5 , we can get our answer (the area to the right of the 700 -hour point) if we subtract 0.4772 from $0.5 ; 0.5000-0.4772=0.0228$. Therefore, there are just over 2 chances in 100 that a participant chosen at random would take more than 700 hours to complete the course.

Example 4 Suppose the training-program director wants to know the probability that a participant chosen at random would require between 550 and 650 hours to complete the required work.

Solution This probability is represented by the colored area in Figure 5-16. This time, our answer will require two steps. First, we calculate a z value for the 650 -hour point, as follows:

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{650-500}{100}
\end{align*}
$$

FIGURE 5-16 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL BETWEEN 550 AND 650 HOURS IN COLOR

$$
\begin{aligned}
& =\frac{150}{100} \\
& =1.5 \text { standard deviations }
\end{aligned}
$$

When we look up a z of 1.5 in Appendix Table 1, we see a probability value of 0.4332 (the probability that the random variable will fall between the mean and 650 hours). Now for step 2 . We calculate a z value for our 550-hour point like this:

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{550-500}{100} \\
& =\frac{50}{100} \\
& =0.5 \text { standard deviation }
\end{align*}
$$

In Appendix Table 1, the z value of 0.5 has a probability of 0.1915 (the chance that the random variable will fall between the mean and 550 hours). To answer our question, we must subtract as follows:

> | 0.4332 | (Probability that the random variable will lie between the mean and 650 hours) |
| ---: | :--- |
| -0.1915 | (Probability that the random variable will lie between the mean and 550 hours) |
| $\mathbf{0 . 2 4 1 7}$ | \leftarrow (Probability that the random variable will lie between 550 and 650 hours) |

Thus, the chance of a candidate selected at random taking between 550 and 650 hours to complete the program is a bit less than 1 in 4.

Example 5 What is the probability that a candidate selected at random will require fewer than 580 hours to complete the program?

Solution This situation is illustrated in Figure 5-17. Using Equation 5-6 to get the appropriate z value for 580 hours, we have

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{5-6}
\end{equation*}
$$

FIGURE 5-17 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL LESS THAN 580 HOURS IN COLOR

$$
\begin{aligned}
& =\frac{580-500}{100} \\
& =\frac{80}{100} \\
& =0.8 \text { standard deviation }
\end{aligned}
$$

Looking in Appendix Table 1 for a z value of 0.8 , we find a probability of 0.2881 -the probability that the random variable will lie between the mean and 580 hours. We must add to this the probability that the random variable will be between the left-hand tail and the mean. Because the distribution is symmetrical with half the area on each side of the mean, we know this value must be 0.5 . As a final step, then, we add the two probabilities:
0.2881 (Probability that the random variable will lie between the mean and 580 hours)
+0.5000 (Probability that the random variable will lie between the left-hand tail and the mean)
$0.7881 \leftarrow$ (Probability that the random variable will lie between the left-hand tail and 580 hours)
Thus, the chances of a candidate requiring less than 580 hours to complete the programme slightly higher than 75 percent.

Example 6 What is the probability that a candidate chosen at random will take between 420 and 570 hours to complete the program?

Solution Figure 5-18 illustrates the interval in question, from 420 to 570 hours. Again, the solution requires two steps. First, we calculate a z value for the 570 -hour point:

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{570-500}{100} \\
& =\frac{70}{100} \\
& =0.7 \text { standard deviation }
\end{align*}
$$

FIGURE 5-18 DISTRIBUTION OF THE TIME REQUIRED TO COMPLETE THE TRAINING PROGRAM, WITH THE INTERVAL BETWEEN 420 AND 570 HOURS IN COLOR

We look up the z value of 0.7 in Appendix Table 1 and find a probability value of 0.2580 . Second, we calculate the z value for the 420-hour point:

$$
\begin{align*}
z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{420-500}{100} \\
& =\frac{-80}{100} \\
& =-0.8 \text { standard deviation }
\end{align*}
$$

Because the distribution is symmetrical, we can disregard the sign and look for a z value of 0.8 . The probability associated with this z value is 0.2881 . We find our answer by adding these two values as follows:

> | 0.2580 | (Probability that the random variable will lie between the mean and 570 hours) |
| ---: | :--- |
| +0.2881 | (Probability that the random variable will lie between the mean and 420 hours) |
| $\mathbf{0 . 5 4 6 1}$ | \leftarrow (Probability that the random variable will lie between 420 and 570 hours) |

Shortcomings of the Normal Probability Distribution

Earlier in this section, we noted that the tails of the normal distribution approach but never touch the horizontal axis. This implies

Theory and practice

 that there is some probability (although it may be very small) that the random variable can take on enormous values. It is possible for the right-hand tail of a normal curve to assign a minute probability of a person's weighing 2,000 pounds. Of course, no one would believe that such a person exists. (A weight of one ton or more would lie about 50 standard deviations to the right of the mean and would have a probability that began with 250 zeros to the right of the decimal point!) We do not lose much accuracy by ignoring values far out in the tails. But in exchange for the convenience of using this theoretical model, we must accept the fact that it can assign impossible empirical values.
The Normal Distribution as an Approximation of the Binomial Distribution

Although the normal distribution is continuous, it is interesting to note that it can sometimes be used to approximate discrete distributions. To see how we can use it to approximate the binomial distribution, suppose we would like to know the probability of getting 5, 6, 7, or 8 heads in 10 tosses of a fair coin. We could use Appendix Table 3 to find this probability, as follows:

$$
\begin{aligned}
\mathrm{P}(r=5,6,7 \text { or } 8) & =\mathrm{P}(r=5)+\mathrm{P}(r=6)+\mathrm{P}(r=7)+\mathrm{P}(r=8) \\
& =0.2461+0.2051+0.1172+0.0439 \\
& =0.6123
\end{aligned}
$$

FIGURE 5-19 BINOMIAL DISTRIBUTION WITH $n=10$ AND $p=1 / 2$, WITH A SUPERIMPOSED NORMAL DISTRIBUTION WITH $\mu .=5$ AND $\sigma=1.581$

Figure 5-19 shows the binomial distribution for $n=10$ and $p=1 / 2$ with a normal distribution superimposed on it with the same mean $(\mu=n p=10(1 / 2)=5)$ and the same standard deviation $(\sigma=\sqrt{n p q}=\sqrt{10(1 / 2)(1 / 2)}=\sqrt{2.5}=1.581)$.

Look at the area under the normal curve between $5-1 / 2$ and $5+1 / 2$. We see that the area is approximately the same size as the area of the colored bar representing the binomial probability of getting five heads. The two $1 / 2$'s that we add to and subtract from 5 are called continuity correction factors and are used to improve the accuracy of the approximation.

Using the continuity correction factors, we see that the binomial probability of 5, 6, 7, or 8 heads can be approximated by the area under the normal curve between 4.5 and 8.5 . Compute that probability by finding the z values corresponding to 4.5 and 8.5.

$$
\begin{align*}
\text { At } x=4.5<z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{4.5-5}{1.581} \\
& =-0.32 \text { standard deviation } \\
\text { At } x=8.5<z & =\frac{x-\mu}{\sigma} \tag{5-6}\\
& =\frac{8.5-5}{1.581} \\
& =2.21 \text { standard deviations }
\end{align*}
$$

Two distributions with the same means and standard deviations

Continuity correction factors

Now, from Appendix Table 1, we find
0.1255 (Probability that z will be between -0.32 and 0 (and, correspondingly, that x will be between 4.5 and 5))
+0.4864 (Probability that z will be between 0 and 2.21 (and, correspondingly, that x will be between 5 and 8.5))
$\mathbf{0 . 6 1 1 9} \quad$ (Probability that x will be between 4.5 and 8.5)
Comparing the binomial probability of 0.6123 (Appendix The error in estimating is slight Table 3) with this normal approximation of 0.6119 , we see that the error in the approximation is less than .1 percent.

The normal approximation to the binomial distribution is very convenient because it enables us to solve the problem without extensive tables of the binomial distribution. (You might note that Appendix Table 3, which gives binomial probabilities for values of n up to 20, is already 9 pages long.) We should note that some care needs to be taken in using this approximation, but it is quite good whenever both $n p$ and $n q$ are at least 5 .

Care must be taken

HINTS \& ASSUMPTIONS

Warning: The normal distribution is the probability distribution most often used in statistics. Statisticians fear that too often, the data being analyzed are not well-described by a normal distribution. Fortunately there is a test to help you decide whether this is indeed the case, and we'll introduce it in Chapter 11 when we've laid a bit more foundation. Hint: Students who have trouble calculating probabilities using the normal distribution tend to do better when they actually sketch the distribution in question, indicate the mean and standard deviation, and then show the limits of the random variable in question (we use color but pencil shading is just as good). Visualizing the situation this way makes decisions easier (and answers more accurate).

EXERCISES 5.6

Self-Check Exercises

SC 5-9 Use the normal approximation to compute the binomial probabilities in parts (a)-(d) below:
(a) $n=30, p=0.35$, between 10 and 15 successes, inclusive.
(b) $n=42, p=0.62,30$ or more successes.
(c) $n=15, p=0.40$, at most 7 successes.
(d) $n=51, p=0.42$, between 17 and 25 successes, inclusive.

SC 5-10 Parminder Singh is the supervisor for the Krishna Hydroelectric Dam. He knows that the dam's turbines generate electricity at the peak rate only when at least 1,000,000 gallons of water pass through the dam each day. He also knows, from experience, that the daily flow is normally distributed, with the mean equal to the previous day's flow and a standard deviation of 200,000 gallons. Yesterday, 850,000 gallons flowed through the dam. What is the probability that the turbines will generate at peak rate today?

Basic Concepts

5-30 Given that a random variable, X, has a normal distribution with mean 6.4 and standard deviation 2.7, find
(a) $\mathrm{P}(4.0<x<5.0)$.
(b) $\mathrm{P}(x>2.0)$.
(c) $\mathrm{P}(x<7.2)$.
(d) $\mathrm{P}((x<3.0)$ or $(x>9.0))$.

5-31 Given that a random variable, X, has a binomial distribution with $n=50$ trials and $p=0.25$, use the normal approximation to the binomial to find
(a) $\mathrm{P}(x>10)$.
(b) $\mathrm{P}(x<18)$.
(c) $\mathrm{P}(x>21)$.
(d) $\mathrm{P}(9<x<14)$.

5-32 In a normal distribution with a standard deviation of 5.0, the probability that an observation selected at random exceeds 21 is 0.14 .
(a) Find the mean of the distribution.
(b) Find the value below which 4 percent of the values in the distribution lie.

5-33 Use the normal approximation to compute the binomial probabilities in parts (a)-(e) below.
(a) $n=35, p=0.15$, between 7 and 10 successes inclusive.
(b) $n=29, p=0.25$, at least 9 successes.
(c) $n=84, p=0.42$, at most 40 successes.
(d) $n=63, p=0.11,10$ or more successes.
(e) $n=18, p=0.67$, between 9 and 12 successes inclusive.

Applications

5-34 The manager of a small postal substation is trying to quantify the variation in the weekly demand for mailing tubes. She has decided to assume that this demand is normally distributed. She knows that on average 100 tubes are purchased weekly and that 90 percent of the time, weekly demand is below 115 .
(a) What is the standard deviation of this distribution?
(b) The manager wants to stock enough mailing tubes each week so that the probability of running out of tubes is no higher than 0.05 . What is the lowest such stock level?
5-35 The Gilbert Machinery Company has received a big order to produce electric motors for a manufacturing company. In order to fit in its bearing, the drive shaft of the motor must have a diameter of 5.1 ± 0.05 (inches). The company's purchasing agent realizes that there is a large stock of steel rods in inventory with a mean diameter of $5.07^{\prime \prime}$ and a standard deviation of $0.07^{\prime \prime}$. What is the probability of a steel rod from inventory fitting the bearing?
5-36 The manager of a Spiffy Lube auto lubrication shop is trying to revise his policy on ordering grease gun cartridges. Currently, he orders 110 cartridges per week, but he runs out of cartridges 1 out of every 4 weeks. He knows that, on average, the shop uses 95 cartridges per week. He is also willing to assume that demand for cartridges is normally distributed.
(a) What is the standard deviation of this distribution?
(b) If the manager wants to order enough cartridges so that his probability of running out during any week is no greater than 0.2 , how many cartridges should he order per week?

5-37 Sergent Peter, the Indian Army's Quartermaster at the Central Command Headquarter, prides himself on being able to find a uniform to fit virtually any recruit. Currently, Sgt. Peter is revising his stock requirements for fatigue caps. Based on experience, Sgt. Peter has decided that hat size among recruits varies in such a way that it can be approximated by a normal distribution with a mean of $7^{\prime \prime}$. Recently, though, he has revised his estimate of the standard deviation from 0.75 to 0.875 . Present stock policy is to have on hand hats in every size (increments of $1 / 8^{\prime \prime}$) from $6^{1 / 4^{\prime \prime}}$ to $73 / 4^{\prime \prime}$. Assuming that a recruit is fit if his or her hat size is within this range, find the probability that a recruit is fit using
(a) The old estimate of the standard deviation.
(b) The new estimate of the standard deviation.

5-38 Anushree Saxena, VP of personnel for the Standard Insurance Company, has developed a new training program that is entirely self-paced. New employees work various stages at their own pace; completion occurs when the material is learned. Anushree's program has been especially effective in speeding up the training process, as an employee's salary during training is only 67 percent of that earned upon completion of the program. In the last several years, average completion time of the program was 44 days, and the standard deviation was 12 days.
(a) Find the probability an employee will finish the program in 33 to 42 days.
(b) What is the probability of finishing the program in fewer than 30 days?
(c) Fewer than 25 or more than 60 days?

5-39 On the basis of past experience, automobile inspectors in Mumbai have noticed that 5 percent of all cars coming in for their annual inspection fail to pass. Using the normal approximation to the binomial, find the probability that between 7 and 18 of the next 200 cars to enter the city inspection station will fail the inspection.
5-40 Maurine Lewis, an editor for a large publishing company, calculates that it requires 11 months on average to complete the publication process from manuscript to finished book, with a standard deviation of 2.4 months. She believes that the normal distribution well describes the distribution of publication times. Out of 19 books she will handle this year, approximately how many will complete the process in less than a year?
5-41 The Nobb Door Company manufactures doors for recreational vehicles. It has two conflicting objectives: It wants to build doors as small as possible to save on material costs, but to preserve its good reputation with the public, it feels obligated to manufacture doors that are tall enough for 95 percent of the adult population in the country to pass through without stooping. In order to determine the height at which to manufacture doors, Nobb is willing to assume that the height of adults in the country is normally distributed with mean 73 inches and standard deviation 6 inches. How tall should Nobb's doors be?

Worked-Out Answers to Self-Check Exercises

SC 5-9

(a) $\mu=n p=30(0.35)=10.5 \quad \sigma=\sqrt{n p q}=\sqrt{30(0.35)(0.65)}=2.612$
$\mathrm{P}(10 \leq r \leq 15)=\mathrm{P}\left(\frac{9.5-10.5}{2.612} \leq z \leq \frac{15.5-10.5}{2.612}\right)$
$=\mathrm{P}(-0.38 \leq z \leq 1.91)=0.1480+0.4719=0.6199$
(b) $\mu=n p=42(0.62)=26.04 \quad \sigma=\sqrt{n p q}=\sqrt{42(0.62)(0.38)}=3.146$

$$
\mathrm{P}(r \geq 30)=\mathrm{P}\left(z \geq \frac{29.5-26.04}{3.146}\right)=\mathrm{P}(z \geq 1.10)=0.5-0.3643=0.1357
$$

(c) $\mu=n p=15(0.40)=6 \quad \sigma=\sqrt{n p q}=\sqrt{15(0.40)(0.60)}=1.895$

$$
\mathrm{P}(r \leq 7)=\mathrm{P}\left(z \leq \frac{7.5-6}{1.897}\right)=\mathrm{P}(z \leq 0.79)=0.5+0.2852=0.7852
$$

(d) $\mu=n p=51(0.42)=21.42 \quad \sigma=\sqrt{n p q}=\sqrt{51(0.42)(0.58)}=3.525$
$\mathrm{P}(17 \leq r \leq 25)=\mathrm{P}\left(\frac{16.5-21.42}{3.525} \leq z \leq \frac{25.5-21.42}{3.525}\right)$
$\mathrm{P}(-1.40 \leq z \leq 1.16)=0.4192+0.3770=0.7962$
SC 5-10 For today, $\mu=850,000, \sigma=200,000$

$$
\begin{aligned}
\mathrm{P}(x \geq 1,000,000) & =\mathrm{P}\left(z \geq \frac{1,000,000-850,000}{200,000}\right)=\mathrm{P}(z \geq 0.75) \\
& =0.5-0.2734=0.2266
\end{aligned}
$$

5.7 CHOOSING THE CORRECT PROBABILITY DISTRIBUTION

If we plan to use a probability to describe a situation, we must be careful to choose the right one. We need to be certain that we are not using the Poisson probability distribution when it is the binomial that more nearly describes the situation we are studying. Remember that the binomial distribution is applied when the number of trials is fixed before the experiment begins, and each trial is independent and can result in only two mutually exclusive outcomes (success/failure, either/or, yes/no). Like the binomial, the Poisson distribution applies when each trial is independent. But although the probabilities in a Poisson distribution approach zero after the first few values, the number of possible values is infinite. The results are not limited to two mutually exclusive outcomes. Under some conditions, the Poisson distribution can be used as an approximation of the binomial, but not always. All the assumptions that form the basis of a distribution must be met if our use of that distribution is to produce meaningful results.

Even though the normal probability distribution is the only continuous distribution we have discussed in this chapter, we should realize that there are other useful continuous distributions. In the chapters to come, we shall study three additional continuous distributions: Student's t, χ^{2}, and F. Each of these is of interest to decision makers who solve problems using statistics.

EXERCISES 5.7

5-42 Which probability distribution is most likely the appropriate one to use for the following variables: binomial, Poisson, or normal?
(a) The life span of a female born in 1977.
(b) The number of autos passing through a tollbooth.
(c) The number of defective radios in a lot of 100 .
(d) The water level in a reservoir.

5-43 What characteristics of a situation help to determine which is the appropriate distribution to use?
5-44 Explain in your own words the difference between discrete and continuous random variables. What difference do such classifications make in determining the probabilities of future events?
5-45 In practice, managers see many different types of distributions. Often, the nature of these distributions is not as apparent as are some of the examples provided in this book. What alternatives are open to students, teachers, and researchers who want to use probability distributions in their work but who are not sure exactly which distributions are appropriate for given situations?

STATISTICS AT WORK

Loveland Computers

Case 5: Probability Distributions "So, Nancy Rainwater tells me she's 'reasonably certain' about her decision on how she's going to schedule the production line." Walter Azko was beginning to feel that hiring Lee Azko as an assistant was one of his better investments. "But don't get too comfortable, I've got another problem I want you to work on. Tomorrow, I want you to spend some time with Jeff Cohen-he's the head of purchasing here."

Jeff Cohen would be the first to say that he was surprised to find himself as the head of purchasing for a computer company. An accountant by training, he had first run into Walter Azko when he was assigned by his CPA firm to help Walter prepare the annual financial statements for his importing company. Because Walter traveled frequently and was always trying out new product lines, the financial records were a mess of invoices and check stubs for manufacturers, brokers, and shippers. Jeff's brief assignment turned into a permanent position, and when Loveland Computers was formed, he somewhat reluctantly agreed to handle purchasing, as long as Walter negotiated the deals. For Jeff, the best part of the job was that he could indulge his taste for oriental art.

Lee Azko found Jeff in a corner office that looked like a surgery room prepared for an operation: There was not so much as a paper clip on his desk, and the bookshelves contained neat rows of colorcoded binders. "Let me explain my problem to you, Lee," Cohen launched in immediately. "We import our midrange line fully assembled from Singapore. Because it's a high-value product, it makes sense to pay to have it airfreighted to us. The best part of that is that we don't have to keep much inventory here in Colorado and we're not paying to have hundreds of thousands of dollars' worth of computers to sit on docks and on boats for several weeks. The computers are boxed and wrapped on pallets in a shape that just fits in the cargo hold of an MD-11 freighter. So it makes sense for us to order the midrange in lots of 200 units."
"I understand," said Lee, making a mental note that each shipment was worth about a quarter of a million dollars. "I've seen them arrive at the inbound dock."
"About half of the computers are sent on to customers without even being taken out of the box. But the rest need some assembly work on Nancy Rainwater's production line. We need to add a modemyou know, the device that lets a computer 'talk' to another machine through regular telephone lines. The modem comes on one board and just snaps into a slot. There's not much to it. I can get modems locally from several different electronics firms. But for each lot of computers, I have to decide how many modems to order. And I don't know how many customers will want a modem. If I order too many, I end up with unused inventory that just adds to my costs. The overstock eventually gets used up for customers who call in after the purchase and want a modem as an 'add on.' But if I order too few, I have to use a lot of staff time to round up a few extras, and, of course, none of the suppliers wants to give me a price break on a small lot."
"Well, you've got the records," Lee replied. "Why don't you just order the 'average' number of modems needed for each lot?"
"Because although the average number of modems per lot has stayed the same over the last few years, the actual number requested by customers on any single lot jumps around a bit. Take a look at these numbers," Jeff said as he walked across to the bookcase and pulled out a folder. "It's much worse for me to end up with too few modems in stock when a shipment of midranges comes through the production line than to have too many. So I suppose I tend to order above the average. It just seems that there ought to be a way to figure out how many to order so that we can be reasonably sure that we can operate the line without running out."
"Well, there's only one question remaining," said Lee. "You have to tell me how many times-out of 100 lots of computers-you can tolerate being wrong in your guess. Would a 95 percent success rate work for you?"

Study Questions: What calculations is Lee going to make? Why does Lee need to know Jeff Cohen's desired "success" rate for this prediction? What does Lee know about the underlying distribution of the parameter "number of modems per lot"? Finally, what additional information will Lee need?

CHAPTER REVIEW

Terms Introduced in Chapter 5

Bernoulli Process A process in which each trial has only two possible outcomes, the probability of the outcome of any trial remains fixed over time, and the trials are statistically independent.
Binomial Distribution A discrete distribution describing the results of an experiment known as a Bernoulli process.
Continuity Correction Factor Corrections used to improvement the accuracy of the approximation of a binomial distribution by a normal distribution.
Continuous Probability Distribution A probability distribution in which the variable is allowed to take on any value within a given range.
Continuous Random Variable A random variable allowed to take on any value within a given range.
Discrete Probability Distribution A probability distribution in which the variable is allowed to take on only a limited number of values, which can be listed.
Discrete Random Variable A random variable that is allowed to take on only a limited number of values, which can be listed.
Expected Value A weighted average of the outcomes of an experiment.
Expected Value of a Random Variable The sum of the products of each value of the random variable with that value's probability of occurrence.
Normal Distribution A distribution of a continuous random variable with a single-peaked, bell-shaped curve. The mean lies at the center of the distribution, and the curve is symmetrical around a vertical line erected at the mean. The two tails extend indefinitely, never touching the horizontal axis.
Poisson Distribution A discrete distribution in which the probability of the occurrence of an event within a very small time period is a very small number, the probability that two or more such events will occur within the same time interval is effectively 0 , and the probability of the occurrence of the event within one time period is independent of where that time period is.
Probability Distribution A list of the outcomes of an experiment with the probabilities we would expect to see associated with these outcomes.

Random Variable A variable that takes on different values as a result of the outcomes of a random experiment.
Standard Normal Probability Distribution A normal probability distribution, with mean $\mu=0$ and standard deviation $\sigma=1$.

Equations Introduced in Chapter 5

5-1 $\quad \begin{aligned} & \text { Probability of } r \text { successes in } n \text { trials }=\frac{n!}{r!(n-r)!} p^{r} q^{n-r} \\ & \text { where }\end{aligned}$

- $r=$ number of successes desired
- $n=$ number of trials undertaken
- $p=$ probability of success (characteristic probability)
- $q=$ probability of failure $(q=1-p)$

This binomial formula enables us to calculate algebraically the probability of r successes. We can apply it to any Bernoulli process, where each trial has only two possible outcomes (a success or a failure), the probability of success remains the same trial after trial, and the trials are statistically independent.
5-2
The mean of a binomial distribution is equal to the number of trials multiplied by the probability of success.

$$
\begin{equation*}
\mathrm{P}(x)=\frac{(n p)^{x} \times e^{-n p}}{x!} \tag{p. 235}
\end{equation*}
$$

If we substitute in Equation 5-4 the mean of the binomial distribution ($n p$) in place of the mean of the Poisson distribution (λ), we can use the Poisson probability distribution as a reasonable approximation of the binomial. The approximation is good when n is greater than or equal to 20 and p is less than or equal to 0.05 .

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{p. 243}
\end{equation*}
$$

where

- $x=$ value of the random variable with which we are concerned
- $\mu=$ mean of the distribution of this random variable
- $\sigma=$ standard deviation of this distribution
- $z=$ number of standard deviations from x to the mean of this distribution

Once we have derived z using this formula, we can use the Standard Normal Probability Distribution Table (which gives the values for areas under half the normal curve, beginning with 0.0 at the mean) and determine the probability that the random variable with which we are concerned is within that distance from the mean of this distribution.

Review and Application Exercises

5-46 In the past 20 years, on average, only 3 percent of all checks written to the Life Insurance Limited (LIL) have bounced. This month, the LIL received 200 checks. What is the probability that
(a) Exactly 10 of these checks bounced?
(b) Exactly 5 of these checks bounced?

5-47 An inspector for the Department of Agriculture is about to visit a large vegetable-packing company. She knows that, on average, 2 percent of all packets of vegetables inspected by the Department of Agriculture are contaminated. She also knows that if she finds that more than 5 percent of the vegetable-packing company's vegetable is contaminated, the company will be closed for at least 1 month. Out of curiosity, she wants to compute the probability that this company will be shut down as a result of her inspection. Should she assume her inspection of the company's packets of vegetables is a Bernoulli process? Explain.
5-48 The regional office of the Environmental Protection Agency annually hires second-year law students as summer interns to help the agency prepare court cases. The agency is under a budget and wishes to keep its costs at a minimum. However, hiring student interns is less costly than hiring full-time employees. Accordingly, the agency wishes to hire the maximum number of students without overstaffing. On the average, it takes two interns all summer to research a case. The interns turn their work over to staff attorneys, who prosecute the cases in the fall when the circuit court convenes. The legal staff coordinator has to place his budget request in June of the preceding summer for the number of positions he wishes to maintain. It is therefore impossible for him to know with certainty how many cases will be researched in the following summer. The data from preceding summers are as follows:

Year	1987	1988	1989	1990	1991
Number of cases	6	4	8	7	5
Year	1992	1993	1994	1995	1996
Number of cases	6	4	5	4	5

Using these data as his probability distribution for the number of cases, the legal staff coordinator wishes to hire enough interns to research the expected number of cases that will arise. How many intern positions should be requested in the budget?

5-49 Label the following probability distributions as discrete or continuous:

5-50 Which probability distribution would you use to find binomial probabilities in the following situations: binomial, Poisson, or normal?
(a) 112 trials, probability of success 0.06 .
(b) 15 trials, probability of success 0.4 .
(c) 650 trials, probability of success 0.02 .
(d) 59 trials, probability of success 0.1 .

5-51 The French bread made at Anmol Bread Company costs ₹ 400 per dozen to produce. Fresh bread sells at a premium, ₹ 800 per dozen, but it has a short shelf life. If Anmol Bread Company bakes more bread than its customers demand on any given day, the leftover day-old bread goes for croutons in local restaurants at a discounted ₹ 350 per dozen. Conversely, producing less bread than customers demand leads to lost sales. Anmol Bread Company bakes its French bread in batches of 350 dozen. The daily demand for bread is a random variable, taking the values two, three, four, or five batches, with probabilities $0.2,0.25,0.4$, and 0.15 , respectively. If Anmol Bread Company wishes to maximize expected profits, how much bread should it bake each morning?
5-52 Reginald Dunfey, president of British World Airlines, is fiercely proud of his company's ontime percentage; only 2 percent of all BWA flights arrive more than 10 minutes early or late. In his upcoming speech to the BWA board of directors, Mr. Dunfey wants to include the probability that none of the 200 flights scheduled for the following week will be more than 10 minutes early or late. What is the probability? What is the probability that exactly 10 flights will be more than 10 minutes early or late?
5-53 The City Bank of Durham has recently begun a new credit program. Customers meeting certain credit requirements can obtain a credit card accepted by participating area merchants that carries a discount. Past numbers show that 25 percent of all applicants for this card are rejected. Given that credit acceptance or rejection is a Bernoulli process, out of 15 applicants, what is the probability that
(a) Exactly four will be rejected?
(b) Exactly eight?
(c) Fewer than three?
(d) More than five?

5-54 On average, 12 percent of those enrolled in the Central Aviation Administration's air traffic controller training program will have to repeat the course. If the current class size at the Bangalore training center is 15 , what is the probability that
(a) Fewer than 6 will have to repeat the course?
(b) Exactly 10 will pass the course?
(c) More than 12 will pass the course?

5-55 Production levels for Akriti's Fashion vary greatly according to consumer acceptance of the latest styles. Therefore, the company's weekly orders of wool cloth are difficult to predict in advance. On the basis of 5 years of data, the following probability distribution for the company's weekly demand for wool has been computed:

Amount of wool (kg)	2,500	3,500	4,500	5,500
Probability	0.30	0.45	0.20	0.05

From these data, the raw-materials purchaser computed the expected number of pounds required. Recently, she noticed that the company's sales were lower in the last year than in years before. Extrapolating, she observed that the company will be lucky if its weekly demand averages 2,500 this year.
(a) What was the expected weekly demand for wool based on the distribution from past data?
(b) If each pound of wool generates ₹ 5 in revenue and costs ₹ 4 to purchase, ship, and handle, how much would Akriti's Fashion stand to gain or lose each week if it orders wool based on the past expected value and the company's demand is only 2,500 ?
5-56 Neelam Kapoor is the manager of an exclusive shop that sells women's leather clothing and accessories. At the beginning of the fall/winter season, Ms. Kapoor must decide how many full-length leather coats to order. These coats cost her ₹ 100 each and will sell for ₹ 200 each. Any coats left over at the end of the season will have to be sold at a 20 percent discount in order to make room for spring/summer inventory. From past experience, Heidi knows that demand for the coats has the following probability distribution:

Number of coats demanded	8	10	12	14	16
Probability	0.10	0.20	0.25	0.30	0.15

She also knows that any leftover coats can be sold at discount.
(a) If Heidi decides to order 14 coats, what is her expected profit?
(b) How would the answer to part (a) change if the leftover coats were sold at a 40 percent discount?
5-57 The Executive Camera Company provides full expenses for its sales force. When attempting to budget automobile expenses for its employees, the financial department uses mileage figures to estimate gas, tire, and repair expenses. Distances driven average 5,650 miles a month, and have a standard deviation of 120 . The financial department wants its expense estimate and subsequent budget to be adequately high and, therefore, does not want to use any of the data from drivers who drove fewer than 5,500 miles. What percentage of Executive's sales force drove 5,500 miles or more?
5-58 Mission Bank is considering changing the day for scheduled maintenance for the automatic teller machine (ATM) in the lobby. The average number of people using it between 8 and 9 A.m. is 30 , except on Fridays, when the average is 45 . The management decision must balance the efficient use of maintenance staff while minimizing customer inconvenience.
(a) Does knowledge of the two average figures affect the manager's expected value (for inconvenienced customers)?
(b) Taking the data for all days together, the relative probability of inconveniencing 45 customers is quite small. Should the manager expect many inconvenienced customers if the maintenance day is changed to Friday?
5-59 The purchasing agent in charge of procuring automobiles for the state of Tamil Nadu's interagency motor pool was considering two different models. Both were 4-door, 4-cylinder cars with comparable service warranties. The decision was to choose the automobile that achieved the best mileage per gallon. The state had done some tests of its own, which produced the following results for the two automobiles in question:

	Average MPG	Standard Deviation
Automobile A	42	4
Automobile B	38	7

The purchasing agent was uncomfortable with the standard deviations, so she set her own decision criterion for the car that would be more likely to get more than 45 miles per gallon.
(a) Using the data provided in combination with the purchasing agent's decision criterion, which car should she choose?
(b) If the purchasing agent's criterion was to reject the automobile that more likely obtained less than 39 mpg , which car should she buy?
5-60 In its third year, attendance in the Liberty Football League averaged 16,050 fans per game, and had a standard deviation of 2,500.
(a) According to these data, what is the probability that the number of fans at any given game was greater than 20,000 ?
(b) Fewer than 10,000?
(c) Between 14,000 and 17,500 ?

5-61 The city mayor, wants to do something to reduce the number of accidents in the town involving motorists and bicyclists. Currently, the probability distribution of the number of such accidents per week is as follows:

Number of accidents	0	1	2	3	4	5
Probability	0.05	0.10	0.20	0.40	0.15	0.10

The mayor has two choices of action: He can install additional lighting on the town's streets or he can expand the number of bike lanes in the town. The respective revised probability distributions for the two options are as follows:

Number of accidents	0	1	2	3	4	5
Probability (lights)	0.10	0.20	0.30	0.25	0.10	0.05
Probability (lanes)	0.20	0.20	0.20	0.30	0.05	0.05

Which plan should the mayor approve if he wants to produce the largest possible reduction in
(a) Expected number of accidents per week?
(b) Probability of more than three accidents per week?
(c) Probability of three or more accidents per week?

5-62 Copy Chums of Boulder leases office copying machines and resells returned machines at a discount. Leases are normally distributed, with a mean of 24 months and a standard deviation of 7.5 months.
(a) What is the probability that a copier will still be on lease after 28 months?
(b) What is the probability that a copier will be returned within one year?

5-63 Shekhar Baradoli supervises the packaging of college textbooks for Newsome-Cluett Publishers. He knows that the number of cardboard boxes he will need depends partly on the size of the books. All Newsome-Cluett books use the same size paper but may have differing numbers of pages. After pulling shipment records for the last 5 years, Baradoli derived the following set of probabilities:

\# of pages	100	300	500	700	900	1100
Probability	0.05	0.10	0.25	0.25	0.20	0.15

(a) If Baradoli bases his box purchase on an expected length of 600 pages, will he have enough boxes?
(b) If all 700 -page books are edited down to 500 pages, what expected number of pages should he use?
5-64 D'Addario Rose Co. is planning rose production for Valentine's Day. Each rose costs $\$ 0.35$ to raise and sells wholesale for $\$ 0.70$. Any roses left over after Valentine's Day can be sold the next day for $\$ 0.10$ wholesale. D'Addario has the following probability distribution based on previous years:

Roses sold	15,000	20,000	25,000	30,000
Probability	0.10	0.30	0.40	0.20

How many roses should D'Addario produce to minimize the firm's expected losses?
5-65 A certain business school has 400 students in its MBA program. One hundred sixteen of the students are married. Without using Appendix Table 3, determine
(a) The probability that exactly 2 of 3 randomly selected students are married.
(b) The probability that exactly 4 of 13 students chosen at random are married.

5-66 Raj Chaudhary wants to borrow ₹ $7,50,000$ from his bank for a new tractor for his farm. The loan officer doesn't have any data specifically on the bank's history of equipment loans, but he does tell Raj that over the years, the bank has received about 1460 loan applications per year and that the probability of approval was, on average, about 0.8.
(a) Raj is curious about the average and standard deviation of the number of loans approved per year. Find these figures for him.
(b) Suppose that after careful research the loan officer tells Raj the correct figures actually are 1,327 applications per year with an approval probability of 0.77 . What are the mean and standard deviation now?
5-67 Raj Chaudhary (see Exercise 5-66) learns that the loan officer has been fired for failing to follow bank lending guidelines. The bank now announces that all financially sound loan applications will be approved. Raj guesses that three out of every five applications are unsound.
(a) If Raj is right, what is the probability that exactly 6 of the next 10 applications will be approved?
(b) What is the probability that more than 3 will be approved?
(c) What is the probability that more than 2 but fewer than 6 will be approved?

This page is intentionally left blank

Sampling and Sampling Distributions

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To take a sample from an entire population and use it to describe the population
- To make sure the samples you do take are an accurate representation of the population from which they came
- To introduce the concepts of sampling distributions
- To understand the trade-offs between the cost of taking larger samples and the additional accuracy this gives to decisions made from them
- To introduce experimental design: sampling procedures to gather the most information for the least cost

CHAPTER CONTENTS

6.1 Introduction to Sampling 268
6.2 Random Sampling 271
6.3 Non-Random Sampling 279
6.4 Design of Experiments 282
6.5 Introduction to Sampling Distributions 286
6.6 Sampling Distributions in More Detail 289
6.7 An Operational Consideration in Sampling: The Relationship between Sample Size and Standard Error 302

- Statistics at Work 308
- Terms Introduced in Chapter 6309
- Equations Introduced in Chapter 6311
- Review and Application Exercises 311
- Flow Chart: Sampling and Sampling Distributions 314

Although there are over 200 million TV viewers in the United States and somewhat over half that many TV sets, only about 1,000 of those sets are sampled to determine what programs Americans watch. Why select only about 1,000 sets out of 100 million? Because time and the average cost of an interview prohibit the rating companies from trying to reach millions of people. And since polls are reasonably accurate, interviewing everybody is unnecessary. In this chapter, we examine questions such as these: How many people should be interviewed? How should they be selected? How do we know when our sample accurately reflects the entire population?

6.1 INTRODUCTION TO SAMPLING

Shoppers often sample a small piece of cheese before purchasing

Reasons for sampling

 any. They decide from one piece what the larger chunk will taste like. A chemist does the same thing when he takes a sample of alcohol from a still, determines that it is 90 proof, and infers that all the alcohol in the still is 90 proof. If the chemist tests all the alcohol or the shoppers taste all the cheese, there will be none to sell. Testing all of the product often destroys it and is unnecessary. To determine the characteristics of the whole, we have to sample only a portion.Suppose that, as the personnel director of a large bank, you need to write a report describing all the employees who have voluntarily left the company in the last 10 years. You would have a difficult task locating all these thousands of people. They are not easily accessible as a group-many have died, moved from the community, left the country, or acquired a new name by marriage. How do you write the report? The best idea is to locate a representative sample and interview them in order to generalize about the entire group.

Time is also a factor when managers need information quickly in order to adjust an operation or change a policy. Consider an automatic machine that sorts thousands of pieces of mail daily. Why wait for an entire day's output to check whether the machine is working accurately (whether the population characteristics are those required by the postal service)? Instead, samples can be taken at specific intervals, and if necessary, the machine can be adjusted right away.

Sometimes it is possible and practical to examine every person or item in the population we wish to describe. We call this a complete enumeration, or census. We use sampling when it is not possible to count or measure every item in the population.

Statisticians use the word population to refer not only to people but to all items that have been chosen for study. In the cases we have just mentioned, the populations are all the cheese

Census or sample

Examples of populations and samples

 in the chunk, all the whiskey in the vat, all the employees of the large bank who voluntarily left in the last 10 years, and all mail sorted by the automatic machine since the previous sample check. Statisticians use the word sample to describe a portion chosen from the population. Sample is not just a portion (subset) of the population but a "representative subset" of the population that is expected to exhibit the properties of the entire population.
Statistics and Parameters

Mathematically, we can describe samples and populations by using measures such as the mean, median, mode, and standard deviation, which we introduced in Chapter 3. When these terms

Function of statistics and parameters
describe the characteristics of a sample, they are called statistics. When they describe the characteristics of a population, they are called parameters. A statistic is a characteristic of a sample; a parameter is a characteristic of a population.

Suppose that the mean height in inches of all tenth graders in the United States is 60 inches. In this case, 60 inches is a characteristic of the population "all tenth graders" and can be called a population parameter. On the other hand, if we say that the mean height in Ms. Jones's tenth-grade class in Bennetsville is 60 inches, we are using 60 inches to describe a characteristic of

Using statistics to estimate parameters

 the sample "Ms. Jones's tenth graders." In that case, 60 inches would be a sample statistic. If we are convinced that the mean height of Ms. Jones's tenth graders is an accurate estimate of the mean height of all tenth graders in the United States, we could use the sample statistic "mean height of Ms. Jones's tenth graders" to estimate the population parameter "mean height of all U.S. tenth graders" without having to measure all the millions of tenth graders in the United States.To be consistent, statisticians use lowercase Roman letters to denote sample statistics and Greek or capital letters for population parameters. Table 6-1 lists these symbols and summarizes the definitions we have studied so far in this chapter.
N, μ, σ and n, \bar{x}, s standard symbols

Judgment and probability sampling

\qquad

Types of Sampling

There are two methods of selecting samples from populations: nonrandom or judgment sampling, and random or probability sampling. In probability sampling, all the items in the population have a chance of being chosen in the sample. In judgment sampling, personal knowledge and opinion are used to identify the items from the population that are to be included in the sample. A sample selected by judgment sampling is based on someone's expertise about the population. A forest ranger, for example, would have a judgment sample if he decided ahead of time which parts of a large forested area he would walk through to estimate the total board feet of lumber that could be cut. Sometimes a judgment sample is used as a pilot or trial sample to decide how to take a random sample later. The rigorous statistical analysis that can be done with probability samples cannot be done with judgment samples. They are more convenient and can be used successfully even if we are unable to measure their validity. But if a study uses judgment sampling and loses a significant degree of representativeness, it will have purchased convenience at too high a price.

TABLE 6-1 DIFFERENCES BETWEEN POPULATIONS AND SAMPLES

	Population	Sample
DEFINITION	Collection of items being considered	Part or portion of the population chosen for study
CHARACTERISTICS	"Parameters"	"Statistics"
SYMBOLS	Population size $=N$	Sample size $=n$ Population mean $=\mu$ Population standard deviation $=\sigma$

Biased Samples

The US Congress is debating some gun control laws. You are asked to conduct an opinion survey. Because hunters are the ones that are most affected by the gun control laws, you went to a hunting lodge and interviewed the members there. Then you reported that in a survey done by you, about 97 percent of the respondents were in favor of repealing all gun control laws.

A week later, the Congress took up another bill: "Should working pregnant women be given a maternity leave of one year
couple of biased polls with full pay to take care of newborn babies?" Because this issue affects women most, this time you went to all the high-rise office complexes in your city and interviewed several working women of child-bearing age. Again you reported that in a survey done by you, about 93 percent of the respondents were in favor of the one-year maternity leave with full pay.

In both of these situations you picked a biased sample by choosing people who would have very strong feelings on one side of the issue. How can we be sure that pollsters we listen to and read about don't make the same mistake you did? The answer is that unless the pollsters have a strong reputation for statistically accurate polling, we can't. However, we can be alert to the risks we take when we don't ask for more information or do more research into their competence.

EXERCISES 6.1

Basic Concepts

6-1 What is the major drawback of judgment sampling?
6-2 Are judgment sampling and probability sampling necessarily mutually exclusive? Explain.
6-3 List the advantages of sampling over complete enumeration, or census.
6-4 What are some disadvantages of probability sampling versus judgment sampling?

Applications

6-5 Farlington Savings and Loan is considering a merger with Sentry Bank, but needs shareholder approval before the merger can be accomplished. At its annual meeting, to which all shareholders are invited, the president of FS\&L asks the shareholders whether they approve of the deal. Eighty-five percent approve. Is this percentage a sample statistic or a population parameter?
6-6 Jean Mason, who was hired by Former Industries to determine employee attitudes toward the upcoming union vote, met with some difficulty after reporting her findings to management. Mason's study was based on statistical sampling, and from the beginning data, it was clear (or so Jean thought) that the employees were favoring a unionized shop. Jean's report was shrugged off with the comment, "This is no good. Nobody can make statements about employee sentiments when she talks to only a little over 15 percent of our employees. Everyone knows you have to check 50 percent to have any idea of what the outcome of the union vote will be. We didn't hire you to make guesses." Is there any defense for Jean's position?
6-7 A consumer protection organization is conducting a census of people who were injured by a particular brand of space heater. Each victim is asked questions about the behavior of the heater just before its malfunction; this information generally is available only from the victim, because the heater in question tends to incinerate itself upon malfunction. Early in the census, it is discovered that several of the victims were elderly and have died. Is any census of the victims now possible? Explain.

6.2 RANDOM SAMPLING

In a random or probability sample, we know what the chances are that an element of the population will or will not be included in the sample. As a result, we can assess objectively the estimates of the population characteristics that result from our sample; that is, we can describe mathematically how objective our estimates are. Let us begin our explanation of this process by introducing four methods of random sampling:

1. Simple random sampling
2. Systematic sampling
3. Stratified sampling
4. Cluster sampling

Simple Random Sampling

Simple random sampling selects samples by methods that allow each possible sample to have an equal probability of being picked

An example of simple random sampling and each item in the entire population to have an equal chance of being included in the sample. We can illustrate these require-
ments with an example. Suppose we have a population of four students in a seminar and we want samples of two students at a time for interviewing purposes. Table 6-2 illustrates all of the possible combinations of samples of two students in a population size of four, the probability of each sample being picked, and the probability that each student will be in a sample.

Our example illustrated in Table 6-2 uses a finite population of four students. By finite, we mean that the population has stated or limited size, that is to say, there is a whole number (N) that tells

Defining finite and with replacement

TABLE 6-2 CHANCES OF SELECTING SAMPLES OF TWO STUDENTS FROM A POPULATION OF FOUR STUDENTS

Students A, B, C, and D

Possible samples of two people: $A B, A C, A D, B C, B D, C D$
Probability of drawing this sample of two people must be

$$
\begin{aligned}
& \mathrm{P}(A B)=1 / 6 \\
& \mathrm{P}(A C)=1 / 6 \\
& \mathrm{P}(A D)=1 / 6 \quad \text { (There are only six possible samples of two people) } \\
& \mathrm{P}(B C)=1 / 6 \\
& \mathrm{P}(B D)=1 / 6 \\
& \mathrm{P}(C D)=1 / 6
\end{aligned}
$$

Probability of this student in the sample must be

$$
\begin{array}{ll}
\mathrm{P}(A)=1 / 2 & \text { [In Chapter 4, we saw that the marginal probability } \\
\mathrm{P}(B)=1 / 2 & \text { is equal to the sum of the joint probabilities of the } \\
\mathrm{P}(C)=1 / 2 & \text { events within which the event is contained: } \\
\mathrm{P}(D)=1 / 2 & \mathrm{P}(A)=\mathrm{P}(A B)+\mathrm{P}(A C)+\mathrm{P}(A D)=1 / 2
\end{array}
$$

us how many items there are in the population. Certainly, if we sample without "replacing" the student, we shall soon exhaust our small population group. Notice, too, that if we sample with replacement (that is, if we replace the sampled student immediately after he or she is picked and before the second student is chosen), the same person could appear twice in the sample.

We have used this example only to help us think about sampling from an infinite population. An infinite population is a pop-

An infinite population

 ulation in which it is theoretically impossible to observe all the elements. Although many populations appear to be exceedingly large, no truly infinite population of physical objects actually exists. After all, given unlimited resources and time, we could enumerate any finite population, even the grains of sand on the beaches of North America. As a practical matter, then, we will use the term infinite population when we are talking about a population that could not be enumerated in a reasonable period of time. In this way, we will use the theoretical concept of infinite population as an approximation of a large finite population, just as we earlier used the theoretical concept of continuous random variable as an approximation of a discrete random variable that could take on many closely spaced values.How to Do Random Sampling The easiest way to select a sample randomly is to use random numbers. These numbers can be generated either by a computer programmed to scramble numbers or by a table of random numbers, which should properly be called a table of random digits.

Table 6-3 illustrates a portion of such a table. Here we have 1,150 random digits in sets of 10 digits. These numbers have been generated by a completely random process. The probability that any one digit from 0 through 9 will appear is the same as that for any other digit, and the probability of one sequence of digits occurring is the same as that for any other sequence of the same length.

To see how to use this table, suppose that we have 100 employees in a company and wish to interview a randomly cho-

Using a table of random digits

 sen sample of 10 . We could get such a random sample by assigning every employee a number of 00 to 99 , consulting Table 6-3, and picking a systematic method of selecting two-digit numbers. In this case, let's do the following:1. Go from the top to the bottom of the columns beginning with the left-hand column, and read only the first two digits in each row. Notice that our first number using this method would be 15 , the second 09 , the third 41 , and so on.
2. If we reach the bottom of the last column on the right and are still short of our desired 10 twodigit numbers of 99 and under, we can go back to the beginning (the top of the left-hand column) and start reading the third, and fourth digits of each number. These would begin 81, 28, and 12.

Another way to select our employees would be to write the name of each one on a slip of paper and deposit the slips in a box.

Using slips of paper

 After mixing them thoroughly, we could draw 10 slips at random. This method works well with a small group of people but presents problems if the people in the population number in the thousands. There is the added problem, too, of not being certain that the slips of paper are mixed well. In the draft lottery of 1970, for example, when capsules were drawn from a bowl to determine by birthdays the order for selecting draftees for the armed services, December birthdays appeared more often than the probabilities would have suggested. As it turned out, the December capsules had been placed in the bowl last, and the capsules had not been mixed properly. Thus, December capsules had the highest probability of being drawn.TABLE 6.3 1,150 RANDOM DIGITS*

1581922396	2068577984	8262130892	8374856049	4637567488
0928105582	7295088579	9586111652	7055508767	6472382934
4112077556	3440672486	1882412963	0684012006	0933147914
7457477468	5435810788	9670852913	1291265730	4890031305
0099520858	3090908872	2039593181	5973470495	9776135501
7245174840	2275698645	8416549348	4676463101	2229367983
6749420382	4832630032	5670984959	5432114610	2966095680
5503161011	7413686599	1198757695	0414294470	0140121598
7164238934	7666127259	5263097712	5133648980	4011966963
3593969525	0272759769	0385998136	9999089966	7544056852
4192054466	0700014629	5169439659	8408705169	1074373131
9697426117	6488888550	4031652526	8123543276	0927534537
2007950579	9564268448	3457416988	1531027886	7016633739
4584768758	2389278610	3859431781	3643768456	4141314518
3840145867	9120831830	7228567652	1267173884	4020651657
0190453442	4800088084	1165628559	5407921254	3768932478
6766554338	5585265145	5089052204	9780623691	2195448096
6315116284	9172824179	5544814339	0016943666	3828538786
3908771938	4035554324	0840126299	4942059208	1475623997
5570024586	9324732596	1186563397	4425143189	3216653251
299997185	0135968938	7678931194	1351031403	6002561840
7864375912	8383232768	1892857070	2323673751	3188881718
7065492027	6349104233	3382569662	4579426926	1513082455

*Based on first 834 serial numbers of selective service lottery as reported by The New York Times, October 30, 1940, p. 12. © 1940 by The New York Times Company. Reprinted by permission.

Systematic Sampling

In systematic sampling, elements are selected from the population at a uniform interval that is measured in time, order, or space. If we wanted to interview every twentieth student on a college campus, we would choose a random starting point in the first 20 names in the student directory and then pick every twentieth name thereafter.

Systematic sampling differs from simple random sampling in that each element has an equal chance of being selected but each

Characteristics of systematic sampling sample does not have an equal chance of being selected. This would have been the case if, in our earlier example, we had assigned numbers between 00 and 99 to our employees and then had begun to choose a sample of 10 by picking every tenth number beginning

1, 11, 21, 31, and so forth. Employees numbered 2, 3, 4, and 5 would have had no chance of being selected together.

In systematic sampling, there is the problem of introducing an error into the sample process. Suppose we were sampling paper waste produced by households, and we decided to sample 100

Shortcomings of systematic sampling

 households every Monday. Chances are high that our sample would not be representative, because Monday's trash would very likely include the Sunday newspaper. Thus, the amount of waste would be biased upward by our choice of this sampling procedure. So, if the population contains some periodic variation and the sampling interval coincides with periodicity then sample would be badly affected.Systematic sampling has advantages, too, however. Even though systematic sampling may be inappropriate when the elements lie in a sequential pattern, this method may require less time and sometimes results in lower costs than the simple random-sample method.

Stratified Sampling

To use stratified sampling, we divide the population into relatively homogeneous groups, called strata. Then we use one of two approaches. Either we select at random from each stratum a

Two ways to take stratified samples specified number of elements corresponding to the proportion of that stratum in the population as a whole or we draw an equal number of elements from each stratum and give weight to the results according to the stratum's proportion of total population. With either approach, stratified sampling guarantees that every element in the population has a chance of being selected.

Stratified sampling is appropriate when the population is When to use stratified sampling already divided into groups of different sizes and we wish to acknowledge this fact. Suppose that a physician's patients are divided into four groups according to age, as shown in Table 6-4. The physician wants to find out how many hours his patients sleep. To obtain an estimate of this characteristic of the population, he could take a random sample from each of the four age groups and give weight to the samples according to the percentage of patients in that group. This would be an example of a stratified sample.

TABLE 6-4 COMPOSITION OF PATIENTS

 BY AGE| Age Group | Percentage of Total |
| :--- | :---: |
| Birth -19 years | 30 |
| $20-39$ years | 40 |
| $40-59$ years | 20 |
| 60 years and older | 10 |

The advantage of stratified samples is that when they are properly designed, they more accurately reflect characteristics of the population from which they were chosen than do other kinds of samples.

Cluster Sampling

In cluster sampling, we divide the population into groups, or clusters, and then select a random sample of these clusters. We assume that these individual clusters are representative of the population as a whole. If a market research team is attempting to determine by sampling the average number of television sets per household in a large city, they could use a city map to divide the territory into blocks and then choose a certain number of blocks (clusters) for interviewing. Every household in each of these blocks would be interviewed. A well-designed cluster sampling procedure can produce a more precise sample at considerably less cost than that of simple random sampling.

With both stratified and cluster sampling, the population is divided into well-defined groups. We use stratified sampling when each group has small variation within itself but there is a

Comparison of stratified and cluster sampling wide variation between the groups. We use cluster sampling in the opposite case- when there is considerable variation within each group but the groups are essentially similar to each other.

Basis of Statistical Inference: Simple Random Sampling

Systematic sampling, stratified sampling, and cluster sampling attempt to approximate simple random sampling. All are methods that have been developed for their precision, economy, or

Why we assume random sampling physical ease. Even so, assume for the rest of the examples and problems in this book that we obtain our data using simple random sampling. This is necessary because the principles of simple random sampling are the foundation for statistical inference, the process of making inferences about populations from information contained in samples. Once these principles have been developed for simple random sampling, their extension to the other sampling methods is conceptually quite simple but somewhat involved mathematically. If you understand the basic ideas involved in simple random sampling, you will have a good grasp of what is going on in the other cases, even if you must leave the technical details to the professional statistician.

Drawing a Random Sample Using MS Excel

MS-Excel can be used to draw a random sample from a list of population elements. For drawing a random sample go to Data > Data Analysis > Sampling.

When the Sampling dialogue-box opens, enter the range of population elements into Input Range, check Random option button under Sampling Method and enter desired sample-size. Pressing OK will give you the desired random sample.

Drawing a Random Sample Using SPSS

SPSS can also be used to draw a random sample from a list of population elements. For drawing a random sample go to Data > Select Cases. Click on Random sample of cases and press Sample. In the resulting sub-dialogue box Select Cases: Random Sample, there are two options, that can be used to instruct appropriate number of samples. One is Approximately \qquad \% of all cases and the second is Exactly cases from the first \qquad cases. Then press Continue and upon comimg back to main dialogue, press OK.

6.3 NON-RANDOM SAMPLING

Non-random sampling designs do not provide unit in the population a known chance of being selected in the sample. The selection procedure is partially subjective. These sampling designs do not provide representative sample because of lack of objectivity but they can be more frequently applied in business because here complete list of population elements is not required for sampling. So, inspite of being less effective, non-random sampling designs are widely used in business scenario. Some popular nonrandom sampling designs are as follows:

Convenience Sampling It is based on convenience of the researcher. Researcher selects the sample which is most convenient to him/her. No planning is required for the sampling. It is least effective and should be used only for introductory purpose and not for conclusive purpose.

Judgement Sampling Researcher excesises his/her judgement to draw a sample which he/she thinks is representative of the population or otherwise appropriate. It is also known as Purposive Sampling. It is better than the previous one but personal bias limits the applicability of this sampling scheme.

Quota Sampling It consists of fixation of certain quotas on the basis of certain parameter (s) so as to make sample representative of the population under study. It is one of the most commonly used non-random sampling. It is much similar to stratified random sampling but does not require complete list of population elements.

Shopping-Mall Intercept Sampling This sample involves drawing samples (establishing malls) in market-places, shopping malls, fairs in different socioeconomic locations, so to make
sample representative of the population. This scheme is very popular because of convenience and representativeness.

Snowball Sampling Here, initial respondents are selected randomly then additional respondents are selected by their referrals and so on. This scheme is also known as Multiplicity Sampling. It is useful for rare population.

HINTS \& ASSUMPTIONS

Warning: Even when precautions are taken, many so-called random samples are still not random. When you try to take a random sample of mall shoppers, you get a biased sample because many people are not willing to take the time to stop to talk to the interviewer. Nowadays, when telephone pollers try to take a random sample, often they don't get through to people with callscreening devices on their phones. There are ways to counter these problems in random sampling, but often the "fix" is more complicated and/or costly than the sampling organization wants to face.

EXERCISES 6.2

Self-Check Exercises

SC 6-1 If we have a population of 10,000 and we wish to sample 20 randomly, use the random digits table (Table 6-3) to select 20 individuals from the 10,000 . List the numbers of the elements selected, based on the random digits table.
SC 6-2 A parliamentary study on the issue of self-rule for the District of Chandigarh involved surveying 2,000 people from the population of the city regarding their opinions on a number of issues related to self-rule. Chandigarh is a city in which many neighborhoods are poor and many neighborhoods are rich, with very few neighborhoods falling between the extremes. The researchers who were administering the survey had reasons to believe that the opinions expressed on the various questions would be highly dependent on income. Which method was more appropriate, stratified sampling or cluster sampling? Explain briefly.

Basic Concepts

6-8 In the examples below, probability distributions for three natural subgroups of a larger population are shown. For which situation would you recommend stratified sampling?

6-9 We wish to sample 15 pages from this textbook. Use the random digits table (Table 6-3) to select 15 pages at random and count the number of words in italics on each page. Report your results.

6-10 Using a calendar, systematically sample every eighteenth day of the year, beginning with January 6.
6-11 A population is made up of groups that have wide variation within each group but little variation from group to group. The appropriate type of sampling for this population is
(a) Stratified.
(b) Systematic.
(c) Cluster.
(d) Judgment.

6-12 Consult Table 6-3. What is the probability that a 4 will appear as the leftmost digit in each set of 10 digits? That a 7 will appear? 2? How many times would you expect to see each of these digits in the leftmost position? How many times is each found in that position? Can you explain any differences in the number found and the number expected?

Applications

6-13 The local cable television company is planning to add one channel to its basic service. There are five channels to choose from, and the company would like some input from its subscribers. There are about 20,000 subscribers, and the company knows that 35 percent of these are college students, 45 percent are white-collar workers, 15 percent are blue-collar workers, and 5 percent are other. However, the company believes there is much variation within these groups. Which of the following sampling methods is more appropriate: random, systematic, stratified, or cluster sampling?
6-14 A nonprofit organization is conducting a door-to-door opinion poll on municipal day-care centers. The organization has devised a scheme for random sampling of houses, and plans to conduct the poll on weekdays from noon to 5 p.m. Will this scheme produce a random sample?
6-15 Mohan Adhikari, public relations manager for Piedmont Power and Light, has implemented an institutional advertising campaign to promote energy consciousness among its customers. Adhikari, anxious to know whether the campaign has been effective, plans to conduct a telephone survey of area residents. He plans to look in the telephone book and select random numbers with addresses that correspond to the company's service area. Will Adhikari's sample be a random one?
6-16 At the India Government Mints in Mumbai, 10 machines stamp out ₹ 10 coins in lots of 50. These lots are arranged sequentially on a single conveyor belt, which passes an inspection station. An inspector decides to use systematic sampling in inspecting the ₹ 10 coins and is trying to decide whether to inspect every fifth or every seventh lot of ₹ 10 coins. Which is better? Why?
6-17 The state occupational safety board has decided to do a study of work-related accidents within the state, to examine some of the variables involved in the accidents, such as the type of job, the cause of the accident, the extent of the injury, the time of day, and whether the employer was negligent. It has been decided that 250 of the 2,500 work-related accidents reported last year in the state will be sampled. The accident reports are filed by date in a filing cabinet. Marsha Gulley, a department employee, has proposed that the study use a systematic sampling technique and select every tenth report in the file for the sample. Would her plan of systematic sampling be appropriate here? Explain.

Worked-Out Answers to Self-Check Exercises

SC 6-1 Starting at the top of the third column and choosing the last 4 digits of the numbers in that column gives the following sample (reading across rows):

892	1652	2963	2913	3181	9348	4959
7695	7712	8136	9659	2526	6988	1781
7652	8559	2204	4339	6299	3397	

SC 6-2 Stratified sampling is more appropriate in this case because there appear to be two very dissimilar groups, which probably have smaller variation within each group than between groups.

6.4 DESIGN OF EXPERIMENTS

We encountered the term experiment in Chapter 4, "Probability I." There we defined an event as one or more of the possible outcomes of doing something, and an experiment as an activity

Events and experiments revisited that would produce such events. In a coin-toss experiment, the possible events are heads and tails.

Planning Experiments

If we are to conduct experiments that produce meaningful results in the form of usable conclusions, the way in which these experiments are designed is of the utmost importance. Sections 6.1 and 6.2 discussed ways of ensuring that random sampling was indeed being done. The way in which sampling is conducted is only a part of the total design of an experiment. In fact, the design of experiments is itself the subject of quite a number of books, some of them rather formidable in both scope and volume.

Phases of Experimental Design

To get a better feel for the complexity of experimental design without actually getting involved with the complex details, take an example from the many that confront us every day, and follow that example through from beginning to end.

The statement is made that a Crankmaster battery will start your car's engine better than Battery X. Crankmaster might design its experiment in the following way.

Objective This is our beginning point. Crankmaster wants to test its battery against the leading competitor. Although it is

Objectives are set

 possible to design an experiment that would test the two batteries on several characteristics (life, size, cranking power, weight, and cost, to name but a few), Crankmaster has decided to limit this experiment to cranking power.What Is to Be Measured This is often called the response variable. If Crankmaster is to design an experiment that compares the cranking power of its battery to that of another, it must define

The response variable is

 selected how cranking power is to be measured. Again, there are quite a few ways in which this can be done. For example, Crankmaster could measure the time it took for the batteries to run down completely while cranking engines, the total number of engine starts it took to run down the batteries, or the number of months in use that the two batteries could be expected to last. Crankmaster decides that the response variable in its experiment will be the time it takes for batteries to run down completely while cranking engines.How Large a Sample Size Crankmaster wants to be sure

How many to test

 that it chooses a sample size large enough to support claims it makes for its battery, without fear of being challenged; however, it knows that the more batteries it tests, the higher the cost of conducting the experiment. As we shall point out in Section 6 of this chapter, there is a diminishing return in sampling; and although sampling more items does, in fact, improve accuracy, the benefit may not be worth the cost. Not wishing to choose a sample size that is too expensive to contend with, Crankmaster decides that comparing 10 batteries from each of the two companies (itself and its competitor) will suffice.Conducting the Experiment Crankmaster must be careful to conduct its experiment under controlled conditions; that is, it has to be sure that it is measuring cranking power, and that the

Experimental conditions are

kept constant other variables (such as temperature, age of engine, and condition of battery cables, to name only a few) are held as nearly constant as practicable. In an effort to accomplish just this, Crankmaster's statistical group uses new cars of the same make and model, conducts the tests at the same outside air temperature, and is careful to be quite precise in measuring the time variable. Crankmaster gathers experimental data on the performance of the 20 batteries in this manner.

Analyzing the Data Data on the 20 individual battery tests are subjected to hypothesis testing in the same way that we shall see in Chapter 9, "Testing Hypotheses: Two-Sample Tests." Crankmaster is interested in whether there is a significant difference between the cranking power of its battery and that of its competitor. It turns out that the difference between the mean cranking life of Crankmaster's battery and that of its competitor is significant. Crankmaster incorporates the result of this experiment into its advertising.

Reacting to Experimental Claims

How should we, as consumers, react to Crankmaster's new battery-life claims in its latest advertising? Should we conclude from the tests it has run that the Crankmaster battery is superior

Data are analyzed to the competitive battery? If we stop for a moment to consider the nature of the experiment, we may not be so quick to come to such a conclusion.

How do we know that the ages and conditions of the cars' engines in the experiment were identical? And are we absolutely

How should the consumer react?

Are we sure?
sure that the battery's cables were identical in size and resistance to current? And what about air temperatures during the tests: Were they the same? These are the normal kinds of questions that we should ask.

How should we react to the statement, if it is made, that "we subjected the experimental results to extensive statistical testing"? The answer to that will have to wait until Chapter 9, where we can determine whether such a difference in battery lives is too large to be attributed to chance. At this point, we, as consumers, need to be appropriately skeptical.

Other Options Open

Of course, Crankmaster would have had the same concerns we did, and in all likelihood would not have made significant adver-

Another route for Crankmaster

 tising claims solely on the basis of the experimental design we have just described. One possible course of action to avoid criticism is to ensure that all variables except the one being measured have indeed been controlled. Despite the care taken to produce such controlled conditions, it turns out that these overcontrolled experiments do not really solve our problem. Normally, instead of investing resources in attempts to eliminate experimental variations, we choose a completely different route. The next few paragraphs show how we can accomplish this.
Factorial Experiments

In the Crankmaster situation, we had two batteries (let's refer to them now as A and B) and three test conditions that were of some concern to us: temperature, age of the engine, and condition of

Handling all test conditions at the same time

 the battery cable. Let's introduce the notion of factorial experiments by using this notation:$$
\begin{array}{lll}
\mathrm{H}=\text { hot temperature } & \mathrm{N}=\text { new engine } & \mathrm{G}=\text { good cable } \\
\mathrm{C}=\text { cold temperature } & \mathrm{O}=\text { old engine } & \mathrm{W}=\text { worn cable }
\end{array}
$$

Of course, in most experiments, we could find more than two temperature conditions and, for that matter, more than two categories for engine condition and battery-cable condition. But it's better to introduce the idea of factorial experiments using a somewhat simplified example.

Now, because there are two batteries, two temperature possibilities, two engine condition possibilities, and two battery-cable possibilities, there are $2 \times 2 \times 2 \times 2=16$ possible combinations of factors. If we wanted to write these sixteen possibilities down, they would look like Table 6-5.

Having set up all the possible combinations of factors involved in this experiment, we could now conduct the 16 tests in the table, if we did this, we would have conducted a complete facto-

Levels and factors to be handled rial experiment, because each of the two levels of each of the four factors would have been used once with each possible combination of other levels of other factors. Designing the experiment this way would permit us to use techniques we shall introduce in Chapter 11, "Chi-Square and Analysis of Variance," to test the effect of each of the factors.

We need to point out, before we leave this section, that in an actual experiment we would hardly conduct the tests in the order

Randomizing

TABLE 6-5 SIXTEEN POSSIBLE COMBINATIONS OF FACTORS FOR BATTERY TEST

Test	Battery	Temperature	Engine Condition	Cable Condition
1	A	H	N	G
2	A	H	N	W
3	A	H	O	G
4	A	H	O	W
5	A	C	N	G
6	A	C	N	W
7	A	C	O	G
8	A	C	O	W
9	B	H	N	G
10	B	H	N	W
11	B	H	O	G
12	B	H	O	W
13	B	C	N	G
14	B	C	N	W
15	B	C	O	G
16	B	C	O	W

order to facilitate your counting the combinations and determining that all possible combinations were indeed represented. In actual practice, we would randomize the order of the tests, perhaps by putting 16 numbers in a hat and drawing out the order of the experiment in that simple manner.

Being More Efficient in Experimental Design

As you saw from our four-factor experiment, 16 tests were A bit of efficiency required to compare all levels with all factors. If we were to compare the same two batteries, but this time with five levels of temperature, four measures of engine condition, and three measures of battery-cable condition, it would take $2 \times 5 \times 4 \times 3=120$ tests for a complete factorial experiment.

Fortunately, statisticians have been able to help us reduce the number of tests in cases like this. To illustrate how this works, look at a consumer-products company that wants to test market a new toothpaste in four different cities with four different kinds of packages and with four different advertising programs. In such a case, a complete factorial experiment would take $4 \times 4 \times 4=64$ tests. However, if we do some clever planning, we can actually do it with far fewer tests- 16 , to be precise. Let's use the notation:

$$
\begin{array}{lll}
\text { A }=\text { City } 1 & \text { I }=\text { Package } 1 & \text { 1 }=\text { Ad program } 1 \\
\text { B = City } 2 & \text { II }=\text { Package } 2 & 2=\text { Ad program } 2 \\
\text { C }=\text { City } 3 & \text { III }=\text { Package } 3 & 3=\text { Ad program 3 } \\
\text { D }=\text { City } 4 & \text { IV }=\text { Package } 4 & 4=\text { Ad program 4 }
\end{array}
$$

Now we arrange the cities, packages, and advertising programs in a design called a Latin square (Figure 6-1).

In the experimental design represented by the Latin square, we would need only 16 tests instead of 64 as originally calculated. Each combination of city, package, and advertising program would be represented in the 16 tests. The actual statistical analysis of the data obtained from such a Latin square experimental design would require a form of analysis of variance a bit beyond the scope of this book.

6.5 INTRODUCTION TO SAMPLING DISTRIBUTIONS

In Chapter 3, we introduced methods by which we can use sample data to calculate statistics such as the mean and the standard deviation. So far in this chapter, we have examined how samples can be taken from populations. If we apply what we have learned

The statistical analysis

FIGURE 6-1 A LATIN SQUARE

Statistics differ among samples

 from the same population and take several samples from a population, the statistics we would compute for each sample need not be the same and most probably would vary from sample to sample.Suppose our samples each consist of ten 25 -year-old women from a city with a population of 100,000 (an infinite population,

Sampling distribution defined

 according to our usage). By computing the mean height and standard deviation of that height for each of these samples, we would quickly see that the mean of each sample and the standard deviation of each sample would be different. A probability distribution of all the possible means of the samples is a distribution of the sample means. Statisticians call this a sampling distribution of the mean.We could also have a sampling distribution of a proportion. Assume that we have determined the proportion of beetle-infested pine trees in samples of 100 trees taken from a very large forest. We have taken a large number of those 100 -item samples. If we plot a probability distribution of the possible proportions of infested trees in all these samples, we would see a distribution of the sample proportions. In statistics, this is called a sampling distribution of the proportion. (Notice that the term proportion refers to the proportion that is infested.) Alternatively, sampling distribution can also be defined as frequency distribution of sample statistic values, obtained from all possible samples.

Describing Sampling Distributions

Any probability distribution (and, therefore, any sampling distribution) can be partially described by its mean and standard deviation. Table 6-6 illustrates several populations. Beside each, we have indicated the sample taken from that population, the sample statistic we have measured, and the sampling distribution that would be associated with that statistic.

Now, how would we describe each of the sampling distributions in Table 6-6? In the first example, the sampling distribution of the mean can be partially described by its mean and standard deviation. The sampling distribution of the median in the second example can be partially described by the mean and standard deviation of the distribution of the medians. And in the third, the sampling distribution of the proportion can be partially described by the mean and standard deviation of the distribution of the proportions.

TABLE 6-6 EXAMPLES OF POPULATIONS, SAMPLES, SAMPLE STATISTICS, AND SAMPLING DISTRIBUTIONS

Population	Sample	Sample Statistic	Sampling Distribution
Water in a river	10-gallon containers of water	Mean number of parts of mercury per million parts of water	Sampling distribution of the mean
All professional basketball teams	Groups of 5 players	Median height	Sampling distribution of the median
All parts produced by a manufacturing process	50 parts	Proportion defective	Sampling distribution of the proportion

Concept of Standard Error

Rather than say "standard deviation of the distribution of sample means" to describe a distribution of sample means, statisticians refer to the standard error of the mean. Similarly, the "standard

Explanation of the term

 standard error deviation of the distribution of sample proportions" is shortened to the standard error of the proportion. The term standard error is used because it conveys a specific meaning. An example will help explain the reason for the name. Suppose we wish to learn something about the height of first year college students at a large state university. We could take a series of samples and calculate the mean height for each sample. It is highly unlikely that all of these sample means would be the same; we expect to see some variability in our observed means. This variability in the sample statistics results from sampling error due to chance; that is, there are differences between each sample and the population, and among the several samples, owing solely to the elements we happened to choose for the samples.The standard deviation of the distribution of sample means measures the extent to which we expect the means from the different samples to vary because of this chance error in the sampling process. Thus, the standard deviation of the distribution of a sample statistic is known as the standard error of the statistic.

The standard error indicates not only the size of the chance

Use of the standard error

 error that has been made, but also the accuracy we are likely to get if we use a sample statistic to estimate a population param-eter. A distribution of sample means that is less spread out (that has a small standard error) is a better estimator of the population mean than a distribution of sample means that is widely dispersed and has a larger standard error.

Table 6-7 indicates the proper use of the term standard error. In Chapter 7, we shall discuss how to estimate population parameters using sample statistics.

TABLE 6-7 CONVENTIONAL TERMINOLOGY USED TO REFER TO SAMPLE STATISTICS

When We Wish to Refer to the	We Use the Conventional Term
Standard deviation of the distribution of sample means	Standard error of the mean
Standard deviation of the distribution of sample proportions	Standard error of the proportion
Standard deviation of the distribution of sample medians	Standard error of the median
Standard deviation of the distribution of sample ranges	Standard error of the range

HINTS \& ASSUMPTIONS

Understanding sampling distributions allows statisticians to take samples that are both meaningful and cost-effective. Because large samples are very expensive to gather, decision makers should always aim for the smallest sample that gives reliable results. In describing distributions, statisticians have their own shorthand, and when they use the term standard error to describe a distribution, they are referring to the distribution's standard deviation. Instead of saying "the standard deviation of the distribution of sample means" they say "the standard error of the mean." Hint: The standard error indicates how spread-out (dispersed) the means of the samples are. Warning: Although the standard error of the mean and the population standard deviation are related to each other, as we shall soon see, it is important to remember that they are not the same thing.

EXERCISES 6.3

Self-Check Exercises

SC 6-3 A machine that fills bottles is known to have a mean filling amount of 125 grams and a standard deviation of 20 grams. A quality control manager took a random sample of filled bottles and found the sample mean to be 130. The quality control manager assumed the sample must not be representative. Is the conclusion correct?
SC 6-4 The president of the American Dental Association wants to determine the average number of times that each dentist's patients floss per day. Toward this end, he asks each of 100 randomly selected dentists to poll 50 of their patients at random and submit the mean number of flossings per day to the ADA. These numbers are computed and submitted to the president. Has he been given a sample from the population of patients or from some other distribution?

Basic Concepts

6-18 Suppose you are sampling from a population with a mean of 2.15 . What sample size will guarantee that
(a) The sample mean is 2.15?
(b) The standard error of the mean is zero?

6-19 The term error, in standard error of the mean, refers to what type of error?

Applications

6-20 You recently purchased a box of raisin bran and measured the number of raisins. The company claims that the number of raisins per box is 2.0 cups on average, with a standard deviation of 0.2 cup. Your box contained only 1.9 cups. Could the company's claim be correct?

6-21 A woman working for Nielsen ratings service interviews passersby on a New Delhi street and records each subject's estimate of average time spent viewing prime-time television per night. These interviews continue for 20 days, and at the end of each day, the interviewer computes the mean time spent viewing among all those interviewed during the day. At the conclusion of all interviews, she constructs a frequency distribution for these daily means. Is this a sampling distribution of the mean? Explain.

6-22 Rehana Ali, a marketing analyst for the Star Cola Company (SCC), wants to assess the damage done to SCC's sales by the appearance of a new competitor. Accordingly, she has compiled weekly sales figures from one-year periods before and after the competitor's appearance. Rehana has graphed the corresponding frequency distributions as follows:

Based on these graphs, what has been the effect of the competitor's appearance on average weekly sales?
6-23 A mail-order distribution firm is interested in the level of customer satisfaction. The CEO has randomly selected 50 regional managers to survey customers. Each manager randomly selects 5 supervisors to randomly survey 30 customers. The surveys are conducted and results are computed and sent to the CEO. What type of distribution did the sample come from?

Worked-Out Answers to Self-Check Exercises

SC 6-3 No. The mean of a sample usually does not exactly equal the population mean because of sampling error.
SC 6-4 The information gathered concerns mean flossings per day for groups of 50 patients, not for single patients, so it is a sample from the sampling distribution of the mean of samples of size 50 drawn from the patient population. It is not a sample from the patient population.

6.6 SAMPLING DISTRIBUTIONS IN MORE DETAIL

In Section 6.4, we introduced the idea of a sampling distribution. We examined the reasons why sampling from a population and developing a distribution of these sample statistics would produce a sampling distribution, and we introduced the concept of standard error. Now we will study these concepts further, so that we will not only be able to understand them conceptually, but also be able to handle them computationally.

Conceptual Basis for Sampling Distributions

Figure 6-2 will help us examine sampling distributions without delving too deeply into statistical theory. We have divided this

Deriving the sampling distribution of the mean
illustration into three parts. Figure 6-2(a) illustrates a population distribution. Assume that this population is all the filter screens in a large industrial pollution-control system and that this distribution is the operating hours before a screen becomes clogged. The distribution of operating hours has a mean μ. ($т и)$ and a standard deviation σ (sigma).

Suppose that somehow we are able to take all the possible samples of 10 screens from the population distribution (actually, there would be far too many for us to consider). Next we would calculate the mean and the standard deviation for each one of these samples, as represented in Figure 6-2(b). As a result, each sample would have its own mean, \bar{x} (x bar), and its own standard deviation, s. All the individual

If somehow we were able to take all the possible samples of a given size from this population distribution, they would be represented graphically by these four samples below. Although we have shown only four such samples, there would actually be an enormous number of them.

Now, if we were able to take the means from all the sample distributions and produce a distribution of these sample means, it would look like this:
(c)

The population distribution:
This distribution is the distribution of the operating hours of all the filter screens. It has:

$$
\begin{aligned}
& \mu=\text { the mean of this distribution } \\
& \sigma=\text { the standard deviation of } \\
& \text { this distribution }
\end{aligned}
$$

The sampling distribution of the mean:
This distribution is the distribution of all the sample means and has:

- μ_{X} = mean of the sampling distribution of the means, called "mu sub x bar"
- $\sigma_{\bar{x}}=$ standard error of the mean (standard
of the mean), called "sigma sub x bar"
sample means would not be the same as the population mean. They would tend to be near the population mean, but only rarely would they be exactly that value.

As a last step, we would produce a distribution of all the means from every sample that could be taken. This distribution, called the sampling distribution of the mean, is illustrated in

The sampling distribution of the mean

 Figure 6-2(c). This distribution of the sample means (the sampling distribution) would have its own mean, $\mu_{\bar{x}}$ (ти sub x bar), and its own standard deviation, or standard error, $\sigma_{\bar{x}}$ (sigma sub x bar).In statistical terminology, the sampling distribution we would obtain by taking all the samples of a given size is a theoretical sampling distribution. Figure 6-2(c) describes such an example.

Function of theoretical sampling

 distributions In practice, the size and character of most populations prohibit decision makers from taking all the possible samples from a population distribution. Fortunately, statisticians have developed formulas for estimating the characteristics of these theoretical sampling distributions, making it unnecessary for us to collect large numbers of samples. In most cases, decision makers take only one sample from the population, calculate statistics for that sample, and from those statistics infer something about the parameters of the entire population. We shall illustrate this shortly.In each example of sampling distributions in the remainder of this chapter, we shall use the sampling distribution of the mean. We could study the sampling distributions of the median,

Why we use the sampling
 distribution of the mean

 range, or proportion, but we will stay with the mean for the continuity it will add to the explanation. Once you develop an understanding of how to deal computationally with the sampling distribution of the mean, you will be able to apply it to the distribution of any other sample statistic.
Sampling from Normal Populations

Suppose we draw samples from a normally distributed population with a mean of 100 and standard deviation of 25 , and that we start by drawing samples of five items each and by calculating their means. The first mean might be 95 , the second 106 , the third

Sampling distribution of the mean from normally distributed populations

 101, and so on. Obviously, there is just as much chance for the sample mean to be above the population mean of 100 as there is for it to be below 100 . Because we are averaging five items to get each sample mean, very large values in the sample would be averaged down and very small values up. We would reason that we would get less spread among the sample means than we would among the individual items in the original population. That is the same as saying that the standard error of the mean, or standard deviation of the sampling distribution of the mean, would be less than the standard deviation of the individual items in the population. Figure 6-3 illustrates this point graphically.Now suppose we increase our sample size from 5 to 20 . This would not change the standard deviation of the items in the original population. But with samples of 20 , we have increased the effect of averaging in each sample and would expect even less dispersion among the sample means. Figure 6-4 illustrates this point.

The sampling distribution of a mean of a sample taken from a normally distributed population demonstrates the important properties summarized in Table 6-8. An example will further

Properties of the sampling distribution of the mean

FIGURE 6-3 RELATIONSHIP BETWEEN THE POPULATION DISTRIBUTION AND THE SAMPLING DISTRIBUTION OF THE MEAN FOR A NORMAL POPULATION

FIGURE 6-4 RELATIONSHIP BETWEEN THE POPULATION DISTRIBUTION AND SAMPLING DISTRIBUTION OF THE MEAN WITH INCREASING n's

TABLE 6-8 PROPERTIES OF THE SAMPLING DISTRIBUTION OF THE MEAN WHEN THE POPULATION IS NORMALLY DISTRIBUTED

Property	Illustrated Symbolically
The sampling distribution has a mean equal to the population mean	$\mu_{\bar{x}}=\mu$
The sampling distribution has a standard deviation (a standard error) equal to the population standard deviation divided by the square root of the sample size	$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$

illustrate these properties. A bank calculates that its individual savings accounts are normally distributed with a mean of $\$ 2,000$ and a standard deviation of $\$ 600$. If the bank takes a random sample of 100 accounts, what is the probability that the sample mean will lie between $\$ 1,900$ and $\$ 2,050$? This is a question about the sampling distribution of the mean; therefore, we must first calculate the standard error of the mean. In this case, we shall use the equation for the standard error of the mean designed for situations in which the population is infinite (later, we shall introduce an equation for finite populations):

Standard Error of the Mean for Infinite Populations

$$
\begin{align*}
& \text { Standard error } \tag{6-1}\\
& \text { of the mean }
\end{align*} \longrightarrow \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}
$$

where

- $\sigma=$ population standard deviation
- $n=$ sample size

Applying this to our example, we get
Finding the standard error of the mean for infinite

$$
\begin{aligned}
\sigma_{\bar{x}} & =\frac{\$ 600}{\sqrt{100}} \quad \text { populations } \\
& =\frac{\$ 600}{10} \\
& =\$ 60 \leftarrow \text { Standard error of the mean }
\end{aligned}
$$

Next, we need to use the table of z values (Appendix Table 1) and Equation 5-6, which enables us to use the Standard Normal Probability Distribution Table. With these, we can determine the probability that the sample mean will lie between $\$ 1,900$ and $\$ 2,050$.

$$
\begin{equation*}
z=\frac{x-\mu}{\sigma} \tag{5-6}
\end{equation*}
$$

Equation 5-6 tells us that to convert any normal random variable to a standard normal random variable, we must subtract the mean of the variable being standardized and divide by the standard error (the standard deviation of that variable). Thus, in this particular case. Equation 5-6 becomes

Standardizing the Sample Mean

Now we are ready to compute the two z values as follows:
For $\bar{x}=\$ 1,900$:
Converting the sample mean to a z value

$$
\begin{align*}
z & =\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \tag{6-2}\\
& =\frac{\$ 1,900-\$ 2,000}{\$ 60} \\
& =-\frac{100}{60} \\
& =-1.67 \leftarrow \begin{array}{l}
\text { Standard deviations from the mean of a stan- } \\
\text { dard normal probability distribution }
\end{array}
\end{align*}
$$

FIGURE 6-5 \quad PROBABILITY OF SAMPLE MEAN LYING BETWEEN \$1,900 AND \$2,050

For $\bar{x}=\$ 2,050$

$$
\begin{align*}
z & =\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \tag{6-2}\\
& =\frac{\$ 2,050-\$ 2,000}{\$ 60} \\
& =\frac{50}{60}
\end{align*}
$$

$=0.83 \leftarrow$ Standard deviation from the mean of a standard normal probability distribution
Appendix Table 1 gives us an area of 0.4525 corresponding to a z value of -1.67 , and it gives an area of .2967 for a z value of .83 . If we add these two together, we get 0.7492 as the total probability that the sample mean will lie between $\$ 1,900$ and $\$ 2,050$. We have shown this problem graphically in Figure 6-5.

Sampling from Nonnormal Populations

In the preceding section, we concluded that when the population is normally distributed, the sampling distribution of the mean is also normal. Yet decision makers must deal with many populations that are not normally distributed. How does the sampling distribution of the mean react when the population from which the samples are drawn is not normal? An illustration will help us answer this question.

Consider the data in Table 6-9, concerning five motorcycle owners and the lives of their tires. Because only five people are involved, the population is too small to be approximated by a normal distribution. We'll take all of the possible samples of the

The mean of the sampling

distribution of the mean equals the population mean owners in groups of three, compute the sample means (\bar{x}), list them, and compute the mean of the sampling distribution $\left(\mu_{\bar{x}}\right)$. We have done this in Table 6-10. These calculations show that even in a case in which the population is not normally distributed, $\mu_{\bar{x}}$, the mean of the sampling distribution, is still equal to the population mean, μ.

TABLE 6-9 EXPERIENCE OF FIVE MOTORCYCLE OWNERS WITH LIFE OF TIRES

OWNER	Carl	Debbie	Elizabeth	Frank	George	
TIRE LIFE (MONTHS)	3	3	7	9	14	Total: $\mathbf{3 6}$ months
	Mean $=\frac{36}{5}=7.2$ months					

Now look at Figure 6-6. Figure 6-6(a) is the population distribution of tire lives for the five motorcycle owners, a distribution that is anything, but normal in shape. In Figure 6-6(b), we show the sampling distribution of the mean for a sample size of three, taking the information from Table 6-10. Notice the difference between the probability distributions in Figures 6-6(a) and 6-6(b). In Figure 6-6(b), the distribution looks a little more like the bell shape of the normal distribution.

TABLES 6-10 CALCULATION OF SAMPLE MEAN TIRE LIFE WITH $n=3$

Samples of Three	Sample Data (Tire Lives)	Sample Mean
EFG *	$7+9+14$	10
DFG	$3+9+14$	$8^{2 / 3}$
DEG	$3+7+14$	8
DEF	$3+7+9$	$61 / 3$
CFG	$3+9+14$	$8^{2 / 3}$
CEG	$3+7+14$	8
CEF	$3+7+9$	$61 / 3$
CDF	$3+3+9$	5
CDE	$3+3+7$	$41 / 3$
CDG	$3+3+14$	$\frac{6^{2 / 3}}{72 \mathrm{months}}$
		$\mu_{\bar{x}}=\frac{72}{10}$
		$=7.2$ months

*Names abbreviated by first initial
(a) Population distribution

(b) Sampling distribution of the mean

FIGURE 6-7 SIMULATED EFFECT OF INCREASES IN THE SAMPLE SIZE ON THE APPEARANCE OF THE SAMPLING DISTRIBUTION

If we had a long time and much space, we could repeat this example and enlarge the population size to 40 . Then we could take samples of different sizes. Next we would plot the sampling distributions of the mean that would occur for the different sizes. Doing this would show quite dramatically how quickly the sampling distribution of the mean approaches normality, regardless of the shape of the population distribution. Figure 6-7 simulates this process

Increase in the size of samples
leads to a more normal sampling distribution graphically without all the calculations.

The Central Limit Theorem

The example in Table 6-10 and the four probability distributions in Figure 6-7 should suggest several things to you. First, the

Results of increasing sample size mean of the sampling distribution of the mean will equal the population mean regardless of the sample size, even if the population is not normal. Second, as the sample size increases, the sampling distribution of the mean will approach normality, regardless of the shape of the population distribution.

This relationship between the shape of the population distribution and the shape of the sampling distribution of the mean is called the central limit theorem. The central limit theorem is per-

Significance of the central limit theorem haps the most important theorem in all of statistical inference. It
assures us that the sampling distribution of the mean approaches normal as the sample size increases. There are theoretical situations in which the central limit theorem fails to hold, but they are almost never encountered in practical decision making. Actually, a sample does not have to be very large for the sampling distribution of the mean to approach normal. Statisticians use the normal distribution as an approximation to the sampling distribution whenever the sample size is at least 30 , but the

FIGURE 6-8 POPULATION DISTRIBUTION AND SAMPLING DISTRIBUTION FOR BANK TELLERS' EARNINGS
sampling distribution of the mean can be nearly normal with samples of even half that size. The significance of the central limit theorem is that it permits us to use sample statistics to make inferences about population parameters without knowing anything about the shape of the frequency distribution of that population other than what we can get from the sample. Putting this ability to work is the subject of much of the material in the subsequent chapters of this book.

Let's illustrate the use of the central limit theorem. The distribution of annual earnings of all bank tellers with five years' Using the central limit theorem experience is skewed negatively, as shown in Figure 6-8(a). This distribution has a mean of $\$ 19,000$ and a standard deviation of $\$ 2,000$. If we draw a random sample of 30 tellers, what is the probability that their earnings will average more than $\$ 19,750$ annually? In Figure 6-8(b), we show the sampling distribution of the mean that would result, and we have colored the area representing "earnings over $\$ 19,750$."

Our first task is to calculate the standard error of the mean from the population standard deviation, as follows

$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
& =\frac{\$ 2,000}{\sqrt{30}} \\
& =\frac{\$ 2,000}{5.477} \\
& =\$ 365.16 \leftarrow \text { Standard error of the mean }
\end{align*}
$$

Because we are dealing with a sampling distribution, we must now use Equation 6-2 and the Standard Normal Probability Distribution (Appendix Table 1).

For $x=\$ 19,750$:

$$
\begin{align*}
z & =\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \tag{6-2}\\
& =\frac{\$ 19,750-\$ 19,000}{\$ 365.16}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\$ 750.00}{\$ 365.16} \\
& =2.05 \leftarrow \text { Standard deviations from the mean of a stan- } \\
& \quad \text { dard normal probability distribution }
\end{aligned}
$$

This gives us an area of 0.4798 for a z value of 2.05 . We show this area in Figure $6-8$ as the area between the mean and $\$ 19,750$. Since half, or 0.5000 , of the area under the curve lies between the mean and the right-hand tail, the colored area must be

$$
0.5000 \text { (Area between the mean and the right-hand tail) }
$$

-0.4798 (Area between the mean $\$ 19,750$)
$\mathbf{0 . 0 2 0 2} \leftarrow$ (Area between the right-hand tail and $\$ 19,750$)
Thus, we have determined that there is slightly more than a 2 percent chance of average earnings being more than $\$ 19,750$ annually in a group of 30 tellers.

Sampling Distribution of Proportion

In many situations, the issue of interest is categorical in nature, which can be classified as occurrence or nonoccurrence. In these situations, researcher is interested in estimating proportion of occurrence. Since, information from complete population is not available, sample proportion is used to estimate the 'true' proportion.

$$
\text { Sample Proportion } \hat{p}=\frac{x}{n}
$$

where, x is number of occurrences out of a total of the sample size of ' n '
' x ' will follow binomial distribution with probability of occurrence as p.
According to Binomial Distribution:
Mean of $x: \mu_{x}=n p$
Standard deviation of $x: \sigma_{x}=\sqrt{n p q}$
where $q=1-p$
If we consider sample proportion $\hat{p}=\frac{x}{n}$, then sampling distribution sample statistic (sample proportion) \hat{p} will have

$$
\begin{aligned}
\text { Mean of } \hat{p}=\frac{x}{n}: \mu_{\hat{p}}=\frac{n p}{n} & =p \\
\text { Standard error of } \hat{p}: \sigma_{\hat{p}} & =\frac{\sqrt{n p q}}{n} \\
& =\sqrt{\frac{p q}{n}}
\end{aligned}
$$

If sample size ' n ' is large, considering normal distribution as an approximation of the Binomial Distribution.
So, sampling distribution of $\hat{p}=\frac{x}{n}$, will have normal distribution with
Mean: $\mu_{\hat{p}}=p$
Standard error: $\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}}$
hence $Z=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}$

HINTS \& ASSUMPTIONS

The central limit theorem is one of the most powerful concepts in statistics. What it really says is that the distribution of sample means tends to be a normal distribution. This is true regardless of the shape of the population distribution from which the samples were taken. Hint: Go back and look at Figures 6-6 and 6-7 on pages 295-296. Watch again how fast the distribution of sample means taken from the clearly nonnormal population in Figure 6-6 begins to look like a normal distribution in Figure 6-7 once we start to increase the sample size. And it really doesn't make any difference what the distribution of the population looks like; this will always happen. We could prove this to you, but first you'd have to go back and take several advanced mathematics courses to understand the proof.

EXERCISES 6.4

Self-Check Exercises

SC 6-5 In a sample of 25 observations from a normal distribution with mean 98.6 and standard deviation 17.2
(a) What is $\mathrm{P}(92<\bar{x}<102)$?
(b) Find the corresponding probability given a sample of 36.

SC 6-6 Mary Bartel, an auditor for a large credit card company, knows that, on average, the monthly balance of any given customer is $\$ 112$, and the standard deviation is $\$ 56$. If Mary audits 50 randomly selected accounts, what is the probability that the sample average monthly balance is
(a) Below $\$ 100$?
(b) Between $\$ 100$ and $\$ 130$?

Basic Concepts

6-24 In a sample of 16 observations from a normal distribution with a mean of 150 and a variance of 256 , what is
(a) $\mathrm{P}(\bar{x}<160)$?
(b) $\mathrm{P}(\bar{x}>142)$?

If, instead of 16 observations, 9 observations are taken, find
(c) $\mathrm{P}(\bar{x}<160)$.
(d) $\mathrm{P}(\bar{x}>142)$.

6-25 In a sample of 19 observations from a normal distribution with mean 18 and standard deviation 4.8
(a) What is $\mathrm{P}(16<\bar{x}<20)$?
(b) What is $\mathrm{P}(16 \leq \bar{x} \leq 20)$?
(c) Suppose the sample size is 48 . What is the new probability in part (a)?

6-26 In a normal distribution with mean 56 and standard deviation 21 , how large a sample must be taken so that there will be at least a 90 percent chance that its mean is greater than 52 ?
6-27 In a normal distribution with mean 375 and standard deviation 48, how large a sample must be taken so that the probability will be at least 0.95 that the sample mean falls between 370 and 380 ?

Applications

6-28 An astronomer at the Mount Palomar Observatory notes that during the Geminid meteor shower, an average of 50 meteors appears each hour, with a variance of 9 meteors squared. The Geminid meteor shower will occur next week.
(a) If the astronomer watches the shower for 4 hours, what is the probability that at least 48 meteors per hour will appear?
(b) If the astronomer watches for an additional hour, will this probability rise or fall? Why?

6-29 Robertson Employment Service customarily gives standard intelligence and aptitude tests to all people who seek employment through the firm. The firm has collected data for several years and has found that the distribution of scores is not normal, but is skewed to the left with a mean of 86 and a standard deviation of 16 . What is the probability that in a sample of 75 applicants who take the test, the mean score will be less than 84 or greater than 90 ?
6-30 An oil refinery has backup monitors to keep track of the refinery flows continuously and to prevent machine malfunctions from disrupting the process. One particular monitor has an average life of 4,300 hours and a standard deviation of 730 hours. In addition to the primary monitor, the refinery has set up two standby units, which are duplicates of the primary one. In the case of malfunction of one of the monitors, another will automatically take over in its place. The operating life of each monitor is independent of the others.
(a) What is the probability that a given set of monitors will last at least 13,000 hours?
(b) At most 12,630 hours?

6-31 A recent study by the EPA has determined that the amount of contaminants in Nainital lakes (in parts per million) is normally distributed with mean 64 ppm and variance 17.6. Suppose 35 lakes are randomly selected and sampled. What is the probability that the sample average amount of contaminants is
(a) Above 72 ppm ?
(b) Between 64 and 72 ppm?
(c) Exactly 64 ppm?
(d) Above 94 ppm ?
(e) If, in our sample, we found $\bar{x}=100 \mathrm{ppm}$, would you feel confident in the study conducted by the EPA? Explain briefly.
6-32 Calvin Ensor, president of General Telephone Corp., is upset at the number of telephones produced by GTC that have faulty receivers. On average, 110 telephones per day are being returned because of this problem, and the standard deviation is 64 . Mr. Ensor has decided that unless he can be at least 80 percent certain that, on average, no more than 120 phones per day will be returned during the next 48 days, he will order the process overhauled. Will the overhaul be ordered?
6-33 Clara Voyant, whose job is predicting the future for her venture capital company, has just received the statistics describing her company's performance on 1,800 investments last year. Clara knows that, in general, investments generate profits that have a normal distribution with mean $\$ 7,500$ and standard deviation $\$ 3,300$. Even before she looked at the specific results from each of the 1,800 investments from last year, Clara was able to make some accurate predictions by using her knowledge of sampling distributions. Follow her analysis by finding the probability that the sample mean of last year's investments
(a) Exceeded \$7,700.
(b) Was less than $\$ 7,400$.
(c) Was greater than $\$ 7,275$, but less than $\$ 7,650$.

6-34 Farmer Braun, who sells grain to Germany, owns 60 acres of wheat fields. Based on past experience, he knows that the yield from each individual acre is normally distributed with mean 120 bushels and standard deviation 12 bushels. Help Farmer Braun plan for his next year's crop by finding
(a) The expected mean of the yields from Farmer Braun's 60 acres of wheat.
(b) The standard deviation of the sample mean of the yields from Farmer Braun's 60 acres.
(c) The probability that the mean yield per acre will exceed 123.8 bushels.
(d) The probability that the mean yield per acre will fall between 117 and 122 bushels.

6-35 A ferry carries 25 passengers. The weight of each passenger has a normal distribution with mean 168 pounds and variance 361 pounds squared. Safety regulations state that for this particular ferry, the total weight of passengers on the boat should not exceed 4,250 pounds more than 5 percent of the time. As a service to the ferry owners, find
(a) The probability that the total weight of passengers on the ferry will exceed 4,250 pounds.
(b) The 95th percentile of the distribution of the total weight of passengers on the ferry. Is the ferry complying with safety regulations?

Worked-Out Answers to Self-Check Exercises

SC 6-5

$$
\text { (a) } \left.n=25 \quad \mu=98.6 \quad \sigma=17.2 \quad \sigma_{\bar{x}}=\sigma / \sqrt{n}=17.2 / \sqrt{25}=3.44\right]+\begin{aligned}
\mathrm{P}(92<\bar{x}<102) & =\mathrm{P}\left(\frac{92-98.6}{3.44}<\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}<\frac{102-98.6}{3.44}\right) \\
= & \mathrm{P}(-1.92<z<0.99)=0.4726+0.3389=0.8115
\end{aligned}
$$

(b) $n=36 \quad \sigma_{\bar{x}}=\sigma / \sqrt{n}=17.2 / \sqrt{36}=2.87$

$$
\begin{aligned}
\mathrm{P}(92<\bar{x}<102) & =\mathrm{P}\left(\frac{92-98.6}{2.87}<\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}<\frac{102-98.6}{2.87}\right) \\
& =\mathrm{P}(-2.30<z<1.18)=0.4893+0.3810=0.8703
\end{aligned}
$$

SC 6-6 The sample size of 50 is large enough to use the central limit theorem.

$$
\mu=112 \quad \sigma=56 \quad n=50 \quad \sigma_{\bar{x}}=\sigma / \sqrt{n}=56 / \sqrt{50}=7.920
$$

(a) $\mathrm{P}(\bar{x}<100)=\mathrm{P}\left(\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}<\frac{100-112}{7.920}\right)=\mathrm{P}(z<-1.52)=0.5-0.4357=0.0643$
(b) $\mathrm{P}(100<\bar{x}<130)=\mathrm{P}\left(\frac{100-112}{7.920}<\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}<\frac{130-112}{7.920}\right)$

$$
=\mathrm{P}(-1.52<z<2.27)=0.4357+0.4884+0.9241
$$

6.7 AN OPERATIONAL CONSIDERATION IN SAMPLING: THE RELATIONSHIP BETWEEN SAMPLE SIZE AND STANDARD ERROR

We saw earlier in this chapter that the standard error, $\sigma_{\bar{x}}$ is a measure of dispersion of the sample means around the population mean. If the dispersion decreases (if $\sigma_{\bar{x}}$ becomes smaller), then the values taken by the sample mean tend to cluster more closely around μ. Conversely, if the dispersion increases (if $\sigma_{\bar{x}}$ becomes larger), the values taken by the sample mean tend to cluster less closely around μ. We can think of this relationship this way: As the standard error decreases, the value of any sample mean will probably be closer to the value of the population mean. Statisticians describe this phenomenon in another way: As the standard error decreases, the precision with which the sample mean can be used to estimate the population mean increases.

If we refer to Equation 6-1, we can see that as n increases, $\bar{\sigma}_{\bar{x}}$ decreases. This happens because in Equation 6-1 a larger denominator on the right side would produce smaller $\sigma_{\bar{x}}$ on the left side. Two examples will show this relationship; both assume the same population standard deviation σ of 100 .

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{6-1}
\end{equation*}
$$

When $n=10$:

$$
\begin{aligned}
\sigma_{\bar{x}} & =\frac{100}{\sqrt{10}} \\
& =\frac{100}{3.162} \\
& =31.63 \leftarrow \text { Standard error of the mean }
\end{aligned}
$$

And when $n=100$:

$$
\begin{aligned}
\sigma_{\bar{x}} & =\frac{100}{\sqrt{100}} \\
& =\frac{100}{10} \\
& =10 \leftarrow \text { Standard error of the mean }
\end{aligned}
$$

What have we shown? As we increased our sample size from 10 Increasing the sample size: to 100 (a tenfold increase), the standard error dropped from 31.63 to 10 , which is only about one-third of its former value. Our

Diminishing returns

examples show that, because $\sigma_{\bar{x}}$ varies inversely with the square root of n, there is diminishing return in sampling.

It is true that sampling more items will decrease the standard error, but this benefit may not be worth the cost. A statistician would say, "The increased precision is not worth the additional sampling cost." In a statistical sense, it seldom pays to take excessively large samples. Managers should always assess both the worth and the cost of the additional precision they will obtain from a larger sample before they commit resources to take it.

The Finite Population Multiplier

To this point in our discussion of sampling distributions, we have used Equation 6-1 to calculate the standard error of the mean:

Modifying Equation 6-1

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{6-1}
\end{equation*}
$$

This equation is designed for situations in which the population is infinite, or in which we sample from a finite population with replacement (that is, after each item is sampled, it is put back into the population before the next item is chosen, so that the same item can possibly be chosen more than once). If you will refer back to page 293, where we introduced Equation 6-1, you will recall our parenthesized note, which said, "Later we shall introduce an equation for finite populations." Introducing that equation is the purpose of this section.

Many of the populations decision makers examine are finite, that is, of stated or limited size. Examples of these include the

Finding the standard error of the mean for finite populations employees in a given company, the clients of a city socialservices agency, the students in a specific class, and a day's production in a given manufacturing plant. Not one of these populations is infinite, so we need to modify Equation 6-1 to deal with them. The formula designed to find the standard error of the mean when the population is finite, and we sample without replacements is

Standard Error of the Mean for Finite Populations

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \tag{6-3}
\end{equation*}
$$

where

- $N=$ size of the population
- $n=$ size of the sample

This new term on the right-hand side, which we multiply by our original standard error, is called the finite population multiplier:

Finite Population Multiplier

Finite population multiplier $=\sqrt{\frac{N-n}{N-1}}$

A few examples will help us become familiar with interpreting and using Equation 6-3. Suppose we are interested in a population of 20 textile companies of the same size, all of which are experiencing excessive labor turnover. Our study indicates that the standard deviation of the distribution of annual turnover is 75 employees. If we sample five of these textile companies, without replacement, and wish to compute the standard error of the mean, we would use Equation 6-3 as follows:

$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \tag{6-3}\\
& =\frac{75}{\sqrt{5}} \times \sqrt{\frac{20-5}{20-1}} \\
& =(33.54)(0.888) \\
& =29.8 \leftarrow \text { Standard error of the mean of a finite population }
\end{align*}
$$

In this example, a finite population multiplier of 0.888 reduced the standard error from 33.54 to 29.8 .
In cases in which the population is very large in relation to the size of the sample, this finite population multiplier is close to 1 and has little effect on the calculation of the standard error. Say

Sometimes the finite population multiplier is close to 1 that we have a population of 1,000 items and that we have taken a sample of 20 items. If we use Equation 6-4 to calculate the finite population multiplier, the result would be

$$
\begin{align*}
\text { Finite population multiplier } & =\sqrt{\frac{N-n}{N-1}} \tag{6-4}\\
& =\sqrt{\frac{1,000-20}{1,000-1}} \\
& =\sqrt{0.981} \\
& =0.99
\end{align*}
$$

Using this multiplier of 0.99 would have little effect on the calculation of the standard error of the mean.
This last example shows that when we sample a small fraction of the entire population (that is, when the population size N is very

Sampling fraction defined

 large relative to the sample size n), the finite population multiplier takes on a value close to 1.0. Statisticians refer to the fraction n / N as the sampling fraction, because it is the fraction of the population N that is contained in the sample.When the sampling fraction is small, the standard error of the mean for finite populations is so close to the standard error of the mean for infinite populations that we might as well use the same formula for both, namely, Equation 6-1: $\sigma_{\hat{x}}=\sigma / \sqrt{n}$. The generally accepted rule is: When the sampling fraction is less than 0.05 , the finite population multiplier need not be used.

When we use Equation 6-1, σ is constant, and so the measure of sampling precision, $\sigma_{\bar{x}}$ depends only on the sample size n and not on the proportion of the population sampled. That is, to make

Sample size determines
sampling precision $\sigma_{\bar{x}}$ smaller, it is necessary only to make n larger. Thus, it turns of the population sampled.

Standard Error of the Proportion for Finite Populations

In case of finite population (N)
Sampling distribution of $\hat{p}=\frac{x}{n}$ will be normal distribution with

Mean $\mu_{\hat{p}}=p$
Standard error $\sigma_{\hat{p}}=\sqrt{\frac{p q}{n}} \times \sqrt{\frac{N-n}{N-1}}$.

HINTS \& ASSUMPTIONS

Although the law of diminishing return comes from economics, it has a definite place in statistics too. It says that there is diminishing return in sampling. Specifically, although sampling more items will decrease the standard error (the standard deviation of the distribution of sample means), the increased precision may not be worth the cost. Hint: Look again at Equation 6-1 on page 293. Because n is in the denominator, when we increase it (take larger samples) the standard error ($\sigma_{\bar{x}}$) decreases. Now look at page 302. When we increased the sample size from 10 to 100 (a tenfold increase) the standard error fell only from 31.63 to 10 (about a two-thirds decrease). Maybe it wasn't smart to spend so much money increasing the sample size to get this result. That's exactly why statisticians (and smart managers) focus on the concept of the "right" sample size. Another hint: In dealing with the finite population multiplier, remember that even though we can count them, some finite populations are so large that they are treated as if they were infinite. An example of this would be the number of TV households in the United States.

Sample size determination

Determination of appropriate sample size depends upon two criteria-

- Degree of precision or extent of the permissible error (e)
- Degree of confidence placed with the sample results $(1-\alpha)$.

Estimating Population Mean,

$$
\begin{aligned}
\text { Sample mean } & =\bar{x} \\
\text { Population mean } & =\mu \\
e & =(\bar{x}-\mu) \\
Z_{\alpha} & =\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}} \\
Z_{\alpha} & =\frac{e}{\sigma / \sqrt{n}} \\
e & =Z_{\alpha} \frac{\sigma}{\sqrt{n}} \\
n & =\left(\frac{Z_{\alpha} \cdot \sigma}{e}\right)^{2}
\end{aligned}
$$

Estimating Population Proportion,
Sample proportion $=p$
Population proportion $=P$.

$$
e=|(p-P)|
$$

$$
\begin{aligned}
Z_{\alpha} & =\frac{(p-P)}{\sqrt{\frac{P(1-P)}{n}}}=\frac{e}{\sqrt{\frac{P(1-P)}{n}}} \\
e & =Z_{\alpha} \times \sqrt{\frac{P(1-P)}{n}}
\end{aligned}
$$

Taking max. value of $P(1-P)=\frac{1}{4}$

$$
=.25
$$

$$
n=\frac{Z_{\alpha}^{2} \times 0.25}{e^{2}}
$$

EXERCISES 6.5

Self-Check Exercises

SC 6-7 From a population of 125 items with a mean of 105 and a standard deviation of 17,64 items were chosen.
(a) What is the standard error of the mean?
(b) What is the $\mathrm{P}(107.5<\bar{x}<109)$?

SC 6-8 Alisha, researcher for the Brown Beans Coffee Corporation, is interested in determining the rate of coffee usage per household in India. She believes that yearly consumption per household is normally distributed with an unknown mean μ and a standard deviation of about 1.25 pounds.
(a) If Alisha takes a sample of 36 households and records their consumption of coffee for one year, what is the probability that the sample mean is within one-half pound of the population mean?
(b) How large a sample must she take in order to be 98 percent certain that the sample mean is within one-half pound of the population mean?

Basic Concepts

6-36 From a population of 75 items with a mean of 364 and a variance of 18,32 items were randomly selected without replacement.
(a) What is the standard error of the mean?
(b) What is the $\mathrm{P}(363 \leq \bar{x} \leq 366)$?
(c) What would your answer to part (a) be if we sampled with replacement?

6-37 Given a population of size $N=80$ with a mean of 22 and a standard deviation of 3.2 , what is the probability that a sample of 25 will have a mean between 21 and 23.5 ?
6-38 For a population of size $N=80$ with a mean of 8.2 and a standard deviation of 2.1, find the standard error of the mean for the following sample sizes:
(a) $n=16$
(b) $n=25$
(c) $n=49$

Applications

6-39 Tread-On-Us has designed a new tire, and they don't know what the average amount of tread life is going to be. They do know that tread life is normally distributed with a standard deviation of 216.4 miles.
(a) If the company samples 800 tires and records their tread life, what is the probability the sample mean is between the true mean and 300 miles over the true mean?
(b) How large a sample must be taken to be 95 percent sure the sample mean will be within 100 miles of the true mean?
6-40 An underwater salvage team is preparing to explore a site in the Indian Ocean. From the historical records, the team expects these wrecks to generate an average of ₹ $2,25,000$ in revenue when explored, and a standard deviation of ₹ 39,000 . The team financier, however, remains skeptical, and has stated that if exploration expenses of ₹ 2.1 million are not recouped from the first nine wrecks, he will cancel the remainder of the exploration. What is the probability that the exploration continues past nine wrecks?
6-41 An X-ray technician is taking readings from her machine to ensure that it adheres to federal safety guidelines. She knows that the standard deviation of the amount of radiation emitted by the machine is 150 millirems, but she wants to take readings until the standard error of the sampling distribution is no higher than 25 millirems. How many readings should she take?
6-42 Davis Aircraft Co. is developing a new wing de-icer system, which it has installed on 30 commercial airliners. The system is designed so that the percentage of ice removed is normally distributed with mean 96 and standard deviation 7. The FAA will do a spot check of six of the airplanes with the new system, and will approve the system if at least 98 percent of the ice is removed on average. What is the probability that the system receives FAA approval?
6-43 Food Place, a chain of 145 supermarkets, has been bought out by a larger nationwide supermarket chain. Before the deal is finalized, the larger chain wants to have some assurance that Food Place will be a consistent moneymaker. The larger chain has decided to look at the financial records for 36 of the Food Place stores. Food Place management claims that each store's profits have an approximately normal distribution with the same mean and a standard deviation of $\$ 1,200$. If the Food Place management is correct, what is the probability that the sample mean for the 36 stores will fall within $\$ 200$ of the actual mean?
6-44 In a study of reading habits among management students, it is desired to estimate average time spent by management students reading in library per week. From the past experience it is known that population standard deviation of the reading time is 90 minutes. How large a sample would be required, if the researcher wants to be able to assert with 95% confidence that sample mean time would differ from the actual mean time by atmost half an hour?
6-45 Indian Oil Company has recently launched a public relation campaign to persuade its subscribers to reduce the wasteful use of the fuel. The Company's marketing research director believes that about 40% of the subscribers are aware of the campaign. He wishes to find out how large a sample would be needed to be 95% confident that true proportion is within 3% of the sample proportion.

6-46 An automobile insurance company wants to estimate from a sample study what proportion of its policy holders are interested in buying a new car within the next financial year. The total number of the policy holders is 6000 . How large a sample is required to be able to assert with 95% confidence that proportion of policy holders interested in buying obtained from the sample would differ from true proportion by at most 4 percent?

Worked-Out Answers to Self-Check Exercises

SC 6-7 $\quad N=125 \quad \mu=105 \quad \mathrm{~s}=17 \quad n=64$
(a) $\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}}=\frac{17}{8} \times \sqrt{\frac{61}{124}}=1.4904$
(b) $(107.5<\bar{x}<109)=\mathrm{P}\left(\frac{107.5-105}{1.4904}<\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}<\frac{109-105}{1.4904}\right)$

$$
=\mathrm{P}(1.68<\mathrm{z}<2.68)=0.4963-0.4535=0.0428
$$

$\mathbf{S C} 6$ 6-8 (a) $\sigma=1.25 \quad n=36 \quad \sigma_{\bar{x}}=\sigma / \sqrt{n}=1.25 / \sqrt{36}=0.2083$

$$
\begin{aligned}
\mathrm{P}(\mu-0.5 \leq \bar{x} \leq \mu+0.5) & =\mathrm{P}\left(\frac{-0.5}{0.2083} \leq \frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \leq \frac{0.5}{0.2083}\right) \\
& =\mathrm{P}(-2.4 \leq z \leq 2.4)=0.4918+0.4918=0.9836
\end{aligned}
$$

(b) $0.98=\mathrm{P}(\mu-0.5 \leq \bar{x} \leq \mu+0.5)=\mathrm{P}\left(\frac{-0.5}{1.25 / \sqrt{n}} \leq z \leq \frac{0.5}{1.25 / \sqrt{n}}\right)$

$$
=\mathrm{P}(-2.33 \leq z \leq 2.33)
$$

Hence, $2.33=\frac{0.5}{1.25 / \sqrt{n}}=0.4 \sqrt{n} \quad$ and $\quad n=(2.33 / 0.4)^{2}=33.93$.
She should sample at least 34 households.

STATISTICS AT WORK

Loveland Computers

Case 6: Samplings and Sampling Distributions After less than a week on the job as an administrative assistant to Loveland Computers' CEO, Lee Azko was feeling almost overwhelmed with the range of projects that seemed to demand attention. But, there was no use denying, it sure felt good to put into practice some of the techniques that had been taught in school. And the next day on the job brought a new set of challenges.
"I guess those folks in production must like you," Walter Azko greeted Lee by the coffee machine. "I hope you're all done with purchasing because production has a quality control problem it needs help with. Go and see Nancy Rainwater again."

Lee went down to the assembly line but was greeted by an unfamiliar face. Tyronza Wilson introduced himself. "Nancy said you'd be down. I'm in charge of checking the components we use when we
assemble high-end computers for customers. For most of the components, the suppliers are so reliable that we just assume they're going to work. In the very rare case there's a failure, we catch it at the end of the line, where we run the computers overnight on a test program to 'burn them in.' That means, we don't want to be surprised by a part that fails when it's been on the job for only a few hours.
"Recently, we've been having a problem with the 3-gigabyte hard drives. You know, everyone used to be happy with one or two gigabytes of storage, but new programs with fancy graphics eat up a great deal of disk space and many of the customers are specifying the large drive for their computers. To move large amounts of data, access time becomes very important-that's a measure of the average time that it takes to retrieve a standard amount of data from a hard drive. Because access-time performance is important to our customers, I can't just assume that every hard drive is going to work within specifications. If we wait to test access time at the end of the line and find we have a drive that's too slow, we have to completely rebuild the computer with a new drive and drive controller. That's a lot of expensive rework that we should avoid.
"But it'd be even more expensive to test every one of them at the beginning of the process-the only way I can measure the access time of each drive is to hook it up to a computer and run a diagnostic program. All told, that takes the best part of a quarter of an hour. I don't have the staff or the machines to test every one, and it's rather pointless because the vast majority of them will pass inspection.
"There's more demand than supply for the high-capacity hard drives right now, so we've been buying them all over the place. As a result, there seem to be 'good shipments' and 'bad shipments.' If the average access time of a shipment is too long, we return them to the supplier and reject their invoice. That saves us paying for something we can't use, but if I reject too many shipments, it leaves us short of disk drives to complete our orders.
"Obviously we need some kind of sampling scheme here-we need to measure the access time on a sample of each shipment and then make our decision about the lot. But I'm not sure how many we should test."
"Well, I think you have a good handle on the situation," said Lee, taking out a notepad. "Let me begin by asking you a few questions."

Study Questions: What types of sampling schemes will Lee consider and what factors will influence the choice of scheme? What questions should Lee have for Tyronza?

CHAPTER REVIEW

Terms Introduced in Chapter 6

Census The measurement or examination of every element in the population.
Central Limit Theorem A result assuring that the sampling distribution of the mean approaches normality as the sample size increases, regardless of the shape of the population distribution from which the sample is selected.
Clusters Within a population, groups that are essentially similar to each other, although the groups themselves have wide internal variation.
Cluster Sampling A method of random sampling in which the population is divided into groups, or clusters of elements, and then a random sample of these clusters is selected.
Factorial Experiment An experiment in which each factor involved is used once with each other factor. In a complete factorial experiment, every level of each factor is used with each level of every other factor. Finite Population A population having a stated or limited size.

Finite Population Multiplier A factor used to correct the standard error of the mean for studying a population of finite size that is small in relation to the size of the sample.
Infinite Population A population in which it is theoretically impossible to observe all the elements.
Judgment Sampling A method of selecting a sample from a population in which personal knowledge or expertise is used to identify the items from the population that are to be included in the sample.
Latin Square An efficient experimental design that makes it unnecessary to use a complete factorial experiment.
Parameters Values that describe the characteristics of a population.
Precision The degree of accuracy with which the sample mean can estimate the population mean, as revealed by the standard error of the mean.
Random or Probability Sampling A method of selecting a sample from a population in which all the items in the population have an equal chance of being chosen in the sample.
Sample A portion of the elements in a population chosen for direct examination or measurement.
Sampling Distribution of the Mean A probability distribution of all the possible means of samples of a given size, n, from a population.
Sampling Distribution of a Statistic For a given population, a probability distribution of all the possible values a statistic may take on for a given sample size.
Sampling Error Error or variation among sample statistics due to chance, that is, differences between each sample and the population, and among several samples, which are due solely to the elements we happen to choose for the sample.
Sampling Fraction The fraction or proportion of the population contained in a sample.
Sampling with Replacement A sampling procedure in which sampled items are returned to the population after being picked, so that some members of the population can appear in the sample more than once.
Sampling without Replacement A sampling procedure in which sampled items are not returned to the population after being picked, so that no member of the population can appear in the sample more than once.
Simple Random Sampling Methods of selecting samples that allow each possible sample an equal probability of being picked and each item in the entire population an equal chance of being included in the sample.
Standard Error The standard deviation of the sampling distribution of a statistic.
Standard Error of the Mean The standard deviation of the sampling distribution of the mean; a measure of the extent to which we expect the means from different samples to vary from the population mean, owing to the chance error in the sampling process.
Statistical Inference The process of making inferences about populations from information contained in samples.
Statistics Measures describing the characteristics of a sample.
Strata Groups within a population formed in such a way that each group is relatively homogeneous, but wider variability exists among the separate groups.
Stratified Sampling A method of random sampling in which the population is divided into homogeneous groups, or strata, and elements within each stratum are selected at random according to one of two rules: (1) A specified number of elements is drawn from each stratum corresponding to the proportion of that stratum in the population, or (2) equal numbers of elements are drawn from each stratum, and the results are weighted according to the stratum's proportion of the total population.
Systematic Sampling A method of sampling in which elements to be sampled are selected from the population at a uniform interval that is measured in time, order, or space.

Equations Introduced in Chapter 6

6-1

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{p. 293}
\end{equation*}
$$

Use this formula to derive the standard error of the mean when the population is infinite, that is, when the elements of the population cannot be enumerated in a reasonable period of time, or when we sample with replacement. This equation states that the sampling distribution has a standard deviation, which we also call a standard error, equal to the population standard deviation divided by the square root of the sample size.

6-2

$$
\begin{equation*}
z=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \tag{p. 293}
\end{equation*}
$$

A modified version of Equation 5-6, this formula allows us to determine the distance of the sample mean \bar{x} from the population mean μ, when we divide the difference by the standard error of the mean $\sigma_{\bar{x}}$. Once we have derived a z value, we can use the Standard Normal Probability Distribution Table and compute the probability that the sample mean will be that distance from the population mean. Because of the central limit theorem, we can use this formula for nonnormal distributions if the sample size is at least 30 .

6-3

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \tag{p. 303}
\end{equation*}
$$

where

- $N=$ size of the population
- $n=$ size of the sample

This is the formula for finding the standard error of the mean when the population is finite, that is, of stated or limited size, and the sampling is done without replacement.

$$
\begin{equation*}
\text { Finite population multiplier }=\sqrt{\frac{N-n}{N-1}} \tag{p. 303}
\end{equation*}
$$

In Equation 6-3, the term $\sqrt{(N-n) /(N-1)}$, which we multiply by the standard error from Equation (6-1), is called the finite population multiplier. When the population is small in relation to the size of the sample, the finite population multiplier reduces the size of the standard error. Any decrease in the standard error increases the precision with which the sample mean can be used to estimate the population mean.

Review and Application Exercises

6-47 Shreedhar Nair, manager of the Infratech Development Company, wants to find out residents' feelings toward the development's recreation facilities and the improvements they would like to see implemented. The development includes residents of various ages and income levels,
but a large proportion are middle-class residents between the ages of 30 and 50 . As yet, Shreedhar is unsure whether there are differences among age groups or income levels in their desire for recreation facilities. Would stratified random sampling be appropriate here?
6-48 A camera manufacturer is attempting to find out what employees feel are the major problems with the company and what improvements are needed. To assess the opinions of the 37 departments, management is considering a sampling plan. It has been recommended to the personnel director that management adopt a cluster sampling plan. Management would choose six departments and interview all the employees. Upon collecting and assessing the data gathered from these employees, the company could then make changes and plan for areas of job improvement. Is a cluster sampling plan appropriate in this situation?
6-49 By reviewing sales since opening 6 months ago, a restaurant owner found that the average bill for a couple was $\$ 26$, and the standard deviation was $\$ 5.65$. How large would a sample of customers have to be for the probability to be at least 95.44 percent that the mean cost per meal for the sample would fall between $\$ 25$ and $\$ 27$?
6-50 Devesh Mehta, president of Mehta Garments Ltd., wants to offer videotaped courses for employees during the lunch hour, and wants to get some idea of the courses that employees would like to see offered. Accordingly, he has devised a ballot that an employee can fill out in 5 minutes, listing his or her preferences among the possible courses. The ballots, which cost very little to print, will be distributed with paychecks, and the results will be tabulated by the as yet unreassigned clerical staff of a recently dissolved group within the company. Devesh plans to poll all employees. Are there any reasons to poll a sample of the employees rather than the entire population?
6-51 A drug manufacturer knows that for a certain antibiotic, the average number of doses ordered for a patient is 20 . Steve Simmons, a salesman for the company, after looking at one day's prescription orders for the drug in his territory, announced that the sample mean for this drug should be lower. He said, "For any sample, the mean should be lower, since the sampling mean always understates the population mean because of sample variation." Is there any truth to what Simmons said?
6-52 Several weeks later at a sales meeting, Steve Simmons again demonstrated his expertise in statistics. He had drawn a graph and presented it to the group, saying, "This is a sampling distribution of means. It is a normal curve and represents a distribution of all observations in each possible sample combination." Is Simmons right? Explain.
6-53 Low-Cal Foods Company uses estimates of the level of activity for various market segments to determine the nutritional composition of its diet food products. Low-Cal is considering the introduction of a liquid diet food for older women, since this segment has special weight problems not met by the competitor's diet foods. To determine the desired calorie content of this new product, Dr. Nell Watson, researcher for the company, conducted tests on a sample of women to determine calorie consumption per day. Her results showed that the average number of calories expended per day for older women is 1,328 and the standard deviation is 275 . Dr. Watson estimates that the benefits she obtains with a sample size of 25 are worth $\$ 1,720$. She expects that reducing the standard error by half its current value will double the benefit. If it costs $\$ 16$ for every woman in the sample, should Watson reduce her standard error?
6-54 The Custom Department of India routinely checks all passengers arriving from foreign countries as they enter India. The department reports that the number of people per day found to be carry-
ing contraband material as they enter India through Indira Gandhi International Airport in New Delhi averages 42 and has a standard deviation of 11 . What is the probability that in five days at the airport, the average number of passengers found carrying contraband will exceed 50 ?
6-55 HAL Corporation manufactures large computer systems and has always prided itself on the reliability of its System 666 central processing units. In fact, past experience has shown that the monthly downtime of System 666 CPUs averages 41 minutes, and has a standard deviation of 8 minutes. The computer center at a large state university maintains an installation built around six System 666 CPUs. James Kitchen, the director of the computer center, feels that a satisfactory level of service is provided to the university community if the average downtime of the six CPUs is less than 50 minutes per month. In any given month, what is the probability that Kitchen will be satisfied with the level of service?
6-56 Members of the Organization for Consumer Action send more than 250 volunteers a day all over the state to increase support for a consumer protection bill that is currently before the state legislature. Usually, each volunteer will visit a household and talk briefly with the resident in the hope that the resident will sign a petition to be given to the state legislature. The number of signatures a volunteer obtains for the petition each day averages 5.8 and has a standard deviation of 0.8 . What is the probability a sample of 20 volunteers will result in an average between 5.5 and 6.2 signatures per day?
6-57 Jill Johnson, product manager for Southern Electric's smoke alarm, is concerned over recent complaints from consumer groups about the short life of the device. She has decided to gather evidence to counteract the complaints by testing a sample of the alarms. For the test, it costs $\$ 4$ per unit in the sample. Precision is desirable for presenting persuasive statistical evidence to consumer groups, so Johnson figures the benefits she will receive for various sample sizes are determined by the formula Benefits $=\$ 5,249 / \sigma_{\bar{x}}$. If Johnson wants to increase her sample until the cost equals the benefit, how many units should she sample? The population standard deviation is 265 .
6-58 Seventy data clerks at the Department of Motor Vehicles make an average of 18 errors per day, normally distributed with a standard deviation of 4 . A field auditor can check the work of 15 clerks per day. What is the probability that the average number of errors in a group of 15 clerks checked on one day is
(a) Fewer than 15.5 ?
(b) Greater than 20 ?

Flow Chart: Sampling and Sampling Distributions

Estimation

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To learn how to estimate certain characteristics of a population from samples
- To learn the strengths and shortcomings of point estimates and interval estimates
- To calculate how accurate our estimates really are
- To learn how to use the t distribution to make interval estimates in some cases when the normal distribution cannot be used
- To calculate the sample size required for any desired level of precision in estimation

CHAPTER CONTENTS

7.1 Introduction 316

7.2 Point Estimates
 319

7.3 Interval Estimates: Basic Concepts
 324

7.4 Interval Estimates and Confidence Intervals 329
7.5 Calculating Interval Estimates of the Mean from Large Samples 332
7.6 Calculating Interval Estimates of the Proportion from Large Samples 336
7.7 Interval Estimates Using the t Distribution 341
7.8 Determining the Sample Size in Estimation 351

- Statistics at Work 357
- Terms Introduced in Chapter 7358
- Equations Introduced in Chapter 7358
- Review and Application Exercises 359
- Flow Chart: Estimation 363

As part of the budgeting process for next year, the manager of the Far Point electric generating plant must estimate the coal he will need for this year. Last year, the plant almost ran out, so he is reluctant to budget for that same amount again. The plant manager, however, does feel that past usage data will help him estimate the number of tons of coal to order. A random sample of 10 plant operating weeks chosen over the last 5 years yielded a mean usage of 11,400 tons a week, and a sample standard deviation of 700 tons a week. With the data he has and the methods we shall discuss in this chapter, the plant manager can make a sensible estimate of the amount to order this year, including some idea of the accuracy of the estimate he has made.

7.1 INTRODUCTION

Everyone makes estimates. When you are ready to cross a street, you estimate the speed of any car that is approaching, the distance between you and that car, and your own speed. Having made these quick estimates, you decide whether to wait, walk, or run.

All managers must make quick estimates too. The outcome Reasons for estimates of these estimates can affect their organizations as seriously as the outcome of your decision as to whether to cross the street. University department heads make estimates of next fall's enrollment in statistics. Credit managers estimate whether a purchaser will eventually pay his bills. Prospective home buyers make estimates concerning the behavior of interest rates in the mortgage market. All. these people make estimates without worry about whether they are scientific but with the hope that the estimates bear a reasonable resemblance to the outcome.

Managers use estimates because in all but the most trivial decisions, they must make rational decisions without complete information and with a great deal of uncertainty about what the future will bring. As educated citizens and professionals, you will be able to make more useful estimates by applying the techniques described in this and subsequent chapters.

The material on probability theory covered in Chapters 4, 5,

Making statistical inferences

 and 6 forms the foundation for statistical inference, the branch of statistics concerned with using probability concepts to deal with uncertainty in decision making. Statistical inference is based on estimation, which we shall introduce in this chapter, and hypothesis testing, which is the subject of Chapters 8,9 , and 10 . In both estimation and hypothesis testing, we shall be making inferences about characteristics of populations from information contained in samples.How do managers use sample statistics to estimate population parameters? The department head attempts to estimate enroll-

Using samples

 ments next fall from current enrollments in the same courses. The credit manager attempts to estimate the creditworthiness of prospective customers from a sample of their past payment habits. The home buyer attempts to estimate the future course of interest rates by observing the current behavior of those rates. In each case, somebody is trying to infer something about a population from information taken from a sample.This chapter introduces methods that enable us to estimate with reasonable accuracy the population proportion (the proportion of the population that possesses a given characteristic)

Estimating population

parameters and the population mean. To calculate the exact proportion or the exact mean would be an impossible goal. Even so, we will be able to make an estimate, make a statement about the error that
will probably accompany this estimate, and implement some controls to avoid as much of the error as possible. As decision makers, we will be forced at times to rely on blind hunches. Yet in other situations, in which information is available and we apply statistical concepts, we can do better than that.

Types of Estimates

We can make two types of estimates about a population: a point Point estimate defined estimate and an interval estimate. A point estimate is a single
number that is used to estimate an unknown population parameter. If, while watching the first members of a football team come onto the field, you say, "Why, I bet their line must average 250 pounds," you have made a point estimate. A department head would make a point estimate if she said, "Our current data indicate that this course will have 350 students in the fall."

A point estimate is often insufficient, because it is either right Shortcoming of point estimates or wrong. If you are told only that her point estimate of enroll-
ment is wrong, you do not know how wrong it is, and you cannot be certain of the estimate's reliability. If you learn that it is off by only 10 students, you would accept 350 students as a good estimate of future enrollment. But if the estimate is off by 90 students, you would reject it as an estimate of future enrollment. Therefore, a point estimate is much more useful if it is accompanied by an estimate of the error that might be involved.

An interval estimate is a range of values used to estimate Interval estimate defined a population parameter. It indicates the error in two ways:
by the extent of its range and by the probability of the true population parameter lying within that range. In this case, the department head would say something like, "I estimate that the true enrollment in this course in the fall will be between 330 and 380 and that it is very likely that the exact enrollment will fall within this interval." She has a better idea of the reliability of her estimate. If the course is taught in sections of about 100 students each, and if she had tentatively scheduled five sections, then on the basis of her estimate, she can now cancel one of those sections and offer an elective instead.

Estimator and Estimates

Any sample statistic that is used to estimate a population param-

Estimator defined eter is called an estimator, that is, an estimator is a sample sta-
tistic used to estimate a population parameter. The sample mean \bar{x} can be an estimator of the population mean μ, and the sample proportion can be used as an estimator of the population proportion. We can also use the sample range as an estimator of the population range.

When we have observed a specific numerical value of our Estimate defined estimator, we call that value an estimate. In other words, an esti-
mate is a specific observed value of a statistic. We form an estimate by taking a sample and computing the value taken by our estimator in that sample. Suppose that we calculate the mean odometer reading (mileage) from a sample of used taxis and find it to be 98,000 miles. If we use this specific value to estimate the mileage for a whole fleet of used taxis, the value 98,000 miles would be an estimate. Table 7-1 illustrates several populations, population parameters, estimators, and estimates.

TABLE 7-1 POPULATIONS, POPULATION PARAMETERS, ESTIMATORS, AND ESTIMATES

Population in Which We Are Interested	Population Parameter We Wish to Estimate	Sample Statistic We Will Use as an Estimator	Estimate We Make
Employees in a furniture factory	Mean turnover per year	Mean turnover for a period of 1 month	8.9\% turnover per year
Applicants for Town Manager of Chapel Hill	Mean formal education (years)	Mean formal education of every fifth applicant	17.9 years of formal education
Teenagers in a given community	Proportion who have criminal records	Poportion of a sample of 50 teenagers who have criminal records	0.02 , or 2%, have criminal records

Criteria of a Good Estimator

Some statistics are better estimators than others. Fortunately, we

Qualities of a good estimator

 can evaluate the quality of a statistic as an estimator by using four criteria:1. Unbiasedness. This is a desirable property for a good estimator to have. The term unbiasedness refers to the fact that a sample mean is an unbiased estimator of a population mean because the mean of the sampling distribution of sample means taken from the same population is equal to the population mean itself. We can say that a statistic is an unbiased estimator if, on average, it tends to assume values that are above the population parameter being estimated as frequently and to the same extent as it tends to assume values that are below the population parameter being estimated.
2. Efficiency. Another desirable property of a good estimator is that it be efficient. Efficiency refers to the size of the standard error of the statistic. If we compare two statistics from a sample of the same size and try to decide which one is the more efficient estimator, we would pick the statistic that has the smaller standard error, or standard deviation of the sampling distribution. Suppose we choose a sample of a given size and must decide whether to use the sample mean or the sample median to estimate the population mean. If we calculate the standard error of the sample mean and find it to be 1.05 and then calculate the standard error of the sample median and find it to be 1.6 , we would say that the sample mean is a more efficient estimator of the population mean because its standard error is smaller. It makes sense that an estimator with a smaller standard error (with less variation) will have more chance of producing an estimate nearer to the population parameter under consideration.
3. Consistency. A statistic is a consistent estimator of a population parameter if as the sample size increases, it becomes almost certain that the value of the statistic comes very close to the value of the population parameter. If an estimator is consistent, it becomes more reliable with large samples. Thus, if you are wondering whether to increase the sample size to get more information about a population parameter, find out first whether your statistic is a consistent estimator. If it is not, you will waste time and money by taking larger samples.
4. Sufficiency. An estimator is sufficient if it makes so much use of the information in the sample that no other estimator could extract from the sample additional information about the population parameter being estimated.

We present these criteria here to make you aware of the care that statisticians must use in picking an estimator.

A given sample statistic is not always the best estimator of its analogous population parameter. Consider a symmetrically dis-

Finding the best estimator tributed population in which the values of the median and the mean coincide. In this instance, the sample mean would be an unbiased estimator of population median. Also, the sample mean would be a consistent estimator of the population median because, as the sample size increases, the value of the sample mean would tend to come very close to the population median. And the sample mean would be a more efficient estimator of the population median than the sample median itself because in large samples, the sample mean has a smaller standard error than the sample median. At the same time, the sample median in a symmetrically distributed population would be an unbiased and consistent estimator of the population mean but not the most efficient estimator because in large samples, its standard error is larger than that of the sample mean.

EXERCISES 7.1

7-1 What two basic tools are used in making statistical inferences?
7-2 Why do decision makers often measure samples rather than entire populations? What is the disadvantage?
7-3 Explain a shortcoming that occurs in a point estimate but not in an interval estimate. What measure is included with an interval estimate to compensate for this?
7-4 What is an estimator? How does an estimate differ from an estimator?
7-5 List and describe briefly the criteria of a good estimator.
7-6 What role does consistency play in determining sample size?

7.2 POINT ESTIMATES

The sample mean \bar{x} is the best estimator of the population mean μ. It is unbiased, consistent, the most efficient estimator, and, as long as the sample is sufficiently large, its sampling distribution can be approximated by the normal distribution.

If we know the sampling distribution of \bar{x}, we can make statements about any estimate we may make from sampling informa-

Using the sample mean to estimate the population mean

Finding the sample mean tion. Let's look at a medical-supplies company that produces disposable hypodermic syringes. Each syringe is wrapped in a sterile package and then jumble-packed in a large corrugated carton. Jumble packing causes the cartons to contain differing numbers of syringes. Because the syringes are sold on a per unit basis, the company needs an estimate of the number of syringes per carton for billing purposes. We have taken a sample of 35 cartons at random and recorded the number of syringes in each carton. Table 7-2 illustrates our results. Using the results of Chapter 3, we can obtain the sample mean \bar{x} by finding the sum of all our results, $\sum x$, and dividing this total by n, the number of cartons we have sampled:

$$
\begin{equation*}
\bar{x}=\frac{\sum x}{n} \tag{3-2}
\end{equation*}
$$

Using this equation to solve our problem, we get

$$
\begin{aligned}
\bar{x} & =\frac{3,570}{35} \\
& =102 \text { syringes }
\end{aligned}
$$

TABLE 7-2 RESULTS OF A SAMPLE OF 35 CARTONS OF HYPODERMIC SYRINGES (SYRINGES PER CARTON)

101	103	112	102	98	97	93
105	100	97	107	93	94	97
97	100	110	106	110	103	99
93	98	106	100	112	105	100
114	97	110	102	98	112	99

Thus, using the sample mean \bar{x} as our estimator, the point estimate of the population mean μ is 102 syringes per carton. The manufactured price of a disposable hypodermic syringe is quite small (about 25ϕ), so both the buyer and seller would accept the use of this point estimate as the basis for billing, and the manufacturer can save the time and expense of counting each syringe that goes into a carton.

Point Estimate of the Population Variance and Standard Deviation

Suppose the management of the medical-supplies company wants to estimate the variance and/or standard deviation of the distribution of the number of packaged syringes per carton. The most frequently used estimator of the population standard devia-

Using the sample standard deviation to estimate the population standard deviation tion σ is the sample standard deviation s. We can calculate the sample standard deviation as in Table $7-3$ and discover that it is 6.01 syringes.

TABLE 7-3 CALCULATION OF SAMPLE VARIANCE AND STANDARD DEVIATION FOR SYRINGES PER CARTON

Values of \boldsymbol{x} (Needles per Carton) $(\mathbf{1})$	\boldsymbol{x}^{2} $\mathbf{(2)}$	Sample Mean \boldsymbol{x} $\mathbf{(3)}$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})$ $(\mathbf{4})=(\mathbf{1})-(\mathbf{3})$	$(\boldsymbol{x}-\overline{\boldsymbol{x}})^{2}$ $(\mathbf{5})=(\mathbf{4})^{2}$
101	10,201	102	-1	1
105	11,025	102	3	9
97	9,409	102	-5	25
93	8,649	102	-9	81
114	12,996	102	12	144
103	10,609	102	1	1
100	10,000	102	-2	4
100	10,000	102	-2	4
98	9,604	102	-4	16
97	9,409	102	-5	25
112	12,544	102	10	100
97	9,409	102	-5	25

TABLE 7-3 CALCULATION OF SAMPLE VARIANCE AND STANDARD DEVIATION FOR SYRINGES PER CARTON (Contd.)

If, instead of considering

$$
\begin{equation*}
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \tag{3-17}
\end{equation*}
$$

as our sample variance, we had considered

Why is $n-1$ the divisor?

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n}
$$

the result would have some bias as an estimator of the population variance; specifically, it would tend to be too low. Using a divisor of $n-1$ gives us an unbiased estimator of σ^{2}. Thus, we will use s^{2} (as defined in Equation 3-17) and s (as defined in Equation 3-18) to estimate σ^{2} and σ.

Point Estimate of the Population Proportion

The proportion of units that have a particular characteristic in a given population is symbolized p. If we know the proportion of units in a sample that have that same characteristic (symbolized \bar{p}), we can use this \bar{p} as an estimator of p. It can be shown that \bar{p} has all the desirable properties we discussed earlier; it is unbiased, consistent, efficient, and sufficient.

Continuing our example of the manufacturer of medical supplies, we shall try to estimate the population proportion from the sample proportion. Suppose management wishes to estimate the number of cartons that will arrive damaged, owing to poor handling in shipment after the cartons leave the factory. We can check a sample of 50 cartons from their shipping point to the arrival at their destination and then record the presence or absence of damage. If, in this case, we find that the proportion of damaged cartons in the sample is 0.08 , we would say that

$$
\bar{p}=0.08 \leftarrow \text { Sample proportion damaged }
$$

Because the sample proportion \bar{p} is a convenient estimator of the population proportion p, we can estimate that the proportion of damaged cartons in the population will also be 0.08 .

HINTS \& ASSUMPTIONS

Putting all of the definitions aside, the reason we study estimators is so we can learn about populations by sampling, without counting every item in the population. Of course, there is no free lunch here either, and when we give up counting everything, we lose some accuracy. Managers would like to know the accuracy that is achieved when we sample, and using the ideas in this chapter, we can tell them. Hint: Determining the best sample size is not just a statistical decision. Statisticians can tell you how the standard error behaves as you increase or decrease the sample size, and market researchers can tell you what the cost of taking more or larger samples will be. But it's you who must use your judgment to combine these two inputs to make a sound managerial decision.

EXERCISES 7.2

Self-Check Exercises

SC 7-1 The National Stadium is considering expanding its seating capacity and needs to know both the average number of people who attend events there and the variability in this number. The following are the attendances (in thousands) at nine randomly selected sporting events. Find point estimates of the mean and the variance of the population from which the sample was drawn

$$
\begin{array}{lllllllll}
8.8 & 14.0 & 21.3 & 7.9 & 12.5 & 20.6 & 16.3 & 14.1 & 13.0
\end{array}
$$

SC 7-2 The Pizza Distribution Authority (PDA) has developed quite a business in Mumbai by delivering pizza orders promptly. PDA guarantees that its pizzas will be delivered in 30 minutes or less from the time the order was placed, and if the delivery is late, the pizza is free. The time that it takes to deliver each pizza order that is on time is recorded in the Official Pizza Time Book (OPTB), and the delivery time for those pizzas that are delivered late is recorded as 30 minutes in the OPTB. Twelve random entries from the OPTB are listed.

15.3	29.5	30.0	10.1	30.0	19.6
10.8	12.2	14.8	30.0	22.1	18.3

(a) Find the mean for the sample.
(b) From what population was this sample drawn?
(c) Can this sample be used to estimate the average time that it takes for PDA to deliver a pizza? Explain.

Applications

7-7
Joe Jackson, a meteorologist for local television station WDUL, would like to report the average rainfall for today on this evening's newscast. The following are the rainfall measurements (in inches) for today's date for 16 randomly chosen past years. Determine the sample mean rainfall.

0.47	0.27	0.13	0.54	0.00	0.08	0.75	0.06
0.00	1.05	0.34	0.26	0.17	0.42	0.50	0.86

7-8 The National Bank of India is trying to determine the number of tellers available during the lunch rush on Fridays. The bank has collected data on the number of people who entered the bank during the last 3 months on Friday from 11 a.m. to 1 p.m. Using the data below, find point estimates of the mean and standard deviation of the population from which the sample was drawn.

$$
\begin{array}{llllllllllll}
242 & 275 & 289 & 306 & 342 & 385 & 279 & 245 & 269 & 305 & 294 & 328
\end{array}
$$

7-9 Electric Pizza was considering national distribution of its regionally successful product and was compiling pro forma sales data. The average monthly sales figures (in ten thousand rupees) from its 30 current distributors are listed. Treating them as (a) a sample and (b) a population, compute the standard deviation.

7.3	5.8	4.5	8.5	5.2	4.1
2.8	3.8	6.5	3.4	9.8	6.5

6.7	7.7	5.8	6.8	8.0	3.9
6.9	3.7	6.6	7.5	8.7	6.9
2.1	5.0	7.5	5.8	6.4	5.2

7-10 In a sample of 400 textile workers, 184 expressed extreme dissatisfaction regarding a prospective plan to modify working conditions. Because this dissatisfaction was strong enough to allow management to interpret plan reaction as being highly negative, they were curious about the proportion of total workers harboring this sentiment. Give a point estimate of this proportion.
7-11 The Friends of the Psychics network charges $\$ 3$ per minute to learn the secrets that can turn your life around. The network charges for whole minutes only and rounds up to benefit the company. Thus, a 2 minute 10 second call costs $\$ 9$. Below is a list of 15 randomly selected charges.

$$
\begin{array}{lllllllllllllll}
3 & 9 & 15 & 21 & 42 & 30 & 6 & 9 & 6 & 15 & 21 & 24 & 32 & 9 & 12
\end{array}
$$

(a) Find the mean of the sample.
(b) Find a point estimate of the variance of the population.
(c) Can this sample be used to estimate the average length of a call? If so, what is your estimate? If not, what can we estimate using this sample?

Worked-Out Answers to Self-Check Exercises

SC 7-1 $\quad \sum x^{2}=2003.65 \quad \sum x=128.5 \quad n=9$
$\bar{x}=\frac{\sum x}{n}=\frac{128.5}{9}=14.2778$ thousands of people
$s^{2}=\frac{1}{n-1}\left(\sum x^{2}-n \bar{x}^{2}\right)=\frac{2003.65-9(14.2778)^{2}}{8}$
$=21.119(1,000 \mathrm{~s} \text { of people })^{2}$
SC 7-2
(a) $\bar{x}=\frac{\sum x}{n}=\frac{242.7}{12}=20.225$ minutes.
(b) The population of times recorded in the OPTB.
(c) No, it cannot. Because every delivery time over 30 minutes is recorded as 30 minutes, use of these will consistently underestimate the average of the delivery time.

7.3 INTERVAL ESTIMATES: BASIC CONCEPTS

The purpose of gathering samples is to learn more about a population. We can compute this information from the sample data as either point estimates, which we have just discussed, or as interval estimates, the subject of the rest of this chapter. An interval estimate describes a range of values within which a population parameter is likely to lie.

Suppose the marketing research director needs an estimate of Start with the point estimate the average life in months of car batteries his company manufactures. We select a random sample of 200 batteries, record the car owners' names and addresses as listed in store records, and interview these owners about the battery life they have experienced. Our sample of

200 users has a mean battery life of 36 months. If we use the point estimate of the sample mean \bar{x} as the best estimator of the population mean μ, we would report that the mean life of the company's batteries is 36 months.

But the director also asks for a statement about the uncertainty that will be likely to accompany this estimate, that is, a statement

Finding the likely error of this estimate about the range within which the unknown population mean is likely to lie. To provide such a statement, we need to find the standard error of the mean.

We learned from Chapter 6 that if we select and plot a large number of sample means from a population, the distribution of these means will approximate a normal curve. Furthermore, the mean of the sample means will be the same as the population mean. Our sample size of 200 is large enough that we can apply the central limit theorem, as we have done graphically in Figure 7-1. To measure the spread, or dispersion, in our distribution of sample means, we can use the following formula* and calculate the standard error of the mean:

Suppose we have already estimated the standard deviation of the population of the batteries and reported that it is 10 months. Using this standard deviation and the first equation from Chapter 6, we can calculate the standard error of the mean:

$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
& =\frac{10}{\sqrt{200}} \\
& =\frac{10}{14.14}
\end{align*}
$$

FIGURE 7-1 SAMPLING DISTRIBUTION OF THE MEAN FOR SAMPLES OF 200 BATTERIES

We could now report to the director that our estimate of the Making an interval estimate life of the company's batteries is 36 months, and the standard

Mang an inte error that accompanies this estimate is 0.707 . In other words, the actual mean life for all the batteries may lie somewhere in the interval estimate of 35.293 to 36.707 months. This is helpful but insufficient information for the director. Next, we need to calculate the chance that the actual life will lie in this interval or in other intervals of different widths that we might choose, $\pm 2 \sigma(2 \times 0.707), \pm 3 \sigma(3 \times 0.707)$, and so on.

[^4]
Probability of the True Population Parameter Falling within the Interval Estimate

To begin to solve this problem, we should review relevant parts of Chapter 5 . There we worked with the normal probability distribution and learned that specific portions of the area under the normal curve are located between plus and minus any given number of standard deviations from the mean. In Figure 5-9, we saw how to relate these portions to specific probabilities.

Fortunately, we can apply these properties to the standard error of the mean and make the following statement about the range of values used to make an interval estimate for our battery

Finding the chance the mean will fall in this interval estimate problem.

The probability is 0.955 that the mean of a sample size of 200 will be within ± 2 standard errors of the population mean. Stated differently, 95.5 percent of all the sample means are within ± 2 standard errors from μ, and hence μ is within ± 2 standard errors of $\mathbf{9 5 . 5}$ percent of all the sample means. Theoretically, if we select 1,000 samples at random from a given population and then construct an interval of ± 2 standard errors around the mean of each of these samples, about 955 of these intervals will include the population mean. Similarly, the probability is 0.683 that the mean of the sample will be within ± 1 standard error of the population mean, and so forth. This theoretical concept is basic to our study of interval construction and statistical inference. In Figure 7-2, we have illustrated the concept graphically, showing five such intervals. Only the interval constructed around the sample mean \bar{x}_{4} does not contain the population mean. In words, statisticians would describe the interval estimates represented in Figure $7-2$ by saying, "The population mean μ will be located within ± 2 standard errors from the sample mean 95.5 percent of the time."

As far as any particular interval in Figure 7-2 is concerned, it either contains the population mean or it does not, because the population mean is a fixed parameter. Because we know that in 95.5 percent of all samples, the interval will contain the population mean, we say that we are 95.5 percent confident that the interval contains the population mean.

Applying this to the battery example, we can now report to the A more useful estimate of director. Our best estimate of the life of the company's batteries

battery life

 is 36 months, and we are 68.3 percent confident that the life lies in the interval from 35.293 to 36.707 months ($36 \pm 1 \sigma_{\bar{x}}$). Similarly, we are 95.5 percent confident that the life falls within the interval of 34.586 to 37.414 months ($36 \pm 2 \sigma_{\bar{x}}$), and we are 99.7 percent confident that battery life falls within the interval of 33.879 to 38.121 months ($36 \pm 3 \sigma_{\bar{x}}$).
HINTS \& ASSUMPTIONS

Every time you make an estimate there is an implied error in it. For people to understand this error, it's common practice to describe it with a statement like "Our best estimate of the life of this set of tires is 40,000 miles and we are 90 percent sure that the life will be between 35,000 and 45,000 miles." But if your boss demanded to know the precise average life of a set of tires, and if she were not into sampling, you'd have to watch hundreds of thousands of sets of tires being worn out and then calculate how long they lasted on average. Warning: Even then you'd be sampling because it's impossible to watch and measure every set of tires that's being used. It's a lot less expensive and a lot faster to use sampling to find the answer. And if you understand estimates, you can tell your boss what risks she is taking in using a sample to estimate real tire life.

FIGURE 7-2 A NUMBER OF INTERVALS CONSTRUCTED AROUND SAMPLE MEANS; ALL EXCEPT ONE INCLUDE THE POPULATION MEAN

EXERCISES 7.3

Self-Check Exercises

SC 7-3 For a population with a known variance of 185, a sample of 64 individuals leads to 217 as an estimate of the mean.
(a) Find the standard error of the mean.
(b) Establish an interval estimate that should include the population mean 68.3 percent of the time.
SC 7-4 Eunice Gunterwal is a frugal undergraduate at State U, who is interested in purchasing a used car. She randomly selected 125 want ads and found that the average price of a car in this sample was $\$ 3,250$. Eunice knows that the standard deviation of used-car prices in this city is \$615.
(a) Establish an interval estimate for the average price of a car so that Eunice can be 68.3 percent certain that the population mean lies within this interval.
(b) Establish an interval estimate for the average price of a car so that Miss Gunterwal can be 95.5 percent certain that the population mean lies within this interval.

Basic Concepts

7-12 From a population known to have a standard deviation of 1.4, a sample of 60 individuals is taken. The mean for this sample is found to be 6.2.
(a) Find the standard error of the mean.
(b) Establish an interval estimate around the sample mean, using one standard error of the mean.
7-13 From a population with known standard deviation of 1.65, a sample of 32 items resulted in 34.8 as an estimate of the mean.
(a) Find the standard error of the mean.
(b) Compute an interval estimate that should include the population mean 99.7 percent of the time.

Applications

7-14 The Central University is conducting a study on the average weight of the many bricks that make up the university's walkways. Workers are sent to dig up and weigh a sample of 421 bricks and the average brick weight of this sample was 14.2 lb . It is a well-known fact that the standard deviation of brick weight is 0.8 lb .
(a) Find the standard error of the mean.
(b) What is the interval around the sample mean that will include the population mean 95.5 percent of the time?

7-15 Because the owner of the Bard's Nook, a recently opened restaurant, has had difficulty estimating the quantity of food to be prepared each evening, he decided to determine the mean number of customers served each night. He selected a sample of 30 nights, which resulted in a mean of 71 . The population standard deviation has been established as 3.76 .
(a) Give an interval estimate that has a 68.3 percent probability of including the population mean.
(b) Give an interval estimate that has a 99.7 percent chance of including the population mean.

7-16 The manager of the Neuse River Bridge is concerned about the number of cars "running" the toll gates and is considering altering the toll-collection procedure if such alteration would be cost-effective. She randomly sampled 75 hours to determine the rate of violation. The resulting average violations per hour was 7 . If the population standard deviation is known to be 0.9 , estimate an interval that has a 95.5 percent chance of containing the true mean.
7-17 Gwen Taylor, apartment manager for WillowWood Apartments, wants to inform potential renters about how much electricity they can expect to use during August. She randomly selects 61 residents and discovers their average electricity usage in August to be 894 kilowatt hours (kwh). Gwen believes the variance in usage is about $131(\mathrm{kwh})^{2}$.
(a) Establish an interval estimate for the average August electricity usage so Gwen can be 68.3 percent certain the true population mean lies within this interval.
(b) Repeat part (a) with a 99.7 percent certainty.
(c) If the price per kwh is $\$ 0.12$, within what interval can Gwen be 68.3 percent certain that the average August cost for electricity will lie?

Worked-Out Answers to Self-Check Exercises

SC 7-3 $\quad \sigma^{2}=185 \quad \sigma=\sqrt{185}=13.60 \quad n=64 \quad \bar{x}=217$
(a) $\sigma_{\bar{x}}=\sigma / \sqrt{n}=13.60 / \sqrt{64}=1.70$
(b) $\bar{x} \pm \sigma_{\bar{x}}=217 \pm 1.70=(215.3,218.7)$

SC 7-4 $\quad \sigma=615 \quad n=125 \quad \bar{x}=3,250 \quad \sigma_{\bar{x}}=\sigma / \sqrt{n}=615 / \sqrt{125}=55.01$
(a) $\bar{x} \pm \sigma_{\bar{x}}=3,250 \pm 55.01=(\$ 3,194.99, \$ 3,305.01)$
(b) $\bar{x}+2 \sigma_{\bar{x}}=3,250 \pm 2(55.01)=3,250 \pm 110.02=(\$ 3,139.98, \$ 3,360.02)$

7.4 INTERVAL ESTIMATES AND CONFIDENCE INTERVALS

In using interval estimates, we are not confined to $\pm 1,2$, and 3 standard errors. According to Appendix Table 1, for example, ± 1.64 standard errors includes about 90 percent of the area under the curve; it includes 0.4495 of the area on either side of the mean in a normal distribution. Similarly, ± 2.58 standard errors includes about 99 percent of the area, or 49.51 percent on each side of the mean.

In statistics, the probability that we associate with an Confidence level defined interval estimate is called the confidence level. This probability indicates how confident we are that the interval esti-
mate will include the population parameter. A higher probability means more confidence. In estimation, the most commonly used confidence levels are 90 percent, 95 percent, and 99 percent, but we are free to apply any confidence level. In Figure 7-2, for example, we used a 95.5 percent confidence level.

The confidence interval is the range of the estimate we are making. If we report that we are 90 percent confident that the mean of the population of incomes of people in a certain community will lie between $\$ 8,000$ and $\$ 24,000$, then the range $\$ 8,000-\$ 24,000$ is our confidence interval. Often, however, we will express the confidence interval in standard errors rather than in numerical values. Thus, we will often express confidence intervals like this: $\bar{x} \pm 1.64 \sigma_{\bar{x}}$, where

$$
\begin{aligned}
& \bar{x}+1.64 \sigma_{\bar{x}}=\text { upper limit of the confidence interval } \\
& \bar{x}-1.64 \sigma_{\bar{x}}=\text { lower limit of the confidence interval }
\end{aligned}
$$

Thus, confidence limits are the upper and lower limits of the confidence interval. In this case, $\bar{x}+1.64 \sigma_{\bar{x}}$ is called the upper confidence limit (UCL) and $\bar{x}-1.64 \sigma_{\bar{x}}$, is the lower confidence limit (LCL).

Relationship between Confidence Level and Confidence Interval

You may think that we should use a high confidence level, such as 99 percent, in all estimation problems. After all, a high confidence level seems to signify a high degree of accuracy in the estimate. In practice, however, high confidence levels will produce large confidence intervals, and such large intervals are not precise; they give very fuzzy estimates.

Consider an appliance store customer who inquires about the delivery of a new washing machine. In Table 7-4 are several of the questions the customer might ask and the likely responses. This table indicates the direct relationship that exists between the confidence level and the confidence interval for any estimate. As the customer sets a tighter and tighter confidence interval, the store manager agrees to a lower and lower confidence level. Notice, too, that when the confidence interval is too wide, as is the case with a one-year delivery, the estimate may have very little real value, even though the store manager attaches a 99 percent confidence level to that estimate. Similarly, if the confidence interval is too narrow ("Will my washing machine get home before I do?"), the estimate is associated with such a low confidence level (1 percent) that we question its value.

TABLE 7-4 ILLUSTRATION OF THE RELATIONSHIP BETWEEN CONFIDENCE LEVEL AND CONFIDENCE INTERVAL

Customer's Question	Store Manager's Response	Implied Confidence Level	Implied Confidence Interval
Will I get my washing machine I am absolutely certain of that. within 1 year?	Better than 99\%	1 year	
Will you deliver the washing machine within 1 month?	I am almost positive it will be delivered this month.	At least 95\%	1 month
Will you deliver the washing machine within 1 week?	I am pretty certain it will go out within this week.	About 80%	1 week
Will I get my washing machine I am not certain we can get it tomorrow?	About 40\%	1 day	
Will my washing machine get home before I do?	There is little chance it will beat you home.	Near 1\%	1 hour

Using Sampling and Confidence Interval Estimation

In our discussion of the basic concepts of interval estimation, particularly in Figure 7-2, we described samples being drawn

Estimating from only one sample

 repeatedly from a given population in order to estimate a popu-sample
lation parameter. We also mentioned selecting a large number of sample means from a population. In practice, however, it is often difficult or expensive to take more than one sample from a population. Based on just one sample, we estimate the population parameter. We must be careful, then, about interpreting the results of such a process.

Suppose we calculate from one sample in our battery example the following confidence interval and confidence level: "We are 95 percent confident that the mean battery life of the population lies within 30 and 42 months." This statement does not mean that the chance is $\mathbf{0 . 9 5}$ that the mean life of all our batteries falls within the interval established from this one sample. Instead, it means that if we select many random samples of the same size and calculate a confidence interval for each of these samples, then in about 95 percent of these cases, the population mean will lie within that interval.

HINTS \& ASSUMPTIONS

Warning: There is no free lunch in dealing with confidence levels and confidence intervals. When you want more of one, you have to take less of the other. Hint: To understand this important relationship, go back to Table 7-4. If you want the estimate of the time of delivery to be perfectly accurate (100 percent), you have to sacrifice tightness in the confidence interval and accept a very wide delivery promise ("sometime this year"). On the other hand, if you aren't concerned with the accuracy of the estimate, you could get a delivery person to say "I'm 1 percent sure I can get it to you within an hour." You can't have both at the same time.

EXERCISES 7.4

Self-Check Exercise

SC 7-5 Given the following confidence levels, express the lower and upper limits of the confidence interval for these levels in terms of \bar{x} and $\sigma_{\bar{x}}$.
(a) 54 percent.
(b) 75 percent.
(c) 94 percent.
(d) 98 percent.

Basic Concepts

7-18 Define the confidence level for an interval estimate.
7-19 Define the confidence interval.
7-20 Suppose you wish to use a confidence level of 80 percent. Give the upper limit of the confidence interval in terms of the sample mean, \bar{x}, and the standard error, $\sigma_{\bar{x}}$.
7-21 In what way may an estimate be less meaningful because of
(a) A high confidence level?
(b) A narrow confidence interval?

7-22 Suppose a sample of 50 is taken from a population with standard deviation 27 and that the sample mean is 86 .
(a) Establish an interval estimate for the population mean that is 95.5 percent certain to include the true population mean.
(b) Suppose, instead, that the sample size was 5,000. Establish an interval for the population mean that is 95.5 percent certain to include the true population mean.
(c) Why might estimate (a) be preferred to estimate (b)? Why might (b) be preferred to (a)?

7-23 Is the confidence level for an estimate based on the interval constructed from a single sample?

Applications

7-24 Habib Iqbal, who is the owner of Habib's Barbershop, has built quite a reputation among the residents of Kanpur. As each customer enters his barbershop, Habib yells out the number of minutes that the customer can expect to wait before getting his haircut. The only statistician in town, after being frustrated by Habib's inaccurate point estimates, has determined that the actual waiting time for any customer is normally distributed with mean equal to Habib's estimate in minutes and standard deviation equal to 5 minutes divided by the customer's position in the waiting line. Help Habib's customers develop 95 percent probability intervals for the following situations-
(a) The customer is second in line and Steve's estimate is 25 minutes.
(b) The customer is third in line and Steve's estimate is 15 minutes.
(c) The customer is fifth in line and Steve's estimate is 38 minutes.
(d) The customer is first in line and Steve's estimate is 20 minutes.
(e) How are these intervals different from confidence intervals?

Worked-Out Answers to Self-Check Exercise

SC 7-5
(a) $\bar{x} \pm 0.74 \sigma_{\bar{x}}$.
(b) $\bar{x} \pm 1.15 \sigma_{\bar{x}}$.
(c) $\bar{x} \pm 1.88 \sigma_{\bar{x}}$.
(d) $\bar{x} \pm 2.33 \sigma_{\bar{x}}$.

7.5 CALCULATING INTERVAL ESTIMATES OF THE MEAN FROM LARGE SAMPLES

A large automotive-parts wholesaler needs an estimate of the mean life it can expect from windshield wiper blades under typi-

Finding a 95 percent confidence interval cal driving conditions. Already, management has determined that the standard deviation of the population life is 6 months. Suppose we select a simple random sample of 100 wiper blades, collect data on their useful lives, and obtain these results:

$$
\begin{aligned}
& n=100 \leftarrow \text { Sample size } \\
& \bar{x}=21 \text { months } \leftarrow \text { Sample mean } \\
& \sigma=6 \text { months } \leftarrow \text { Population standard deviation }
\end{aligned}
$$

Because the wholesaler uses tens of thousands of these wiper blades annually, it requests that we find an interval estimate with a confidence level of 95 percent. The sample size is greater than

Population standard deviation is known 30 , so the central limit theorem allows us to use the normal distribution as our sampling distribution even if the population isn't normal. We calculate the standard error of the mean by using Equation 6-1:

$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
& =\frac{6 \text { months }}{\sqrt{100}} \\
& =\frac{6}{10} \\
& =0.6 \text { month } \leftarrow \text { Standard error of the mean for an infinite population }
\end{align*}
$$

Next, we consider the confidence level with which we are working. Because a 95 percent confidence level will include 47.5 percent of

Calculating confidence limits ment the area on either side of the mean of the sampling distribution, we can search in the body of Appendix Table 1 for the 0.475 value. We discover that 0.475 of the area under the normal curve is contained between the mean and a point 1.96 standard errors to the right of the mean. Therefore, we know that $(2)(0.475)=0.95$ of the area is located between plus and minus 1.96 standard errors from the mean and that our confidence limits are

$$
\begin{aligned}
& \bar{x}+1.96 \sigma_{\bar{x}} \leftarrow \text { Upper confidence limit } \\
& \bar{x}+1.96 \sigma_{\bar{x}} \leftarrow \text { Lower confidence limit }
\end{aligned}
$$

Then we substitute numerical values into these two expressions:.

$$
\begin{aligned}
\bar{x}+1.96 \sigma_{\bar{x}} & =21 \text { months }+1.96(0.6 \text { month }) \\
& =21+1.18 \text { months } \\
& =22.18 \text { months } \leftarrow \text { Upper confidence limit } \\
\bar{x}+1.96 \sigma_{\bar{x}} & =21 \text { months }-1.96(0.6 \text { month }) \\
& =21-1.18 \text { months } \\
& =19.82 \text { months } \leftarrow \text { Lower confidence limit }
\end{aligned}
$$

We can now report that we estimate the mean life of the population of wiper blades to be between 19.82 and 22.18 months with 95 percent confidence.

When the Population Standard Deviation Is Unknown

A more complex interval estimate problem comes from a socialservice agency in a local government. It is interested in estimating the mean annual income of 700 families living in a four-square-

Finding a 90 percent confidence interval block section of a community. We take a simple random sample and find these results:

$$
\begin{aligned}
& n=50 \leftarrow \text { Sample size } \\
& \bar{x}=\$ 11,800 \leftarrow \text { Sample mean } \\
& s=\$ 950 \leftarrow \text { Sample standard deviation }
\end{aligned}
$$

The agency asks us to calculate an interval estimate of the mean annual income of all 700 families so that it can be 90 percent confident that the population mean falls within that interval. The sample size is over 30, so once again the central limit theorem enables us to use the normal distribution as the sampling distribution.

Notice that one part of this problem differs from our previous examples: we do not know the population standard deviation, and so we will use the sample standard deviation to estimate the population standard deviation:

Estimating the population
 standard deviation

Estimate of the Population Standard Deviation

$\begin{aligned} & \text { Estimate of the population } \\ & \text { standard deviation }\end{aligned} \longrightarrow \hat{\sigma}=s=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}}$

The value $\$ 950.00$ is our estimate of the standard deviation of the population. We can also symbolize this estimated value by $\hat{\sigma}$, which is called sigma hat.

Now we can estimate the standard error of the mean. Because we have a finite population size of 700, and because our sample is more than 5 percent of the population, we will use the formula for deriving the standard error of the mean of finite populations:

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \tag{6-3}
\end{equation*}
$$

But because we are calculating the standard error of the mean using an estimate of the standard deviation of the population, we must rewrite this equation so that it is correct symbolically:

Estimating the standard error of the mean

Estimated Standard Error of the Mean of a Finite Population

$$
\text { Continuing our example, we find } \begin{aligned}
\hat{\sigma}_{\bar{x}} & =\frac{\$ 950.00}{\sqrt{50}} \times \sqrt{\frac{700-50}{700-1}} \\
& =\frac{\$ 950.00}{7.07} \sqrt{\frac{650}{699}} \\
& =(\$ 134.37)(0.9643) \\
& =\$ 129.57 \leftarrow \\
& \begin{array}{l}
\text { Estimate of the standard error of the mean of a } \\
\\
\\
\text { finite population }(\text { derived from an estimate of the } \\
\text { population standard deviation) }
\end{array}
\end{aligned}
$$

Next we consider the 90 percent confidence level, which would include 45 percent of the area on either side of the mean of the sampling distribution. Looking in the body of Appendix Table 1 for the 0.45 value, we find that about 0.45 of the area under the normal curve is located between the mean and a point 1.64 standard errors away from the mean. Therefore, 90 percent of the area is located between plus and minus 1.64 standard errors away from the mean, and our confidence limits are

$$
\begin{aligned}
\bar{x}+1.64 \hat{\sigma}_{\bar{x}} & =\$ 11,800+1.64(\$ 129.57) \\
& =\$ 11,800+\$ 212.50 \\
& =\$ 12,012.50 \leftarrow \text { Upper confidence limit } \\
\bar{x}-1.64 \hat{\sigma}_{\bar{x}} & =\$ 11,800-1.64(\$ 129.57) \\
& =\$ 11,800-\$ 212.50 \\
& =\$ 11,587.50 \leftarrow \text { Lower confidence limit }
\end{aligned}
$$

Our report to the social-service agency would be: With 90 percent confidence, we estimate that the average annual income of all 700 families living in this four-square-block section falls between $\$ 11,587.50$ and $\$ 12,012.50$.

HINTS \& ASSUMPTIONS

Hint: It's easy to understand how to approach these exercises if you'll go back to Figure 7-2 on page 327 for a minute. When someone states a confidence level, they are referring to the shaded area in the figure, which is defined by how many $\sigma_{\bar{x}}$ (standard errors or standard deviations of the distribution of sample means) there are on either side of the mean. Appendix Table 1 quickly converts any desired confidence level into standard errors. Because we have the information necessary to calculate one standard error, we can calculate the endpoints of the shaded area. These are the limits of our confidence interval. Warning: When you don't know the dispersion in the population (the population standard deviation) remember to use Equation 7-1 to estimate it.

EXERCISES 7.5

Self-Check Exercises

SC 7-6 From a population of 540, a sample of 60 individuals is taken. From this sample, the mean is found to be 6.2 and the standard deviation 1.368.
(a) Find the estimated standard error of the mean.
(b) Construct a 96 percent confidence interval for the mean.

SC 7-7 In an automotive safety test conducted by the New Delhi Highway Safety Research Center, the average tire pressure in a sample of 62 tires was found to be 24 pounds per square inch, and the standard deviation was 2.1 pounds per square inch.
(a) What is the estimated population standard deviation for this population? (There are about a million cars registered in New Delhi.)
(b) Calculate the estimated standard error of the mean.
(c) Construct a 95 percent confidence interval for the population mean.

Basic Concepts

7-25 The manager of Cardinal Electric's lightbulb division must estimate the average number of hours that a lightbulb made by each lightbulb machine will last. A sample of 40 lightbulbs was selected from machine A and the average burning time was 1,416 hours. The standard deviation of burning time is known to be 30 hours.
(a) Compute the standard error of the mean.
(b) Construct a 90 percent confidence interval for the true population mean.

7-26 Upon collecting a sample of 250 from a population with known standard deviation of 13.7 , the mean is found to be 112.4.
(a) Find a 95 percent confidence interval for the mean.
(b) Find a 99 percent confidence interval for the mean.

Applications

7-27 The Westview High School nurse is interested in knowing the average height of seniors at this school, but she does not have enough time to examine the records of all 430 seniors. She randomly selects 48 students. She finds the sample mean to be 64.5 inches and the standard deviation to be 2.3 inches.
(a) Find the estimated standard error of the mean.
(b) Construct a 90 percent confidence interval for the mean.

7-28 Jon Jackobsen, an overzealous graduate student, has just completed a first draft of his 700page dissertation. Jon has typed his paper himself and is interested in knowing the average number of typographical errors per page, but does not want to read the whole paper. Knowing a little bit about business statistics, Jon selected 40 pages at random to read and found that the average number of typos per page was 4.3 and the sample standard deviation was 1.2 typos per page.
(a) Calculate the estimated standard error of the mean.
(b) Construct for Jon a 90 percent confidence interval for the true average number of typos per page in his paper.

7-29 The New Delhi Cable Television authority conducted a test to determine the amount of time people spend watching television per week. The NCTA surveyed 84 subscribers and found the average number of hours watched per week to be 11.6 hours and the standard deviation to be 1.8 hours.
(a) What is the estimated population standard deviation for this population? (There are about 95,000 people with cable television in New Delhi.)
(b) Calculate the estimated standard error of the mean.
(c) Construct a 98 percent confidence interval for the average time people spend on TV in New Delhi.
7-30 Samuel Singh is a broker on the Bombay Stock Exchange who is curious about the amount of time between the placement and execution of a market order. Samuel sampled 45 orders and found that the mean time to execution was 24.3 minutes and the standard deviation was 3.2 minutes. Help Samuel by constructing a 95 percent confidence interval for the mean time to execution.
7-31 Neelesh Pant is the production manager for Citrus Groves Inc., located just north of Ranikhet, Uttarakhand. Neelesh is concerned that the last 3 years' late freezes have damaged the 2,500 orange trees that Citrus Groves owns. In order to determine the extent of damage to the trees, Neelesh has sampled the number of oranges produced per tree for 42 trees and found that the average production was 525 oranges per tree and the standard deviation was 30 oranges per tree.
(a) Estimate the population standard deviation from the sample standard deviation.
(b) Estimate the standard error of the mean for this finite population.
(c) Construct a 98 percent confidence interval for the mean per-tree output of all 2,500 trees.
(d) If the mean orange output per tree was 600 oranges 5 years ago, what can Neelesh say about the possible existence of damage now?

Worked-Out Answers to Self-Check Exercises

SC 7-6 $\quad \hat{\sigma}=1.368 \quad N=540 \quad n=60 \quad \bar{x}=6.2$
(a) $\hat{\sigma}_{\bar{x}}=\frac{\hat{\sigma}}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}}=\frac{1.368}{\sqrt{60}} \times \sqrt{\frac{540-60}{540-1}}=0.167$
(b) $\bar{x} \pm 2.05 \hat{\sigma}_{\bar{x}}=6.2 \pm 2.05(0.167)=6.2 \pm 0.342=(5.86,6.54)$

SC 7-7 $s=2.1 \quad n=62 \quad \bar{x}=24$
(a) $\hat{\sigma}=s=2.1 \mathrm{psi}$
(b) $\hat{\sigma}_{\bar{x}}=\hat{\sigma} / \sqrt{n}=2.1 / \sqrt{62}=0.267 \mathrm{psi}$
(c) $\bar{x} \pm 1.96 \hat{\sigma}_{\bar{x}}=24 \pm 1.96(0.267)=24 \pm 0.523=(23.48,24.52) \mathrm{psi}$

7.6 CALCULATING INTERVAL ESTIMATES OF THE PROPORTION FROM LARGE SAMPLES

Statisticians often use a sample to estimate a proportion of occurrences in a population. For example, the government estimates by a sampling procedure the unemployment rate, or the proportion of unemployed people, in the U.S. workforce.

Review of the binomial distribution

In Chapter 5, we introduced the binomial distribution, a distribution of discrete, not continuous, data. Also, we presented the two formulas for deriving the mean and the standard deviation of the binomial distribution:

$$
\begin{align*}
\mu & =n p \tag{5-2}\\
\sigma & =\sqrt{n p q} \tag{5-3}
\end{align*}
$$

where

- $n=$ number of trials
- $p=$ probability of success
- $q=1-p=$ probability of a failure

Theoretically, the binomial distribution is the correct distribution to use in constructing confidence intervals to estimate a population proportion.

Because the computation of binomial probabilities is so Shortcomings of the binomial tedious (recall that the probability of r successes in n trials is $\left.[n!/ r!(n-r)!]\left[p^{r} q^{n-r}\right]\right)$, using the binomial distribution to form

distribution

 interval estimates of a population proportion is a complex proposition. Fortunately, as the sample size increases, the binomial can be approximated by an appropriate normal distribution, which we can use to approximate the sampling distribution. Statisticians recommend that in estimation, n be large enough for both $n p$ and $n q$ to be at least 5 when you use the normal distribution as a substitute for the binomial.Symbolically, let's express the proportion of successes in a sample by \bar{p} (pronounced p bar). Then modify Equation 5-2, so that we can use it to derive the mean of the sampling distribution

Finding the mean of the sample proportion of the proportion of successes. In words, $\mu=n p$ shows that the mean of the binomial distribution is equal to the product of the number of trials, n, and the probability of success, p; that is, $n p$ equals the mean number of successes. To change this number of successes to the proportion of successes, we divide $n p$ by n and get p alone. The mean in the left-hand side of the equation becomes $\mu_{\bar{p}}$, or the mean of the sampling distribution of the proportion of successes.

Mean of the Sampling Distribution of the Proportion
 $$
\begin{equation*} \mu_{\bar{p}}=p \tag{7-3} \end{equation*}
$$

Similarly, we can modify the formula for the standard deviation of the binomial distribution, $\sqrt{n p q}$, which measures the standard deviation in the number of successes. To change the

Finding the standard deviation of the sample proportion number of successes to the proportion of successes, we divide $\sqrt{n p q}$ by n and get $\sqrt{p q / n}$. In statistical terms, the standard deviation for the proportion of successes in a sample is symbolized and is called the standard error of the proportion.

Standard Error of the Proportion

Standard error of the proportion $\longrightarrow \sigma_{\bar{p}}=\sqrt{\frac{p q}{n}}$

We can illustrate how to use these formulas if we estimate for a very large organization what proportion of the employees prefer to provide their own retirement benefits in lieu of a company-sponsored plan. First, we conduct a simple random sample of 75 employees and find that 0.4 of them are interested in providing their own retirement plans. Our results are

$$
\begin{aligned}
& n=75 \leftarrow \text { Sample size } \\
& \bar{p}=0.4 \leftarrow \text { Sample proportion in favor } \\
& \bar{q}=0.6 \leftarrow \text { Sample proportion not in favor }
\end{aligned}
$$

Next, management requests that we use this sample to find an interval about which they can be 99 percent confident that it con-

Estimating a population

proportion tains the true population proportion.

But what are p and q for the population? We can estimate the population parameters by substituting the corresponding sample statistics \bar{p} and \bar{q} (p bar and q bar) in the formula for the standard error of the proportion.* Doing this, we get:

Estimated Standard Error of the Proportion

Symbol indicating that the standard error of the proportion estimated

$$
\begin{align*}
\hat{\sigma}_{\bar{p}} & =\sqrt{\frac{\bar{p} \bar{q}}{n}} \tag{7-5}\\
& =\sqrt{\frac{(0.4)(0.6)}{75}} \\
& =\sqrt{0.0032} \\
& =0.057 \leftarrow \text { Estimated standard error of the proportion }
\end{align*}
$$

Now we can provide the estimate management needs by using the same procedure we have used previously. A 99 percent

Computing the confidence limits

 confidence level would include 49.5 percent of the area on either side of the mean in the sampling distribution. The body of Appendix Table 1 tells us that 0.495 of the area under the normal curve is located between the mean and a point 2.58 standard errors from the mean. Thus, 99 percent of the area is contained between plus and minus 2.58 standard errors from the mean. Our confidence limits then become$$
\begin{aligned}
\bar{p}+2.58 \hat{\sigma}_{\bar{p}} & =0.4+2.58(0.057) \\
& =0.4+0.147 \\
& =0.547 \leftarrow \text { Upper confidence limit } \\
\bar{p}-2.58 \hat{\sigma}_{\bar{p}} & =0.4-2.58(0.057) \\
& =0.4-0.147 \\
& =0.253 \leftarrow \text { Lower confidence limit }
\end{aligned}
$$

[^5]Thus, we estimate from our sample of 75 employees that with 99 percent confidence we believe that the proportion of the total population of employees who wish to establish their own retirement plans lies between 0.253 and 0.547 .

Our conclusion
Curw

HINTS \& ASSUMPTIONS

The same assumptions, hints, and warnings we stated on page 334 apply here as well. The only difference is that now, since we're dealing with a proportion, the binomial distribution is the correct sampling distribution to use. Hint: Remember from Chapter 5 that as long as n is large enough to make both $n p$ and $n q$ at least 5 , we can use the normal distribution to approximate the binomial. If that is the case, we proceed exactly as we did with interval estimates of the mean. Warning: Since the exact standard error of the proportion depends on the unknown population proportion (p) , remember to estimate p by \bar{p} and use \bar{p} in Equation 7-5 to estimate the standard error of the proportion.

EXERCISES 7.6

Self-Check Exercises

SC 7-8 When a sample of 70 retail executives was surveyed regarding the poor November performance of the retail industry, 66 percent believed that decreased sales were due to unseasonably warm temperatures, resulting in consumers' delaying purchase of cold-weather items.
(a) Estimate the standard error of the proportion of retail executives who blame warm weather for low sales.
(b) Find the upper and lower confidence limits for this proportion, given a 95 percent confidence level.
SC 7-9 Dr. Benjamin Shockley, a noted social psychologist, surveyed 150 top executives and found that 42 percent of them were unable to add fractions correctly.
(a) Estimate the standard error of the proportion.
(b) Construct a 99 percent confidence interval for the true proportion of top executives who cannot correctly add fractions.

Applications

7-32 Pascal, Inc., a computer store that buys wholesale, untested computer chips, is considering switching to another supplier who would provide tested and guaranteed chips for a higher price. In order to determine whether this is a cost-effective plan, Pascal must determine the proportion of faulty chips that the current supplier provides. A sample of 200 chips was tested and of these, 5 percent were found to be defective.
(a) Estimate the standard error of the proportion of defective chips.
(b) Construct a 98 percent confidence interval for the proportion of defective chips supplied.

7-33 General Cinema sampled 55 people who viewed GhostHunter 8 and asked them whether they planned to see it again. Only 10 of them believed the film was worthy of a second look.
(a) Estimate the standard error of the proportion of moviegoers who will view the film a second time.
(b) Construct a 90 percent confidence interval for this proportion.

7-34 The product manager for the new lemon-lime Clear 'n Light dessert topping was worried about both the product's poor performance and her future with Clear 'n Light. Concerned that her marketing strategy had not properly identified the attributes of the product, she sampled 1,500 consumers and learned that 956 thought that the product was a floor wax.
(a) Estimate the standard error of the proportion of people holding this severe misconception about the dessert topping.
(b) Construct a 96 percent confidence interval for the true population proportion.

7-35 Michael Gordon, a professional basketball player, shot 200 foul shots and made 174 of them.
(a) Estimate the standard error of the proportion of all foul shots Michael makes.
(b) Construct a 98 percent confidence interval for the proportion of all foul shots Michael makes.
7-36 SnackMore recently surveyed 95 shoppers and found 80 percent of them purchase SnackMore fat-free brownies monthly.
(a) Estimate the standard error of the proportion.
(b) Construct a 95 percent confidence interval for the true proportion of people who purchase the brownies monthly.
7-37 The owner of the Home Loan Company randomly surveyed 150 of the company's 3,000 accounts and determined that 60 percent were in excellent standing.
(a) Find a 95 percent confidence interval for the proportion in excellent standing.
(b) Based on part (a), what kind of interval estimate might you give for the absolute number of accounts that meet the requirement of excellence, keeping the same 95 percent confidence level?
7-38 For a year and a half, sales have been falling consistently in all 1,500 franchises of a fast-food chain. A consulting firm has determined that 31 percent of a sample of 95 indicate clear signs of mismanagement. Construct a 98 percent confidence interval for this proportion.

Worked-Out Answers to Self-Check Exercises

SC 7-8 $n=70 \quad \bar{p}=0.66$
(a) $\hat{\sigma}_{\bar{p}}=\sqrt{\frac{\bar{p} \bar{q}}{n}}=\sqrt{\frac{0.66(0.34)}{70}}=0.0566$
(b) $\bar{p} \pm 1.96 \hat{\sigma}_{\bar{x}}=0.66 \pm 1.96(0.0566)=0.66 \pm 0.111=(0.549,0.771)$

SC 7-9 $n=150 \quad \bar{p}=0.42$
(a) $\hat{\sigma}_{\bar{p}}=\sqrt{\frac{\bar{p} \bar{q}}{n}}=\sqrt{\frac{0.42(0.58)}{150}}=0.0403$
(b) $\bar{p} \pm 2.58 \hat{\sigma}_{\bar{p}}=0.42 \pm 2.58(0.0403)=0.42 \pm 0.104=(0.316,0.524)$

7.7 INTERVAL ESTIMATES USING THE \dagger DISTRIBUTION

In our three examples so far, the sample sizes were all larger than 30 . We sampled 100 wind-shield wiper blades, 50 families living in a four-square-block section of a community, and 75 employees of a very large organization. Each time, the normal distribution was the appropriate sampling distribution to use to determine confidence intervals.

However, this is not always the case. How can we handle estimates where the normal distribution is not the appropriate sam-

Sometimes the normal distribution is not appropriate pling distribution, that is, when we are estimating the population standard deviation and the sample size is 30 or less? For example, in our chapter-opening problem of coal usage, we had data from only 10 weeks. Fortunately, another distribution exists that is appropriate in these cases. It is called the t distribution.

Early theoretical work on t distributions was done by a man
Background of the t distribution named W. S. Gosset in the early 1900s. Gosset was employed by the Guinness Brewery in Dublin, Ireland, which did not permit employees to publish research findings under their own names. So Gosset adopted the pen name Student and published under that name. Consequently, the t distribution is commonly called Student's t distribution, or simply Student's distribution.

Because it is used when the sample size is 30 or less, statisticians often associate the t distribution with small sample statistics. This is misleading, because the size of the sample is only

Conditions for using the t distribution

 one of the conditions that lead us to use the t distribution. The second condition is that the population standard deviation must be unknown. Use of the \boldsymbol{t} distribution for estimating is required whenever the sample size is 30 or less and the population standard deviation is not known. Furthermore, in using the \boldsymbol{t} distribution, we assume that the population is normal or approximately normal.
Characteristics of the t Distribution

Without deriving the t distribution mathematically, we can gain an intuitive understanding of the relationship between the t distribution and the normal distribution. Both are symmetrical. In

t distribution compared to normal distribution

 general, the t distribution is flatter than the normal distribution, and there is a different t distribution for every possible sample size. Even so, as the sample size gets larger, the shape of the t distribution loses its flatness and becomes approximately equal to the normal distribution. In fact, for sample sizes of more than 30 , the t distribution is so close to the normal distribution that we will use the normal to approximate the t.Figure 7-3 compares one normal distribution with two t distributions of different sample sizes. This figure shows two characteristics of t distributions. A \boldsymbol{t} distribution is lower at the mean and higher at the tails than a normal distribution. The figure also demonstrates how the t distribution has proportionally more of its area in its tails than the normal does. This is the reason why it will be necessary to go farther out from the mean of a t distribution to include the same area under the curve. Interval widths from t distributions are, therefore, wider than those based on the normal distribution.

Degrees of Freedom

We said earlier that there is a separate t distribution for each sam-
Degrees of freedom defined ple size. In proper statistical language, we would say, "There is a

FIGURE 7-3 NORMAL DISTRIBUTION, t DISTRIBUTION FOR SAMPLE SIZE $n=15$, AND t DISTRIBUTION FOR SAMPLE SIZE $n=2$
different t distribution for each of the possible degrees of freedom." What are degrees of freedom? We can define them as the number of values we can choose freely.

Assume that we are dealing with two sample values, a and b, and we know that they have a mean of 18. Symbolically, the situation is

$$
\frac{a+b}{2}=18
$$

How can we find what values a and b can take on in this situation? The answer is that a and b can be any two values whose sum is 36 , because $36 \div 2=18$.

Suppose we learn that a has a value of 10 . Now b is no longer free to take on any value but must have the value of 26 , because

$$
\begin{aligned}
& \text { if } \quad a=10 \\
& \text { then } \quad \frac{10+b}{2}=18 \\
& \text { so } \quad 10+b=36 \\
& \text { therefore } \quad b=26
\end{aligned}
$$

This example shows that when there are two elements in a sample and we know the sample mean of these two elements, we are free to specify only one of the elements because the other element will be determined by the fact that the two elements sum to twice the sample mean. Statisticians say, "We have one degree of freedom."

Look at another example. There are seven elements in our sample, and we learn that the mean of these elements is 16 .

Another example

 Symbolically, we have this situation:$$
\frac{a+b+c+d+e+f+g}{7}=16
$$

In this case, the degrees of freedom, or the number of variables we can specify freely, are $7-1=6$. We are free to give values to six variables, and then we are no longer free to specify the seventh variable. It is determined automatically.

With two sample values, we had one degree of freedom $(2-1=1)$, and with seven sample values, we had six degrees of freedom $(7-1=6)$. In each of these two examples, then, we had $n-1$ degrees of freedom, assuming n is the sample size. Similarly, a sample of 23 would give us 22 degrees of freedom.

We will use degrees of freedom when we select a t distribution to estimate a population mean, and we will use $n-1$ degrees

Function of degrees of freedom of freedom, where n is the sample size. For example, if we use a sample of 20 to estimate a population mean, we will use 19 degrees of freedom in order to select the appropriate t distribution.

Using the \dagger Distribution Table

The table of t distribution values (Appendix Table 2) differs in construction from the z table we have used previously. The t table is more compact and shows areas and \boldsymbol{t} values for only a few per-
t table compared to z table: three differences centages (10,5,2, and 1 percent). Because there is a different t distribution for each number of degrees of freedom, a more complete table would be quite lengthy. Although we can conceive of the need for a more complete table, in fact Appendix Table 2 contains all the commonly used values of the t distribution.

A second difference in the \boldsymbol{t} table is that it does not focus on the chance that the population parameter being estimated will fall within our confidence interval. Instead, it measures the chance that the population parameter we are estimating will not be within our confidence interval (that is, that it will lie outside it). If we are making an estimate at the 90 percent confidence level, we would look in the t table under the 0.10 column (100 percent -90 percent $=10$ percent). This 0.10 chance of error is symbolized by α, which is the Greek letter alpha. We would find the appropriate t values for confidence intervals of 95 percent, 98 percent, and 99 percent under the α columns headed $0.05,0.02$, and 0.01 , respectively.

A third difference in using the \boldsymbol{t} table is that we must specify the degrees of freedom with which we are dealing. Suppose we make an estimate at the 90 percent confidence level with a sample size of 14 , which is 13 degrees of freedom. Look in Appendix Table 2 under the 0.10 column until you encounter the row labeled 13. Like a z value, the t value there of 1.771 shows that if we mark off plus and minus $1.771 \hat{\sigma}_{\bar{x}}$'s (estimated standard errors of \bar{x}) on either side of the mean, the area under the curve between these two limits will be 90 percent, and the area outside these limits (the chance of error) will be 10 percent (see Figure 7-4).

FIGURE 7-4 A \dagger DISTRIBUTION FOR 13 DEGREES OF FREEDOM, SHOWING A 90 PERCENT CONFIDENCE INTERVAL

Recall that in our chapter-opening problem, the generating plant manager wanted to estimate the coal needed for this year, and he took a sample by measuring coal usage for 10 weeks. The sample data are

$$
\begin{aligned}
n & =10 \text { weeks } \leftarrow \text { Sample size } \\
d f & =9 \leftarrow \text { Degrees of freedom } \\
\bar{x} & =11,400 \text { tons } \leftarrow \text { Sample mean } \\
s & =700 \text { tons Sample standard deviation }
\end{aligned}
$$

The plant manager wants an interval estimate of the mean coal consumption, and he wants to be 95 percent confident that

Using the t table to compute confidence limits the mean consumption falls within that interval. This problem
requires the use of a t distribution because the sample size is less than 30 , the population standard deviation is unknown, and the manager believes that the population is approximately normal.

As a first step in solving this problem, recall that we estimate the population standard deviation with the sample standard deviation; thus

$$
\begin{align*}
\hat{\sigma} & =s \tag{7-1}\\
& =700 \text { tons }
\end{align*}
$$

Using this estimate of the population standard deviation, we can estimate the standard error of the mean by modifying Equation 7-2 to omit the finite population multiplier (because the sample size of 10 weeks is less than 5 percent of the 5 years (260 weeks) for which data are available):

Estimated Standard Error of the Mean of an Infinite Population

$$
\begin{equation*}
\hat{\sigma}_{\bar{x}}=\frac{\hat{\sigma}}{\sqrt{n}} \tag{7-6}
\end{equation*}
$$

$$
\text { Continuing our example, we find } \begin{aligned}
\hat{\sigma}_{\bar{x}} & =\frac{700}{\sqrt{10}} \\
& =\frac{700}{3.162} \\
& =221.38 \text { tons } \leftarrow \begin{array}{l}
\text { Estimated standard error of the mean of an } \\
\text { infinite population }
\end{array}
\end{aligned}
$$

Now we look in Appendix Table 2 down the 0.05 column (100 percent -95 percent $=5$ percent) until we encounter the row for 9 degrees of freedom $(10-1=9)$. There we see the t value 2.262 and can set our confidence limits accordingly:

$$
\begin{aligned}
\bar{x}+2.2626 \hat{\sigma}_{\bar{x}} & =11,400 \text { tons }+2.262(221.38 \text { tons }) \\
& =11,400+500.76 \\
& =11,901 \text { tons } \leftarrow \text { Upper confidence limit } \\
\bar{x}-2.262 \hat{\sigma}_{\bar{x}} & =11,400 \text { tons }-2.262(221.38 \text { tons }) \\
& =11,400-500.76 \\
& =10,899 \text { tons } \leftarrow \text { Lower confidence limit }
\end{aligned}
$$

FIGURE 7-5 COAL PROBLEM: A \dagger DISTRIBUTION WITH 9 DEGREES OF FREEDOM AND A 95 PERCENT CONFIDENCE INTERVAL

Our confidence interval is illustrated in Figure 7-5. Now we can

Our conclusion

 report to the plant manager with 95 percent confidence that the mean weekly usage of coal lies between 10,899 and 11,901 tons, and he can use the 11,901 -ton figure to estimate how much coal to order.The only difference between the process we used to make this coal-usage estimate and the previous estimating problems is the use of the t distribution as the appropriate distribution. Remember that in any estimation problem in which the sample size is 30 or less and the standard deviation of the population is unknown and the underlying population can be assumed to be normal or approximately normal, we use the \boldsymbol{t} distribution.

Summary of Confidence Limits under Various Conditions

Table 7-5 summarizes the various approaches to estimation introduced in this chapter and the confidence limits appropriate for each.

TABLE 7-5 SUMMARY OF FORMULAS FOR CONFIDENCE LIMITS ESTIMATING MEAN AND PROPORTION
$\begin{array}{cc}\text { When the Population Is Finite } & \text { When the Population Is } \\ \text { (and } n / N>0.05) & \text { Infinite (or } n / N<0.05 \text {) }\end{array}$
(and $n / N>0.05)$

$$
\begin{array}{ll}
\text { Upper limit } \bar{x}+z \frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} & \bar{x}+z \frac{\sigma}{\sqrt{n}} \\
\text { Lower limit } \bar{x}-z \frac{\sigma}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} & \bar{x}-z \frac{\sigma}{\sqrt{n}}
\end{array}
$$

When σ (the population standard deviation) is not known ($\hat{\sigma}=s$)
When n (the sample size) is larger than 30

Upper limit $\bar{x}+z \frac{\hat{\sigma}}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \quad \bar{x}+z \frac{\hat{\sigma}}{\sqrt{n}}$
Lower limit $\bar{x}-z \frac{\hat{\sigma}}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \quad \bar{x}-z \frac{\hat{\sigma}}{\sqrt{n}}$

TABLE 7-5 SUMMARY OF FORMULAS FOR CONFIDENCE LIMITS ESTIMATING MEAN AND PROPORTION (Contd.)

When σ (the population standard deviation) is not known ($\hat{\sigma}=s$)
When n (the sample size) is 30 or less and the population is normal or approximately normal*

Estimating p (the population proportion): When n (the sample size) is larger than 30

$$
\hat{\sigma}_{\bar{p}}=\sqrt{\frac{\bar{p} \bar{q}}{n}}
$$

$\left\{\begin{array}{l}\text { This case is beyond the scope of } \\ \text { the text; consult a professional } \\ \text { statistician. }\end{array}\right.$
$\left\{\begin{array}{l}\text { This case is beyond the scope of } \\ \text { the text; consult a professional }\end{array} \bar{x}+t \frac{\hat{\sigma}}{\sqrt{n}}\right.$ statistician.

$$
\bar{p}+z \hat{\sigma}_{\bar{p}}
$$

$$
\bar{p}-z \hat{\sigma}_{\bar{p}}
$$

*Remember that the appropriate t distribution to use is the one with $n-1$ degrees of freedom.

Interval Estimates using MS Excel

MS-Excel can be used to construct confidence interval for mean, when sample elements are given. For this purpose, go to Data > Data Analysis > Descriptive Statistics

When Descriptive Statistics dialogue box opens, enter sample-data range in Input: Input Range, check Label in first row, Summary Statistics and Confidence Interval for Mean buttons. Level of confidence can be changed from $\mathbf{9 5 \%}$ if situation demands. Press OK.

The result table is presented as:

Interval Estimates using SPSS

For obtaining confidence interval for mean from a sample-data series, go to Analyze > Descriptive Statistics > Explore.

When Explore dialogue box opens, enter variable containing sample-data series in Dependent List drop box. Then press Statistics tab, the Explore: Statistics sub-dialogue box will be opened. Check Descriptive Statistics box. The confidence level can be changed from its default value of $\mathbf{9 5 \%}$, if situation demands Then press Continue button to go back to main dialogue box. Then press OK.

HINTS \& ASSUMPTIONS

The concept of degrees of freedom is often difficult to grasp at first. Hint: Think of it as the number of choices you have. If you have peanut butter and cheese in your refrigerator, you can choose either a peanut butter or a cheese sandwich (unless you like peanut butter and cheese sandwiches). If you open the door and the cheese is all gone, Mr. Gosset would probably say, "You now have zero degrees of freedom." That is, if you want lunch, you have no choices left; it's peanut butter or starve. Warning: Although the t distribution is associated with small-sample statistics, remember that a sample size of less than 30 is only one of the conditions for its use. The others are that the population standard deviation is not known and the population is normally or approximately normally distributed.

EXERCISES 7.7

Self-Check Exercises

SC 7-10 For the following sample sizes and confidence levels, find the appropriate t values for constructing confidence intervals:
(a) $n=28 ; 95$ percent.
(b) $n=8 ; 98$ percent.
(c) $n=13$; 90 percent.
(d) $n=10 ; 95$ percent.
(e) $n=25 ; 99$ percent.
(f) $n=10 ; 99$ percent.

SC 7-11 Seven homemakers were randomly sampled, and it was determined that the distances they walked in their housework had an average of 39.2 miles per week and a sample standard deviation of 3.2 miles per week. Construct a 95 percent confidence interval for the population mean.

Basic Concepts

7-39 For the following sample sizes and confidence levels, find the appropriate t values for constructing confidence intervals:
(a) $n=15 ; 90$ percent.
(b) $n=6 ; 95$ percent.
(c) $n=19 ; 99$ percent.
(d) $n=25 ; 98$ percent.
(e) $n=10 ; 99$ percent.
(f) $n=41$; 90 percent.

7-40 Given the following sample sizes and t values used to construct confidence intervals, find the corresponding confidence levels:
(a) $n=27 ; t= \pm 2.056$.
(b) $n=5 ; t= \pm 2.132$.
(c) $n=18 ; t= \pm 2.898$.

7-41 A sample of 12 had a mean of 62 and a standard deviation of 10 . Construct a 95 percent confidence interval for the population mean.
7-42 The following sample of eight observations is from an infinite population with a normal distribution:

$$
\begin{array}{llllllll}
75.3 & 76.4 & 83.2 & 91.0 & 80.1 & 77.5 & 84.8 & 81.0
\end{array}
$$

(a) Find the sample mean.
(b) Estimate the population standard deviation.
(c) Construct a 98 percent confidence interval for the population mean.

Applications

7-43 Twelve bank tellers were randomly sampled and it was determined they made an average of 3.6 errors per day with a sample standard deviation of 0.42 error. Construct a 90 percent confidence interval for the population mean of errors per day. What assumption is implied about the number of errors bank tellers make?
7-44 The director of River-Sports Security, Donna Singh, has ordered an investigation of the large number of boating accidents that have occurred in the state in recent summers. Acting on her instructions, her aide, Ranjan Rao, has randomly selected 9 summer months within the last few years and has compiled data on the number of boating accidents that occurred during each of these months. The mean number of boating accidents to occur in these 9 months was 31, and the standard deviation in this sample was 9 boating accidents per month. Ranjan was told to construct a 90 percent confidence interval for the true mean number of boating accidents per month, but he was in such an accident himself recently, so you will have to do this for him.

Worked-Out Answers to Self-Check Exercises

```
SC 7-10 (a) 2.052.
    (b) 2.998.
    (c) 1.782.
    (d) 2.262.
    (e) 2.797.
    (f) 3.250.
SC 7-11 }s=3.2\quadn=7\quad\overline{x}=39.2 \mp@subsup{\hat{\sigma}}{\overline{x}}{}=s/\sqrt{}{n}=3.2/\sqrt{}{7}=1.209
    \overline{x}}\pmt\mp@subsup{\hat{\sigma}}{\overline{x}}{}=39.2\pm2.447(1.2095)=39.2\pm2.959
    = (36.240, 42.160) miles
```


7.8 DETERMINING THE SAMPLE SIZE IN ESTIMATION

In all our discussions so far, we have used for sample size the symbol n instead of a specific number. Now we need to know how to determine what number to use. How large should the sample be? If it is too small, we may fail to achieve the objective of our analysis. But if it is too large, we waste resources when we gather the sample.

Some sampling error will arise because we have not studied What sample size is adequate? the whole population. Whenever we sample, we always miss some helpful information about the population. If we want a high level of precision (that is, if we want to be quite sure of our estimate), we have to sample enough of the population to provide the required information. Sampling error is controlled by selecting a sample that is adequate in size. In general, the more precision you want, the larger the sample you will need to take. Let us examine some methods that are useful in determining what sample size is necessary for any specified level of precision.

Sample Size for Estimating a Mean

Suppose a university is performing a survey of the annual earnings of last year's graduates from its business school. It knows from past experience that the standard deviation of the annual earnings of the entire population $(1,000)$ of these graduates is about $\$ 1,500$. How large a sample size should the university take in order to estimate the mean annual earnings of last year's class within $\$ 500$ and at a 95 percent confidence level?

Exactly what is this problem asking? The university is going to take a sample of some size, determine the mean of the sam-

Two ways to express a
confidence limit ple, \bar{x}, and use it as a point estimate of the population mean. It wants to be 95 percent certain that the true mean annual earnings of last year's class is not more than $\$ 500$ above or below the point estimate. Row a in Table 7-6 summarizes in symbolic terms how the

> TABLE 7-6 COMPARISON OF TWO WAYS OF EXPRESSING THE SAME CONFIDENCE LIMITS

Lower Confidence Limit	Upper Confidence Limit
a. $\bar{x}-\$ 500$	a. $\bar{x}+\$ 500$
b. $\bar{x}-\sigma_{\bar{x}}$	b. $\bar{x}+\sigma_{\bar{x}}$

university is defining its confidence limits for us. Row b shows symbolically how we normally express confidence limits for an infinite population. When we compare these two sets of confidence limits, we can see that

$$
z \sigma_{\bar{x}}^{-}=\$ 500
$$

Thus, the university is actually saying that it wants $z \sigma_{\bar{x}}^{-}$to be equal to $\$ 500$. If we look in Appendix Table 1, we find that the necessary z value for a 95 percent confidence level is 1.96 . Step by step:

$$
\begin{array}{lrl}
\text { If } & z \sigma_{\bar{x}} & =\$ 500 \\
& \text { and } & z \\
\text { then } & & =1.96 \\
& \text { and } & \\
& & \sigma_{\bar{x}}
\end{array}=\frac{\$ 500}{1.96} \sigma_{\bar{x}}=\$ 500
$$

Remember that the formula for the standard error is Equation 6-1:

$$
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \leftarrow \text { Population standard deviation } \tag{6-1}
\end{equation*}
$$

Using Equation 6-1, we can substitute our known population standard deviation value of $\$ 1,500$ and our calculated standard

Finding an adequate sample

 size error value of $\$ 255$ and solve for n :$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
\$ 255 & =\frac{\$ 1,500}{\sqrt{n}} \\
(\sqrt{n})(\$ 255) & =\$ 1,500 \\
\sqrt{n} & =\frac{\$ 1,500}{\$ 255} \\
\sqrt{n} & =5.882 ; \text { now square both sides } \\
n & =34.6 \leftarrow \text { Sample size for precision specified }
\end{align*}
$$

Therefore, because n must be greater than or equal to 34.6 , the university should take a sample of 35 business-school graduates to get the precision it wants in estimating the class's mean annual earnings.

In this example, we knew the standard deviation of the population, but in many cases, the standard deviation of the population is not available. Remember, too, that we have not yet taken

Estimating the standard
deviation from the range the sample, and we are trying to decide how large to make it. We cannot estimate the population standard deviation using methods from the first part of this chapter. If we have a notion about the range of the population, we can use that to get a crude but workable estimate.

FIGURE 7-6 APPROXIMATE RELATIONSHIP BETWEEN THE RANGE AND THE POPULATION STANDARD DEVIATION

Suppose we are estimating hourly manufacturing wage rates in a city and are fairly confident that there is a $\$ 4.00$ difference between the highest and lowest wage rates. We know that plus and minus 3 standard deviations include 99.7 percent of all the area under the normal curve, that is, plus 3 standard deviations and minus 3 standard deviations include almost all of the distribution. To symbolize this relationship, we have constructed Figure 7-6, in which $\$ 4.00$ (the range) equals 6 standard deviations (plus 3 and minus 3). Thus, a rough estimate of the population standard deviation would be

$$
\begin{aligned}
6 \hat{\sigma} & =\$ 4.00 \\
\hat{\sigma} & =\frac{\$ 4.00}{6}
\end{aligned}
$$

Estimate of the population standard deviation $\rightarrow \hat{\sigma}=\$ 0.667$
Our estimate of the population standard deviation using this rough method is not precise, but it may mean the difference between getting a working idea of the required sample size and knowing nothing about that sample size.

Sample Size for Estimating a Proportion

The procedures for determining sample sizes for estimating a population proportion are similar to those for estimating a population mean. Suppose we wish to poll students at a large state university. We want to determine what proportion of them is in favor of a new grading system. We would like a sample size that will enable us to be 90 percent certain of estimating the true proportion of the population of 40,000 students that is in favor of the new system within plus and minus 0.02 .

We begin to solve this problem by looking in Appendix Table 1 to find the z value for a 90 percent confidence level. That value is ± 1.64 standard errors from the mean. We want our estimate to be within 0.02 , so we can symbolize the step-by-step process like this:

$$
\begin{array}{lrl}
\text { If } & z \sigma_{\bar{p}} & =0.02 \\
\text { and } & z & =1.64 \\
\text { then } & 1.64 \sigma_{\bar{p}} & =0.02
\end{array}
$$

If we now substitute the right side of Equation 7-4 for $\sigma_{\bar{p}}$, we get

$$
\begin{aligned}
1.64 \sqrt{\frac{p q}{n}} & =0.02 \\
\sqrt{\frac{p q}{n}} & =0.0122 ; \text { now square both sides } \\
\frac{p q}{n} & =0.00014884 ; \text { now multiply both sides by } n \\
p q & =0.00014884 n \\
n & =\frac{p q}{0.00014884}
\end{aligned}
$$

To find n, we still need an estimate of the population parameters p and q. If we have strong feelings about the actual proportion in favor of the new system, we can use that as our best guess to calculate n. But if we have no idea what p is, then our best strategy is to guess at p in such a way that we choose n in a conservative manner (that is, so that the sample size is large enough to supply at least the precision we require no matter what p actually is). At this point in our problem, n is equal to the product of p and q divided by 0.00014884 . The way to get the largest n is to generate the largest possible numerator of that expression, which happens if we pick $p=0.5$ and $q=0.5$. Then n becomes:

$$
\begin{aligned}
n & =\frac{p q}{0.00014884} \\
& =\frac{(0.5)(0.5)}{0.00014884} \\
& =\frac{0.25}{0.00014884} \\
& =1,680 \leftarrow \text { Sample size for precision specified }
\end{aligned}
$$

As a result, to be 90 percent certain of estimating the true proportion within 0.02 , we should pick a simple random sample of 1,680 students to interview.

In the problem we have just solved, we picked a value for p that represented the most conservative strategy. The value

Picking the most conservative proportion

 0.5 generated the largest possible sample. We would have used another value of p if we had been able to estimate one or if we had a strong feeling about one. Whenever all these solutions are absent, assume the most conservative possible value for p, namely, $p=0.5$.To illustrate that 0.5 yields the largest possible sample, Table $7-7$ solves the grading-system problem using several different values of p. You can see from the sample sizes associated with these different values that for the range of p 's from 0.3 to 0.7 , the change in the appropriate sample size is relatively small. Therefore, even if you knew that the true population proportion was 0.3 and you used a value of 0.5 for p anyway, you would have sampled only 269 more people $(1,680-1,411)$ than was actually necessary for the desired degree of precision. Obviously, guessing values of p in cases like this is not so critical as it seemed at first glance.

TABLE 7-7 SAMPLES SIZE n ASSOCIATED WITH DIFFERENT VALUES OF p AND q

Choose This Value for \boldsymbol{p}	Value of \boldsymbol{q}, or $\mathbf{1} \boldsymbol{- p}$	$\left(\frac{\boldsymbol{p q}}{\mathbf{0 . 0 0 0 1 4 8 8 4})}\right.$	Indicated Sample Size \boldsymbol{n}
0.2	0.8	$\frac{(0.2)(0.8)}{(0.00014884)}$	$=1,075$
0.3	0.7	$\frac{(0.3)(0.7)}{(0.00014884)}$	$=1,411$
0.4	0.6	$\frac{(0.4)(0.6)}{(0.00014884)}$	$=1,613$
0.5	0.5	$\frac{(0.5)(0.5)}{(0.00014884)}$	$=1,680 \leftarrow$ Most conservative
0.6	0.4	$\frac{(0.6)(0.4)}{(0.00014884)}$	$=1,613$
0.7	0.3	$\frac{(0.7)(0.3)}{(0.00014884)}$	$=1,411$
0.8	0.2	$\frac{(0.8)(0.2)}{(0.00014884)}$	$=1,075$

HINTS \& ASSUMPTIONS

From a commonsense perspective, if the standard deviation of the population is very small, the values cluster very tightly around their mean and just about any sample size will capture them and produce accurate information. On the other hand, if the population standard deviation is very large and the values are quite spread out, it will take a very large sample to include them and turn up accurate information. How do we get an idea about the population standard deviation before we start sampling? Companies planning to conduct market research generally conduct preliminary research on the population to estimate the standard deviation. If the product is like another that has been on the market, often it's possible to rely on previous data about the population without further estimates.

EXERCISES 7.8

Self-Check Exercises

SC 7-12 For a test market, find the sample size needed to estimate the true proportion of consumers satisfied with a certain new product within ± 0.04 at the 90 percent confidence level. Assume you have no strong feeling about what the proportion is.
SC 7-13 A speed-reading course guarantees a certain reading rate increase within 2 days. The teacher knows a few people will not be able to achieve this increase, so before stating the guaranteed
percentage of people who achieve the reading rate increase, he wants to be 98 percent confident that the percentage has been estimated to within ± 5 percent of the true value. What is the most conservative sample size needed for this problem?

Basic Concepts

7-45 If the population standard deviation is 78, find the sample size necessary to estimate the true mean within 50 points for a confidence level of 95 percent.
7-46 We have strong indications that the proportion is around 0.7. Find the sample size needed to estimate the proportion within ± 0.02 with a confidence level of 90 percent.
7-47 Given a population with a standard deviation of 8.6 , what size sample is needed to estimate the mean of the population within ± 0.5 with 99 percent confidence?

Applications

7-48 An important proposal must be voted on, and a politician wants to find the proportion of people who are in favor of the proposal. Find the sample size needed to estimate the true proportion to within $\pm .05$ at the 95 percent confidence level. Assume you have no strong feelings about what the proportion is. How would your sample size change if you believe about 75 percent of the people favor the proposal? How would it change if only about 25 percent favor the proposal?
7-49 The management of Southern Textiles has recently come under fire regarding the supposedly detrimental effects on health caused by its manufacturing process. A social scientist has advanced a theory that the employees who die from natural causes exhibit remarkable consistency in their life-span: The upper and lower limits of their life-spans differ by no more than 550 weeks (about $101 / 2$ years). For a confidence level of 98 percent, how large a sample should be examined to find the average life-span of these employees within ± 30 weeks?
7-50 Food Tiger, a local grocery store, sells generic garbage bags and has received quite a few complaints about the strength of these bags. It seems that the generic bags are weaker than the name-brand competitor's bags and, therefore, break more often. John C. Tiger, VP in charge of purchasing, is interested in determining the average maximum weight that can be put into one of the generic bags without its breaking. If the standard deviation of garbage breaking weight is 1.2 lb , determine the number of bags that must be tested in order for Mr. Tiger to be 95 percent confident that the sample average breaking weight is within 0.5 lb of the true average.
7-51 The university is considering raising tuition to improve school facilities, and they want to determine what percentage of students favor the increase. The university needs to be 90 percent confident the percentage has been estimated to within 2 percent of the true value. How large a sample is needed to guarantee this accuracy regardless of the true percentage?
7-52 A local store that specializes in candles and clocks, Wicks and Ticks, is interested in obtaining an interval estimate for the mean number of customers that enter the store daily. The owners are reasonably sure that the actual standard deviation of the daily number of customers is 15 customers. Help Wicks and Ticks out of a fix by determining the sample size it should use in order to develop a 96 percent confidence interval for the true mean that will have a width of only eight customers.

Worked-Out Answers to Self-Check Exercises

SC 7-12 Assume $p=q=0.5$.

$$
0.04=1.64 \sqrt{\frac{p q}{n}}=1.64 \sqrt{\frac{0.5(0.5)}{n}} \text { so } n=\left(\frac{1.64(0.5)}{0.04}\right)^{2}=420.25 \text { i.e. } n \geq 421 .
$$

SC 7-13 Assume $p=q=0.5$.

$$
0.05=2.33 \sqrt{\frac{p q}{n}}=2.33 \sqrt{\frac{0.5(0.5)}{n}} \text { so } n=\left(\frac{2.33(0.5)}{0.05}\right)^{2}=542.89 \text { i.e. } n \geq 543 .
$$

So take a sample of at least 543 records of prior students.

STATISTICS AT WORK

Loveland Computers

Case 7: Estimation Although Lee Azko had felt nervous about the first job out of college, assignments in production and purchasing had already shown how "book learning" could be applied. The next assignment introduced Lee to another of Loveland Computers' departments and the no-nonsense approach of its head, Margot Derby.
"Let me tell you the situation," began Margot, the head of marketing, without bothering with introductions or small talk. "You know that we primarily consider ourselves distributors of hardware-the actual PCs that people use in their homes and businesses. When we started out, we left it up to the customers to seek out software. Sometimes, they bought directly from the companies that wrote the programs, or from national distributors with toll-free numbers. Now there are also retail outlets-almost every suburban mall has at least one store that sells computer programs.
"The reason we stayed clear of software was that there were just too many programs out there-we didn't want to guess which one would be the 'hit' product and end up with a lot of useless inventory on our hands. But the game changed. After some shakeout in software, two or three clear leaders emerged in each field-spreadsheets and word processors, for example. To match the competition we began to bundle some software with the computers for certain promotions.
"Last year, we also started loading the programs onto the hard drive for some customers. We can give them a very competitive price for the software, and preloading turns out to be an important product feature that many people are shopping for. So I'm taking another look at software, to see if we shouldn't change our strategy and do more in that line. To get some idea of the market, I had a summer intern call up 500 customers who'd owned Loveland machines for about a year. And we asked them how much they'd spent in total on software in the first year.
"I've got all the data here; it didn't take 2 minutes to come up with the mean and standard deviation from our spreadsheet program. Those investment bankers from New York took a look at a draft of my marketing plan for software; when they were down here last week, they asked me how sure I could be that the results of that telephone survey were accurate.
"Every time I pick up the newspaper, I see some opinion poll where they say: 'This is based on a survey of 1,200 adults and the margin of error is 3 percent.' How do they know that-do they keep track
of all the surveys and when they're right and wrong? I only have this one set of results. I don't see how I can answer their question."
"It shouldn't be too difficult," said Lee, checking a briefcase to make sure that a calculator and a set of statistical tables were close at hand. "Why don't you show me those numbers and we can figure it out right now."

Study Questions: What distribution will Lee assume for the telephone poll results, and which statistical table will be most useful? How will Lee define margin of error for Margot? Is Lee likely to recommend a larger sample?

CHAPTER REVIEW

Terms Introduced in Chapter 7

Confidence Interval A range of values that has some designated probability of including the true population parameter value.
Confidence Level The probability that statisticians associate with an interval estimate of a population parameter, indicating how confident they are that the interval estimate will include the population parameter.
Confidence Limits The upper and lower boundaries of a confidence interval.
Consistent Estimator An estimator that yields values more closely approaching the population parameter as the sample size increases.
Degrees of Freedom The number of values in a sample we can specify freely once we know something about that sample.
Efficient Estimator An estimator with a smaller standard error than some other estimator of the population parameter; that is, the smaller the standard error of an estimator, the more efficient that estimator is.
Estimate A specific observed value of an estimator.
Estimator A sample statistic used to estimate a population parameter.
Interval Estimate A range of values to estimate an unknown population parameter.
Point Estimate A single number used to estimate an unknown population parameter.
Student's t Distribution A family of probability distributions distinguished by their individual degrees of freedom, similar in form to the normal distribution, and used when the population standard deviation is unknown and the sample size is relatively small ($n \leq 30$).
Sufficient Estimator An estimator that uses all the information available in the data concerning a parameter.
Unbiased Estimator An estimator of a population parameter that, on the average, assumes values above the population parameter as often, and to the same extent, as it tends to assume values below the population parameter.

Equations Introduced in Chapter 7

7-1

$$
\begin{equation*}
\hat{\sigma}=s \times \sqrt{\frac{\sum(x-\bar{x})^{2}}{n-1}} \tag{p. 333}
\end{equation*}
$$

This formula indicates that the sample standard deviation can be used to estimate the population standard deviation.

$$
\begin{equation*}
\hat{\sigma}=\frac{\hat{\sigma}}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} \tag{p. 333}
\end{equation*}
$$

This formula enables us to derive an estimated standard error of the mean of a finite population from an estimate of the population standard deviation. The symbol ${ }^{\wedge}$, called a hat, indicates that the value is estimated. Equation 7-6 is the corresponding formula for an infinite population.

$$
\begin{equation*}
\mu_{\bar{p}}=p \tag{p. 337}
\end{equation*}
$$

Use this formula to derive the mean of the sampling distribution of the proportion of successes. The right-hand side, p, is equal to $(n \times p) / n$, where the numerator is the expected number of successes in n trials and the denominator is the number of trials. Symbolically, the proportion of successes in a sample is written \bar{p} and is pronounced p bar.

To get the standard error of the proportion, take the square root of the product of the probabilities of success and failure divided by the number of trials.

$$
\begin{equation*}
\hat{\sigma}_{\bar{p}}=\sqrt{\frac{\bar{p} \bar{q}}{n}} \tag{p. 338}
\end{equation*}
$$

This is the formula to use to derive an estimated standard error of the proportion when the population proportion is unknown and you are forced to use \bar{p} and \bar{q}, the sample proportions of successes and failures.

This formula enables us to derive an estimated standard error of the mean of an infinite population from an estimate of the population standard deviation. It is exactly like Equation 7-2 except that it lacks the finite population multiplier.

Review and Application Exercises

7-53 From a sample of 42 gasoline stations statewide, the average price of a gallon of unleaded gas was found to be $\$ 1.12$ and the standard deviation was $\$ 0.04$ per gallon. Within what interval can we be 99.74 percent confident that the true statewide mean per-gallon price of unleaded gasoline will fall?

7-54 What are the advantages of using an interval estimate over a point estimate?
7-55 Why is the size of a statistic's standard error important in its use as an estimator? To which characteristic of estimator does this relate?
7-56 Suzanne Jones, head registrar for the university system, needs to know what proportion of students have grade-point averages below 2.0. How many students' grades should be looked at in order to determine this proportion to within ± 0.01 with 95 percent confidence?
7-57 A 95 percent confidence interval for the population mean is given by $(94,126)$ and a 75 percent confidence interval is given by $(100.96,119.04)$. What are the advantages and disadvantages of each of these interval estimates?
7-58 The posted speed limit on the Cross-Bronx Expressway is 55 mph . Congestion results in much slower actual speeds. A random sample of 57 vehicles clocked speeds with an average of 23.2 mph and a standard deviation of 0.3 mph .
(a) Estimate the standard deviation of the population.
(b) Estimate the standard error of the mean for this population.
(c) What are the upper and lower limits of the confidence interval for the mean speed given a desired confidence level of 0.95 ?
7-59 Based on knowledge about the desirable qualities of estimators, for what reasons might \bar{x} be considered the "best" estimator of the true population mean?
7-60 The president of Offshore Oil has been concerned about the number of fights on his rigs and has been considering various courses of action. In an effort to understand the catalysts of offshore fighting, he randomly sampled 41 days on which a crew had returned from mainland leave. For this sample, the average proportion of workers involved in fisticuffs each day is 0.032 nd the associated standard deviation is 0.0130 .
(a) Give a point estimate for the average proportion of workers involved in fights on any given day that a crew has returned from the mainland.
(b) Estimate the population standard deviation associated with this fighting rate.
(c) Find a 90 percent confidence interval for the average proportion of returning workers who get involved in fights.
7-61 Indian Family Opinions, Inc., is in the business of surveying households. From previous surveys, it is known that the standard deviation of the number of hours of television watched in a week by a household is 1.1 hours. Indian Family Opinions would like to determine the average number of hours of television watched per week per household in India. Accuracy is important, so Indian Family Opinions would like to be 98 percent certain that the sample average number of hours falls within ± 0.3 hour of the national average. Conservatively, what sample size should Indian Family Opinions use?
7-62 John Bull has just purchased a computer program that claims to pick stocks that will increase in price in the next week with an 85 percent accuracy rate. On how many stocks should John test this program in order to be 98 percent certain that the percentage of stocks that do in fact go up in the next week will be within ± 0.05 of the sample proportion?
7-63 Gotchya runs a laser-tag entertainment center where adults and teenagers rent equipment and engage in mock combat. The facility is always used to capacity on weekends. The three owners want to assess the effectiveness of a new advertising campaign aimed at increasing weeknight usage. The number of paying patrons on twenty-seven randomly selected weeknights is given in the following table. Find a 95 percent confidence interval for the mean number of patrons on a weeknight.

61	57	53	60	64	57	54	58	63
59	50	60	60	57	58	62	63	60
61	54	50	54	61	51	53	62	57

7-64 Their accountants have told the owners of Gotchya, the laser-tag entertainment center discussed in Exercise 7-63, that they need to have at least fifty-five patrons in order to break even on a weeknight. The partners are willing to continue to operate on weeknights if they can be at least 95 percent certain that they will break even at least half the time. Using the data in Exercise 7-63, find a 95 percent confidence interval for the proportion of weeknights on which Gotchya will break even. Should Gotchya continue to stay open on weeknights? Explain.
7-65 In evaluating the effectiveness of a national prison rehabilitation program, a survey of 52 of a prison's 900 inmates found that 35 percent were repeat offenders.
(a) Estimate the standard error of the proportion of repeat offenders.
(b) Construct a 90 percent confidence interval for the proportion of repeat offenders among the inmates of this prison.
7-66 From a random sample of 60 buses, state transportation department's mass-transit office has calculated the mean number of passengers per kilometer to be 4.1. From previous studies, the population standard deviation is known to be 1.2 passengers per kilometer.
(a) Find the standard error of the mean. (Assume that the bus fleet is very large.)
(b) Construct a 95 percent confidence interval for the mean number of passengers per kilometer for the population.
7-67 The Internal Revenue Service sampled 200 tax returns recently and found that the sample average income tax refund amounted to $\$ 425.39$ and the sample standard deviation was \$107.10.
(a) Estimate the population mean tax refund and standard deviation.
(b) Using the estimates of part (a), construct an interval in which the population mean is 95 percent certain to fall.
7-68 The Physicians Care Group operates a number of walk-in clinics. Patient charts indicate the time that a patient arrived at the clinic and the time that the patient was actually seen by a physician. Administrator Val Likmer has just received a stinging phone call from a patient complaining of an excessive wait at the Rockridge clinic. Val pulls 49 charts at random from last week's workload and calculates an average wait time of 15.2 minutes. A previous large-scale study of waiting time over several clinics had a standard deviation of 2.5 minutes. Construct a confidence interval for the average wait time with confidence level
(a) 90 percent.
(b) 99 percent.

7-69 Bill Wenslaff, an engineer on the staff of a water purification plant, measures the chlorine content in 200 different samples daily. Over a period of years, he has established the population standard deviation to be 1.4 milligrams of chlorine per liter. The latest samples averaged 4.6 milligrams of chlorine per liter.
(a) Find the standard error of the mean.
(b) Establish the interval around 5.2, the population mean, that will include the sample mean with a probability of 68.3 percent.
7-70 Ellen Harris, an industrial engineer, was accumulating normal times for various tasks on a labor-intensive assembly process. This process included 300 separate job stations, each performing the same assembly tasks. She sampled seven stations and obtained the following assembly times for each station: $1.9,2.5,2.9,1.3,2.6,2.8$, and 3.0 minutes.
(a) Calculate the mean assembly time and the corresponding standard deviation for the sample.
(b) Estimate the population standard deviation.
(c) Construct a 98 percent confidence interval for the mean assembly time.

7-71 High Fashion Marketing is considering reintroducing paisley ties. In order to avoid a fashion flop, High Fashion interviewed 90 young executives (their primary market) and found that of the 90 interviewed, 79 believed that paisley ties were fashionable and were interested in purchasing one. Using a confidence level of 98 percent, construct a confidence interval for the proportion of all young executives who find paisley ties fashionable.
7-72 The Department of Transportation has mandated that the average speed of cars on interstate highways must be no more than 67 miles per hour in order for state highway departments to retain
their federal funding. North Carolina troopers, in unmarked cars, clocked a sample of 186 cars and found that the average speed was 66.3 miles per hour and the standard deviation was 0.6 mph .
(a) Find the standard error of the mean.
(b) What is the interval around the sample mean that would contain the population mean 95.5 percent of the time?
(c) Can North Carolina truthfully report that the true mean speed on its highways is 67 mph or less with 95.5 percent confidence?
7-73 Dheeraj Pillai, owner of the Aurora Restaurant, is considering purchasing new furniture. To help him decide on the amount he can afford to invest in tables and chairs, he wishes to determine the average revenue per customer. The checks for 9 randomly sampled customers had an average of $\$ 18.30$ and a standard deviation of $\$ 3.60$. Construct a 95 percent confidence interval for the size of the average check per customer.
7-74 John Deer, a horticulturist at Northern Carrboro State University, knows that a certain strain of corn will always produce between 80 and 140 bushels per acre. For a confidence level of 90 percent, how many 1 -acre samples must be taken in order to estimate the average production per acre to within ± 5 bushels per acre?
7-75 Nirmal Pvt. Limited is a FMCG company, selling a range of products. It has 1150 sales outlets. A sample of 60 sales outlets was chosen, using random sampling for the purpose of sales analysis. The sample consists of sales outlets from rural and urban areas belonging to the four regions of the country-Northern, Eastern, Western, Southern. The information related to annual sales has been was collected from them in the month of December 2010. This process has been repeated in December 2011. In the meanwhile, in 2010 a comprehensive sales-promotion program was launched to augment the sales. The information is presented in the data sheet provided in the DVD (Nirmal Pvt. Ltd). Analyze the data and give answer to the following questions.
(a) Construct 95% confidence interval around the "mean 2010 and 2011 sales" separately. Compare the results and comment.
(b) Construct 99% confidence interval around the "mean 2010 sale of Urban Shops and Rural Shops" separately. Compare the results and comment.
(c) Construct 95% confidence interval for the "proportion of urban shops."
(d) Construct 99% confidence interval of the "proportion of Northern shops."
(e) Point estimate of the standard deviation of 2011 sale.
(f) Compare the sample means of "2010 sale" with respect to the four regions and comment on it.

Flow Chart: Estimation

This page is intentionally left blank

Testing Hypotheses: One-sample Tests

LEARNING OBJECTIVES

After reading this chapter, you can understand:

- To learn how to use samples to decide whether a population possesses a particular characteristic
- To determine how unlikely it is that an observed sample could have come from a hypothesized population
- To understand the two types of errors possible when testing hypotheses
- To learn when to use one-tailed tests and when to use two-tailed tests
- To learn the five-step process for testing hypotheses
- To understand how and when to use the normal and t distributions for testing hypotheses about population means and proportions

CHAPTER CONTENTS

8.1 Introduction 366

8.2 Concepts Basic to the Hypothesis-Testing Procedure 367

8.3 Testing Hypotheses
 371

8.4 Hypothesis Testing of Means When the Population Standard Deviation is Known 379
8.5 Measuring the Power of a Hypothesis Test 388
8.6 Hypothesis Testing of Proportions: Large Samples 391
8.7 Hypothesis Testing of Means When the Population Standard Deviation is not Known 397

- Statistics at Work 404
- Terms Introduced in Chapter 8 404
- Review and Application Exercises 405
- Flow Chart: One-Sample Tests of Hypotheses 410

TThe roofing contract for a new sports complex in San Francisco has been awarded to Parkhill Associates, a large building contractor. Building specifications call for a movable roof covered by approximately 10,000 sheets of 0.04 -inch-thick aluminum. The aluminum sheets cannot be appreciably thicker than 0.04 inch because the structure could not support the additional weight. Nor can the sheets be appreciably thinner than 0.04 inch because the strength of the roof would be inadequate. Because of this restriction on thickness, Parkhill carefully checks the aluminum sheets from its supplier. Of course, Parkhill does not want to measure each sheet, so it randomly samples 100 . The sheets in the sample have a mean thickness of 0.0408 inch. From past experience with this supplier, Parkhill believes that these sheets come from a thickness population with a standard deviation of 0.004 inch. On the basis of these data, Parkhill must decide whether the 10,000 sheets meet specifications. In Chapter 7, we used sample statistics to estimate population parameters. Now, to solve problems like Parkhill's, we shall learn how to use characteristics of samples to test an assumption we have about the population from which that sample came. Our test for Parkhill, later in the chapter, may lead Parkhill to accept the shipment or it may indicate that Parkhill should reject the aluminum sheets sent by the supplier because they do not meet the architectural specifications.

8.1 INTRODUCTION

Hypothesis testing begins with an assumption, called a hypothesis,
Function of hypothesis testing that we make about a population parameter. Then we collect sample data, produce sample statistics, and use this information to decide how likely it is that our hypothesized population parameter is correct. Say that we assume a certain value for a population mean. To test the validity of our assumption, we gather sample data and determine the difference between the hypothesized value and the actual value of the sample mean. Then we judge whether the difference is significant. The smaller the difference, the greater the likelihood that our hypothesized value for the mean is correct. The larger the difference, the smaller the likelihood.

Unfortunately, the difference between the hypothesized population parameter and the actual statistic is more often neither so large that we automatically reject our hypothesis nor so small that we just as quickly accept it. So in hypothesis testing, as in most significant real-life decisions, clear-cut solutions are the exception, not the rule.

Suppose a manager of a large shopping mall tells us that the average work efficiency of her employees is at least 90 percent. How can we test the validity of her hypothesis? Using the sampling

When to accept or reject the hypothesis

 methods we learned in Chapter 6, we could calculate the efficiency of a sample of her employees. If we did this and the sample statistic came out to be 95 percent, we would readily accept the manager's statement. However, if the sample statistic were 46 percent, we would reject her assumption as untrue. We can interpret both these outcomes, 95 percent and 46 percent, using our common sense.Now suppose that our sample statistic reveals an efficiency of 88 percent. This value is relatively close to 90 percent, but is it close enough for us to accept the manager's hypothesis? Whether we accept or reject the manager's hypothesis, we cannot be abso-

The basic problem is dealing with uncertainty

 lutely certain that our decision is correct; therefore, we will have to learn to deal with uncertainty in our decision making. We cannot accept or reject a hypothesis about a population parameter simply by intuition. Instead, we need to learn how to decide objectively, on the basis of sample information, whether to accept or reject a hunch.
Making Big Jumps

College students often see ads for learning aids. One very popular such aid is a combination outline, study guide, and question set for

Projecting too far

 various courses. Advertisements about such items often claim better examination scores with less studying time. Suppose a study guide for a basic statistics course is available through an organization that produces such guides for 50 different courses. If this study guide for basic statistics has been tested (and let us assume properly), the firm may advertise that "our study guides have been statistically proven to raise grades and lower study time." Of course, this assertion is quite true, but only as it applies to the basic statistics experience. There may be no evidence of statistical significance that establishes the same kind of results for the other 49 guides.Another product may be advertised as being beneficial in Different test conditions removing crabgrass from your lawn and may assert that the product has been "thoroughly tested" on real lawns. Even if we assume that the proper statistical procedures were, in fact, used during the tests, such claims still involve big jumps. Suppose that the test plot was in Florida and your lawn problems are in Utah. Differences in rainfall, soil fertility, airborne pollutants, temperature, dormancy hours and germination conditions may vary widely between these two locations. Claiming results for a statistically valid test under a completely different set of test conditions is invalid. One such test cannot measure effectiveness under a wide variety of environmental conditions.

EXERCISES 8.1

8-1 Why must we be required to deal with uncertainty in our decisions, even when using statistical techniques?
8-2 Theoretically speaking, how might one go about testing the hypothesis that a coin is fair? That a die is fair?
8-3 Is it possible that a false hypothesis will be accepted? How would you explain this?
8-4 Describe the hypothesis-testing process.
8-5 How would you explain a large difference between a hypothesized population parameter and a sample statistic if, in fact, the hypothesis is true?

8.2 CONCEPTS BASIC TO THE HYPOTHESIS-TESTING PROCEDURE

Before we introduce the formal statistical terms and procedures,

Sports-complex problem

 we'll work our chapter-opening sports-complex problem all the
Sports-complex problem

 way through. Recall that the aluminum roofing sheets have a claimed average thickness of 0.04 inch and that they will be unsatisfactory if they are too thick or too thin. The contractor takes a sample of 100 sheets and determines that the sample mean thickness is 0.0408 inch . On the basis of past experience, he knows that the population standard deviation is 0.004 inch. Does this sample evidence indicate that the batch of 10,000 sheets of aluminum is suitable for constructing the roof of the new sports complex?If we assume that the true mean thickness is 0.04 inch, and we

Formulating the hypothesis

 know that the population standard deviation is 0.004 inch, how likely is it that we would get a sample mean of 0.0408 or more from that population? In other words, ifthe true mean is 0.04 inch and the standard deviation is 0.004 inch , what are the chances of getting a sample mean that differs from 0.04 inch by $0.0008(=0.0408-0.04)$ inch or more?

These questions show that to determine whether the population mean is actually 0.04 inch, we must calculate the probability that a random sample with a mean of 0.0408 inch will be selected from a population with a μ of 0.04 inch and a σ of 0.004 inch. This probability will indicate whether it is reasonable to observe a sample like this if the population mean is actually 0.04 inch. If this probability is far too low, we must conclude that the aluminum company's statement is false and that the mean thickness of the aluminum sheets is not 0.04 inch.

Let's answer the question illustrated in Figure 8-1: If the hypothesized population mean is 0.04 inch and the population standard deviation is 0.004 inch, what are the chances of getting a sample mean (0.0408 inch) that differs from 0.04 inch by 0.0008 inch? First, we calculate the standard error of the mean from the population standard deviation:

$$
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \\
& =\frac{0.004 \mathrm{in} .}{\sqrt{100}} \\
& =\frac{0.004 \mathrm{in} .}{10} \\
& =0.0004 \mathrm{in} . \tag{6-1}
\end{align*}
$$

Calculating the standard
error of the mean

Next we use Equation 6-2 to discover that the mean of our sample (0.0408 inch) lies 2 standard errors to the right of the hypothesized population mean:

$$
\begin{align*}
z & =\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \\
& =\frac{0.0408-0.04}{0.0004} \\
& =2 \leftarrow \text { Standard errors of the mean } \tag{6-2}
\end{align*}
$$

Using Appendix Table 1, we learn that 4.5 percent is the total chance of our sample mean differing from the population mean by 2 or more standard errors; that is, the chance that the sample mean would

Interpreting the probability associated with this difference be 0.0408 inch or larger or 0.0392 inch or smaller is only 4.5 percent $(\mathrm{P}(z \geq 2$ or $\mathrm{z} \leq-2)=2(0.5-0.4772)=0.0456$, or about 4.5 percent $)$. With this low a chance, Parkhill could conclude that a population with a true mean of $\mathbf{0 . 0 4}$ inch would not be likely to produce a sample like this. The project supervisor would reject the aluminum company's statement about the mean thickness of the sheets.

In this case, the difference between the sample mean and the The decision maker's role in hypothesized population mean is too large, and the chance that the population would produce such a random sample is far too

formulating hypotheses

low. Why this probability of 4.5 percent is too low, or wrong, is a judgment for decision makers to make. Certain situations demand that decision makers be very sure about the characteristics of the items being

FIGURE 8-1 \quad PROBABILITY THAT \bar{X} WILL DIFFER FROM HYPOTHESIZED μ BY 2
tested, and then even 2 percent is too high to be attributable to chance. Other processes allow for a wider latitude or variation, and a decision maker might accept a hypothesis with a 4.5 percent probability of chance variation. In each situation, we must try to determine the costs resulting from an incorrect decision and the precise level of risk we are willing to assume.

In our example, we rejected the aluminum company's contention Risk of rejection that the population mean is 0.04 inch. But suppose for a moment that the population mean is actually 0.04 inch. If we then stuck to our rejection rule of 2 standard errors or more (the 4.5 percent probability or less in the tails of Figure 8-1), we would reject a perfectly good lot of aluminum sheets 4.5 percent of the time. Therefore, our minimum standard for an acceptable probability, 4.5 percent, is also the risk we take of rejecting a hypothesis that is true. In this or any decision making, there can be no risk-free trade-off.

HINTS \& ASSUMPTIONS

Although hypothesis testing sounds like some formal statistical term completely unrelated to business decision making, in fact managers propose and test hypotheses all the time. "If we drop the price of this car model by $\$ 1,500$, we'll sell 50,000 cars this year" is a hypothesis. To test this hypothesis, we have to wait until the end of the year and count sales. Managerial hypotheses are based on intuition; the marketplace decides whether the manager's intuitions were correct. Hint: Hypothesis testing is about making inferences about a population from only a small sample. The bottom line in hypothesis testing is when we ask ourselves (and then decide) whether a population like we think this one is would be likely to produce a sample like the one we are looking at.

EXERCISES 8.2

Self-Check Exercises

SC 8-1 How many standard errors around the hypothesized value should we use to be 99.44 percent certain that we accept the hypothesis when it is true?

SC 8-2 An automobile manufacturer claims that a particular model gets 28 miles to the gallon. The Environmental Protection Agency, using a sample of 49 automobiles of this model, finds the sample mean to be 26.8 miles per gallon. From previous studies, the population standard deviation is known to be 5 miles per gallon. Could we reasonably expect (within 2 standard errors) that we could select such a sample if indeed the population mean is actually 28 miles per gallon?

Basic Concepts

8-6 What do we mean when we reject a hypothesis on the basis of a sample?
8-7 Explain why there is no single standard level of probability used to reject or accept in hypothesis testing.
8-8 If we reject a hypothesized value because it differs from a sample statistic by more than 1.75 standard errors, what is the probability that we have rejected a hypothesis that is in fact true?
8-9 How many standard errors around the hypothesized value should we use to be 98 percent certain that we accept the hypothesis when it is true?

Applications

8-10 Sports and media magnate Ned Sterner is interested in purchasing the Atlanta Stalwarts if he can be reasonably certain that operating the team will not be too costly. He figures that average attendance would have to be about 28,500 fans per game to make the purchase attractive to him. Ned randomly chooses 64 home games over the past 4 years and finds from figures reported in Sporting Reviews that average attendance at these games was 26,100 . A study he commissioned the last time he purchased a team showed that the population standard deviation for attendance at similar events had been quite stable for the past 10 years at about 6,000 fans. Using 2 standard errors as the decision criterion, should Ned purchase the Stalwarts? Can you think of any reason(s) why your conclusion might not be valid?
8-11 Computing World has asserted that the amount of time owners of personal computers spend on their machines averages 23.9 hours per week and has a standard deviation of 12.6 hours per week. A random sampling of 81 of its subscribers revealed a sample mean usage of 27.2 hours per week. On the basis of this sample, is it reasonable to conclude (using 2 standard errors as the decision criterion) that Computing World's subscribers are different from average personal computer owners?
8-12 A grocery store has specially packaged oranges and has claimed a bag of oranges will yield 2.5 quarts of juice. After randomly selecting 42 bags, a stacker found the average juice production per bag to be 2.2 quarts. Historically, we know the population standard deviation is 0.2 quart. Using this sample and a decision criterion of 2.5 standard errors, could we conclude the store's claims are correct?

Worked-Out Answers to Self-Check Exercises

SC 8-1 To leave a probability of $1-0.9944=0.0056$ in the tails, the absolute value of z must be greater than or equal to 2.77 , so the interval should be ± 2.77 standard errors about the hypothesized value.
SC 8-2 $\quad \sigma=5 \quad n=49 \quad \bar{x}=26.8 \quad \mu=28$
$\mu \pm 2 \sigma_{\bar{x}}=\mu \pm 2 \sigma / \sqrt{n}=28 \pm 2(5) / \sqrt{49}=28 \pm 1.429=(26.571,29.429)$
Because $\bar{x}=26.8>26.57$, it is not unreasonable to see such sample results if μ really is 28 mpg .

8.3 TESTING HYPOTHESES

In hypothesis testing, we must state the assumed or hypothesized value of the population parameter before we begin sampling. The assumption we wish to test is called the null hypothesis and is symbolized H_{0} or "H sub-zero."

Suppose we want to test the hypothesis that the population mean is equal to 500 . We would symbolize it as follows and read it, "The null hypothesis is that the population mean is equal to 500 ":

$$
\mathrm{H}_{0}: \mu=500
$$

The term null hypothesis arises from earlier agricultural and medical applications of statistics. In order to test the effectiveness of a new fertilizer or drug, the tested hypothesis (the null hypothesis) was that it had no effect, that is, there was no difference between treated and untreated samples.

If we use a hypothesized value of a population mean in a problem, we would represent it symbolically as

$$
\mu_{\mathrm{H}_{0}}
$$

This is read, "The hypothesized value of the population mean."
If our sample results fail to support the null hypothesis, we must conclude that something else is true. Whenever we reject the hypothesis, the conclusion we do accept is called the alternative hypothesis and is symbolized \mathbf{H}_{1} ("H sub-one"). For the null hypothesis

$$
\mathrm{H}_{0}: \mu=200 \text { (Read: "The null hypothesis is that the population mean is equal to } 200 \text {.") }
$$

we will consider three possible alternative hypotheses:

- $\mathrm{H}_{1}: \mu \neq 200 \leftarrow$ "The alternative hypothesis is that the population mean is not Making a formal statement of equal to 200"
- $\mathrm{H}_{1}: \mu>200 \leftarrow$ "The alternative hypothesis is that the population mean is greater than 200"
- $\mathrm{H}_{1}: \mu<200 \leftarrow$ "The alternative hypothesis is that the population mean is less than 200 "

Interpreting the Significance Level

The purpose of hypothesis testing is not to question the computed value of the sample statistic but to make a judgment

Goal of hypothesis testing about the difference between that sample statistic and a hypothesized population parameter. The next step after stating the null and alternative hypotheses, then, is to decide what criterion to use for deciding whether to accept or reject the null hypothesis.

In our sports-complex example, we decided that a difference observed between the sample mean \bar{x} and the hypothesized population mean $\mu_{\mathrm{H}_{0}}$ had only a 4.5 percent, or 0.045 , chance of occurring. Therefore, we rejected the null hypothesis that the population mean was 0.04 inch $\left(\mathrm{H}_{0}: \mu=0.04 \mathrm{inch}\right)$. In statistical terms, the value 0.045 is called the significance level.

What if we test a hypothesis at the 5 percent level of significance? This means that we will reject the null hypothesis if the difference between the sample statistic and the hypothesized population

Function of the significance level

FIGURE 8-2 REGIONS OF SIGNIFICANT DIFFERENCE AND OF NO SIGNIFICANT DIFFERENCE AT A 5 PERCENT LEVEL OF SIGNIFICANCE
parameter is so large that it or a larger difference would occur, on the average, only five or fewer times in every 100 samples when the hypothesized population parameter is correct. If we assume the hypothesis is correct, then the significance level will indicate the percentage of sample means that is outside certain limits. (In estimation, you remember, the confidence level indicated the percentage of sample means that fell within the defined confidence limits.)

Figure 8-2 illustrates how to interpret a 5 percent level of significance. Notice that 2.5 percent of the area under the curve is located in each tail. From Appendix Table 1, we can determine that

Area where no significant
difference exists 95 percent of all the area under the curve is included in an interval extending $1.96 \sigma_{\bar{x}}$ on either side of the hypothesized mean. In 95 percent of the area, then, there is no significant difference between the observed value of the sample statistic and the hypothesized value of the population parameter. In the remaining 5 percent (the colored regions in Figure 8-2), a significant difference does exit.

Figure 8-3 examines this same example in a different way. Here, the 0.95 of the area under the curve is where we would accept the null hypothesis. The two colored parts under the curve, representing a total of 5 percent of the area, are the regions where we would reject the null hypothesis.

A word of caution is appropriate here. Even if our sample statistic in Figure 8-3 does fall in the nonshaded region (the region that makes up 95 percent of the area under the curve), this does not

Also called the area where we accept the null hypothesis

Hypotheses are accepted, not proved prove that our null hypothesis $\left(\mathrm{H}_{0}\right)$ is true; it simply does not provide statistical evidence to reject it. Why? Because the only way in which the hypothesis can be accepted with certainty is for us to know the population parameter; unfortunately, this is not possible. Therefore, whenever we say that we accept the null hypothesis, we actually mean that there is not sufficient statistical evidence to reject it. Use of the term accept, instead of do not reject, has become standard. It means simply that when sample data do not cause us to reject a null hypothesis, we behave as if that hypothesis is true.

FIGURE 8-3 A 5 PERCENT LEVEL OF SIGNIFICANCE, WITH ACCEPTANCE AND REJECTION REGIONS DESIGNATED

Selecting a Significance Level

There is no single standard or universal level of significance for testing hypotheses. In some instances, a 5 percent level of significance is used. Published research results often test hypotheses at the

Trade-offs when choosing a significance level 1 percent level of significance. It is possible to test a hypothesis at any level of significance. But remember that our choice of the minimum standard for an acceptable probability, or the significance level, is also the risk we assume of rejecting a null hypothesis when it is true. The higher the significance level we use for testing a hypothesis, the higher the probability of rejecting a null hypothesis when it is true.

Examining this concept, we refer to Figure 8-4. Here we have illustrated a hypothesis test at three different significance levels: $0.01,0.10$, and 0.50 . Also, we have indicated the location of the same sample mean \bar{x} on each distribution. In parts a and b, we would accept the null hypothesis that the population mean is equal to the hypothesized value. But notice that in part c, we would reject this same null hypothesis. Why? Our significance level there of 0.50 is so high that we would rarely accept the null hypothesis when it is not true but, at the same time, often reject it when it is true.

Type I and Type II Errors

Statisticians use specific definitions and symbols for the concept illustrated in Figure 8-4. Rejecting a null hypothesis when it is true

Type I and Type II errors defined

 is called a Type I error, and its probability (which, as we have seen, is also the significance level of the test) is symbolized α (alpha). Alternatively, accepting a null hypothesis when it is false is called a Type II error, and its probability is symbolized β (beta). There is a tradeoff between these two errors: The probability of making one type of error can be reduced only if we are willing to increase the probability of making the other type of error. Notice in part c. Figure 8-4, that our acceptance region is quite small (0.50 of the area under the curve). With an acceptance region this small, we will rarely accept a null hypothesis when it is not true, but as a cost of being this sure, we will

FIGURE 8-4 THREE DIFFERENT LEVELS OF SIGNIFICANCE
often reject a null hypothesis when it is true. Put another way, in order to get a low β, we will have to put up with a high α. To deal with this trade-off in personal and professional situations, decision makers decide the appropriate level of significance by examining the costs or penalties attached to both types of errors.

Suppose that making a Type I error (rejecting a null hypothesis Preference for a Type I error when it is true) involves the time and trouble of reworking a batch of chemicals that should have been accepted. At the same time, making a Type II error (accepting a null hypothesis when it is false) means faking a chance that an entire group of users of this chemical compound will be poisoned. Obviously, the management of this company will prefer a Type I error to a Type II error and, as a result, will set very high levels of significance in its testing to get low $\beta \mathrm{s}$.

Suppose, on the other hand, that making a Type I error involves disassembling an entire engine at the factory, but making a Type II error

Preference for a Type II error involves relatively inexpensive warranty repairs by the dealers. Then the manufacturer is more likely to prefer a Type II error and will set lower significance levels in its testing.

Deciding Which Distribution to Use in Hypothesis Testing

After deciding what level of significance to use, our next task in hypothesis testing is to determine the appropriate probability distribution. We have a choice between the normal distribution,

Selecting the correct
distribution before the test

TABLE 8-1 CONDITIONS FOR USING THE NORMAL AND \dagger DISTRIBUTIONS IN TESTING HYPOTHESES ABOUT MEANS

	When the Population Standard Deviation is Known	When the Population Standard Deviation is Not Known
Sample size n is larger than 30	Normal distribution, z table	Normal distribution, z table
Sample size n is 30 or less and we assume the population is normal or approximately so	Normal distribution, z table	t distribution, t table

Appendix Table 1, and the t distribution, Appendix Table 2. The rules for choosing the appropriate distribution are similar to those we encountered in Chapter 7 on estimation. Table 8-1 summarizes when to use the normal and t distributions in making tests of means. Later in this chapter, we shall examine the distributions appropriate for testing hypotheses about proportions.

Remember one more rule when testing the hypothesized value of a mean. As in estimation, use the finite population multiplier whenever the population is finite in size, sampling is done with-

Use of the finite population multiplier out replacement, and the sample is more than 5 percent of the population.

Two-Tailed and One-Tailed Tests of Hypotheses

In the tests of hypothesized population means that follow, we shall illustrate two-tailed tests and one-tailed tests. These new terms need a word of explanation. A two-tailed test of a hypothesis will reject the null hypothesis if the sample mean is significantly higher than or lower than the hypothesized population mean. Thus, in a two-tailed test, there are two rejection regions. This is illustrated in Figure 8-5.

A two-tailed test is appropriate when the null hypothesis is $\mu=\mu_{\mathrm{H}_{0}}\left(\mu_{\mathrm{H}_{0}}\right.$ being some specified value $)$ and the alternative hypothesis is $\mu \neq \mu_{\mathrm{H}_{0}}$. Assume that a manufacturer of lightbulbs wants to produce bulbs with a mean life of $\mu \neq \mu_{\mathrm{H}_{0}}=1,000$ hours. If the lifetime is shorter, he will lose customers to his competition; if the lifetime is longer, he will have a very high production cost because the filaments will be excessively thick. In order to see whether his production process is working properly, he takes a sample of the output to test the hypothesis $\mathrm{H}_{0}: \mu=1,000$. Because he does not want to deviate significantly from 1,000 hours in either direction, the appropriate alternative hypothesis is $H_{1}: \mu \neq 1,000$, and he uses a two-tailed test. That is, he rejects the null hypothesis if the mean life of bulbs in the sample is either too far above 1,000 hours or too far below 1,000 hours.

However, there are situations in which a two-tailed test is not appropriate, and we must use a one-tailed test. Consider the case of

Sometimes a one-tailed test is appropriate

 a wholesaler that buys lightbulbs from the manufacturer discussed earlier. The wholesaler buys bulbs in large lots and does not want to accept a lot of bulbs unless their mean life is at least 1,000 hours. As each shipment arrives, the wholesaler tests a sample to decide whether it should accept the shipment. The company will reject the shipment only il it feels that the mean life is below 1,000 hours. If it feels that the bulbs are better than expected (with a mean life above 1,000 hours), it certainly will not reject the shipment because the longer life comes at no extra cost. So the wholesaler's hypotheses are $\mathrm{H}_{0}: \mu=1,000$ hours and $\mathrm{H}_{1}: \mu<1,000$ hours. It rejects H_{0} only if the mean life of the sampled bulbs is significantly below 1,000 hours. This situation is illustrated in Figure 8-6. From this figure, we can see why this test is called a left-tailed, test (or a lower-tailed test).In general, a left-tailed (lower-tailed) test is used if the hypotheses

Left-tailed tests

 are $\mathrm{H}_{0}: \mu=\mu_{\mathrm{H}_{0}}$ and $\mathrm{H}_{1}: \mu<\mu_{\mathrm{H}_{0}}$. In such a situation, it is sample evidence with the sample mean significantly below the hypothesized population mean that leads us to reject the null hypothesis in favor of the alternative hypothesis. Stated differently, the rejection region is in the lower tail (left tail) of the distribution of the sample mean, and that is why we call this a lower-tailed test.A left-tailed test is one of the two kinds of one-tailed tests. As you have probably guessed by now, the other kind of one-tailed test

Right-tailed tests

FIGURE 8-6 LEFT-TAILED TEST (A LOWER-TAILED TEST) WITH THE REJECTION REGION ON THE LEFT SIDE (LOWER SIDE)

FIGURE 8-7 RIGHT-TAILED (UPPER-TAILED) TEST
is a right-tailed test (or an upper-tailed test). An upper upper-tailed test is used when the hypotheses are $\mathrm{H}_{0}: \mu=\mu_{\mathrm{H}_{0}}$ and $\mathrm{H}_{1}: \mu>\mu_{\mathrm{H}_{0}}$. Only values of the sample mean that are significantly above the hypothesized population mean will cause us to reject the null hypothesis in favor of the alternative hypothesis. This is called an upper-tailed test because the rejection region is in the upper tail of the distribution of the sample mean.

The following situation is illustrated in Figure 8-7; it calls for the use of an upper-tailed test. A sales manager has asked her salespeople to observe a limit on traveling expenses. The manager hopes to keep expenses to an average of $\$ 100$ per salesperson per day. One month after the limit is imposed, a sample of submitted daily expenses is taken to see whether the limit is being observed. The null hypothesis is $\mathrm{H}_{0}: \mu=\$ 100.00$, but the manager is concerned only with excessively high expenses. Thus, the appropriate alternative hypothesis here is $\mathrm{H}_{1}: \mu>\$ 100.00$, and an upper-tailed test is used. The null hypothesis is rejected (and corrective measures taken) only if the sample mean is significantly higher than $\$ 100.00$.

Finally, we should remind you again that in each example of hypothesis testing, when we accept a null hypothesis on the basis of sample information, we are really saying that there is no statistical evidence to reject it. We are not saying that the

```
Accepting H
guarantee that H}\mp@subsup{H}{0}{}\mathrm{ is true
``` null hypothesis is true. The only way to prove a null hypothesis is to know the population parameter, and that is not possible with sampling. Thus, we accept the null hypothesis and behave as if it is true simply because we can find no evidence to reject it.

\section*{HINTS \& ASSUMPTIONS}

Warning: Don't use sample results to decide whether to use a two-tailed, upper-tailed, or lowertailed test. Before any data are collected, the form of the test is determined by what the decision maker believes or wants to detect. Hint: If marketing researchers suspect that people who purchase Sugar Frosted Flakes also buy more sugar than folks who purchase unsweetened cereals, they try to verify their belief by subjecting the data to an upper-tailed test. Should the sample mean (surprisingly) turn out smaller than the hypothesized value, that doesn't turn it around into a lower-tailed test-the data just don't support their original belief.

\section*{EXERCISES 8.3}

\section*{Self-Check Exercises}

SC 8-3 For the following cases, specify which probability distribution to use in a hypothesis test:
(a) \(\mathrm{H}_{0}: \mu=27, \mathrm{H}_{1}: \mu \neq 27, \bar{x}=33, \hat{\sigma}=4, n=25\).
(b) \(\mathrm{H}_{0}: \mu=98.6, \mathrm{H}_{1}: \mu>98.6, \bar{x}=99.1, \sigma=1.5, n=50\).
(c) \(\mathrm{H}_{0}: \mu=3.5, \mathrm{H}_{1}: \mu<3.5, \bar{x}=2.8, \hat{\sigma}=0.6, n=18\).
(d) \(\mathrm{H}_{0}: \mu=382, \mathrm{H}_{1}: \mu \neq 382, \bar{x}=363, \sigma=68, n=12\).
(e) \(\mathrm{H}_{0}: \mu=57, \mathrm{H}_{1}: \mu>57, \bar{x}=65, \hat{\sigma}=12, n=42\).

SC 8-4 Martha Inman, a highway safety engineer, decides to test the load-bearing capacity of a bridge that is 20 years old. Considerable data are available from similar tests on the same type of bridge. Which is appropriate, a one-tailed or a two-tailed test? If the minimum load-bearing capacity of this bridge must be 10 tons, what are the null and alternative hypotheses?

\section*{Basic Concepts}

8-13 Formulate null and alternative hypotheses to test whether the mean annual snowfall in Buffalo, New York, exceeds 45 inches.
8-14 Describe what the null and alternative hypotheses typically represent in the hypothesis-testing process.
8-15 Define the term significance level.
8-16 Define Type I and Type II errors.
8-17 In a trial, the null hypothesis is that an individual is innocent of a certain crime. Would the legal system prefer to commit a Type I or a Type II error with this hypothesis?
8-18 What is the relationship between the significance level of a test and Type I error?
8-19 If our goal is to accept a null hypothesis that \(\mu=36.5\) with 96 percent certainty when it's true, and our sample size is 50 , diagram the acceptance and rejection regions for the following alternative hypotheses:
(a) \(\mu \neq 36.5\).
(b) \(\mu>36.5\).
(c) \(\mu<36.5\).

8-20 For the following cases, specify which probability distribution, to use in a hypothesis test:
(a) \(\mathrm{H}_{0}: \mu=15, \mathrm{H}_{1}: \mu \neq 15, \bar{x}=14.8, \hat{\sigma}=3.0, n=35\).
(b) \(\mathrm{H}_{0}: \mu=9.9, \mathrm{H}_{1}: \mu \neq 9.9, \bar{x}=10.6, \sigma=2.3, n=16\).
(c) \(\mathrm{H}_{0}: \mu=42, \mathrm{H}_{1}: \mu>42, \bar{x}=44, \sigma=4.0, n=10\).
(d) \(\mathrm{H}_{0}: \mu=148, \mathrm{H}_{1}: \mu>148, \bar{x}=152, \hat{\sigma}=16.4, n=29\).
(e) \(\mathrm{H}_{0}: \mu=8.6, \mathrm{H}_{1}: \mu<8.6, \bar{x}=8.5, \hat{\sigma}=0.15, n=24\).

8-21 Your null hypothesis is that the battery for a heart pacemaker has an average life of 300 days, with the alternative hypothesis being that the battery life is more than 300 days. You are the quality control engineer for the battery manufacturer.
(a) Would you rather make a Type I or a Type II error?
(b) Based on your answer to part (a), should you use a high or a low significance level?

8-22 Under what conditions is it appropriate to use a one-tailed test? A two-tailed test?
8-23 If you have decided that a one-tailed test is the appropriate test to use, how do you decide whether it should be a lower-tailed test or an uppertailed test?

\section*{Applications}

8-24 The statistics department installed energy-efficient lights, heaters, and air conditioners last year. Now they want to determine whether the average monthly energy usage has decreased. Should they perform a one- or two-tailed test? If their previous average monthly energy usage was 3,124 kilowatt hours, what are the null and alternative hypotheses?
8-25 Dr. Ross Darrow believes that nicotine in cigarettes causes cigarette smokers to have higher daytime heart rates on average than do nonsmokers. He also believes that smokers crave the nicotine in cigarettes rather than just smoking for the physical satisfaction of the act and, accordingly, that the average smoker will smoke more cigarettes per day if he or she switches from a brand with a high nicotine content to one with a low level of nicotine.
(a) Suppose Ross knows that nonsmokers have an average daytime heart rate of 78 beats per minute. What are the appropriate null and alternative hypotheses for testing his first belief?
(b) For the past 3 months, he has been observing a sample of 48 individuals who smoke an average of 15 high-nicotine cigarettes per day. He has just switched them to a brand with a low nicotine content. State null and alternative hypotheses for testing his second belief.

\section*{Worked-Out Answers to Self-Cheek Exercises}
SC 8-3
(a) \(t\) with 24 df .
(b) Normal.
(c) \(t\) with 17 df .
(d) Normal.
(e) \(t\) with 41 df (so we use the normal table).

SC 8-4 The engineer would be interested in whether a bridge of this age could withstand minimum load-bearing capacities necessary for safety purposes. She therefore wants its capacity to be above a certain minimum level, so a one-tailed test (specifically an upper-tailed or righttailed test) would be used. The hypotheses are
\[
\mathrm{H}_{0}: \mu=10 \text { tons } \quad \mathrm{H}_{1}: \mu>10 \text { tons }
\]

\subsection*{8.4 HYPOTHESIS TESTING OF MEANS WHEN THE POPULATION STANDARD DEVIATION IS KNOWN}

\section*{Two-Tailed Tests of Means: Testing in the Scale of the Original Variable}

A manufacturer supplies the rear axles for U.S. Postal Service mail trucks. These axles must be able to withstand 80,000 pounds per square inch in stress tests, but an excessively strong axle raises production costs significantly. Long experience indicates that the standard deviation of the strength of its axles is 4,000 pounds per square inch. The manufacturer selects a sample of 100 axles from production, tests them, and finds that the mean stress capacity of the sample is 79,600 pounds per square inch. Written symbolically, the data in this case are
\[
\begin{array}{rlr}
\mu_{\mathrm{H}_{0}} & =80,000 & \leftarrow \text { Hypothesized value of the population mean } \\
\sigma & =4,000 & \leftarrow \text { Population standard deviation } \\
n & =100 & \leftarrow \text { Sample size } \\
\bar{x} & =79,600 & \leftarrow \text { Sample mean }
\end{array}
\]

If the axle manufacturer uses a significance level \((\alpha)\) of 0.05 in testing, will the axles meet his stress requirements? Symbolically, we can state the problem:
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu=80,000 \leftarrow \text { Null hypothesis: The true mean is } 80,000 \text { pounds per square inch. } \\
& \mathrm{H}_{1}: \mu \neq 80,000 \leftarrow \text { Alternative hypothesis: The true mean is not } 80,000 \text { pounds per square inch. } \\
& a=0.05 \quad \leftarrow \text { Level of significance for testing this hypothesis }
\end{aligned}
\]

Because we know the population standard de viation, and because the size of the population is large enough to be treated as infinite, we can use the normal distribution in our testing. First, we calculate the standard error of the mean using Equation 6-1:
\[
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
& =\frac{4,000}{\sqrt{100}} \\
& =\frac{4,000}{10} \\
& =400 \text { pounds per square inch } \leftarrow \text { Standard error of the mean }
\end{align*}
\]

Figure 8-8 illustrates this problem, showing the significance level of 0.05 as the two shaded regions that each contain 0.025 of the area. The 0.95 acceptance region contains two equal areas of 0.475 each. From the normal distribution table (Appendix Table 1), we can see that the appropriate z value for 0.475 of the area under the curve is 1.96. Now we can determine the limits of the acceptance region:
\[
\begin{aligned}
\mu_{\mathrm{H}_{0}}+1.96 \sigma_{\bar{x}} & =80,000+1.96(400) \\
& =80,000+784 \\
& =80,784 \text { pounds per square inch } \leftarrow \text { Upper limit }
\end{aligned}
\]

FIGURE 8-9 TWO-TAILED HYPOTHESIS TEST AT THE 0.05 SIGNIFICANCE LEVEL, SHOWING THE ACCEPTANCE REGION AND THE SAMPLE MEAN
and
\[
\begin{aligned}
\mu_{\mathrm{H}_{0}}-1.96 \sigma_{\bar{x}} & =80,000-1.96(400) \\
& =80,000-784 \\
& =79,216 \text { pounds per square inch } \leftarrow \text { Lower limit }
\end{aligned}
\]

Note that we have defined the limits of the acceptance region Interpreting the results (80,784 and 79,216) and the sample mean \((79,600)\), and illustrated them in Figure 8-9 in the scale of the original variable (pounds per square inch). In a moment, we'll show you another way to define the limits of the acceptance region and the value of the sample mean. Obviously, the sample mean lies within the acceptance region; the manufacturer should accept the null hypothesis because there is no significant difference between the hypothesized mean of 80,000 and the observed mean of the sample axles. On the basis of this sample, the manufacturer should accept the production run as meeting the stress requirements.

\section*{Hypothesis Testing Using the Standardized Scale}

In the hypothesis test we just completed, two numbers were needed to make our decision: an observed value computed from the sample, and a critical value defining the boundary between the acceptance and rejection regions. Let's look carefully at how we obtained that critical value: After establishing our significance level of \(\alpha=0.05\), we looked in Appendix Table 1-the standard normal probability distribution - to find that \(\pm 1.96\) were the \(z\) values that left 0.025 of probability in each tail of the distribution.

Recall our discussion of standardizing normal variables in Chapter 5 (pp. 253-259): Instead of measuring the variable in its original units, the standardized variable \(z\) tells how many standard deviations above \((z>0)\) or below \((z<0)\) the mean our observation falls. So there are two different scales of measurement we are using, the original scale, or raw scale, and the standardized scale. Figure 8-10 repeats Figure 8-9, but includes both scales. Notice that our sample mean of 79,600 pounds is given on the raw scale, but that the critical \(z\) values of \(\pm 1.96\) are given on the standardized scale. Because these two

FIGURE 8-10 TWO-TAILED HYPOTHESIS TEST AT THE 0.05 SIGNIFICANCE LEVEL, SHOWING THE ACCEPTANCE REGION AND THE SAMPLE MEAN ON BOTH RAW AND STANDARDIZED SCALES
numbers are given on two different scales, we cannot compare them directly when we test our hypotheses. We must convert one of them to the scale of the other.

We did our hypothesis testing on the original scale by converting the critical \(z\) values of \(\pm 1.96\) to critical values of \(\bar{x}\) on the original scale. Then because the observed value of \(\bar{x}(79,600)\) fell between

Converting the observed value to the standardized scale the lower and upper limits of the acceptance region (79,216 and 80,784), we accepted the null hypothesis. Instead of converting the critical \(\boldsymbol{z}\) values to the original scale to get numbers directly comparable to the observed value of \(\bar{x}\), we could have converted our observed value of \(\bar{x}\) to the standardized scale, using Equation 6-2, to get an observed \(z\) value, a number directly comparable to the critical \(z\) values:
\[
z=\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\sigma_{\bar{x}}}
\]

In Figure 8-10, we have also illustrated this observed value on the standardized scale. Notice that it falls between the \(\pm 1.96\) lower and upper limits of the acceptance region on this scale. Once again, we conclude that \(\mathrm{H}_{0}\) should be accepted: The manufacturer should accept the production run as meeting the stress requirements.

What is the difference between the two methods we have just used to test our hypothesis? Only that we define the units (or scale of measurement) differently in each method. However, the two

How do the two methods differ? methods will always lead to the same conclusions. Some people are more comfortable using the scale of the original variable; others prefer to use the standardized scale we just explained. The output from most computer statistical packages uses the standardized scale. For the remainder of this chapter and in Chapter 9, we'll test hypotheses using the standardized scale. Our suggestion: Use the method that's more comfortable for you.

\section*{The Five-Step Process for Hypothesis Testing Using the Standardized Scale}

Table 8-2 summarizes the five-step process that we will use in the remainder of this chapter and throughout Chapter 9 to test hypotheses.

\section*{One-Tailed Test of Means}

For a one-tailed test of a mean, suppose a hospital uses large quantities of packaged doses of a particular drug. The individual dose of this drug is 100 cubic centimeters (100 cc). The action of the drug is such that the body will harmlessly pass off excessive doses. On the other hand, insufficient doses do not produce the desired medical effect, and they interfere with patient treatment. The hospital has purchased this drug from the same manufacturer for a number of years and knows that the population standard deviation is 2 cc . The hospital inspects 50 doses of this drug at random from a very large shipment and finds the mean of these doses to be 99.75 cc .
\[
\begin{aligned}
\mu_{\mathrm{H}_{0}} & =100 \\
\sigma & \leftarrow \text { Hypothesized value of the population mean } \\
n & \leftarrow 50 \\
& \leftarrow \text { Population standard deviation } \\
\bar{x} & =99.75
\end{aligned} \leftarrow \text { Sample size } \quad \leftarrow \text { Sample mean }
\]

\section*{TABLE 8-2 SUMMARY OF THE FIVE-STEP PROCESS}
\begin{tabular}{cl}
\hline Step & \multicolumn{1}{c}{ Action } \\
\hline 1 & \begin{tabular}{l}
Decide whether this is a two-tailed or a one-tailed test. State your hypotheses. Select a level of \\
significance appropriate for this decision.
\end{tabular} \\
2 & \begin{tabular}{l}
Decide which distribution \((t\) or \(z)\) is appropriate (see Table 8-1) and find the critical value \((s)\) for the \\
chosen level of significance from the appropriate table.
\end{tabular} \\
3 & \begin{tabular}{l}
Calculate the standard error of the sample statistic. Use the standard error to convert the observed \\
value of the sample statistic to a standardized value.
\end{tabular} \\
4 & \begin{tabular}{l}
Sketch the distribution and mark the position of the standardized sample value and the critical \\
value(s) for the test. \\
Compare the value of the standardized sample statistic with the critical value(s) for this test and \\
interpret the result.
\end{tabular} \\
\hline
\end{tabular}

If the hospital sets a 0.10 significance level and asks us whether the dosages in this shipment are too small, how can we find the answer?

To begin, we can state the problem symbolically:
\[
\begin{aligned}
\mathrm{H}_{0}: \mu=100 & \leftarrow \begin{array}{l}
\text { Null hypothesis: The mean of the } \\
\text { shipment's dosages is } 100 \mathrm{cc}
\end{array} \\
\mathrm{H}_{1}: \mu<100 & \leftarrow \begin{array}{l}
\text { Alternative hypothesis: The mean is } \\
\text { less than } 100 \text { cc }
\end{array} \\
\alpha=0.10 & \leftarrow \text { Level of significance for testing this hypothesis }
\end{aligned}
\]

Because we know the population standard deviation, and \(n\) is larger than 30, we can use the normal distribution. From Appendix Table 1, we can determine that the value of \(z\) for 40 percent of the area under the curve is 1.28 , so the critical value for our lowertailed test is -1.28 .

The hospital wishes to know whether the actual dosages are 100 cc or whether, in fact, the dosages are too small. The hospital must determine that the dosages are more than a certain amount, or it must reject the shipment. This is a left-tailed test, which we have shown graphically in Figure 8-11. Notice that the colored region corresponds to the 0.10 significance level. Also notice that the acceptance region consists of 40 percent on the left side of the distribution plus the entire right side (50 percent), for a total area of 90 percent.

Now we can calculate the standard error of the mean, using the known population standard deviation and Equation 6-1 (because the population size is large enough to be considered infinite):

Step 3: Compute the standard error and standardize the sample statistic
\[
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \tag{6-1}\\
& =\frac{2}{\sqrt{50}} \\
& =\frac{2}{7.07} \\
& =0.2829 \mathrm{cc} \leftarrow \text { Standard error of the mean }
\end{align*}
\]

FIGURE 8-11 LEFT-TAILED HYPOTHESIS TEST AT THE 0.10 SIGNIFICANCE LEVEL

FIGURE 8-12 LEFT-TAILED HYPOTHESIS TEST AT THE 0.10 SIGNIFICANCE LEVEL, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE MEAN

Next we use Equation 6-2 to standardize the sample mean, \(\bar{x}\), by subtracting \(\mu_{\mathrm{H}_{0}}\), the hypothesized mean, and dividing by \(\sigma_{\bar{x}}\), the standard error of the mean.
\[
\begin{align*}
z & =\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\sigma_{\bar{x}}} \tag{6-2}\\
& =\frac{99.75-100}{0.2829} \\
& =-0.88
\end{align*}
\]

Placing the standardized value on the \(z\) scale shows that this sample mean falls well within the acceptance region, as shown in Figure 8-12.

Therefore, the hospital should accept the null hypothesis because the observed mean of the sample is not significantly lower than our hypothesized mean of 100 cc . On the basis of this sample of 50 doses, the hospital should conclude that the doses in the shipment are sufficient.

Step 4: Sketch the distribution and mark the sample value and the critical value

Step 5: Interpret the result

\section*{HINTS \& ASSUMPTIONS}

There are a lot of managerial situations that call for a one-tailed test. For example, a concert promoter is interested in attracting enough fans to break even or more If he fills up the coliseum and has to turn away customers, that adds to the prestige of the event but costs him nothing. But failing to attract enough customers can lead to financial problems. He would set up a one-tailed test worded as "greater than or equal to 10,000 fans" (if 10,000 is his break-even point). A water district that is designing pressure limits in its supply system has quite another perspective. If the pressure is too low, customers are inconvenienced and some cannot get an adequate water supply. If the pressure is too high, pipes and hoses can burst. The water engineer is interested in keeping the water pressure close to a certain value and would use a two-tailed test. Hint: If the question to be answered is worded as less than, more than, less than or equal to, or more than or equal to, a one-tailed test is appropriate. If the question concerns different from or changed from, use a two-tailed test.

\section*{EXERCISES 8.4}

\section*{Self-Check Exercises}

SC 8-5 Hinton Press hypothesizes that the average life of its largest web press is 14,500 hours. They know that the standard deviation of press life is 2,100 hours. From a sample of 25 presses, the company finds a sample mean of 13,000 hours. At a 0.01 significance level, should the company conclude that the average life of the presses is less than the hypothesized 14,500 hours?
SC 8-6 American Theaters knows that a certain hit movie ran an average of 84 days in each city, and the corresponding standard deviation was 10 days. The manager of the southeastern district was interested in comparing the movie's popularity in his region with that in all of American's other theaters. He randomly chose 75 theaters in his region and found that they ran the movie an average of 81.5 days.
(a) State appropriate hypotheses for testing whether there was a significant difference in the length of the picture's run between theaters in the southeastern district and all of American's other theaters.
(b) At a 1 percent significance level, test these hypotheses.

\section*{Applications}

8-26 Atlas Sporting Goods has implemented a special trade promotion for its propane stove and feels that the promotion should result in a price change for the consumer. Atlas knows that before the promotion began, the average retail price of the stove was \(\$ 44.95\), and the standard deviation was \(\$ 5.75\). Atlas samples 25 of its retailers after the promotion begins and finds the mean price for the stoves is now \(\$ 42.95\). At a 0.02 significance level, does Atlas have reason to believe that the average retail price to the consumer has decreased?
8-27 From 1980 until 1985, the mean price/earnings (P/E) ratio of the approximately 1,800 stocks listed on the New York Stock Exchange was 14.35 and the standard deviation was 9.73. In a sample of 30 randomly chosen NYSE stocks, the mean P/E ratio in 1986 was 11.77. Does this sample present sufficient evidence to conclude (at the 0.05 level of significance) that in 1986 the mean P/E ratio for NYSE stocks had changed from its earlier value?
8-28 Generally Electric has developed a new bulb whose design specifications call for a light output of 960 lumens compared to an earlier model that produced only 750 lumens. The company's data indicate that the standard deviation of light output for this type of bulb is 18.4 lumens. From a sample of 20 new bulbs, the testing committee found an average light output of 954 lumens per bulb. At a 0.05 significance level, can Generally Electric conclude that its new bulb is producing the specified 960 lumen output?
8-29 Maxwell's Hot Chocolate is concerned about the effect of the recent year-long coffee advertising campaign on hot chocolate sales. The average weekly hot chocolate sales two years ago was 984.7 pounds and the standard deviation was 72.6 pounds. Maxwell's has randomly selected 30 weeks from the past year and found average sales of 912.1 pounds.
(a) State appropriate hypotheses for testing whether hot chocolate sales have decreased.
(b) At the 2 percent significance level, test these hypotheses.

8-30 The average commission charged by full-service brokerage firms on a sale of common stock is \(\$ 144\), and the standard deviation is \(\$ 52\). Joel Freelander has taken a random sample of 121 trades by his clients and determined that they paid an average commission of \(\$ 151\). At a 0.10 significance level, can Joel conclude that his clients' commissions are higher than the industry average?

8-31 Each day, the United States Customs Service has historically intercepted about \(\$ 28\) million in contraband goods being smuggled into the country, with a standard deviation of \(\$ 16\) million per day. On 64 randomly chosen days in 1992, the U.S. Customs Service intercepted an average of \(\$ 30.3\) million in contraband goods. Does this sample indicate (at a 5 percent level of significance) that the Customs Commissioner should be concerned that smuggling has increased above its historic level?
8-32 Before the 1973 oil embargo and subsequent increases in the price of crude oil, gasoline usage in the United States had grown at a seasonally adjusted rate of 0.57 percent per month, with a standard deviation of 0.10 percent per month. In 15 randomly chosen months between 1975 and 1985, gasoline usage grew at an average rate of only 0.33 percent per month. At a 0.01 level of significance, can you conclude that the growth in the use of gasoline had decreased as a result of the embargo and its consequences?
8-33 The Bay City Bigleaguers, a semiprofessional baseball team, have the player who led the league in batting average for many years. For thé past several years, Joe Carver's batting average has had a mean of .343 , and a standard deviation of .018 . This year, however, Joe's average was only .306 . Joe is renegotiating his contract for next year, and the salary he will be able to obtain is highly dependent on his ability to convince the team's owner that his batting average this year was not significantly worse than in previous years. If the owner is willing to use a 0.02 significance level, will Joe's salary be cut next year?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 8-5 \(\quad \sigma=2,100 \quad n=25 \quad \bar{x}=13,000\)
\(\mathrm{H}_{0}: \mu=14,500 \quad \mathrm{H}_{1}: \mu<14,500 \quad \alpha=0.01\)
The lower limit of the acceptance region is \(z=-2.33\), or
\[
\bar{x}=\mu_{\mathrm{H}_{0}}-z \sigma / \sqrt{n}=14,500-\frac{2.33(2,100)}{\sqrt{25}}=13,521.4 \text { hours }
\]

Because the observed \(z\) value \(=\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\sigma / \sqrt{n}}=\frac{13,000-14,500}{2,100 / \sqrt{25}}=-3.57<-233\)
(or \(\bar{x}<13,521.4\)), we should reject \(\mathrm{H}_{0}\). The average life is significantly less than the hyoothesized value.
SC 8-6 \(\quad \sigma=10 \quad n=75 \quad \bar{x}=81.5\)
\(\mathrm{H}_{0}: \mu=84 \quad \mathrm{H}_{1}: \mu \neq 84 \quad \alpha=0.01\)
The limits of the acceptance region are \(z= \pm 2.58\), or
\[
\bar{x}=\mu_{\mathrm{H}_{0}} \pm z \sigma / \sqrt{n}=84 \pm \frac{2.58(10)}{\sqrt{75}}=(81.02,86.98) \text { days }
\]

Because the observed \(z\) value \(=\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\sigma / \sqrt{n}}=\frac{81.5-84}{10 / \sqrt{75}}=-2.17\), it and \(\bar{x}\) are in the acceptance region, so we do not reject \(\mathrm{H}_{0}\). The length of run in the southeast is not significantly different from the length of run in other regions.

\subsection*{8.5 MEASURING THE POWER OF A HYPOTHESIS TEST}

Now that we have considered two examples of hypothesis testing, a step back is appropriate to discuss what a good hypothesis test should do. Ideally, \(\alpha\) and \(\beta\) (the probabilities of Type I and Type II

What should a good hypothesis test do? errors) should both be small. Recall that a Type I error occurs when we reject a null hypothesis that is true, and that \(\alpha\) (the significance level of the test) is the probability of making a Type I error. In other words, once we decide on the significance level, there is nothing else we can do about \(\alpha\). A Type II error occurs when we accept a null hypothesis that is false; the probability of a Type II error is \(\beta\). What can we say about \(\beta\) ?

Suppose the null hypothesis is false. Then managers would like Meaning of \(\beta\) and \(1-\beta\) the hypothesis test to reject it all the time. Unfortunately, hypothesis tests cannot be foolproof; sometimes when the null hypothesis is false, a test does not reject it, and thus a Type II error is made. When the null hypothesis is false, \(\mu\) (the true population mean) does not equal \(\mu_{\mathrm{H}_{0}}\) (the hypothesized population mean); instead, \(\mu\) equals some other value. For each possible value of \(\mu\) for which the alternative hypothesis is true, there is a different probability \((\beta)\) of incorrectly accepting the null hypothesis. Of course, we would like this \(\beta\) (the probability of accepting a null hypothesis when it is false) to be as small as possible, or, equivalently, we would like \(1-\beta\) (the probability of rejecting a null hypothesis when it is false) to be as large as possible.

Because rejecting a null hypothesis when it is false is exactly Interpreting the values of 1 - \(\beta\) what a good test should do, a high value of \(1-\beta\) (something near 1.0) means the test is working quite well (it is rejecting the null hypothesis when it is false); a low value of \(1-\beta\) (something near 0.0) means that the test is working very poorly (it's not rejecting the null hypothesis when it is false). Because the value of \(1-\beta\) is the measure of how well the test is working, it is known as the power of the test. If we plot the values of \(1-\beta\) for each value of \(\mu\) for which the alternative hypothesis is true, the resulting curve is known as a power curve.

In part \(a\) of Figure 8-13, we reproduce the left-tailed test from Figure 8-11, but now we are looking at the raw scale. In Figure Computing the values of \(1-\beta\) 8-13(b), we show the power curve associated with this test.
Computing the values of \(1-\beta\) to plot the power curve is not difficult; three such points are shown in Figure 8-13(b). Recall that with this test we were deciding whether to accept a drug shipment. Our test dictated that we should reject the null hypothesis if the standardized sample mean is less than -1.28 , that is, if sample mean dosage is less than \(100.00-1.28\) (0.2829), or 99.64 cc .

Consider point \(C\) on the power curve in Figure 8-13(b). The pop- Interpreting a point on the ulation mean dosage is 99.42 cc . Given that the population mean is 99.42 cc , we must compute the probability that the mean of a random sample of 50 doses from this population will be less than 99.64 cc (the point below which we decided to reject the null hypothesis). Now look at Figure 8-13(c). Earlier we computed the standard error of the mean to be 0.2829 cc , so 99.64 cc is \((99.64-99.42) / 0.2829\), or 0.78 standard error above 99.42 cc . Using Appendix Table 1, we can see that the probability of observing a sample mean less than 99.64 cc and thus rejecting the null hypothesis is 0.7823 , the colored area in Figure 8-13(c). Thus, the power of the test \((1-\beta)\) at \(\mu=99.42\) is 0.7823 . This simply means that if \(\mu=99.42\), the probability that this test will reject the null hypothesis when it is false is 0.7823 .

Now look at point \(D\) in Figure 8-13(b). For this population mean dosage of 99.61 cc , what is the probability that the mean of a random sample of 50 doses from this population will be less than 99.64 cc and thus cause the test to reject the null hypothesis? Look at Figure 8-13(d). Here we see that 99.64 is

FIGURE 8-13 LEFT-TAILED HYPOTHESIS TEST, ASSOCIATED POWER CURVE, AND THREE VALUES OF \(\mu\).
(99.64 - 99.61)/0.2829, or 0.11 standard error above 99.61 cc. Using Appendix Table 1 again, we can see that the probability of observing a sample mean less than 99.64 cc and thus rejecting the null hypothesis is 0.5438 , the colored area in Figure 8-13(d). Thus, the power of the test \((1-\beta)\) at \(\mu=99.61 \mathrm{cc}\) is 0.5438 .

Using the same procedure at point E , we find the power of the test Termination point of the at \(\mu=99.80 \mathrm{cc}\) is 0.2843 ; this is illustrated as the colored area in Figure 8-13(e). The values of \(1-\beta\) continue to decrease to the right

\section*{power curve} of point \(E\). How low do they get? As the population mean gets closer and closer to 100.00 cc , the power of the test \((1-\beta)\) must get closer and closer to the probability of rejecting the null hypothesis when the population mean is exactly 100.00 cc . And we know that probability is nothing but the significance level of the test-in this case, 0.10 . Thus, the curve terminates at point \(F\), which lies at a height of 0.10 directly over the population mean.

What does our power curve in Figure 8-13(b) tell us? Just that as

\section*{Interpreting the power curve} the shipment becomes less satisfactory (as the doses in the shipment become smaller), our test is more powerful (it has a greater probability of recognizing that the shipment is unsatisfactory). It also shows us, however, that because of sampling error, when the dosage is only slightly less than 100.00 cc , the power of the test to recognize this situation is quite low. Thus, if having any dosage below 100.00 cc is completely unsatisfactory, the test we have been discussing would not be appropriate.

\section*{HINTS \& ASSUMPTIONS}

Of course, we'd always like to use the hypothesis test with the greatest power. But we also know that a certain proportion of the time, all hypothesis tests will fail to reject the null hypothesis when it is false or accept it when it's true (that's statistical language that really means that when the test does fail, it will persuade us that things haven't changed when in fact they have, or persuade us that things have changed when they really haven't). That's just the price we pay for using sampling in hypothesis testing. The failure of a test to perform perfectly is due to sampling error. The only way to avoid such error is to examine everything in the population and that is either physically impossible or too expensive.

\section*{EXERCISES 8.5}

\section*{Self-Check Exercises}

SC 8-7 See Exercise 8-32. Compute the power of the test for \(\mu=0.50,0.45\), and 0.40 percent per month.
SC 8-8 In Exercise 8-32, what happens to the power of the test for \(\mu=0.50,0.45\), and 0.40 percent per month if the significance level is changed to 0.04 ?

\section*{Applications}

8-34 See Exercise 8-31. Compute the power of the test for \(\mu=\$ 28, \$ 29\), and \(\$ 30\) million.
8-35 See Exercise 8-30. Compute the power of the test for \(\mu=\$ 140, \$ 160\), and \(\$ 175\).
8-36 In Exercise 8-31, what happens to the power of the test for \(\mu=\$ 28, \$ 29\), and \(\$ 30\) million if the significance level is changed to 0.02 ?
8-37 In Exercise 8-30, what happens to the power of the test for \(\mu\). \(=\$ 140, \$ 160\), and \(\$ 175\) if the significance level is changed to 0.05 ?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 8-7 From Exercise 8-32, we have \(\sigma=0.10, n=15, \mathrm{H}_{0}: \mu=0.57, \mathrm{H}_{1}: \mu<0.57\). At \(a=0.01\), the lower limit of the acceptance region is
\[
\mu_{\mathrm{H}_{0}}-2.33 \sigma / \sqrt{n}=0.57-2.33(0.10) / \sqrt{15}=0.510
\]
(a) At \(\mu=0.50\), the power of the test is
\[
\mathrm{P}(\bar{x}<0.510)=\mathrm{P}\left(z<\frac{0.510-0.50}{0.10 / \sqrt{15}}=\mathrm{P}(z<0.39)=0.5+0.1517=0.6517\right.
\]
(b) At \(\mu=0.45\), the power of the test is
\[
\mathrm{P}(\bar{x}<0.510)=\mathrm{P}\left(z<\frac{0.510-0.45}{0.10 / \sqrt{15}}=\mathrm{P}(z<2.32)=0.5+0.4898=0.9898\right.
\]
(c) At \(\mu=0.40\), the power of the test is
\(\mathrm{P}(\bar{x}<0.510)=\mathrm{P}\left(z<\frac{0.510-0.40}{0.10 / \sqrt{15}}=\mathrm{P}(z<4.26)=1.0000\right.\)

SC 8-8 At \(\alpha=0.04\), the lower limit of the acceptance region is
\[
\mu_{\mathrm{H}_{0}}-1.75 \sigma / \sqrt{n}=0.57-1.75(0.10) / \sqrt{15}=0.525
\]
(a) At \(\mu=0.50\), the power of the test is
\[
\mathrm{P}(\bar{x}<0.525)=\mathrm{P}\left(z<\frac{0.525-0.50}{0.10 / \sqrt{15}}=\mathrm{P}(z<0.97)=0.5+0.3340=0.8340\right.
\]
(b) At \(\mu=0.45\), the power of the test is
\[
\mathrm{P}(\bar{x}<0.525)=\mathrm{P}\left(z<\frac{0.525-0.45}{0.10 / \sqrt{15}}=\mathrm{P}(z<2.90)=0.5+0.4981=0.9981\right.
\]
(c) At \(\mu=0.40\), the power of the test is
\[
\mathrm{P}(\bar{x}<0.525)=\mathrm{P}\left(z<\frac{0.525-0.40}{0.10 / \sqrt{15}}=\mathrm{P}(z<4.84)=1.0000\right.
\]

\subsection*{8.6 HYPOTHESIS TESTING OF PROPORTIONS: LARGE SAMPLES}

\section*{Two-Tailed Tests of Proportions}

In this section, we'll apply what we have learned about tests concerning means to tests for proportions (that is, the proportion of occurrences in a population). But before we apply it, we'll review the important conclusions we made about proportions in Chapter 7. First, remember that the binomial is the theoretically correct distribution to use in dealing with proportions. As the sample size increases, the binomial distribution approaches the normal in its characteristics, and we can use the normal distribution to approximate the sampling distribution. Specifically, \(n p\) and \(n q\) each need to be at least 5 before we can use the normal distribution as a substitute for the binomial.

Consider, as an example, a company that is evaluating the promotability of its employees, that is, determining the proportion whose ability, training, and supervisory experience qualify them for promotion to the next higher level of management. The human resources director tells the president that roughly 80 percent, or 0.8 , of the employees in the company are "promotable." The president assembles a special committee to assess the promotability of all employees. This committee conducts in-depth interviews with 150 employees and finds that in its judgment only 70 percent of the sample are qualified for promotion.
\[
\begin{aligned}
& p_{\mathrm{H}_{0}}=0.8 \\
& q_{\mathrm{H}_{0}}=0.2 \\
& \leftarrow \text { Hypothesized value of the population proportion of successes (judged promotable, in this case) } \\
& n \leftarrow 150 \\
& \bar{p} \leftarrow 0.7 \\
& \leftarrow \text { Hypothesized value of the population proportion of failures (judged not promotable) } \\
& \leftarrow \text { Sample proportion of promotables }
\end{aligned}
\]
\(\bar{q}=0.3 \leftarrow\) Sample proportion judged not promotable Step 1: State your hypotheses,
The president wants to test at the 0.05 significance level the type of test, and significance hypothesis that 0.8 of the employees are promotable:
\(\mathrm{H}_{0}: p=0.8 \leftarrow\) Null hypothesis, 80 percent of the employees are promotable
\(\mathrm{H}_{1}: p \neq 0.8 \leftarrow\) Alternative hypothesis. The proportion of promotable employees is not 80 percent
\(\alpha=0.05 \leftarrow\) Level of significance for testing the hypothesis

\section*{FIGURE 8-14 TWO-TAILED HYPOTHESIS TEST OF A PROPORTION AT THE 0.05 LEVEL OF SIGNIFICANCE}

In this instance, the company wants to know whether the true proportion is larger or smaller than the hypothesized proportion. Thus, a two-tailed test of a proportion is appropriate, and we have shown it graphically in Figure 8-14. The significance level corre-

Step 2: Choose the appropriate distribution and find the critical value sponds to the two colored regions, each containing 0.025 of the area. The acceptance region of 0.95 is illustrated as two areas of 0.475 each. Because \(n p\) and \(n q\) are each larger than 5, we can use the normal approximation of the binomial distribution. From Appendix Table 1, we can determine that the critical value of \(z\) for 0.475 of the area under the curve is 1.96.

We can calculate the standard error of the proportion, using the Step 3: Compute the standard hypothesized values of \(p_{\mathrm{H}_{0}}\) and \(q_{\mathrm{H}_{0}}\) in Equation 7-4:
\[
\begin{aligned}
& \sigma_{\bar{p}}=\sqrt{\frac{p_{\mathrm{H}_{0}} q_{\mathrm{H}_{0}}}{n}} \\
&=\sqrt{\frac{(0.8)(0.2)}{150}} \\
&=\sqrt{0.0010666} \\
&=0.0327 \leftarrow \text { Sampl } \\
& \text { Standard error of the proportion }
\end{aligned}
\]

Next we standardize the sample proportion by dividing the difference between the observed sample proportion, \(\bar{p}\), and the hypothesized proportion, \(p_{\mathrm{H}_{0}}\), by the standard error of the proportion.
\[
\begin{aligned}
z & =\frac{\bar{p}-p_{\mathrm{H}_{0}}}{\sigma_{\bar{p}}} \\
& =\frac{0.7-0.8}{0.0327} \\
& =-3.06
\end{aligned}
\]

FIGURE 8-15 TWO-TAILED HYPOTHESIS TEST OF A PROPORTION AT THE 0.05 SIGNIFICANCE LEVEL, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE PROPORTION

By marking the calculated standardized sample proportion, -3.06 , on a sketch of the sampling distribution, it is clear that this sample falls outside the region of acceptance, as shown in Figure 8-15.

Therefore, in this case, the president should reject the null hypothesis and conclude that there is a significant difference between the director of human resources' hypothesized proportion of promotable employees (0.8) and the observed proportion of promotable employees in the sample. From this, he should infer that the true proportion of promotable employees in the entire company is not 80 percent.

\section*{One-Tailed Tests of Proportions}

A one-tailed test of a proportion is conceptually equivalent to a one-tailed test of a mean, as can be illustrated with this example. A member of a public interest group concerned with environmental pollution asserts at a public hearing that "fewer than 60 percent of the industrial plants in this area are complying with air-pollution standards." Attending this meeting is an official of the Environmental Protection Agency who believes that 60 percent of the plants are complying with the standards; she decides to test that hypothesis at the 0.02 significance level.
\[
\begin{aligned}
\mathrm{H}_{0}: p=0.6 & \leftarrow \begin{array}{l}
\text { Null hypothesis: The proportion of plants } \\
\text { complying with the air-pollution standards is } 0.6
\end{array} \\
\mathrm{H}_{1}: p<0.6 & \leftarrow \begin{array}{l}
\text { Alternative hypothesis: The proportion } \\
\text { complying with the standards is less than } 0.6
\end{array} \\
\alpha=0.02 \leftarrow & \text { Level of significance for testing the hypothesis }
\end{aligned}
\]

Step 4: Sketch the distribution and mark the sample value and the critical values

\section*{Step 5: Interpret the result}

FIGURE 8-16 ONE-TAILED HYPOTHESIS TEST AT THE 0.02 LEVEL OF SIGNIFICANCE

We begin by summarizing the case symbolically:
\[
\begin{aligned}
p_{\mathrm{H}_{0}} & =0.6 \leftarrow \text { Hypothesized value of the population proportion that is complying with air-pollution standards } \\
q_{\mathrm{H}_{0}} & =0.4 \leftarrow \text { Hypothesized value of the population proportion that is not complying and thus polluting } \\
n & =60 \leftarrow \text { Sample size } \\
\bar{p} & =33 / 60, \text { or } 0.55 \leftarrow \text { Sample proportion complying } \\
\bar{q} & =27 / 60, \text { or } 0.45 \leftarrow \text { Sample proportion polluting }
\end{aligned}
\]

This is a one-tailed test: The EPA official wonders only whether the actual proportion is less than 0.6. Specifically, this is a left-tailed test. In order to reject the null hypothesis that the true proportion of plants in compliance is 60 percent, the EPA representative must accept the alternative hypothesis that fewer than 0.6 have complied. In Figure 8-16, we have shown this hypothesis test graphically.

Because \(n p\) and \(n q\) are each over 5, we can use the normal approximation of the binomial distribution. The critical value of \(z\) from Appendix Table 1 for 0.48 of the area under the curve is 2.05 .

Next, we can calculate the standard error of the proportion using the hypothesized population proportion as follows:
\[
\begin{aligned}
& \sigma_{\bar{p}}=\sqrt{\frac{p_{\mathrm{H}_{0}} q_{\mathrm{H}_{0}}}{n}} \\
&=\sqrt{\frac{(0.6)(0.4)}{60}} \\
&=\sqrt{0.004} \\
&=0.0632 \leftarrow \text { sam } \\
& \text { sand }
\end{aligned}
\]

FIGURE 8-17 ONE-TAILED (LEFT-TAILED) HYPOTHESIS TEST AT THE 0.02 SIGNIFICANCE LEVEL, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE PROPORTION

And we standardize the sample proportion by dividing the difference between the observed sample proportion, \(\bar{p}\), and the hypothesized proportion, \(p_{\mathrm{H}_{0}}\), by the standard error of the proportion.
\[
\begin{aligned}
z & =\frac{\bar{p}-p_{\mathrm{H}_{0}}}{\sigma_{\bar{p}}} \\
& =\frac{0.55-0.6}{0.0632} \\
& =-0.79
\end{aligned}
\]

Figure 8-17 illustrates where the sample proportion lies in relation to the critical value, -2.05 . Looking at this figure, we can see that the sample proportion lies within the acceptance region. Therefore, the EPA official should accept the null hypothesis that the true proportion of complying plants is 0.6 . Although the observed sample proportion is below 0.6, it is not significantly below 0.6 ; that is, it is not far enough below 0.6 to make us accept the assertion by the member of the public interest group.

Step 4: Sketch the distribution and mark the sample value and the critical value

Step 5: Interpret the result

\section*{HINTS \& ASSUMPTIONS}

Warning: When we're doing hypothesis tests involving proportions, we use the binomial distribution as the sampling distribution, unless \(n p\) and \(n q\) are both at least 5. In that case, we can use the normal distribution as an approximation of the binomial without worry. Fortunately, in practice, hypothesis tests about proportions almost always involve sufficiently large samples so that this condition is met. Even when they aren't, the arithmetic of the binomial distribution and the binomial table is not that difficult to use.

\section*{EXERCISES 8.6}

\section*{Self-Check Exercises}

SC 8-9 A ketchup manufacturer is in the process of deciding whether to produce a new extra-spicy brand. The company's marketing-research department used a national telephone survey of 6,000 households and found that the extra-spicy ketchup would be purchased by 335 of them. A much more extensive study made 2 years ago showed that 5 percent of the households would purchase the brand then. At a 2 percent significance level, should the company conclude that there is an increased interest in the extra-spicy flavor?
SC 8-10 Steve Cutter sells Big Blade lawn mowers in his hardware store, and he is interested in comparing the reliability of the mowers he sells with the reliability of Big Blade mowers sold nationwide. Steve knows that only 15 percent of all Big Blade mowers sold nationwide require repairs during the first year of ownership. A sample of 120 of Steve's customers revealed that exactly 22 of them required mower repairs in the first year of ownership. At the 0.02 level of significance, is there evidence that Steve's Big Blade mowers differ in reliability from those sold nationwide?

\section*{Applications}

8-38 Grant, Inc., a manufacturer of women's dress blouses, knows that its brand is carried in 19 percent of the women's clothing stores east of the Mississippi River. Grant recently sampled 85 women's clothing stores on the West Coast and found that 14.12 percent of the stores carried the brand. At the 0.04 level of significance, is there evidence that Grant has poorer distribution on the West Coast than it does east of the Mississippi?
8-39 From a total of 10,200 loans made by a state employees' credit union in the most recent 5-year period, 350 were sampled to determine what proportion was made to women. This sample showed that 39 percent of the loans were made to women employees. A complete census of loans 5 years ago showed that 41 percent of the borrowers then were women. At a significance level of 0.02 , can you conclude that the proportion of loans made to women has changed significantly in the past 5 years?
8-40 Feronetics specializes in the use of gene-splicing techniques to produce new pharmaceutical compounds. It has recently developed a nasal spray containing interferon, which it believes will limit the transmission of the common cold within families. In the general population, 15.1 percent of all individuals will catch a rhinovirus-caused cold once another family member contracts such a cold. The interferon spray was tested on 180 people, one of whose family members subsequently contracted a rhinovirus-caused cold. Only 17 of the test subjects developed similar colds.
(a) At a significance level of 0.05 , should Feronetics conclude that the new spray effectively reduces transmission of colds?
(b) What should it conclude at \(\alpha=0.02\) ?
(c) On the basis of these results, do you think Feronetics should be allowed to market the new spray? Explain.
8-41 Some financial theoreticians believe that the stock market's daily prices constitute a "random walk with positive drift." If this is accurate, then the Dow Jones Industrial Average should show a gain on more than 50 percent of all trading days. If the average increased on 101 of 175 randomly chosen days, what do you think about the suggested theory? Use a 0.01 level of significance.

8-42 MacroSwift estimated last year that 35 percent of potential software buyers were planning to wait to purchase the new operating system, Window Panes, until an upgrade had been released. After an advertising campaign to reassure the public, MacroSwift surveyed 3,000 people and found 950 who were still skeptical. At the 5 percent significance level, can the company conclude the proportion of skeptical people has decreased?
8-43 Rick Douglas, the new manager of Food Barn, is interested in the percentage of customers who are totally satisfied with the store. The previous manager had 86 percent of the customers totally satisfied, and Rick claims the same is true today. Rick sampled 187 customers and found 157 were totally satisfied. At the 1 percent significance level, is there evidence that Rick's claim is valid?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 8-9 \(n=6,000 \bar{p}=335 / 6,000=0.05583\)
\(\mathrm{H}_{0}: p=0.05 \quad \mathrm{H}_{1}: p>0.05 \quad \alpha=0.02\)
The upper limit of the acceptance region is \(\mathrm{z}=2.05\), or
\[
\bar{p}=p_{\mathrm{H}_{\mathrm{o}}}+z \sqrt{\frac{p_{\mathrm{H}_{\mathrm{o}}} q_{\mathrm{Ho}}}{n}}=0.05+2.05 \sqrt{\frac{0.05(0.95)}{6,000}}=0.05577
\]

Because the observed \(z\) value \(=\frac{\bar{p}-p_{\mathrm{H}_{\mathrm{o}}}}{\sqrt{p_{\mathrm{H}_{\mathrm{o}}} q_{\mathrm{H}_{\mathrm{o}}} / n}}=\frac{0.05583-0.05}{\sqrt{0.05(0.95) / 6,000}}=2.07\)
\(>2.05\) (or \(\bar{p}>0.05577\)), we should reject \(\mathrm{H}_{0}\) (but just barely). The current interest is significantly greater than the interest of 2 years ago.
SC 8-10 \(n=120 \quad \bar{p}=22 / 120=0.1833\)
\(\mathrm{H}_{0}: p=0.15 \quad \mathrm{H}_{1}: p \neq 0.15 \quad \alpha=0.02\)
The limits of the acceptance region are \(z= \pm 2.33\), or
\[
\bar{p}=p_{\mathrm{H}_{0}} \pm z \sqrt{\frac{p_{\mathrm{H}_{0}} q_{\mathrm{H}_{0}}}{n}}=0.15 \pm 2.33 \sqrt{\frac{0.15(0.085)}{120}}=(0.0741,0.2259)
\]

Because the observed \(z\) value \(=\frac{\bar{p}-p_{\mathrm{H}_{0}}}{\sqrt{p_{\mathrm{H}_{0}} q_{\mathrm{H}_{0}} / n}}=\frac{0.1833-0.15}{\sqrt{0.15(0.85) / 120}}=1.02\)
\(<2.33\) (or \(\bar{p}=0.1833\), which is between 0.0741 and 0.2259), we do not reject \(\mathrm{H}_{0}\). Steve's mowers are not significantly different in reliability from those sold nationwide.

\subsection*{8.7 HYPOTHESIS TESTING OF MEANS WHEN THE POPULATION STANDARD DEVIATION IS NOT KNOWN}

When we estimated confidence intervals in Chapter 7, we learned When to use the \(\dagger\) distribution that the difference in size between large and small samples is important when the population standard deviation \(\sigma\) is unknown and must be estimated from the sample standard deviation. If the sample size \(n\) is 30 or less and \(\sigma\) is not known, we should use the \(t\) distribution. The appropriate \(t\) distribution has \(n-1\) degrees of freedom. These rules apply to hypothesis testing, too.

\section*{Two-Tailed Tests of Means Using the \(t\) Distribution}

A personnel specialist of a major corporation is recruiting a large number of employees for an overseas assignment. During the testing process, management asks how things are going, and she replies, "Fine. I think the average score on the aptitude test will be around 90 ." When management reviews 20 of the test results compiled, it finds that the mean score is 84 , and the standard deviation of this score is 11 .
\[
\begin{aligned}
\mu_{\mathrm{H}_{0}}=90 & \leftarrow \text { Hypothesized value of the population mean } \\
n=20 & \leftarrow \text { Sample size } \\
\bar{x}=84 & \leftarrow \text { Sample mean } \\
s=11 & \leftarrow \text { Sample standard deviation }
\end{aligned}
\]

If management wants to test her hypothesis at the 0.10 level of significance, what is the procedure?
\[
\begin{gathered}
\mathrm{H}_{0}: \mu=90 \leftarrow \text { Null hypothesis, the true population mean score is } 90 \\
\mathrm{H}_{1}: \mu \neq 90 \leftarrow \text { Alternative hypothesis, the mean score is not } 90 \\
\alpha=0.10 \leftarrow \text { Level of significance for testing this hypothesis }
\end{gathered}
\]

Step 1: State your hypotheses, type of test, and significance level .

Figure 8-18 illustrates this problem graphically. Because management is interested in knowing whether the true mean score is larger or smaller than the hypothesized score, a two-tailed test is the appropriate one to use. The significance level of 0.10 is shown in Figure 8-18 as the two colored areas, each containing 0.05 of the area under the \(t\) distribution. Because the sample size is 20 ,

Step 2: Choose the appropriate distribution and find the critical value the appropriate number of degrees of freedom is 19 , that is, \(20-1\). Therefore, we look in the \(t\) distribution table, Appendix Table 2, under the 0.10 column until we reach the 19 degrees of freedom row. There we find the critical value of \(t, 1.729\).

Because the population standard deviation is not known, we must estimate it using the sample standard deviation and Equation 7-1:
\[
\begin{align*}
\hat{\sigma} & =s \tag{7-1}\\
& =11
\end{align*}
\]

Now we can compute the standard error of the mean. Because we are using \(\hat{\sigma}\), an estimate of the population standard deviation, the standard error of the mean will also be an estimate. We can use Equation 7-6, as follows:

Step 3: Compute the standard error and standardize the sample statistic
\[
\begin{align*}
\hat{\sigma}_{\bar{x}} & =\frac{\hat{\sigma}}{\sqrt{n}} \tag{7-6}\\
& =\frac{11}{\sqrt{20}} \\
& =\frac{11}{4.47} \\
& =2.46 \leftarrow \text { Estimated standard error of the mean }
\end{align*}
\]

Next we standardize the sample mean, \(\bar{x}\), by subtracting \(\mu_{\mathrm{H}_{0}}\), the hypothesized mean, and dividing by \(\hat{\sigma}_{\bar{x}}\), the estimated standard error of the mean. Because our test of hypotheses is based on the \(t\) distribution,

FIGURE 8-18 TWO-TAILED TEST OF HYPOTHESIS AT THE 0.10 LEVEL OF SIGNIFICANCE USING THE \(\dagger\) DISTRIBUTION
we use \(t\) to denote the standardized statistic.
\[
\begin{aligned}
t & =\frac{\bar{x}-\mu_{\mathrm{H}_{\mathrm{o}}}}{\hat{\sigma}_{\bar{x}}} \\
& =\frac{84-90}{2.46} \\
& =-2.44
\end{aligned}
\]

Drawing this result on a sketch of the sampling distribution, we see that the sample mean falls outside the acceptance region, as shown in Figure 8-19.

Therefore, management should reject the null hypothesis (the personnel specialist's assertion that the true mean score of the employees being tested is 90).

Step 4 Sketch the distribution and mark the sample value and the critical values

Step 5: Interpret the result

FIGURE 8-19 TWO-TAILED HYPOTHESIS TEST AT THE 0.10 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE MEAN

\section*{One-Tailed Tests of Means Using the \(t\) Distribution}

The procedure for a one-tailed hypothesis test using the \(t\) distribution is the same conceptually as for a one-tailed test using the normal

\section*{One difference from the \(z\) tables} distribution and the \(z\) table. Performing such one-tailed tests may cause some difficulty, however. Notice that the column headings in Appendix Table 2 represent the area in both tails combined. Thus, they are appropriate to use in a two-tailed test with two rejection regions.

If we use the \(t\) distribution for a one-tailed test, we need to determine the area located in only one tail. So to find the appropriate \(t\) value for a one-tailed test at a significance level of 0.05 with 12

Using the t table for onetailed tests degrees of freedom, we would look in Appendix Table 2 under the 0.10 column opposite the 12 degrees of freedom row. The answer in this case is 1.782 . This is true because the \(\mathbf{0 . 1 0}\) column represents \(\mathbf{0 . 1 0}\) of the area under the curve contained in both tails combined, so it also represents \(\mathbf{0 . 0 5}\) of the area under the curve contained in each of the tails separately.

In the next chapter, we continue our work on hypothesis testing Looking ahead by looking at situations where decisions must be made on the basis of two samples that may or may not come from the same underlying population.

\section*{HINTS \& ASSUMPTIONS}

Doing hypothesis tests with the \(t\) distribution is no different from doing them with the normal distribution except that we use a different table and we have to supply the number of degrees of freedom. Hint: The number of degrees of freedom in a single-sample test is always one fewer than the sample size. Warning: Use the \(t\) distribution whenever the sample size is less than 30 , the population standard deviation is not known, and the population is normal or approximately normal.

\section*{One Sample Test Using SPSS}

Above data are from a manufacturer of high-performance automobiles produces disc-brakes that must measure 322 millimeters in diameter. Quality control randomly draws 16 discs made by each of eight production machines and measures their diameters.

For one sample t-test go to Analyze>compare means>One sample t-test>Select test variable>select test value>Ok

\section*{EXERCISES 8.7}

\section*{Self-check Exercises}

SC 8-11 Given a sample mean of 83 , a sample standard deviation of 12.5 , and a samplesize of 22 , test the hypothesis that the value of the population mean is 70 against the alternative that it is more than 70 . Use the 0.025 significance level.
SC 8-12 Picosoft, Ltd., a supplier of operating system software for personal computers, was planning the initial public offering of its stock in order to raise sufficient working capital to finance the development of a radically new, seventh-generation integrated system. With current earnings of \(\$ 1.61\) a share, Picosoft and its underwriters were contemplating an offering price of \(\$ 21\), or about 13 times earnings. In order to check the appropriateness of this price, they randomly chose seven publicly traded software firms and found that their average price/earnings ratio was 11.6 , and the sample standard deviation was 1.3. At \(\alpha=0.02\), can Picosoft conclude that the stocks of publicly traded software firms have an average \(\mathrm{P} / \mathrm{E}\) ratio that is significantly different from 13 ?

\section*{Basic Concepts}

8-44 Given a sample mean of 94.3, a sample standard deviation of 8.4 , and a sample size of 6 , test the hypothesis that the value of the population mean is 100 against the alternative hypothesis that it is less than 100 . Use the 0.05 significance level.
8-45 If a sample of 25 observations reveals a sample mean of 52 and a sample variance of 4.2 , test the hypothesis that the population mean is 65 against the alternative hypothesis that it is some other value. Use the 0.01 significance level.

\section*{Application}

8-46 Realtor Elaine Snyderman took a random sample of 12 homes in a prestigious suburb of Chicago and found the average appraised market value to be \(\$ 780,000\), and the standard deviation was \(\$ 49,000\). Test the hypothesis that for all homes in the area, the mean appraised value is \(\$ 825,000\) against the alternative that it is less than \(\$ 825,000\). Use the 0.05 level of significance.
8-47 For a sample of 60 women taken from a population of over 5,000 enrolled in a weightreducing program at a nationwide chain of health spas, the sample mean diastolic blood pressure is 101 and the sample standard deviation is 42 . At a significance level of 0.02 , on average, did the women enrolled in the program have diastolic blood pressure that exceeds the value of 75 ?
8-48 The data-processing department at a large life insurance company has installed new color video display terminals to replace the monochrome units it previously used. The 95 operators trained to use the new machines averaged 7.2 hours before achieving a satisfactory level of performance. Their sample variance was 16.2 squared hours. Long experience with operators on the old monochrome terminals showed that they averaged 8.1 hours on the machines before their performances were satisfactory. At the 0.01 significance level, should the supervisor of the department conclude that the new terminals are easier to learn to operate?
8-49 As the bottom fell out of the oil market in early 1986, educators in Texas worried about how the resulting loss of state revenues (estimated to be about \(\$ 100\) million for each \(\$ 1\) decrease
in the price of a barrel of oil) would affect their budgets. The state board of education felt the situation would not be critical as long as they could be reasonably certain that the price would stay above \(\$ 18\) per barrel. They surveyed 13 randomly chosen oil economists and asked them to predict how low the price would go before it bottomed out. The 13 predictions average \(\$ 21.60\), and the sample standard deviation was \(\$ 4.65\). At \(\alpha=0.01\), is the average prediction significantly higher than \(\$ 18.00\) ? Should the board conclude that a budget crisis is unlikely? Explain.
8-50 A television documentary on overeating claimed that Americans are about 10 pounds overweight on average. To test this claim, eighteen randomly selected individuals were examined; their average excess weight was found to be 12.4 pounds, and the sample standard deviation was 2.7 pounds. At a significance level of 0.01 , is there any reason to doubt the validity of the claimed 10 -pound value?
8-51 XCO, a multinational manufacturer, uses a batch process to produce widgets. Each batch of widgets takes 8 hours to produce and has material and labor costs of \(\$ 8,476\). Because of variations in machine efficiency and raw material purity, the number of widgets per batch is random. All widgets made can be sold for \(\$ 2.50\) each, and widget production is profitable so long as the batches sell for more than \(\$ 12,500\) on average. XCO sampled 16 batches and found 5,040 widgets per batch on average, with a standard deviation of 41.3 widgets. At \(\alpha=0.025\), can XCO conclude that its widget operation is profitable?

\section*{Worked-Out Answers to Self-Check Exercises}
\[
\begin{array}{llcl}
\text { SC 8-11 } & s=12.5 & n=22 \quad \bar{x}=83 \\
& \mathrm{H}_{0}: \mu=70 & \mathrm{H}_{1}: \mu>70 \quad \alpha=0.025
\end{array}
\]

The upper limit of the acceptance region is \(t=2.080\), or
\[
\bar{x}=\mu_{\mathrm{H}_{0}}+t s / \sqrt{n}=70+2.080(12.5) / \sqrt{22}=75.54
\]

Because the observed \(t\) value \(=\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{s / \sqrt{n}}=\frac{83-70}{12.5 / \sqrt{22}}=4.878>2.080\) (or \(\bar{x}>75.54\)), we reject \(\mathrm{H}_{0}\).

SC 8-12 \(s=1.3 \quad n=7 \quad \bar{x}=11.6\)
\(\mathrm{H}_{0}: \mu=13 \quad \mathrm{H}_{1}: \mu \neq 13 \quad \alpha=0.02\)
The limits of the acceptance region are \(t= \pm 3.143\), or
\[
\bar{x}=\mu_{\mathrm{H}_{\mathrm{o}}} \pm t s / \sqrt{n}=13 \pm 3.143(1.3) / \sqrt{7}=(11.46,14.54)
\]

Because the observed \(t\) value \(=\frac{\bar{x}-\mu_{\mathrm{H}_{\circ}}}{s / \sqrt{n}}=\frac{11.6-13}{1.3 / \sqrt{7}}=-2.849>-3.143\)
(or \(\bar{x}=11.6\), which is between 11.46 and 14.54), we do not reject \(\mathrm{H}_{0}\). The average P/E ratio of publicly traded software firms is not significantly different from 13.

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 8: One-Sample Tests of Hypotheses "Here's the other thing that has me thinking more about adding a software division," said Margot Derby, the head of Marketing at Loveland Computers, as she pulled a Wall Street Journal column from her desk drawer. "As you know, prices on PCs have been dropping. But, to everyone's surprise, PC buyers seem to be spending the same in total-they are making up for the discount price by buying more bells and whistles-and more software.
"The article quotes a figure for the average amount spent on software by people in the first year they own the machine. That's the same figure that we asked when we did our telephone survey, but our number came in much lower than the amount they quoted in the article. The trouble is I' m not sure which figure to use to make our business plan for a software division."
"Well, why would your number be different?" asked Lee Azko.
"We don't intend to appeal to everyone," Margot replied. "We probably have more of a 'techie’ image, so our customers may be different from the 'average' customer they talk about in that article. Maybe they use custom programs they write themselves."
"Or maybe the difference doesn't mean anything at all and it's just the result of sampling error," Lee suggested.
"But I don't know how we could decide for sure. We've calculated the mean and standard deviation for our telephone sample, but the Journal article only gives us the mean. And I remember enough from my one stat course in college to know that we can't run a test if we don't know the population standard deviation."

Study Questions: Assume that the mean software expenditure figure quoted in the newspaper is a reliable population mean. Is Margot right that Lee also needs to know the population standard deviation in order to perform a test? What idea is Margot exploring here? How would the idea be stated in hypothesis-testing terms?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 8}

Alpha (\(\alpha\)) The probability of a Type I error.
Alternative Hypothesis The conclusion we accept when the data fail to support the null hypothesis.
Beta \((\beta)\) The probability of a Type II error.
Critical Value The value of the standard statistic (z or \(t\)) beyond which we reject the null hypothesis; the boundary between the acceptance and rejection regions.
Hypothesis An assumption or speculation we make about a population parameter.
Lower-Tailed Test A one-tailed hypothesis test in which a sample value significantly below the hypothesized population value will lead us to reject the null hypothesis.
Null Hypothesis The hypothesis, or assumption, about a population parameter we wish to test, usually an assumption of the status quo.

One-Tailed Test A hypothesis test in which there is only one rejection region; that is where we are concerned only with whether the observed value deviates from the hypothesized value in one direction.
Power Curve A graph of the values of the power of a test for each value of \(\mu\), or other population parameter, for which the alternative hypothesis is true.
Power of the Hypothesis Test The probability of rejecting the null hypothesis when it is false, that is, a measure of how well the hypothesis test is working.
Raw Scale Measurement in the variable's original units.
Significance Level A value indicating the percent- age of sample values that is outside certain limits, assuming the null hypothesis is correct, that is, the probability of rejecting the null hypothesis when it is true.
Standardized Scale Measurement in standard deviations from the variable's mean.
Two-Tailed Test A hypothesis test in which the null hypothesis is rejected if the sample value is significantly higher or lower than the hypothesized value of the population parameter; a test involving two rejection regions.
Type I Error Rejecting a null hypothesis when it is true.
Type II Error Accepting a null hypothesis when it is false.
Upper-Tailed Test A one-tailed hypothesis test in which a sample value significantly above the hypothesized population value will lead us to reject the null hypothesis.

\section*{Review and Application Exercises}

8-52 For the following situations, state appropriate null and alternative hypotheses.
(a) The Census Bureau wants to determine whether the percentage of homeless people in New York City is the same as the national average.
(b) A local hardware store owner wants to determine whether sales of garden supplies are better than usual after a spring promotion.
(c) The Weather Channel wants to know whether average annual snowfall in the 1980s was significantly different from the 8 -inch average recorded over the past 100 years.
(d) A consumer-products investigative magazine wonders whether the fuel efficiency of a new subcompact car is significantly less than the 34 miles per gallon stated on the window sticker.
8-53 Health Electronics, Inc., a manufacturer of pacemaker batteries, specifies that' the life of each battery is greater than or equal to 28 months. If scheduling for replacement surgery for the batteries is to be based on this claim, explain to the management of this company the consequences of Type I and Type II errors.
8-54 A manufacturer of petite women's sportswear has hypothesized that the average weight of the women buying its clothing is 110 pounds. The company takes two samples of its customers and finds one sample's estimate of the population mean is 98 pounds, and the other sample produces a mean weight of 122 pounds. In the test of the company's hypothesis that the population mean is 110 pounds versus the hypothesis that the mean does not equal 110 pounds, is one of these sample values more likely to lead us to accept the null hypothesis? Why or why not?

8-55 Many cities have adopted High Occupancy Vehicle (HOV) lanes to speed commuter traffic to downtown business districts. Planning for Metro Transportation District has depended on a wellestablished average of 3.4 passengers per HOV. But a summer intern notes that because many firms are sponsoring van pools, the average number of passengers per car is probably higher. The intern takes a sample of 23 vehicles going through the HOV lane of a toil plaza and reports a sample mean of 4.3 passengers, and a standard deviation of 1.5 passengers. At the 0.01 level of significance, does the sample suggest that the mean number of passengers has increased?
8-56 In Exercise SC 8-5, what would be the power of the test for \(\mu=14,000,13,500\), and 13,000 if the significance level were changed to 0.10 ?
8-57 On an average day, about 5 percent of the stocks on the New York Stock Exchange set a new high for the year. On Friday, September 18, 1992, the Dow Jones Industrial Average closed at 3,282 on a robust volume of over 136 million shares traded. A random sample of 120 stocks showed that sixteen had set new annual highs that day. Using a significance level of 0.01 , should we conclude that more stocks than usual set new highs on that day?
8-58 In response to criticism concerning lost mail, the U.S. Postal Service initiated new procedures to alleviate this problem. The postmaster general had been assured that this change would reduce losses to below the historic loss rate of 0.3 percent. After the new procedures had been in effect for 2 months, the USPS sponsored an investigation in which a total of 8,000 pieces of mail were mailed from various parts of the country. Eighteen of the test pieces failed to reach their destinations. At a significance level of 0.10 , can the post- master general conclude that the new procedures achieved their goal?
8-59 What is the probability that we are rejecting a true null hypothesis when we reject the hypothesized value because
(a) The sample statistic differs from it by more than 2.15 standard errors in either direction?
(b) The value of the sample statistic is more than 1.6 standard errors above it?
(c) The value of the sample statistic is more than 2.33 standard errors below it?

8-60 If we wish to accept the null hypothesis 85 percent of the time when it is correct, within how many standard errors around the hypothesized mean should the sample mean fall, in order to be in the acceptance region? What if we want to be 98 percent certain of accepting the null hypothesis when it is true?
8-61 Federal environmental statutes applying to a particular nuclear power plant specify that recycled water must, on average, be no warmer than \(84^{\circ} \mathrm{F}\left(28.9^{\circ} \mathrm{C}\right)\) before it can be released into the river beside the plant. From 70 samples, the average temperature of recycled water was found to be \(86.3^{\circ} \mathrm{F}\left(30.2^{\circ} \mathrm{C}\right)\). If the population standard deviation is 13.5 Fahrenheit (7.5 Celsius) degrees, should the plant be cited for exceeding the limitations of the statute? State and test appropriate hypotheses at \(\alpha=0.05\).
8-62 State inspectors, investigating charges that a Louisiana soft-drink bottling company underfills its product, have sampled 200 bottles and found the average contents to be 31.7 fluid ounces. The bottles are advertised to contain 32 fluid ounces. The population standard deviation is known to be 1.5 fluid ounces. Should the inspectors conclude, at the 2 percent significance level, that the bottles are being underfilled?
8-63 In 1995, the average 2-week-advance-purchase airfare between Raleigh-Durham, North Carolina, and New York City was \(\$ 235\). The population standard deviation was \(\$ 68\). A1996 survey of 90 randomly chosen travelers between these two cities found that they had paid \(\$ 218.77\), on average, for their tickets. Did the average airfare on this route change significantly
between 1995 and 1996? What is the largest \(\alpha\) at which you would conclude that the observed average fare is not significantly different from \(\$ 235\) ?
8-64 Audio Sounds runs a chain of stores selling stereo systems and components. It has been very successful in many university towns, but it has had some failures. Analysis of its failures has led it to adopt a policy of not opening a store unless it can be reasonably certain that more than 15 percent of the students in town own stereo systems costing \(\$ 1,100\) or more. A survey of 300 of the 2,400 students at a small, liberal arts college in the Midwest has discovered that 57 of them own stereo systems costing at least \(\$ 1,100\). If Audio Sounds is willing to run a 5 percent risk of failure, should it open a store in this town?
8-65 The City of Oakley collects a 1.5 percent transfer tax on closed real estate transactions. In an average week, there are usually 32 closed transactions, with a standard deviation of 2.4. At the 0.10 level of significance, would you agree with the tax collector's conclusion that "sales are off this year" if a sample of 16 weeks had a mean of 28.25 closed sales?
8-66 In 1996, it was estimated that about 72 percent of all U.S. households were cable TV subscribers. Newstime magazine's editors were sure that their readers subscribed to cable TV at a higher rate than the general population and wanted to use this fact to sell advertising space for premium cable channels. To verify this, they sampled 250 of Newstime's subscribers and found that 194 subscribed to cable TV. At a significance level of 2 percent, do the survey data support the editors' belief?
8-67 A company, recently criticized for not paying women as much as men working in the same positions, claims that its average salary paid to all employees is \(\$ 23,500\). From a random sample of 29 women in the company, the average salary was calculated to be \(\$ 23,000\). If the population standard deviation is known to be \(\$ 1,250\) for these jobs, determine whether we could reasonably (within 2 standard errors) expect to find \(\$ 23,000\) as the sample mean if, in fact, the company's claim is true.
8-68 Drive-a-Lemon rents cars that are mechanically sound, but older than those rented by the large national rent-a-car chains. As a result, it advertises that its rates are considerably lower than rates of its larger competitors. An industry survey has established that the average total charge per rental at one of the major firms is \(\$ 77.38\). A random sample of 18 completed transactions at Drive-a-Lemon showed an average total charge of \(\$ 87.61\) and a sample standard deviation of' \(\$ 19.48\). Verify that at \(a=0.025\), Drive-a-Lemon's average total charge is significantly higher than that of the major firms. Does this result indicate that Drive-a-Lemon's rates,' in fact, are not lower than the rates charged by the major national chains? Explain.
8-69 Refer to Exercise 8-26. Compute the power of the test for \(\mu=\$ 41.95, \$ 42.95\), and \(\$ 43.95\).
8-70 A personnel manager believed that 18 percent of the company's employees work overtime every week. If the observed proportion this week is 13 percent in a sample of 250 of the 2,500 employees, can we accept her belief as reasonable or must we conclude that some other value is more appropriate? Use \(\alpha=0.05\).
8-71 Refer to Exercise SC 8-5. Compute the power of the test for \(\mu=14,000,13,500\), and 13,000.
8-72 A stockbroker claims that she can predict with 85 percent accuracy whether a stock's market value will rise or fall during the coming month. As a test, she predicts the outcome of 60 stocks and is correct in 45 of the predictions.

\section*{TABLE RW 8-1 PERSONAL DATA FOR A SAMPLE OF 20 CEOS}
\begin{tabular}{lccc}
\hline Company Name & Age & Status & Kids \\
\hline Parkdale Mills Inc. & 68 & M & 3 \\
SAS Institute Inc. & 50 & M & 3 \\
Cogentrix Inc. & 65 & M & 3 \\
House of Raeford Farms Inc. & 66 & M & 3 \\
Harriet \& Henderson Yarns Inc. & 52 & M & 1 \\
Harvey Enterprises and Affiliates & 44 & M & 4 \\
Radiator Specialty Co. & 77 & M & 3 \\
Parrish Tire Co. & 43 & M & 2 \\
Spectrum Dyed Yarns Inc. & 59 & M & 2 \\
Southeastern Hospital Supply Corp. & 45 & M & 4 \\
Miller Building Corp. & 55 & M & 3 \\
Pneumafil Corp. & 55 & S & 0 \\
Kroehler Furniture Industries Inc. & 50 & M & 3 \\
Carolina Petroleum Distributors Inc. & 42 & D & 2 \\
Tanner Cos. & 64 & M & 4 \\
Raycom Inc. & 43 & M & 2 \\
Cummins Atlantic Inc. & 57 & M & 4 \\
W. R. Bonsal Co. & 62 & M & 3 \\
Maola Milk \& Ice Cream Co. & 67 & M & 2 \\
Waste Industries Inc. & 56 & M & 2 \\
Status = marital status (Single, Married, or Divorced) & & & \\
Kids = number of children & & & \\
\hline Sor & & & \\
\hline
\end{tabular}

Source: "Getting a Grip on Closely Held Companies," Business North Carolina 13(2), (June 1993):28-63.
Do these data present conclusive evidence (at \(\alpha=0.04\)) that her prediction accuracy is significantly less than the asserted 85 percent?
8-73 In Exercise 8-26, what would be the power of the test for \(\mu=\$ 41.95, \$ 42.95\), and \(\$ 43.95\) if the significance level were changed to 0.05 ?
8-74 A manufacturer of a vitamin supplement for newborns inserts a coupon for a free sample of its product in a package that is distributed at hospitals to new parents. Historically, about 18 percent of the coupons have been redeemed. Given current trends for having fewer children and starting families later, the firm suspects that today's new parents are better educated, on average, and, as a result, more likely to use a vitamin supplement for their infants. A sample of 1,500 new parents redeemed 295 coupons. Does this support, at a significance level of 2 percent, the firm's belief about today's new parents?
8-75 An innovator in the motor-drive industry felt that its new electric motor drive would capture 48 percent of the regional market within 1 year, because of the product's low price and superior performance. There are 5,000 users of motor drives in the region. After sampling

10 percent of these users a year later, the company found that 43 percent of them were using the new drives. At \(\alpha=0.01\), should we conclude that the company failed to reach its marketshare goal?
8-76 According to machine specifications, the one-armed bandits in gambling casinos should pay off once in 11.6 turns, with a standard deviation of 2.7 turns. A lawyer believes that the machines at Casino World have been tampered with and observes a payoff once in 12.4 turns, over 36 machines. At \(\alpha=0.01\), is the lawyer right in concluding that the machines have a lower payoff frequency?

\section*{Questions on Running Case: SURYA Bank Pvt. Ltd.}
1. Test the hypothesis that the bank customers on an average is satisfied with the e-banking services offered by their banks. (Question 9)
2. Do the customers on an average agree that the e-banking facilities offered by private sector banks are better than public sector banks? (Question 13b)
3. Do the bank customers in general believe that the information provided by them for using the e-banking services, are misused. (Question 13d)

\section*{Flow Chart: One-Sample Tests of Hypotheses}

\section*{Testing Hypotheses: Two-sample Tests}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To learn how to use samples from two populations to test hypotheses about how the populations are related
- To learn how hypothesis tests for differences between population means take different forms, depending on whether the samples are large or small
- To distinguish between independent and dependent samples when comparing two means
- To learn how to reduce a hypothesis test for the
difference of means from dependent samples to a test about a single mean
- To learn how to test hypotheses that compare the proportions of two populations having some attribute of interest
- To understand how prob values can be used in testing hypotheses
- To get a feel for the kinds of outputs computer statistical packages produce for testing hypotheses

\section*{CHAPTER CONTENTS}
9.1 Hypothesis Testing for Differences between Means and Proportions 412
9.2 Tests for Differences between Means: Large Sample Sizes 414
9.3 Tests for Differences between Means: Small Sample Sizes 420
9.4 Testing Differences between Means with Dependent Samples 431
9.5 Tests for Differences between Proportions: Large Sample Sizes 441
9.6 Prob Values: Another Way to Look at Testing Hypotheses 450
- Statistics at Work 455
- Terms Introduced in Chapter 9 456
- Equations Introduced in Chapter 9 456
- Review and Application Exercises 457
- Flow Chart: Two-Sample Tests ofHypotheses 463463

Amanufacturer of personal computers has a large number of employees from the local Spanishspeaking community. To improve the productivity of its workforce, it wants to increase the sensitivity of its managers to the needs of this ethnic group. It started by scheduling several informal question-and-answer sessions with leaders of the Spanish-speaking community. Later, it designed a program involving formal classroom contact between its managers and professional psychologists and sociologists. The newer program is much more expensive, and the company president wants to know whether this expenditure has resulted in greater sensitivity. In this chapter, we'll show you how to test whether these two methods have had essentially the same effects on the managers' sensitivity or if the expense of the newer program is justified by its improved results.

\subsection*{9.1 HYPOTHESIS TESTING FOR DIFFERENCES BETWEEN MEANS AND PROPORTIONS}

In many decision-making situations, people need to determine whether the parameters of two populations are alike or different.

\section*{Comparing two populations} A company may want to test, for example, whether its female employees receive lower salaries than its male employees for the same work. A training director may wish to determine whether the proportion of promotable employees at one government installation is different from that at another. A drag manufacturer may need to know whether a new drug causes one reaction in one group of experimental animals but a different reaction in another group.

In each of these examples, decision makers are concerned with the parameters of two populations. In these situations, they are not as interested in the actual value of the parameters as they are in the relation between the values of the two parameters-that is, how these parameters differ. They are concerned about the difference only. Do female employees earn less than male employees for the same work? Is the proportion of promotable employees at one installation different from that at another? Did one group of experimental animals react differently from the other? In this chapter, we shall introduce methods by which these questions can be answered, using hypothesis-testing procedures.

\section*{Sampling Distribution for the Difference Between Two Population Parameters: Basic Concepts}

In Chapter 6, we introduced the concept of the sampling distribution of the mean as the foundation for the work we would do in estimation and hypothesis testing. For a quick review of the sampling distribution of the mean, you may refer to Figure 6-2.

Because we now wish to study two populations, not just one, the sampling distribution of interest is the sampling distribution of the difference between sample means. Figure 9-1 may help us conceptualize this particular sampling distribution. At

\section*{Deriving the sampling distribution of the difference} between sample means the top of this figure, we have drawn two populations, identified as Population 1 and Population 2. These two have means of \(\mu_{1}\) and \(\mu_{2}\) and standard deviations of \(\sigma_{1}\) and \(\sigma_{2}\), respectively. Beneath each population, we show the sampling distribution of the sample mean for that population. At the bottom of the figure is the sampling distribution of the difference between the sample means.

The two theoretical sampling distributions of the mean in Figure 9-1 are each made up from all possible samples of a given size that can be drawn from the corresponding population distribution. Now,

FIGURE 9-1 BASIC CONCEPTS OF POPULATION DISTRIBUTIONS, SAMPLING DISTRIBUTION OF THE MEAN, AND THE SAMPLING DISTRIBUTION OF THE DIFFERENCE BETWEEN SAMPLE MEANS
suppose we take a random sample from the distribution of Population 1 and another random sample from the distribution of Population 2. If we then subtract the two sample means, we get
\[
\bar{x}_{1}-\bar{x}_{2} \leftarrow \text { Difference between sample means }
\]

This difference will be positive if \(\bar{x}_{1}\) is larger than \(\bar{x}_{2}\) and negative if \(\bar{x}_{2}\) is greater than \(x_{1}\). By constructing a distribution of all possible sample differences of \(\bar{x}_{1}-\bar{x}_{2}\), we end up with the sampling distribution of the difference between sample means, which is shown at the bottom of Figure 9-1.

The mean of the sampling distribution of the difference between sample means is symbolized \(\mu_{\bar{x}_{1}-\bar{x}_{2}}\) and is equal to \(\mu_{\bar{x}_{1}}-\mu_{\bar{x}_{2}}\), which as we saw in Chapter 6, is the same as \(\mu_{1}-\mu_{2}\). If \(\mu_{1}=\mu_{2}\), then \(\mu_{\bar{x}_{1}}-\mu_{\bar{x}_{2}}=0\).

\section*{Parameters of this sampling} distribution

The standard deviation of the distribution of the difference between the sample means is called the standard error of the difference between two means and is calculated using this formula:
\begin{tabular}{|llll|}
\hline Standard Error of the Difference between Two Means \\
\hline \begin{tabular}{lll}
Variance of \\
Population 1
\end{tabular} & \begin{tabular}{l}
Variance of \\
Population 2
\end{tabular} \\
\hline
\end{tabular}

If the two population standard deviations are not known, we can estimate the standard error of the difference between two means. We can use the same method of estimating the standard error that we have used before by letting sample standard deviations estimate the population standard deviations as follows:
\[
\begin{equation*}
\hat{\sigma}=s \leftarrow \text { Sample standard deviation } \tag{7-1}
\end{equation*}
\]

Therefore, the formula for the estimated standard error of the difference between two means becomes

\section*{Estimated Standard Error of the Difference between Two Means}

Estimated variance
of Population 1

How to estimate the standard error of this sampling distribution
\begin{tabular}{|c}
Estimated Standard Error of the Difference between Two Means \\
\begin{tabular}{l}
Estimated variance \\
of Population 1
\end{tabular} \\
\begin{tabular}{l}
Estimated variance \\
of Population 2
\end{tabular} \\
\(\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{2}^{2}}{n_{2}}}\)
\end{tabular}

As the following sections show, depending on the sample sizes, we shall use different estimates for \(\hat{\sigma}_{1}\) and \(\hat{\sigma}_{2}\) in Equation 9-2.

\subsection*{9.2 TESTS FOR DIFFERENCES BETWEEN MEANS: LARGE SAMPLE SIZES}

When both sample sizes are greater than 30, this example illustrates how to do a two-tailed test of a hypothesis about the difference between two means. A manpower-development statistician is asked to determine whether the hourly wages of semiskilled

Step 1: State your hypotheses, type of test, and significance level

TABLE 9-1 DATA FROM A SAMPLE SURVEY OF HOURLY WAGES
\begin{tabular}{lccc}
\hline City & Mean Hourly Earnings from Sample & Standard Deviation of Sample & Size of Sample \\
\hline Apex & \(\$ 8.95\) & \(\$.40\) & 200 \\
Eden & 9.10 & .60 & 175 \\
\hline
\end{tabular}
workers are the same in two cities. The results of this survey are presented in Table 9-1. Suppose the company wants to test the hypothesis at the 0.05 level that there is no difference between hourly wages for semiskilled workers in the two cities:
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \leftarrow \text { Null hypothesis: there is no difference } \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \leftarrow \text { Alternative hypothesis: a difference exists } \\
& \quad \alpha=0.05 \leftarrow \text { Level of significance for testing this hypothesis }
\end{aligned}
\]

Because the company is interested only in whether the means are or are not equal, this is a two-tailed test.

We can illustrate this hypothesis test graphically. In Figure 9-2, the significance level of 0.05 corresponds to the two colored areas, each of which contains 0.025 of the area. The acceptance region contains two equal areas of 0.475 each.

Step 2: Choose the appropriate distribution and find the critical value Because both samples are large, we can use the normal distribution. From Appendix Table 1, we can determine the critical value of \(z\) for 0.475 of the area under the curve to be 1.96.

The standard deviations of the two populations are not known. Therefore, our first step is to estimate them, as follows:
\[
\begin{align*}
\hat{\sigma}_{1} & =s_{1} & \hat{\sigma}_{2} & =s_{2} \tag{7-1}\\
& =\$ 0.40 & & =\$ 0.60
\end{align*}
\]

FIGURE 9-2 TWO-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO MEANS AT THE 0.05 LEVEL OF SIGNIFICANCE

Now the estimated standard error of the difference between the two means can be determined by

Step 3: Compute the standard error and standardize the sample statistic
\[
\begin{align*}
\hat{\sigma}_{\bar{x}_{1}-\overline{x_{2}}} & =\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{2}^{2}}{n_{2}}} \tag{9-2}\\
& =\sqrt{\frac{(0.40)^{2}}{200}+\frac{(0.60)^{2}}{175}} \\
& =\sqrt{0.00286} \\
& =\$ 0.053 \leftarrow \text { Estimated standard error }
\end{align*}
\]

Next we standardize the difference of sample means, \(\bar{x}_{1}-\bar{x}_{2}\). First, we subtract \(\left(\mu_{1}-\mu_{2}\right)_{H_{0}}\), the hypothesized difference of the population means. Then we divide by \(\hat{\sigma}_{\bar{x}_{1}-\overline{x_{2}}}\), the estimated standard error of the difference between the sample means.
\[
\begin{aligned}
z & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& =\frac{(8.95)-(9.10)-0}{0.053} \\
& =-2.83
\end{aligned}
\]

We mark the standardized difference on a sketch of the sampling distribution and compare with the critical value, as shown in Figure 9-3. It demonstrates that the standardized difference between the two sample means lies outside the acceptance

Step 4: Sketch the distribution and mark the sample value and critical values

FIGURE 9-3 TWO-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO MEANS AT THE 0.05 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED DIFFERENCE BETWEEN SAMPLE MEANS
region. Thus, we reject the null hypothesis of no difference and conclude that the population means (the average semiskilled wages in these two cities) differ.

In this example, and in most of the examples we will encounter, we will be testing whether two populations have the same means. Because of this, \(\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}\), the hypothesized difference between the two means, was zero. However, we could also have

Step 5: Interpret the result
Testing the difference between
means when \(\mu_{1}-\mu_{2} \neq 0\) investigated whether the average wages were about ten cents per hour lower in Apex than in Eden. In that case our hypotheses would have been:
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}-0.10 \leftarrow \text { null hypothesis wages are } \$ 0.10 \text { lower in Apex than in Eden } \\
& \mathrm{H}_{0}: \mu_{1} \neq \mu_{2}-0.10 \leftarrow \text { Alternative hypothesis, wages are not } \$ 0.10 \text { lower in Apex than in Eden }
\end{aligned}
\]

In this case, the hypothesized difference between the two means would be \(\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}=-0.10\), and the standardized difference between the sample means would be
\[
\begin{aligned}
z & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& =\frac{(8.95-9.10)-(-0.10)}{0.053} \\
& =-0.94
\end{aligned}
\]

In this case, we would not reject the null hypothesis.
Although our example was a two-tailed test, we can also perform one-tailed tests of the differences between two population

One-tailed tests of the difference between means means. Those one-tailed tests are conceptually similar to the one-tailed tests of a single mean that we discussed in Chapter 8. For example, if we had wanted to test whether wages in Apex were lower than wages in Eden (or equivalently if wages in Eden were higher than wages in Apex), our hypotheses would have been
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2} \leftarrow\) Null hypothesis: wages are the same in Eden and Apex
\(\mathrm{H}_{1}: \mu_{1}<\mu_{2} \leftarrow\) Alternative hypothesis wages are lower in Apex than in Eden

This would be a one-tailed test with \(\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}=0\).
Finally, if we had wanted to test whether wages in Apex were more than ten cents per hour lower than wages in Eden, then our hypotheses would have been
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2}-0.10 \leftarrow\) Null hypothesis: wages are \(\$ 0.10\) lower in Apex than in Eden
\(\mathrm{H}_{1}: \mu_{1}<\mu_{2}-0.10 \leftarrow\) Alternative hypothesis: wages are more than \(\$ 0.10\) lower in Apex than in Eden

This would be a one-tailed test with \(\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}=-0.10\).

\section*{HINTS \& ASSUMPTIONS}

Hint: In testing for differences between two means, you must choose whether to use a one-tailed hypothesis test or a two-tailed test. If the test concerns whether two means are or are not equal, use a two-tailed test that will measure whether one mean is different from the other (higher or lower). If the test concerns whether one mean is significantly higher or significantly lower than the other, a one-tailed test is appropriate.

\section*{EXERCISES 9.1}

\section*{Self-Check Exercises}

SC 9-1 Two independent samples of observations were collected. For the first sample of 60 elements, the mean was 86 and the standard deviation 6 . The second sample of 75 elements had a mean of 82 and a standard deviation of 9 .
(a) Compute the estimated standard error of the difference between the two means.
(b) Using \(\alpha=0.01\), test whether the two samples can reasonably be considered to have come from populations with the same mean.
SC 9-2 In 1993, the Financial Accounting Standards Board (FASB) was considering a proposal to require companies to report the potential effect of employees' stock options on earnings per share (EPS). A random sample of 41 high-technology firms revealed that the new proposal would reduce EPS by an average of 13.8 percent, with a standard deviation of 18.9 percent. A random sample of 35 producers of consumer goods showed that the proposal would reduce EPS by 9.1 percent on average, with a standard deviation of 8.7 percent. On the basis of these samples, is it reasonable to conclude (at \(\alpha=0.10\)) that the FASB proposal will cause a greater reduction in EPS for high-technology firms than for producers of consumer goods?

\section*{Basic Concepts}

9-1 Two independent samples were collected. For the first sample of 42 items, the mean was 32.3 and the variance 9 . The second sample of 57 items had a mean of 34 and a variance of 16 .
(a) Compute the estimated standard error of the difference between the two means.
(b) Using \(\alpha=0.05\), test whether there is sufficient evidence to show the second population has a larger mean.

\section*{Applications}

9-2 Block Enterprises, a manufacturer of chips for computers, is in the process of deciding whether to replace its current semiautomated assembly line with a fully automated assembly line. Block has gathered some preliminary test data about hourly chip production, which is summarized in the following table, and it would like to know whether it should upgrade its assembly line. State (and test at \(\alpha=0.02\)) appropriate hypotheses to help Block decide.
\begin{tabular}{lccc}
\hline & \(\overline{\boldsymbol{x}}\) & \(\boldsymbol{s}\) & \(\boldsymbol{n}\) \\
\hline Semiautomatic line & 198 & 32 & 150 \\
Automatic line & 206 & 29 & 200 \\
\hline
\end{tabular}
- 9-3 Two research laboratories have independently produced drugs that provide relief to arthritis sufferers. The first drug was tested on a group of 90 arthritis sufferers and produced an average of 8.5 hours of relief, and a sample standard deviation of 1.8 hours. The second drug was tested on 80 arthritis sufferers, producing an average of 7.9 hours of relief, and a sample standard deviation of 2.1 hours. At the 0.05 level of significance, does the second drug provide a significantly shorter period of relief?
- 9-4 A sample of 32 money-market mutual funds was chosen on January 1, 2016, and the average annual rate of return over the past 30 days was found to be 3.23 percent, and the sample standard deviation was 0.51 percent. A year earlier, a sample of 38 money-market funds showed an average rate of return of 4.36 percent, and the sample standard deviation was 0.84 percent. Is it reasonable to conclude (at \(\alpha=0.05\)) that money-market interest rates declined during 2015?
- 9-5 Notwithstanding the Equal Remuneration Act, 1976, in 2015 it still appeared that men earned more than women in similar jobs. A random sample of 38 male machine-tool operators found a mean hourly wage of \(₹ 113.8\), and the sample standard deviation was \(₹ 18.4\). A random sample of 45 female machine-tool operators found their mean wage to be ₹ 84.2 , and the sample standard deviation was ₹ 13.1 . On the basis of these samples, is it reasonable to conclude (at \(\alpha=0.01\)) that the male operators are earning over ₹ 20 more per hour than the female operators?
- 9-6 BullsEye Discount store has always prided itself on customer service. The store hopes that all BullsEye stores are providing the same level of service from region to region, so they have surveyed some customers. In the Southeast region, a random sample of 97 customers yielded an average overall satisfaction rating of 8.8 out of 10 and the sample standard deviation was 0.7. In the Northeast region, a random sample of 84 customers resulted in an average rating of 9.0 and the sample standard deviation was 0.6 . Can BullsEye conclude, at \(\alpha=0.05\), that the levels of customer satisfaction in the two markets are significantly different?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 9-1 \(s_{1}=6 \quad n_{1}=60 \quad \bar{x}_{1}=86 \quad s_{2}=9 \quad n_{2}=75 \quad \bar{x}_{2}=82\)
(a) \(\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{36}{60}+\frac{81}{75}}=1.296\)
(b) \(\mathrm{H}_{0}: \mu_{1}=\mu_{2} \quad \mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \quad \alpha=0.01\)

The limits of the acceptance region are \(z= \pm 2.58\), or
\[
\begin{aligned}
& \qquad \bar{x}_{1}-\bar{x}_{2}=0 \pm z \hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}= \pm 2.58(1.296)= \pm 3.344 \\
& \text { Because the observed } z \text { value }=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& \qquad=\frac{(86-82)-0}{1.296}=3.09>2.58\left(\text { or } \bar{x}_{1}-\bar{x}_{2}=86-82=4>3.344\right)
\end{aligned}
\]
we reject \(H_{0}\). It is reasonable to conclude that the two samples come from different populations.
SC 9-2 Sample 1 (HT firms): \(s_{1}=18.9 \quad n_{1}=41 \quad \bar{x}_{1}=13.8\)
Sample 2 (CG producers): \(s_{2}=8.7 \quad n_{2}=35 \quad \bar{x}_{2}=9.1\)
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \mathrm{H}_{1}: \mu_{1}>\mu_{2} \quad \alpha \\
&=0.10 \\
& \hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=\sqrt{\frac{(18.9)^{2}}{41}+\frac{(8.7)^{2}}{35}}=3.298 \text { percent }
\end{aligned}
\]

The upper limit of the acceptance region is \(z=1.28\), or
\[
\bar{x}_{1}-\bar{x}_{2}=0+z \hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=1.28(3.298)=4.221 \text { percent }
\]

Because the observed \(z\) value
\[
=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{x_{1}-x_{2}}}=\frac{(13.8-9.1)-0}{3.298}=1.43>1.28\left(\text { or } \bar{x}_{1}-\bar{x}_{2}=4.7>4.221\right)
\]
we reject \(\mathrm{H}_{0}\) and conclude that the FASB proposal will cause a significantly greater reduction in EPS for high-tech firms.

\subsection*{9.3 TESTS FOR DIFFERENCES BETWEEN MEANS: SMALL SAMPLE SIZES}

When the sample sizes are small, there are two technical changes in our procedure for testing the differences between means. The first involves the way we compute the estimated standard error of the difference between the two sample means. The second will remind you of what we did in Chapter 8 with small-sample tests of a single mean. Once again we will base our small-sample tests on the \(t\) distribution, rather than the normal distribution. To explore the details of these changes, let's return to our chapter-opening illustration concerning the sensitivity of the managers at a personal-computer manufacturer to the needs of their Spanish-speaking employees.

Recall that the company has been investigating two education programs for increasing the sensitivity of its managers. The original program consisted of several informal question-and-answer sessions with leaders of the Spanish-speaking community. Over the past few years, a program involving formal classroom contact with professional psychologists and sociologists has been developed. The new program is considerably more expensive, and the president wants to know at the 0.05 level of significance whether this expenditure has resulted in greater sensitivity. Let's test the following:
\[
\begin{aligned}
\mathrm{H}_{0}: \mu_{1}=\mu_{2} \leftarrow & \leftarrow \begin{array}{l}
\text { Null hypothesis: There is no difference in sensitivity levels } \\
\text { achieved by the two programs }
\end{array} \\
\mathrm{H}_{1}: \mu_{1}>\mu_{2} \leftarrow & \leftarrow \begin{array}{l}
\text { Alternative hypothesis. The new program results in higher } \\
\text { sensitivity levels }
\end{array} \\
\alpha=0.05 & \leftarrow \text { Level of significance for testing this hypothesis }
\end{aligned}
\]

> Step 1: State your hypotheses, type of test, and significance level

Table 9-2 contains the data resulting from a sample of the managers trained in both programs. Because only limited data are available for the two programs, the population standard deviations are estimated from the data. The sensitivity level is measured as a percentage on a standard psychometric scale.

The company wishes to test whether the sensitivity achieved by the new program is significantly higher than that achieved under the older, more informal program. To reject the null hypothesis (a result that the company desires), the observed difference of sample means would need to fall sufficiently high in the right tail of the distribution. Then we would accept the alternative hypothesis that the new program leads to higher sensitivity levels and that the extra expenditures on this program are justified.

\section*{TABLE 9-2 DATA FROM SAMPLE OF TWO SENSITIVITY PROGRAMS}
\begin{tabular}{lccc}
\hline & \begin{tabular}{c}
Mean Sensitivity \\
after This \\
Program
\end{tabular} & \begin{tabular}{c}
Number of \\
Managers \\
Observed
\end{tabular} & \begin{tabular}{c}
Estimated Standard Deviation \\
of Sensitivity after This \\
Program
\end{tabular} \\
\hline Program Sampled & \(92 \%\) & 12 & \(15 \%\) \\
Informal & 84 & 15 & 19 \\
\hline
\end{tabular}

The second step in our five-step process for hypothesis testing now requires us to choose the appropriate distribution and find the critical value. Recall from the opening paragraph in this section that the test will be based on a \(t\) distribution, but we don't yet know which \(t\) distribution to use. How many degrees of freedom are there? The answer to this question will be more apparent after we see how to compute the estimated standard error.

Our first task in performing the test is to calculate the standard error of the difference between the two means. Because the population standard deviations are not known, we must use Equation 9-2.
\[
\begin{equation*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{2}^{2}}{n_{2}}} \tag{9-2}
\end{equation*}
\]

In the previous example, where the sample sizes were large (both greater than 30), we used Equation 7-1 and estimated \(\hat{\sigma}_{1}^{2}\) by \(s_{1}^{2}\), and \(\hat{\sigma}_{2}^{2}\) by \(s_{2}^{2}\). Now, with small sample sizes, that procedure is not appropriate. If we can assume that the unknown population variances are equal (and this assumption can be tested using a method discussed in Section 6 of Chapter 11), we can continue. If we cannot assume that \(\sigma_{1}^{2}=\sigma_{2}^{2}\), then the problem is beyond the scope of this text.

Assuming for the moment that \(\sigma_{1}^{2}=\sigma_{2}^{2}\), how can we estimate the common variance \(\sigma^{2}\) ? If we use either \(s_{1}^{2}\) or \(s_{2}^{2}\), we get an unbiased estimator of \(\sigma^{2}\), but we don't use all the information
Estimating \(\sigma^{2}\) with small sample sizes available to us because we ignore one of the samples. Instead we use a weighted average of \(s_{1}^{2}\) and \(s_{2}^{2}\), and the weights are the numbers of degrees of freedom in each sample. This weighted average is called a "pooled estimate" of \(\sigma^{2}\). It is given by:

\section*{Pooled Estimate of \(\boldsymbol{\sigma}^{\mathbf{2}}\)}
\[
\begin{equation*}
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{9-3}
\end{equation*}
\]

Because we have to use the sample variances to estimate the unknown \(\sigma^{2}\), the test will be based on the \(t\) distribution. This is just like the test of a single mean from a sample of size \(n\) when we did not know \(\sigma^{2}\). There we used a \(t\) distribution with \(n-1\) degrees of freedom, because once we knew the sample mean, only \(n-1\) of the sample observations could be freely specified. (You may review the discussion of degrees of freedom on pages 341-342.) Here we
```

For this test, we have
n}+\mp@subsup{n}{2}{}-2\mathrm{ degrees of freedom

```


\section*{FIGURE 9-4 RIGHT-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO MEANS AT THE 0.05 LEVEL OF SIGNIFICANCE}
have \(n_{1}-1\) degrees of freedom in the first sample and \(n_{2}-1\) degrees of freedom in the second sample, so when we pool them to estimate \(\sigma^{2}\), we wind up with \(n_{1}+n_{2}-2\) degrees of freedom. Hence the appropriate sampling distribution for our test of the two sensitivity programs is the \(t\) distribution with \(12+15-2=25\) degrees of freedom. Because we are doing an upper-tailed test at a 0.05 significance level, the critical value of \(t\) is 1.708, according to Appendix Table 2.

Now that we have the critical value for our hypothesis test, we can illustrate it graphically in Figure 9-4. The colored region at the right of the distribution represents the 0.05 significance level of our test.

Continuing on to Step 3, we plug the formula for \(s_{p}^{2}\) from Equation 9-3 into Equation 9-2 and simplify to get an equation for the estimated standard error of \(\bar{x}_{1}-\bar{x}_{2}\) :

Returning to Step 2: Choose the appropriate distribution and find the critical value

Beginning Step 3: Compute the standard error

Estimated Standard Error of the Difference between Two Sample Means with Small Samples and Equal Population Variances
\[
\begin{equation*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \tag{9-4}
\end{equation*}
\]

Applying these results to our sensitivity example:
\[
\begin{align*}
s_{p}^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{9-3}\\
& =\frac{(12-1)(15)^{2}+(15-1)(19)^{2}}{12+15-2} \\
& =\frac{11(225)+14(361)}{25} \\
& =301.160
\end{align*}
\]

Taking square roots on both sides, we get \(s_{p}=\sqrt{301.160}\), or 17.354, so :
\[
\begin{align*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}} & =s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \tag{9-4}\\
& =17.354 \sqrt{\frac{1}{12}+\frac{1}{15}} \\
& =17.354(0.387) \\
& =6.721 \leftarrow \text { Estimated standard error of the difference }
\end{align*}
\]

Next we standardize the difference of sample means, \(\bar{x}_{1}-\bar{x}_{2}\). First, we subtract \(\left(\mu_{1}-\mu_{2}\right)_{H_{0}}\), the hypothesized difference of the population means. Then we divide by \(\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}\), the estimated standard error of the difference between the sample means.
\[
\begin{aligned}
t & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& =\frac{(92-84)-0}{6.721} \\
& =1.19
\end{aligned}
\]

Because our test of hypotheses is based on the \(t\) distribution, we use \(t\) to denote the standardized statistic.

Then we mark the standardized difference on a sketch of the sampling distribution and compare it with the critical value of \(t=1.708\), as shown in Figure 9-5. We can see in Figure 9-5 that the standardized difference between the two sample means lies within the acceptance region. Thus, we accept the null hypothesis

Step 4: Sketch the distribution and mark the sample value and critical value

FIGURE 9-5 ONE-TAILED TEST OF THE DIFFERENCE BETWEEN TWO MEANS AT THE 0.05 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED DIFFERENCE BETWEEN THE SAMPLE MEANS
that there is no difference between the sensitivities achieved by the two programs. The company's expenditures on the formal instructional program have not produced significantly higher sensitivities among it's managers.

\section*{HINTS \& ASSUMPTIONS}

Hint: Because our sample sizes here are small (less than 30) and we do not know the standard deviations of the populations; the \(t\) distribution is appropriate. Like the one-sample \(t\) test we've already studied, here too, we need to determine the appropriate degrees of freedom. In a onesample test, degrees of freedom were the sample size minus one. Here, because we are using two samples, the correct degrees of freedom are the first sample size minus one plus the second sample size less one, or symbolically, \(n_{1}+n_{2}-2\). Assumption: We are assuming that the variances of the two populations are equal. If this is not the case, we can not do this test using the methods we have covered. Warning: To use the method explained in this section, the two samples (one from each population) must have been chosen independently of each other.

\section*{To Test the Differences between Two Means Using MS Excel: (Equal Variances Assumed)}

Above data are the marks of students of two different streams.
For performing two sample \(t\)-test assuming equal variance, go to DATA>DATA ANALYSIS \(>t\)-Test: Two sample Assuming Equal Variances>Select marks of both groups
\begin{tabular}{|c|c|c|c|}
\hline Data Analysis & & \(?\) & \(\Sigma 3\) \\
\hline \multicolumn{2}{|l|}{Analysis Tools} & \multicolumn{2}{|l|}{\multirow{2}{*}{OK}} \\
\hline Histogram & \multirow[t]{5}{*}{*} & & \\
\hline Moving Average & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Cancel}} \\
\hline Random Number Generation & & & \\
\hline Rank and Percentile & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Help}} \\
\hline Regression & & & \\
\hline \begin{tabular}{l}
Sampling \\
t-Test: Paired Two Sample for Means
\end{tabular} & \multirow[t]{2}{*}{三} & & \\
\hline t-Test: Two-Sample Assuming Equal Variances & & & \\
\hline t -Test: Two-Sample Assuming Unequal Variances z-Test: Two Sample for Means & - & & \\
\hline
\end{tabular}

Above data are the marks of students of two different streams.

To Test the Differences between Two Means Using MS Excel: (Unequal Variances Assumed)

For two sample t -test assuming unequal variance go to DATA>DATA ANALYSIS \(>\mathrm{t}\)-Test: Two sample Assuming Unequal Variances>Select marks of both groups
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Data Analysis} & 8 & 83 \\
\hline \multicolumn{2}{|l|}{Analysis Tools} & \multicolumn{2}{|l|}{OK} \\
\hline \begin{tabular}{l}
Fourier Analysis \\
Histogram \\
Moving Average \\
Random Number Generation \\
Rank and Percentile \\
Regression \\
Sampling \\
t-Test: Paired Two Sample for Means \\
t-Test: Two-Sample Assuming Equal Variances \\
t-Test: Two-Sample Assuming Unequal Variances
\end{tabular} & - & Can & \\
\hline
\end{tabular}

\section*{To Test the Differences between Two Means Using SPSS}

In above data, an analyst at a department store wants to evaluate a recent credit card promotion program. To this end, 500 cardholders were randomly selected. Half of them received an advertisement promising a reduced interest rate on purchases made over the next three months, and the other half received the standard seasonal advertisement.

For Independent sample \(t\) test, go to Analyze>Compare means>independent sample \(\mathbf{t}\) test>Insert test variable>Insert grouping variable>Define groups>Ok

\section*{EXERCISES 9.2}

\section*{Self-Check Exercises}

SC 9-3 A consumer-research organization routinely selects several car models each year and evaluates their fuel efficiency. In this year's study of two similar subcompact models from two different automakers, the average gas mileage for 12 cars of brand A was 27.2 miles per gallon, and the standard deviation was 3.8 mpg . The nine brand B cars that were tested averaged 32.4 mpg , and the standard deviation was 4.3 mpg . At \(\alpha=0.01\), should it conclude that brand A cars have lower average gas mileage than do brand B cars?

SC 9-4 Connie Rodrigues, the Dean of Students at Midstate College, is wondering about grade distributions at the school. She has heard grumblings that the GPAs in the Business School are about 0.25 lower than those in the College of Arts and Sciences. A quick random sampling produced the following GPAs.
\begin{tabular}{llllllllllllll}
Business: & 2.86 & 2.77 & 3.18 & 2.80 & 3.14 & 2.87 & 3.19 & 3.24 & 2.91 & 3.00 & 2.83 & & \\
Arts \& Sciences: & 3.35 & 3.32 & 3.36 & 3.63 & 3.41 & 3.37 & 3.45 & 3.43 & 3.44 & 3.17 & 3.26 & 3.18 & 3.41
\end{tabular}

Do these data indicate that there is a factual basis for the grumblings? State and test appropriate hypotheses at \(\alpha=0.02\).

\section*{Applications}

9-7 A credit-insurance organization has developed a new high-tech method of training new sales personnel. The company sampled 16 employees who were trained the original way and found average hourly sales to be ₹ 688 and the standard deviation was ₹ 32.63 . They also sampled 11 employees who were trained using the new method and found average daily sales to be ₹ 706 and the standard deviation was ₹ 24.84 . At \(\alpha=0.05\), can the company conclude that average hourly sales have increased under the new plan?

9-8 A large stock-brokerage firm wants to determine how successful its new account executives have been at recruiting clients. After completing their training, new account execs spend several weeks calling prospective clients, trying to get the prospects to open accounts with the firm. The following data give the numbers of new accounts opened in their first 2 weeks by 10 randomly chosen female account execs and by 8 randomly chosen male account execs. At \(\alpha=0.05\), does it appear that the women are more effective at generating new accounts than the men are?
\begin{tabular}{lllllllllll}
\hline & \multicolumn{10}{c}{ Number of New Accounts } \\
\hline Female account execs & 12 & 11 & 14 & 13 & 13 & 14 & 13 & 12 & 14 & 12 \\
Male account execs & 13 & 10 & 11 & 12 & 13 & 12 & 10 & 12 & & \\
\hline
\end{tabular}

9-9 Because refunds are paid more quickly on tax returns that are filed electronically, the Commissioner of the Internal Revenue Service was wondering whether refunds due on returns filed by mail were smaller than those due on returns filed electronically. Looking only at returns claiming refunds, a sample of 17 filed by mail had an average refund of \(\$ 563\), and a standard deviation of \(\$ 378\). The average refund on a sample of 13 electronically filed returns was \(\$ 958\), and the sample standard deviation was \(\$ 619\). At \(\alpha=0.01\), do these data support the commissioner's speculation?

9-10 Greatyear tires currently produces tires at their Chennai plant during two 12 -hour shifts. The night-shift employees are planning to ask for a raise because they believe they are producing more tires per shift than the day shift. "Because Greatyear is making more money during the night shift, those employees should also make more money" according to the night-shift spokesman. The Greatyear production supervisor randomly selected some daily production runs from each shift with the results given below (in 1,000 s of tires produced).
\begin{tabular}{llllllllll}
\hline Shift & \multicolumn{9}{c}{ Production (in 1,000s) } \\
\hline Day & 107.5 & 118.6 & 124.6 & 101.6 & 113.6 & 119.6 & 120.6 & 109.6 & 105.9 \\
Night & 115.6 & 109.4 & 121.6 & 128.7 & 136.6 & 125.4 & 121.3 & 108.6 & 117.5 \\
\hline
\end{tabular}

Do these data indicate, at \(\alpha=0.01\), that the night shift is producing more tires per shift?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 9-3 \(s_{A}=3.8 \quad n_{A}=12 \quad \bar{x}_{A}=27.2 \quad s_{B}=4.3 \quad n_{B}=9 \quad \bar{x}_{B}=32.1\)
\(\mathrm{H}_{0}: \mu_{\mathrm{A}}=\mu_{B} \quad \mathrm{H}_{1}: \mu_{\mathrm{A}}<\mu_{B} \quad \alpha=0.01\)
\(s_{p}=\sqrt{\frac{\left(n_{A}-1\right) s_{A}^{2}+\left(n_{B}-1\right) s_{B}^{2}}{n_{A}+n_{B}-2}}=\sqrt{\frac{11(3.8)^{2}+8(4.3)^{2}}{19}}=4.0181 \mathrm{mpg}\)
The lower limit of the acceptance region is \(t=-2.539\), or
\[
\begin{aligned}
\bar{x}_{A}-\bar{x}_{B}=0-t s_{p} \sqrt{\frac{1}{n_{A}}+\frac{1}{n_{B}}} & =-2.539(4.0181) \sqrt{\frac{1}{12}+\frac{1}{9}} \\
& =-4.499 \mathrm{mpg}
\end{aligned}
\]

Because the observed \(t\) value \(=\frac{\left(\bar{x}_{A}-\bar{x}_{B}\right)-\left(\mu_{A}-\mu_{B}\right)_{\mathrm{H}_{0}}}{s_{p} \sqrt{\frac{1}{n_{A}}+\frac{1}{n_{B}}}}=\frac{(27.2-32.1)-0}{4.0181 \sqrt{\frac{1}{12}+\frac{1}{9}}}\)
\(=-2.766<-2.539\) (or \(\bar{x}_{A}-\bar{x}_{B}=-4.9<-4.499\)), we reject \(\mathrm{H}_{0}\). Brand B delivers significantly higher mileage than does brand A.
SC 9-4 Sample 1 (Business): \(s_{B}=0.176 \quad n_{B}=11 \quad \bar{x}_{B}=2.98\)
Sample 2 (Arts \& Sciences): \(s_{A}=0.121 \quad n_{A}=13 \quad \bar{x}_{A}=3.368\)
\(\mathrm{H}_{0}: \mu_{B}-\mu_{A}=-0.25 \quad \mathrm{H}_{1}: \mu_{B}-\mu_{A} \neq-0.25 \quad \alpha=0.02\)
\[
s_{p}=\sqrt{\frac{\left(n_{B}-1\right) s_{B}^{2}+\left(n_{A}-1\right) s_{A}^{2}}{n_{B}+n_{A}-2}}=\sqrt{\frac{10(.176)^{2}+12(.121)^{2}}{22}}=0.1485
\]

The limits of the acceptance region are \(t= \pm 2.508\), or
\[
\begin{aligned}
& \bar{x}_{B}-\bar{x}_{A}=\left(\mu_{B}-\mu_{A}\right)_{\mathrm{H}_{0}} \pm t s_{p} \sqrt{\frac{1}{n_{B}}+\frac{1}{n_{A}}}=-0.25 \\
& \pm 2.508(0.1485) \sqrt{\frac{1}{11}+\frac{1}{13}}=(-0.4026,-0.0974)
\end{aligned}
\]

Because the observed \(t\) value \(=\frac{\left(\bar{x}_{B}-\bar{x}_{A}\right)-\left(\mu_{B}-\mu_{A}\right)_{\mathrm{H}_{0}}}{s_{p} \sqrt{\frac{1}{n_{B}}+\frac{1}{n_{A}}}}\)
\[
=\frac{(2.980-3.368)-0.25}{0.1485 \sqrt{\frac{1}{11}+\frac{1}{13}}}
\]
\(=-2.268>-2.508\) (or \(\bar{x}_{B}-\bar{x}_{A}=-0.388>-0.403\)), we do not reject \(\mathrm{H}_{0}\). The Business School GPAs are about .25 below those in the College of Arts \& Sciences.

\subsection*{9.4 TESTING DIFFERENCES BETWEEN MEANS WITH DEPENDENT SAMPLES}

In the examples in Sections 9.2 and 9.3, our samples were chosen independent of each other. In the wage example, the samples were taken from two different cities. In the sensitivity example, samples were taken of those managers who had gone through two different training programs. Sometimes, however, it makes sense to take samples that are not independent of each other. Often the use of such dependent (or paired) samples enables us to perform a more precise analysis, because these allow us to control for extraneous factors. With dependent samples, we still follow the same basic procedure that we have followed in all our hypothesis testing. The basic difference is that in dependent samples, the two samples are related or two observations have been taken on the same sample members at different points of time.

A health spa has advertised a weight-reducing program and has claimed that the average participant in the program loses more than 17 pounds. A somewhat overweight executive is interested in the program but is skeptical about the claims and asks for some hard evidence. The spa allows him to select randomly the records of 10 participants and record their weights before and after the program. These data are recorded in Table 9-3. Here we have two samples (a before sample and an after sample) that are clearly dependent on each other, because the same 10 people have been observed twice.

The overweight executive wants to test at the 5 percent Step 1: State your hypotheses, type significance level the claimed average weight loss of more than 17 pounds. Formally, we may state this problem:
\[
\begin{aligned}
\mathrm{H}_{0}: \mu_{1}-\mu_{2} & =17 \leftarrow \text { Null hypothesis: average weight loss is only } 17 \text { pounds } \\
\mathrm{H}_{1}: \mu_{1}-\mu_{2} & >17 \leftarrow \text { Alternative hypothesis: average weight loss exceeds } 17 \text { pounds } \\
\alpha & =0.05 \leftarrow \text { Level of significance }
\end{aligned}
\]

What we are really interested in is not the weights before and after, but their differences. Conceptually, what we have is not two samples of before and after weights, but rather one sample of weight losses. If the population of weight losses has a mean \(\mu_{\mathrm{p}}\), we can restate our hypotheses as
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{l}=17 \\
& \mathrm{H}_{1}: \mu_{l}>17
\end{aligned}
\]

Figure 9-6 illustrates this problem graphically. Because we want to know whether the mean weight loss exceeds 17 pounds, an upper-tailed test is appropriate. The 0.05 significance level is shown in Figure 9-6 as the colored area under the \(t\) distribution. We use the \(t\) distribution because the sample size is only 10 ;

Conceptual understanding of differences

Step 2: Choose the appropriate distribution and find the critical value

TABLE 9-3 WEIGHTS BEFORE AND AFTER A REDUCING PROGRAM
\begin{tabular}{lllllllllll}
\hline Before & 189 & 202 & 220 & 207 & 194 & 177 & 193 & 202 & 208 & 233 \\
After & 170 & 179 & 203 & 192 & 172 & 161 & 174 & 187 & 186 & 204 \\
\hline
\end{tabular}

FIGURE 9-6 ONE-TAILED HYPOTHESIS TEST AT THE 0.05 LEVEL OF SIGNIFICANCE
the appropriate number of degrees of freedom is \(9,(10-1)\). Computing the paired differences Appendix Table 2 gives the critical value of \(t, 1.833\).

We begin by computing the individual losses, their mean, and standard deviation, and proceed exactly as we did when testing hypotheses about a single mean. The computations are done in Table 9-4.

TABLE 9-4 FINDING THE MEAN WEIGHT LOSS AND ITS STANDARD DEVIATION
\begin{tabular}{|c|c|c|c|}
\hline Before & After & Loss \(\boldsymbol{x}\) & Loss Squared \(\boldsymbol{x}^{2}\) \\
\hline 189 & 170 & 19 & 361 \\
\hline 202 & 179 & 23 & 529 \\
\hline 220 & 203 & 17 & 289 \\
\hline 207 & 192 & 15 & 225 \\
\hline 194 & 172 & 22 & 484 \\
\hline 177 & 161 & 16 & 256 \\
\hline 193 & 174 & 19 & 361 \\
\hline 202 & 187 & 15 & 225 \\
\hline 208 & 186 & 22 & 484 \\
\hline \multirow[t]{3}{*}{233} & 204 & 29 & 841 \\
\hline & & \(\Sigma x=\overline{197}\) & \(\sum x^{2}=\overline{\mathbf{4 , 0 5 5}}\) \\
\hline & & \[
\begin{align*}
\bar{x} & =\frac{\sum x}{n} \tag{3-2}\\
& =\frac{197}{10} \\
& =19.7
\end{align*}
\] & \[
\begin{aligned}
s & =\sqrt{\frac{\sum x^{2}}{n-1}-\frac{n \bar{x}^{2}}{n-1}} \\
& =\sqrt{\frac{4,055}{9}-\frac{10(19.7)^{2}}{9}} \\
& =\sqrt{19.34} \\
& =4.40
\end{aligned}
\] \\
\hline
\end{tabular}

Next, we use Equation 7-1 to estimate the unknown population standard deviation:
\[
\begin{align*}
\hat{\sigma} & =s \tag{7-1}\\
& =4.40
\end{align*}
\]

Step 3: Compute the standard error and standardize the sample statistic
and now we can estimate the standard error of the mean:
\[
\begin{align*}
\hat{\sigma}_{\bar{x}} & =\frac{\hat{\sigma}}{\sqrt{n}} \tag{7-6}\\
& =\frac{4.40}{\sqrt{10}} \\
& =\frac{4.40}{3.16} \\
& =1.39 \leftarrow \text { Estimated standard error of the mean }
\end{align*}
\]

Next we standardize the observed average weight loss, \(\bar{x}=19.7\) pounds, by subtracting \(\mu_{\mathrm{H}_{0}}\), the hypothesized average loss, and dividing by \(\hat{\sigma}_{\bar{x}}\), the estimated standard error of the mean.
\[
\begin{aligned}
t & =\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}}} \\
& =\frac{19.7-17}{1.39} \\
& =1.94
\end{aligned}
\]

Because our test of hypotheses is based on the \(t\) distribution, we use \(t\) to denote the standardized statistic.

Figure 9-7 illustrates the location of the sample mean weight loss on the standardized scale. We see that the sample mean lies outside the acceptance region, so the executive can

\section*{Step 4: Sketch the distribution and mark the sample value and critical value}
reject the null hypothesis and conclude that the claimed weight loss in the program is legitimate.

Let's see how this paired difference test differs from a test of the difference of means of two independent samples. Suppose that the data in Table 9-4 represent two independent samples of 10 individuals entering the program and another 10 randomly selected individuals leaving the program. The means and variances of the two samples are given in Table 9-5.

Because the sample sizes are small, we use Equation 9-3 to get a pooled estimate of \(\sigma^{2}\) and Equation 9-4 to estimate \(\sigma_{\bar{x}_{1}-\overline{x_{2}}}\) :

Step 5: Interpret the result
How does the paired difference test differ?

TABLE 9-5 BEFORE AND AFTER MEANS AND VARIANCES
\begin{tabular}{lccc}
\hline Sample & Size & Mean & Variance \\
\hline Before & 10 & 202.5 & 253.61 \\
After & 10 & 182.8 & 201.96 \\
\hline
\end{tabular}

A pooled estimate of \(\sigma^{2}\)
\[
\begin{equation*}
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \tag{9-3}
\end{equation*}
\]
\[
=\frac{(10-1)(253.61)+(10-1)(201.96)}{10+10-2}
\]
\[
=\frac{2282.49+1817.64}{18}
\]
\[
=227.79 \leftarrow \text { Estimate of common population variance }
\]
\[
\begin{equation*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \tag{9-4}
\end{equation*}
\]
\[
=\sqrt{227.79} \sqrt{\frac{1}{10}+\frac{1}{10}}
\]
\[
=15.09(0.45)
\]
\[
=6.79 \leftarrow \text { Estimate of } \sigma_{\bar{x}_{1}-\bar{x}_{2}}
\]

The appropriate test is now based on the \(t\) distribution with 18 degrees of freedom \((10+10-2)\). With a significance level of 0.05 , the critical value of \(t\) from Appendix Table 2 is 1.734. The observed difference of the sample means is
\[
\begin{aligned}
\bar{x}_{1}-\bar{x}_{2} & =202.5-182.8 \\
& =19.7 \text { pounds }
\end{aligned}
\]

Now when we standardize the difference of the sample means for this independent-samples test, we get
\[
\begin{aligned}
t & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& =\frac{(202.5-182.8)-17}{6.79} \\
& =0.40
\end{aligned}
\]

Once again, because our test of hypotheses is based on the \(t\) distribution, we use \(t\) to denote the standardized statistic. Comparing the standardized difference of the sample means (0.40) with the critical value of \(t\), (1.734), we see that the standardized sample statistic no longer falls outside the acceptance region, so this test will not reject \(\mathrm{H}_{0}\).

Why did these two tests give such different results? In the paired sample test, the sample standard deviation of the individual differences was relatively small, so 19.7 pounds was significantly larger than the hypothesized weight loss of 17 pounds. With independent samples, however, the estimated standard deviation of the difference between the means depended on the standard deviations of the before weights and the after weights. Because both of these were relatively large, \(\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}\), was also large, and thus 19.7 was not significantly larger than 17. The paired sample test controlled this initial and final variability in weights by looking only at the individual changes in weights. Because of this, it was better able to detect the significance of the weight loss.

We conclude this section with two examples showing when to treat two samples of equal size as dependent or independent:
1. An agricultural extension service wishes to determine whether a new hybrid seed corn has a greater yield than an old standard variety. If the service asks 10 farmers to record the yield of an acre planted with the new variety and asks another 10 farmers to record the yield of an acre planted with the old variety, the two samples are independent. However, if it asks 10 farmers to plant one acre with each variety and record the results, then the samples are dependent, and the paired difference test is appropriate. In the latter case, differences due to fertilizer, insecticide, rainfall, and so on, are controlled, because each farmer treats his two acres identically. Thus, any differences in yield can be attributed solely to the variety planted.
2. The director of the secretarial pool at a large legal office wants to determine whether typing speed depends on the word-processing software used by a secretary. If she tests seven secretaries using PicosoftWrite and seven using WritePerfect, she should treat her samples as independent. If she tests the same seven secretaries twice (once on each word processor), then the two samples are dependent. In the paired difference test, differences among the secretaries are eliminated as a contributing factor, and the differences in typing speeds can be attributed to the different word processors.

\section*{HINTS \& ASSUMPTIONS}

Often in testing differences between means, it makes sense to take samples that are not independent of each other. For example, if you are measuring the effect of a rust inhibitor on the buildup of rust on metal pipe, you would normally sample the rust on the same pipes before and after applying the inhibitor. Doing that controls for the effects of different locations, heat, and moisture. Because the same pipe is involved twice, the samples are not independent. Hint: If we measure the rust on each pipe before and six months after the application, we have a single sample of the grams of rust that have appeared since the application.

\section*{Testing Differences between Means with Dependent Samples (Paired t-test) Using MS Excel}

The above data is the weight of a group of people before and after joining a weight reduction program.
For paired t-test, go to DATA>DATA ANALYSIS \(>\) t-Test: Paired Two Sample for Means>Select pre and post intervention data

\section*{Testing Differences between Means with Dependent Samples (Paired t-test) Using SPSS}

Above data is the weight of a group of people before and after joining a weight reduction program. For paired t-test, go to Analyze>compare means>paired sample t-test>Select paired variables>Ok

\section*{EXERCISES 9.3}

\section*{Self-Check Exercises}

SC 9-5 Sherri Welch is a quality control engineer with the windshield wiper manufacturing division of Emsco, Inc. Emsco is currently considering two new synthetic rubbers for its wiper blades, and Sherri was charged with seeing whether blades made with the two new compounds wear equally well. She equipped 12 cars belonging to other Emsco employees with one blade made of each of the two compounds. On cars 1 to 6 , the right blade was made of compound \(A\) and the left blade was made of compound B; on cars 7 to 12 , compound A was used for the left blade. The cars were driven under normal operating conditions until the blades no longer did a satisfactory job of clearing the windshield of rain. The data below give the usable life (in days) of the blades. At \(\alpha=0.05\), do the two compounds wear equally well?
\begin{tabular}{lcccccccccccc}
\hline \multicolumn{1}{c}{ Car } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) \\
\hline Left Blade & 162 & 323 & 220 & 274 & 165 & 271 & 233 & 156 & 238 & 211 & 241 & 154 \\
Right blade & 183 & 347 & 247 & 269 & 189 & 257 & 224 & 178 & 263 & 199 & 263 & 148 \\
\hline
\end{tabular}

SC 9-6 Nine computer-components dealers in major metropolitan areas were asked for their prices on two similar color inkjet printers. The results of this survey are given below. At \(\alpha=0.05\), is it reasonable to assert that, on average, the Apson printer is less expensive than the Okaydata printer?
\begin{tabular}{lccccccccc}
\hline \multicolumn{1}{c}{ Dealer } & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) \\
\hline Apson price & \(\$ 250\) & 319 & 285 & 260 & 305 & 295 & 289 & 309 & 275 \\
Okaydata price & \(\$ 270\) & 325 & 269 & 275 & 289 & 285 & 295 & 325 & 300 \\
\hline
\end{tabular}

\section*{Applications}

9-11 Jeff Richardson, the receiving clerk for a chemical-products distributor, is faced with the continuing problem of broken glassware, including test-tubes, petri dishes, and flasks. Jeff has determined some additional shipping precautions that can be undertaken to prevent breakage, and he has asked the Purchasing Director to inform the suppliers of the new measures. Data for 8 suppliers are given below in terms of average number of broken items per shipment. Do the data indicate, at \(\alpha=0.05\), that the new measures have lowered the average number of broken items?
\begin{tabular}{lcccccccc}
\hline Supplier & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) \\
\hline Before & 16 & 12 & 18 & 7 & 14 & 19 & 6 & 17 \\
After & 14 & 13 & 12 & 6 & 9 & 15 & 8 & 15 \\
\hline
\end{tabular}

9-12 Additives-R-Us has developed an additive to improve fuel efficiency for trucks that pull very heavy loads. They tested the additive by randomly selecting 18 trucks and dividing them into 9 pairs. In each pair, both trucks hauled the same type of load over the same roadway, but only one truck used fuel with the new additive. Different pairs followed different routes and carried different loads. The resulting fuel efficiencies (in miles per gallon) are given below. Do the data indicate, at \(\alpha=0.01\), that trucks using fuel with the additive achieved significantly better fuel efficiency than trucks using regular fuel?
\begin{tabular}{lccccccccc}
\hline Pair & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) \\
\hline Regular & 5.7 & 6.1 & 5.9 & 6.2 & 6.4 & 5.1 & 5.9 & 6.0 & 5.5 \\
Additive & 6.0 & 6.2 & 5.8 & 6.6 & 6.7 & 5.3 & 5.7 & 6.1 & 5.9 \\
\hline
\end{tabular}

9-13 Aquarius Health Club has been advertising a rigorous program for body conditioning. The club claims that after 1 month in the program, the average participant should be able to do eight more push-ups in 2 minutes than he or she could do at the start. Does the random sample of 10 program participants given below support the club's claim? Use the 0.025 level of significance.
\begin{tabular}{lcccccccccc}
\hline Participant & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) \\
\hline Before & 38 & 11 & 34 & 25 & 17 & 38 & 12 & 27 & 32 & 29 \\
After & 45 & 24 & 41 & 39 & 30 & 44 & 30 & 39 & 40 & 41 \\
\hline
\end{tabular}

9-14 Donna Rose is a production supervisor on the disk-drive assembly line at Winchester Technologies. Winchester recently subscribed to an easy listening music service at its factory, hoping that this would relax the workers and lead to greater productivity. Donna is skeptical about this hypothesis and fears the music will be distracting, leading to lower productivity. She sampled weekly production for the same six workers before the music was installed and after it was installed. Her data are given below. At \(\alpha=0.02\), has the average production changed at all?
\begin{tabular}{lcccccc}
\hline Employee & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) \\
\hline Week without music & 219 & 205 & 226 & 198 & 209 & 216 \\
Week with music & 235 & 186 & 240 & 203 & 221 & 205 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}

\section*{SC 9-5}
\begin{tabular}{lcccrcccccccc}
\hline Car & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \multicolumn{1}{c}{\(\mathbf{7}\)} & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) \\
\hline Blade A & 183 & 347 & 247 & 269 & 189 & 257 & 233 & 156 & 238 & 211 & 241 & 154 \\
Blade B & 162 & 323 & 220 & 274 & 165 & 271 & 224 & 178 & 263 & 199 & 263 & 148 \\
Difference & 21 & 24 & 27 & -5 & 24 & -14 & 9 & -22 & -25 & 12 & -22 & 6 \\
\hline
\end{tabular}
\[
\begin{aligned}
\bar{x} & =\frac{\sum x}{n}=\frac{35}{12}=2.9167 \text { days } \\
s^{2} & =\frac{1}{n-1}\left(\sum x^{2}-n \bar{x}^{2}\right)=\frac{1}{11}\left[4397-12(2.9167)^{2}\right]=390.45, s=\sqrt{s^{2}} \\
& =19.76 \text { days } \\
\hat{\sigma}_{\bar{x}} & =s / \sqrt{n}=19.76 / \sqrt{12}=5.7042 \text { days } \\
\mathrm{H}_{0} & : \mu_{A}=\mu_{B} \quad \mathrm{H}_{1}: \mu_{A} \neq \mu_{B} \quad \alpha=0.05
\end{aligned}
\]

The limits of the acceptance region are \(t= \pm 2.201\), or
\[
\bar{x}=0 \pm t \hat{\sigma}_{\bar{x}}= \pm 2.201(5.7042)= \pm 12.55 \text { days }
\]

Because the observed \(t\) value \(=\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}}}=\frac{2.9167-0}{5.7042}=0.511<2.201\) (or \(\bar{x}=2.9167<12.55\)), we do not reject \(\mathrm{H}_{0}\). The two compounds are not significantly different with respect to usable life.

\section*{SC 9-6}
\begin{tabular}{lrrrrrrrrr}
\hline Dealer & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) \\
\hline Apson price & 250 & 319 & 285 & 260 & 305 & 295 & 289 & 309 & 275 \\
Okaydata price & 270 & 325 & 269 & 275 & 289 & 285 & 295 & 325 & 300 \\
Difference & 20 & 6 & -16 & 15 & -16 & -10 & 6 & 16 & 25 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \bar{x}=\frac{\sum x}{n}=\frac{46}{9}=\$ 5.1111 \\
& s^{2}=\frac{1}{n-1}\left(\sum x^{2}-n \bar{x}^{2}\right)=\frac{1}{8}\left(2,190-9(5.1111)^{2}\right)=244.36, s=\sqrt{s^{2}}=\$ 15.63 \\
& \hat{\sigma}_{\bar{x}}=s / \sqrt{n}=15.63 / \sqrt{9}=\$ 5.21 \\
& \mathrm{H}_{0}: \mu_{0}=\mu_{A} \quad \mathrm{H}_{1}: \mu_{0}>\mu_{A} \quad \alpha=0.05
\end{aligned}
\]

The upper limit of the acceptance region is \(t=1.860\), or
\[
\bar{x}=0+t \hat{\sigma}_{\bar{x}}=1.860(5.21)=\$ 9.69
\]

Because the observed \(t\) value \(==\frac{\bar{x}-\mu_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{x}}}=\frac{5.1111-0}{5.21}=0.981<1.860(\) or \(\bar{x}=\$ 5.11<\$ 9.69)\)
we do not reject \(\mathrm{H}_{0}\). On average, the Apson inkjet printer is not significantly less expensive than the Okaydata inkjet printer.

\subsection*{9.5 TESTS FOR DIFFERENCES BETWEEN PROPORTIONS: LARGE SAMPLE SIZES}

Suppose you are interested in finding out whether the Republican party is stronger in New York than in California. Or perhaps you would like to know whether women are as likely as men to purchase sports cars. To reach a conclusion in situations like these, you can take samples from each of the two groups in question (voters in New York and California or women and men) and use the sample proportions to test the difference between the two populations.

The big picture here is very similar to what we did in Section 9.2, when we compared two means using independent samples: We standardize the difference between the two sample proportions and base our tests on the normal distribution. The only major difference will be in the way we find an estimate for the standard error of the difference between the two sample proportions. Let's look at some examples.

\section*{Two-Tailed Tests for Differences between Proportions}

Consider the case of a pharmaceutical manufacturing company testing two new compounds intended to reduce blood-pressure levels. The compounds are administered to two different sets of laboratory animals. In group one, 71 of 100 animals tested respond to drug 1 with lower blood-pressure levels. In group two, 58 of 90 animals tested respond to drug 2 with lower blood-pressure levels. The company wants to test at the 0.05 level whether there is a difference between the efficacies of these two drugs. How should we proceed with this problem?
\[
\left.\begin{array}{rl}
\bar{p}_{1}=0.71 & \leftarrow \text { Sample proportion of successes with drug } 1 \\
\bar{q}_{1}=0.29 & \leftarrow \text { Sample proportion of failures with drug } 1 \\
n_{1}=100 & \leftarrow \text { Sample size for testing drug } 1
\end{array}\right] \begin{aligned}
\bar{p}_{2}=0.644 & \leftarrow \text { Sample proportion of successes with drug } 2 \\
\bar{q}_{2}=0.356 & \leftarrow \text { Sample proportion of failures with drug } 2 \\
n_{2}=90 & \leftarrow \text { Sample size for testing drug } 2
\end{aligned}
\]

Figure 9-8 illustrates this hypothesis test graphically. Because the management of the pharmaceutical company wants to know whether there is a difference between the two compounds, this is a two-tailed test. The significance level of

Step 2: Choose the appropriate distribution and find the critical value 0.05 corresponds to the colored regions in the figure. Both samples are large enough to justify using the normal distribution to approximate the binomial. From Appendix Table 1, we can determine that the critical value of \(z\) for 0.475 of the area under the curve is 1.96 .

As in our previous examples, we can begin by calculating the standard deviation of the sampling distribution we are using in our hypothesis test. In this example, the binomial distribution is the correct sampling distribution.

We want to find the standard error of the difference between two proportions; therefore, we should recall the formula for the standard error of the proportion:

\section*{Step 3: Compute the standard error and standardize the sample statistic}
\[
\begin{equation*}
\sigma_{\bar{p}}=\sqrt{\frac{p q}{n}} \tag{7-4}
\end{equation*}
\]

Using this formula and the same form we previously used in Equation 9-1 for the standard error of the difference between two means, we get

FIGURE 9-8 TWO-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO PROPORTIONS AT THE 0.05 LEVEL OF SIGNIFICANCE

\section*{Standard Error of the Difference between Two Proportions}
\[
\begin{equation*}
\sigma_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}} \tag{9-5}
\end{equation*}
\]

To test the two compounds, we do not know the population parameters \(p_{1}, p_{2}, q_{1}\) and \(q_{2}\), and thus we need to estimate them from the sample statistics \(\bar{p}_{1}, \bar{p}_{2}, \bar{q}_{1}\), and \(\bar{q}_{2}\). In this case, we

How to estimate this standard error might suppose that the practical formula to use would be

\section*{Estimated Standard Error of the Difference between Two Proportions}

But think about this a bit more. After all, if we hypothesize that there is no difference between the two population proportions, then our best estimate of the overall population proportion of successes is probably the combined proportion of successes in both samples, that is:

Best estimate of the overall proportion of successes in the population if the two proportions \(=\)

And in the case of the two compounds, we use this equation with symbols rather than words:

\section*{Estimated Overall Proportion of Successes in Two Populations}
\[
\begin{aligned}
\hat{p} & =\frac{n_{1} \bar{p}_{1}+n_{2} \bar{p}_{2}}{n_{1}+n_{2}} \\
& =\frac{(100)(0.71)+(90)(0.644)}{100+90} \\
& =\frac{71+58}{190} \\
& =0.6789 \leftarrow \begin{array}{l}
\text { Estimate of the overall proportion of success in the combined } \\
\text { populations using combined proportions from both samples } \\
(\hat{q} \text { would be } 1-0.6789=0.3211)
\end{array}
\end{aligned}
\]

Now we can appropriately modify Equation \(9-6\) using the values \(\hat{p}\) and \(\hat{q}\) from Equation 9-7:

\section*{Estimated Standard Error of the Difference between Two Proportions Using Combined Estimates from Both Samples}
\[
\begin{align*}
& \begin{array}{l}
\text { Estimate of the population } \\
\text { proportions using combined } \\
\text { proportions from both samples }
\end{array} \\
& \begin{aligned}
\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}= & \sqrt{\frac{\hat{p} \hat{q}}{n_{1}}+\frac{\hat{p} \hat{q}}{n_{2}}} \\
= & \sqrt{\frac{(0.6789)(0.3211)}{100}+\frac{(0.6789)(0.3211)}{90}} \\
= & \sqrt{\frac{0.2180}{100}+\frac{0.2180}{90}} \\
= & \sqrt{0.004602} \\
= & 0.6789 \leftarrow \text { Estimated standard error of the difference between two proportions }
\end{aligned}
\end{align*}
\]

We standardize the difference between the two observed sample proportions, \(\bar{p}_{1}-\bar{p}_{2}\), by dividing by the estimated standard error of the difference between two proportions:
\[
\begin{aligned}
z & =\frac{\left(\bar{p}_{1}-\bar{p}_{2}\right)-\left(p_{1}-\bar{p}_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}} \\
& =\frac{(0.71-0.644)-0}{0.0678} \\
& =0.973
\end{aligned}
\]

\section*{FIGURE 9-9 TWO-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO PROPORTIONS AT THE 0.05 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED DIFFERENCE BETWEEN THE SAMPLE PROPORTIONS}

Next we plot the standardized value on a sketch of the sampling distribution in Figure 9-9.

We can see in Figure 9-9 that the standardized difference between the two sample proportions lies within the acceptance region. Thus, we accept the null hypothesis and conclude that these two new compounds produce effects on blood pressure that are not significantly different.

Step 4: Sketch the distribution and mark the sample value and critical values

Step 5: Interpret the result

\section*{One-Tailed Tests for Differences between Proportions}

Conceptually, the one-tailed test for the difference between two population proportions is similar to a one-tailed test for the difference between two means. Suppose that for tax purposes, a city government has been using two methods of listing property. The first requires the property owner to appear in person before a tax lister, but the second permits the property owner to mail in a tax form. The city manager thinks the personal-appearance method produces far fewer mistakes than the mail-in method. She authorizes an examination of 50 personal-appearance listings and 75 mail-in listings. Ten percent of the personal-appearance forms contain errors; 13.3 percent of the mail-in forms contain them. The results of her sample can be summarized:
\[
\begin{aligned}
& \bar{p}_{1}=0.10 \leftarrow \text { Proportion of personal-appearance forms with errors } \\
& \bar{q}_{1}=0.90 \leftarrow \text { proportion of personal-appearance forms without errors } \\
& n_{1}=50 \leftarrow \text { Sample size of personal-appearance forms } \\
& \bar{p}_{2}=0.133 \leftarrow \text { Proportion of mail-in forms with errors } \\
& \bar{q}_{2}=0.867 \leftarrow \text { Proportion of mail-in forms without errors } \\
& n_{2}=75 \leftarrow \text { Sample size of mail-in forms }
\end{aligned}
\]

The city manager wants to test at the 0.15 level of significance the hypothesis that the personal-appearance method produces a lower proportion of errors. What should she do?

FIGURE 9-10 ONE-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO PROPORTIONS AT THE 0.15 LEVEL OF SIGNIFICANCE
\[
\left.\begin{array}{rl}
\mathrm{H}_{0}: p_{1}=p_{2} \leftarrow & \text { Null hypothesis: There is no difference between the two } \\
& \text { methods } \\
\mathrm{H}_{1}: p_{1}<p_{2} \leftarrow \leftarrow & \text { Alternative hypothesis: The personal-appearance method } \\
& \text { has a lower proportion of errors than the mail-in method }
\end{array}\right\}
\]

With samples of this size, we can use the standard normal distribution and Appendix Table 1 to determine the critical value of \(z\) for 0.35 of the area under the curve \((0.50-0.15)\). We can use this value, 1.04 , as the boundary of the acceptance region.

Figure 9-10 illustrates this hypothesis test. Because the city manager wishes to test whether the personal-appearance listing is better than the mailed-in listing, the appropriate test is a one-tailed test. Specifically, it is a left-tailed test, because to reject the null hypothesis, the test result must fall in the colored portion of the left tail, indicating that significantly fewer errors exist in the personal-appearance forms. This colored region in Figure 9-10 corresponds to the 0.15 significance level.

To estimate the standard error of the difference between two proportions, we first use the combined proportions from both samples to estimate the overall proportion of successes:
\[
\begin{align*}
\hat{p} & =\frac{n_{1} \bar{p}_{1}+n_{2} \bar{p}_{2}}{n_{1}+n_{2}} \tag{9-7}\\
& =\frac{(50)(0.10)+(75)(0.133)}{50+75} \\
& =\frac{5+10}{125} \\
& =0.12 \leftarrow \begin{array}{l}
\text { Estimate of the overall proportion of successes in the } \\
\text { population using combined proportions from both samples }
\end{array}
\end{align*}
\]

Step 2: Choose the appropriate distribution and find the critical value
valu

\section*{Step 1: State your hypotheses, type of test, and significance level}

Now this answer can be used to calculate the estimated standard error of the difference between the two proportions, using Equation 9-8:
\[
\begin{align*}
& \hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\frac{\hat{\hat{q}} \hat{n_{1}}}{n_{1}}+\frac{\hat{p} \hat{q}}{n_{2}}} \tag{9-8}\\
&=\sqrt{\frac{(0.12)(0.88)}{50}+\frac{(0.12)(0.88)}{75}} \\
&=\sqrt{\frac{0.10560}{50}+\frac{0.10560}{75}} \\
&=\sqrt{0.00352} \\
&=0.0593 \leftarrow \quad \text { Estimated standard error of the difference between } \\
& \text { two proportions using combined estimates }
\end{align*}
\]

We use the estimated standard error of the difference, \(\hat{\sigma}_{\bar{P}_{1}-\bar{p}_{2}}\), to convert the observed difference between the two sample proportions, \(\bar{p}_{1}-\bar{p}_{2}\), to a standardized value:
\[
\begin{aligned}
z & =\frac{\left(\bar{p}_{1}-\bar{p}_{2}\right)-\left(p_{1}-\bar{p}_{2}\right)_{\mathrm{H}_{0}}}{\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}} \\
& =\frac{(0.10-0.133)-0}{0.0593} \\
& =-0.556
\end{aligned}
\]

Step 4: Sketch the distribution and mark the sample value and critical value

Figure 9-11 shows where this standardized difference lies in comparison to the critical value.

FIGURE 9-11 ONE-TAILED HYPOTHESIS TEST OF THE DIFFERENCE BETWEEN TWO PROPORTIONS AT THE 0.15 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED DIFFERENCE BETWEEN THE SAMPLE PROPORTIONS

This figure shows us that the standardized difference between the two sample proportions lies well within the acceptance region, and the city manager should accept the null hypothesis that there is no difference between the two methods of tax listing. Therefore, if mailed-in listing is considerably less expensive to the city, the city manager should consider increasing the use of this method.

\section*{HINTS \& ASSUMPTIONS}

The procedure here is almost like the one we used earlier in comparing differences between two means using independent samples. The only difference here is that we first use the combined proportions from both samples to estimate the overall proportion, then we use that answer to estimate the standard error of the difference between the two proportions. Hint: If the test is concerned with whether one proportion is significantly different from the other, use a two-tailed test. If the test asks whether one proportion is significantly higher or significantly lower than the other, then a one-tailed test is appropriate.

\section*{EXERCISES 9.4}

\section*{Self-Check Exercises}

SC 9-7 A large hotel chain is trying to decide whether to convert more of its rooms to nonsmoking rooms. In a random sample of 400 guests last year, 166 had requested nonsmoking rooms. This year, 205 guests in a sample of 380 preferred the nonsmoking rooms. Would you recommend that the hotel chain convert more rooms to nonsmoking? Support your recommendation by testing the appropriate hypotheses at a 0.01 level of significance.
SC 9-8 Two different areas of a large eastern city are being considered as sites for day-care centers. Of 200 households surveyed in one section, the proportion in which the mother worked fulltime was 0.52 . In another section, 40 percent of the 150 households surveyed had mothers working at full-time jobs. At the 0.04 level of significance, is there a significant difference in the proportions of working mothers in the two areas of the city?

\section*{Applications}

9-15 On Friday, 11 stocks in a random sample of 40 of the roughly 5,500 stocks traded on the National Stock Exchange advanced; that is, their price of their shares increased. In a sample of 60 NSE stocks taken on Thursday, 24 advanced. At \(\alpha=0.10\), can you conclude that a smaller proportion of NSE stocks advanced on Friday than did on Thursday?
9-16 MacroSwift has recently released a new word-processing product, and they are interested in determining whether people in the 30-39 age group rate the program any differently than members of the 40-49 age group. MacroSwift randomly sampled 175 people in the 30-39 age group who purchased the product and found 87 people who rated the program as excellent, with 52 people who would purchase an upgrade. They also sampled 220 people in the 40-49 age group and found 94 people who gave an excellent rating, with 37 people who plan to purchase an upgrade. Is there any significant difference in the proportions of people in the two age groups who rate the program as excellent at the \(\alpha=0.05\) level? Is the same result true for proportions of people who plan to purchase an upgrade?

9-17 A coal-fired power plant is considering two different systems for pollution abatement. The first system has reduced the emission of pollutants to acceptable levels 68 percent of the time, as determined from 200 air samples. The second, more expensive system has reduced the emission of pollutants to acceptable levels 76 percent of the time, as determined from 250 air samples. If the expensive system is significantly more effective than the inexpensive system in reducing pollutants to acceptable levels, then the management of the power plant will install the expensive system. Which system will be installed if management uses a significance level of 0.02 in making its decision?
9-18 A group of clinical physicians is performing tests on patients to determine the effectiveness of a new antihypertensive drug. Patients with high blood pressure were randomly chosen and then randomly assigned to either the control group (which received a well-established antihypertensive) or the treatment group (which received the new drug). The doctors noted the percentage of patients whose blood pressure was reduced to a normal level within 1 year. At the 0.01 level of significance, test appropriate hypotheses to determine whether the new drug is significantly more effective than the older drug in reducing high blood pressure.
\begin{tabular}{lcc}
\hline Group & Proportion That Improved & Number of Patients \\
\hline Treatment & 0.45 & 120 \\
Control & 0.36 & 150 \\
\hline
\end{tabular}

9-19 The University Bookstore is facing significant competition from off-campus bookstores, and they are considering targeting a specific class in order to retain student business. The bookstore randomly sampled 150 freshmen and 175 sophomores. They found that 46 percent of the freshmen and 40 percent of the sophomores purchase all of their textbooks at the University Bookstore. At \(\alpha=0.10\), is there a significant difference in the proportions of freshman and sophomores who purchase entirely at the University Bookstore?
9-20 In preparation for contract-renewal negotiations, the United Manufacturing Workers surveyed its members to see whether they preferred a large increase in retirement benefits or a smaller increase in salary. In a group of 1,000 male members who were polled, 743 were in favor of increased retirement benefits. Of 500 female members surveyed, 405 favored the increase in retirement benefits.
(a) Calculate \(\hat{p}\).
(b) Compute the standard error of the difference between the two proportions.
(c) Test the hypothesis that equal proportions of men and women are in favor of increased retirement benefits. Use the 0.05 level of significance.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 9-7 \(n_{1}=400 \quad \bar{p}_{1}=0.415 \quad n_{2}=380 \quad \bar{p}_{2}=0.5395\)
\(\mathrm{H}_{0}: p_{1}=p_{2} \quad \mathrm{H}_{1}: p_{1}<p_{2} \quad \alpha=0.01\)
\(\hat{p}=\frac{n_{1} \bar{p}_{1}+n_{2} \bar{p}_{2}}{n_{1}+n_{2}}=\frac{400(0.415)+380(0.5395)}{400+380}=0.4757\)
\(\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{0.4757(0.5243)\left(\frac{1}{400}+\frac{1}{380}\right)}=0.0358\)

The lower limit of the acceptance region is \(z=-2.33\), or
\[
\bar{p}_{1}-\bar{p}_{2}=0-z \hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}=-2.33(0.0358)=-0.0834
\]

Because the observed \(z\) value \(=\frac{\bar{p}_{1}-\bar{p}_{2}}{\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}}=\frac{0.415-0.5395}{0.0358}=-3.48\)
\(<-2.33\) (or \(\bar{p}_{1}-\bar{p}_{2}=-0.1245<-0.0834\)) we reject \(\mathrm{H}_{0}\). The hotel chain should convert more rooms to nonsmoking because there was a significant increase in the proportion of guests requesting these rooms over the last year.
SC 9-8 \(\quad n_{1}=200 \quad \bar{p}_{1}=0.52 \quad n_{2}=150 \quad \bar{p}_{2}=0.40\)
\(\mathrm{H}_{0}: p_{1}=p_{2} \quad \mathrm{H}_{1}: p_{1} \neq p_{2} \quad \alpha=0.40\)
\[
\begin{gathered}
\hat{p}=\frac{n_{1} \bar{p}_{1}+n_{2} \bar{p}_{2}}{n_{1}+n_{2}}=\frac{200(0.52)+150(0.40)}{200+150}=0.4686 \\
\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\hat{p} \hat{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=\sqrt{0.4686(0.5314)\left(\frac{1}{200}+\frac{1}{150}\right)}=0.0539
\end{gathered}
\]

The limits of the acceptance region are \(z= \pm 2.05\), or
\[
\bar{p}_{1}-\bar{p}_{2}=0 \pm z \hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}= \pm 2.05(0.0539)= \pm 0.1105
\]

Because the observed \(z\) value \(=\frac{\bar{p}_{1}-\bar{p}_{2}}{\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}}=\frac{0.52-0.40}{0.0539}=2.23>2.05\) (or \(p_{1}-p_{2}=012>0.1105\)),
we reject \(\mathrm{H}_{0}\). The proportions of working mothers in the two areas differ significantly.

\subsection*{9.6 PROB VALUES: ANOTHER WAY TO LOOK AT TESTING HYPOTHESES}

In all the work we've done so far on hypothesis testing, one of the first things we had to do was choose a level of significance, \(\alpha\), for the test. It has been traditional to choose a significance level of \(\alpha=10\) percent, 5 percent, 2 percent, or 1 percent, and almost all our examples have been done at these levels. But why use only these few values?

When we discussed Type I and Type II errors on page 373-374 we saw that the choice of the significance level depended on a

How do we choose a significance level? trade-off between the costs of each of these two kinds of errors. If the cost of a Type I error (incorrectly rejecting \(\mathrm{H}_{0}\)) is relatively high, we want to avoid making this kind of error, so we choose a small value of \(\alpha\). On the other hand, if a Type II error (incorrectly accepting \(\mathrm{H}_{0}\)) is relatively more expensive, we are more willing to make a Type I error, and we choose a high value of \(\alpha\). However, understanding the nature of the trade-off still doesn't tell us how to choose a significance level.

When we test the hypotheses:
Deciding before we take a
\[
\begin{aligned}
\mathrm{H}_{0}: \mu & =\mu_{\mathrm{H}_{0}} \\
\mathrm{H}_{1}: \mu & =\mu_{\mathrm{H}_{0}} \\
\alpha & =0.05
\end{aligned}
\]
we take a sample, compute \(\bar{x}\) and reject \(\mathrm{H}_{0}\) if \(\bar{x}\) is so far from \(\mu_{\mathrm{H}_{0}}\) that the probability of seeing a value of \(\bar{x}\) this far (or farther) from \(\mu_{\mathrm{H}_{0}}\) is less than 0.05 . In other words, before we take the sample, we specify how unlikely the observed results will have to be in order for us to reject \(\mathrm{H}_{0}\). There is another way to approach this decision about rejecting or accepting \(\mathrm{H}_{0}\) that doesn't require that we specify the significance level before taking the sample. Let's see how it works.

Suppose we take our sample, compute \(\bar{x}\), and then ask the Prob values question, "Supposing \(\mathrm{H}_{0}\) were true, what's the probability of getting a value of \(\bar{x}\) this far or farther from \(\mu_{\mathrm{H}_{0}}\) ?" This probability is
called a prob value or a p-value. Whereas before we asked, "Is the probability of what we've observed less than \(\alpha\) ?" now we are merely asking, "How unlikely is the result we have observed?" Once the prob value for the test is reported, then the decision maker can weigh all the relevant factors and decide whether to accept or reject \(H_{0}\), without being bound by a prespecified significance level.

Another benefit of using prob values is that they provide

\section*{Another advantage} more information. If you know that I rejected \(\mathrm{H}_{0}\) at \(\alpha=0.05\), you know only that \(\bar{x}\) was at least 1.96 standard errors away from \(\mu_{\mathrm{H}_{0}}\). However, a prob value of 0.05 tells you that \(\bar{x}\) was exactly 1.96 standard errors away from \(\mu_{\mathrm{H}_{0}}\). Let's look at an example.

\section*{Two-Tailed Prob Values When \(\sigma\) Is Known}

A machine is used to cut wheels of Swiss cheese into blocks of specified weight. On the basis of long experience, it has been observed that the weight of the blocks is normally distributed with a standard deviation of 0.3 ounce. The machine is currently set to cut blocks that weigh 12 ounces. A sample of nine blocks is found to have an average weight of 12.25 ounces. Should we conclude that the cutting machine needs to be recalibrated?

Written symbolically, the data in our problem are
\[
\begin{array}{cl}
\mu_{\mathrm{H}_{0}}=12 & \leftarrow \begin{array}{l}
\text { Hypothesized value of the } \\
\text { population mean }
\end{array} \\
\sigma=0.3 & \leftarrow \text { Population standard deviation } \\
n=9 & \leftarrow \text { Sample size } \\
\bar{x}=12.25 & \leftarrow \text { Sample mean }
\end{array}
\]

Setting up the problem
symbolically

The hypotheses we wish to test are
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu=12 \leftarrow \text { Null hypothesis: The true population mean weight is } 12 \text { ounces } \\
& \mathrm{H}_{1}: \mu \neq 12 \leftarrow \text { Alternative hypothesis: The true population mean weight is not } 12 \text { ounces }
\end{aligned}
\]

Because this is a two-tailed test, our prob value is the probability of observing a value of \(\bar{x}\) at least as far away (on either side) from 12 as 12.25 , if \(\mathrm{H}_{0}\) is true. In other words, the prob value is the probability
of getting \(\bar{x} \geq 12.25\) or \(\bar{x} \leq 11.75\) if \(\mathrm{H}_{0}\) is true. To find this probability, we first use Equation 6-1 to calculate the standard error of the mean:
\[
\begin{align*}
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \quad[6-1] \quad \begin{array}{cc}
\mathrm{Co} \\
\text { of }
\end{array} \tag{6-1}\\
& =\frac{0.3}{\sqrt{9}} \\
& =\frac{0.3}{3} \\
& =0.1 \text { ounce } \leftarrow \text { Standard error of the mean }
\end{align*}
\]

Calculating the standard error of the mean

Then we use this to convert \(\bar{x}\) to a standard \(z\) score:
\[
\begin{align*}
z & =\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \tag{6-2}\\
& =\frac{12.25-12}{0.1} \\
& =\frac{0.25}{0.1} \\
& =2.5
\end{align*}
\]

Finding the \(z\) score and the prob value

From Appendix Table 1, we see that the probability that \(z\) is greater than 2.5 is \(0.5000-0.4938=0.0062\). Hence, because this is a two-tailed hypothesis test, the prob value is \(2(0.0062)=0.0124\). Our results are illustrated in Figure 9-12. Given this information, our cheese packer can now decide whether to recalibrate the machine (reject \(\mathrm{H}_{0}\)) or not (accept \(\mathrm{H}_{0}\)).

FIGURE 9-12 TWO-TAILED HYPOTHESIS TEST, SHOWING PROB VALUE OF 0.0124 (IN BOTH TAILS COMBINED)

How is this related to what we did before, when we specified a significance level? If a significance level of \(\alpha=0.05\) were adopted, we would reject \(\mathrm{H}_{0}\). You can easily see this by looking at Figure 9-12. At a significance level of \(\alpha=0.05\), we reject \(\mathrm{H}_{0}\) if \(\bar{x}\) is so far from \(\mu_{\mathrm{H}_{0}}\) that less than 0.05 of the area under the curve is left in the two tails. Because our observed value of \(\bar{x}=12.25\) leaves only 0.0124 of the total area in the tails, we would reject \(\mathrm{H}_{0}\) at a significance level of \(\alpha=0.05\). (You can also verify this result by noting in Appendix Table 1 that the critical \(z\) values for \(\alpha=0.05\) are \(\pm 1.96\). Thus, the standardized value of \(\bar{x}\) (2.5) is outside the acceptance region.)

Similarly, we can see that at a significance level of \(\alpha=0.01\), we would accept \(\mathrm{H}_{0}\), because \(\bar{x}=12.25\) leaves more than 0.01 of the total area in the tails. (In this case, the critical \(z\) values for \(\alpha=0.01\) would be \(\pm 2.58\), and now the standardized value of \(\bar{x}, 2.5\), is inside the acceptance region.) In fact, at any level of \(\alpha\) above 0.0124 , we would reject \(\mathrm{H}_{0}\). Thus, we see that the prob value is precisely the largest significance level at which we would accept \(\mathbf{H}_{0}\). Prob value (or \(p\)-value) is the probability of getting as extreme as or higher than this value, i.e., chances of having that much extreme results. Low p-value denotes that chances of having such a extreme result is quite low so it can be said that results are significant.

\section*{Prob Values under Other Conditions}

In our example, we did a two-tailed hypothesis test using the normal distribution. How would we proceed in other circumstances?
1. If \(\sigma\) was known, and we were doing a one-tailed test, we would compute the prob value in exactly the same way except that we would not multiply the probability that we got from Appendix Table 1 by 2, because that table gives onetailed probabilities directly.
2. If \(\sigma\) was not known, we would use the \(t\) distribution with \(n-1\) degrees of freedom and Appendix Table 2. This table

\section*{One-tailed prob values}

Using the \(t\) distribution gives two-tailed probabilities, but only a few of them, so we can not get exact prob values from it. For example, for a two-tailed test, if \(\mu_{\mathrm{H}_{0}}=50, \bar{x}=49.2\), \(s=1.4\), and \(n=16\), we find that
\[
\begin{align*}
\hat{\sigma}_{\bar{x}} & =\frac{\hat{\sigma}}{\sqrt{n}} \tag{7-6}\\
& =\frac{1.4}{\sqrt{16}} \\
& =0.35
\end{align*}
\]
and that \(\bar{x}\) is 2.286 estimated standard errors below \(\mu_{\mathrm{H}_{0}}[(49.2-50) / 0.35=-2.286]\). Looking at the 15 degrees of freedom row in Appendix Table 2, we see that 2.286 is between \(2.131(\alpha=0.05)\) and \(2.602(\alpha=0.02)\). Our prob value is therefore something between 0.02 and 0.05 , but we can't be more specific.

Most computer statistics packages report exact prob val-
Prob values in other contexts ues, not only for tests about means based on the normal dis-

Probvalues in other contexts tribution, but for other tests such as chi-square and analysis of variance (which we will discuss in Chapter 11) and tests in the context of linear regression (which we will discuss in Chapters 12 and 13). The discussion we have provided in this section
will enable you to understand prob values in those contexts too. Although different statistics and distributions will be involved, the ideas are the same.

\section*{HINTS \& ASSUMPTIONS}

Prob values and computers eliminate having to look up values from a \(z\) or \(t\) distribution table, and take the drudgery out of hypothesis testing. Warning: The smaller the prob value, the greater the significance of the findings. Hint: You can avoid confusion here by remembering that a prob value is the chance that the result you have could have occurred by sampling error, thus, smaller prob values mean smaller chances of sampling error and higher significance.

\section*{EXERCISES 9.5}

\section*{Self-Check Exercises}

SC 9-9 The Coffee Institute has claimed that more than 40 percent of American adults regularly have a cup of coffee with breakfast. A random sample of 450 individuals revealed that 200 of them were regular coffee drinkers at breakfast. What is the prob value for a test of hypotheses seeking to show that the Coffee Institute's claim was correct? (Hint: Test \(\mathrm{H}_{0}: p=0.4\), versus \(\mathrm{H}_{1}: p>0.4\))
SC 9-10 Approximately what is the prob value for the test in Self-Check Exercise 9-3 on page 428?

\section*{Applications}

9-21 A car retailer thinks that a 40,000-mile claim for tire life by the manufacturer is too high. She carefully records the mileage obtained from a sample of 64 such tires. The mean turns out to be 38,500 miles. The standard deviation of the life of all tires of this type has previously been calculated by the manufacturer to be 7,600 miles. Assuming that the mileage is normally distributed, determine the largest significance level at which we would accept the manufacturer's mileage claim, that is, at which we would not conclude the mileage is significantly less than 40,000 miles.
9-22 The North Carolina Department of Transportation has claimed that at most, 18 percent of passenger cars exceed 70 mph on Interstate 40 between Raleigh and Durham. A random sample of 300 cars found 48 cars exceeding 70 mph . What is the prob value for a test of hypothesis seeking to show the NCDOT's claim is correct?
9-23 Kelly's machine shop uses a machine-controlled metal saw to cut sections of tubing used in pressure-measuring devices. The length of the sections is normally distributed with a standard deviation of \(0.06^{\prime \prime}\). Twenty-five pieces have been cut with the machine set to cut sections \(5.00^{\prime \prime}\) long. When these pieces were measured, their mean length was found to be \(4.97^{\prime \prime}\). Use prob values to determine whether the machine should be recalibrated because the mean length is significantly different from \(5.00^{\prime \prime}\) ?
9-24 SAT Services advertises that 80 percent of the time, its preparatory course will increase an individual's score on the College Board exams by at least 50 points on the combined verbal and quantitative total score. Lisle Johns, SAT's marketing director, wants to see whether this is a reasonable claim. He has reviewed the records of 125 students who took the course and found that 94 of them did, indeed, increase their scores by at least

50 points. Use prob values to determine whether SAT's ads should be changed because the percentage of students whose scores increase by 50 or more points is significantly different from 80 percent.
9-25 What is the prob value for the test in Exercise 9-2?
9-26 What is the prob value for the test in Exercise 9-3?
9-27 Approximately what is the prob value for the test in Exercise 9-7?
9-28 Approximately what is the prob value for the test in Exercise 9-11?
9-29 What is the prob value for the test in Exercise 9-17?
9-30 What is the prob value for the test in Exercise 9-20?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 9-9 \(n=450 \quad \bar{p}=200 / 450=0.4444\)
\(\mathrm{H}_{0}: p=0.4 \quad \mathrm{H}_{1}: p>0.4\)
The prob value is the probability that \(\bar{p} \geq 0.4444\), that is,
\[
\mathrm{P}\left(z \geq \frac{0.4444-0.4}{\sqrt{0.4(0.6) / 450}}\right)=\mathrm{P}(z \geq 1.92)=0.5-0.4726=0.0274
\]

SC 9-10 From the solution to exercise SC 9-3 on page 430, we have \(t=-2.766\), with \(12+9-2=19\) degrees of freedom. From the row in Appendix Table 2 for 19 degrees of freedom, we see that -2.766 is between -2.861 (corresponding to a probability of \(.01 / 2=.005\) in the lower tail) and -2.539 (corresponding to a probability of \(.02 / 2=.01\) in the lower tail). Hence the prob value for our test is between .005 and .01 .

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 9: Two-Sample Tests of Hypotheses When Lee Azko looked over the results of the telephone survey conducted by the marketing department of Loveland Computers, something was troubling. "Hmm, you wouldn't still have the data for the 'Total spent on software' on computer, would you, Margot?" Lee asked the head of the department.
"Hey, I keep everything," Margot replied. "It's in a worksheet file on the computer over there. I had the intern camp out in my office last summer. Why do you need to see the data?"
"Well, give me a minute and I'll show you," said Lee, turning on the machine. After a few minutes of muttering over the keyboard, Lee pushed back from the screen. "Thought so! Take a look at that. It looks like there are really two groups of customers here-see how there are two different peaks on this graph?"
"I guess we should have done more than just print out the mean and standard deviation last summer," said Margot disconsolately. "I guess this means the data are no good."
"Not necessarily," said Lee with more optimism. "I'll bet your 'big spenders' are your business customers and the lower peak is the home users. You wouldn't have any way to know which category the response was in, would you?"
"Well, we capture that automatically," Margot said, leaning over and clearing the graph from the screen. "If you look at the first column, you'll see that it's the customer number. All the business customers have a customer number that begins with a 1 and all the home users have a customer number that begins with a 2. "
"Let me copy this file onto a floppy," Lee said, opening the briefcase. "I'll be back this afternoon with the answer."

Study Questions: What graph did Lee plot using the worksheet program? What hypothesis is being tested and what is the appropriate statistical test? Is this a one-tailed or a two-tailed problem?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 9}

Combined Proportion of Successes In comparing two population proportions, the total number of successes in both samples divided by the total size of both samples; used to estimate the proportion of successes common to both populations.
Dependent Samples Samples drawn from two populations in such a way that the elements in one sample are matched or paired with the elements in the other sample, in order to allow a more precise analysis by controlling for extraneous factors.
Paired Difference Test A hypothesis test of the difference between two population means based on the means of two dependent samples.
Paired Samples Another name for dependent samples.
Pooled Estimate of \(\boldsymbol{\sigma}^{2}\) A weighted average of \(s_{1}^{2}\) and \(s_{2}^{2}\) used to estimate the common variance, \(\sigma^{2}\), when using small samples to test the difference between two population means.
Prob Value The largest significance level at which we would accept the null hypothesis. It enables us to test hypotheses without first specifying a value for \(\alpha\).
P-value Another name for a prob value.
Two-Sample Tests Hypothesis tests based on samples taken from two populations in order to compare their means or proportions.

\section*{Equations Introduced in Chapter 9}

9-1

9-2
\[
\begin{equation*}
\sigma_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \tag{p. 414}
\end{equation*}
\]

This formula enables us to derive the standard deviation of the distribution of the difference between two sample means, that is, the standard error of the difference between two means. To do this, we take the square root of the sum of Population l's variance divided by its sample size plus Population 2's variance divided by its sample size.
\[
\begin{equation*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=\sqrt{\frac{\hat{\sigma}_{1}^{2}}{n_{1}}+\frac{\hat{\sigma}_{2}^{2}}{n_{2}}} \tag{p. 414}
\end{equation*}
\]

If the two population standard deviations are unknown, we can use this formula to derive the estimated standard error of the difference between two means. We can use this equation after we have used the two sample standard deviations and Equation 7-1 to determine the estimated standard deviations of Population 1 and Population 2, \((\hat{\sigma}=s)\).
\[
\begin{equation*}
\hat{\sigma}_{\bar{p}_{1}-\bar{p}_{2}}=\sqrt{\frac{\bar{p}_{1} \bar{q}_{1}}{n_{1}}+\frac{\bar{p}_{2} \bar{q}_{2}}{n_{2}}} \tag{p. 443}
\end{equation*}
\]

If the population parameters \(p\) and \(q\) are unknown, we can use the sample statistics \(\bar{p}\) and \(\bar{q}\) and this formula to estimate the standard error of the difference between two proportions.
This is the formula used to derive the standard error of the difference between two proportions. The symbols and \(p_{1}\) and \(p_{2}\) represent the proportions of successes in Population 1 and Population 2, respectively, and \(q_{1}\) and \(q_{2}\) are the proportions of failures in Populations 1 and 2 , respectively.
Given the pooled estimate of \(\sigma^{2}\) obtained from Equation 9-3, we put this value into Equation \(9-2\) and simplify the expression. This gives us a formula to estimate the standard error of the difference between sample means when we have small samples (less than 30) but equal population variances.
With this formula, we can get a pooled estimate of \(\sigma^{2}\). It uses a weighted average of \(s_{1}^{2}\) and \(s_{2}^{2}\), where the weights are the numbers of degrees of freedom in each sample. Use of this formula assumes that \(\sigma_{1}^{2}=\sigma_{2}^{2}\) (that the unknown population variances are equal). We use this formula when testing for the differences between means in situations with small sample sizes (less than 30).
poplan.
\[
\begin{equation*}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}=s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \tag{p. 422}
\end{equation*}
\]
2, itspectivery.
and this formula to estimate the standard error of the difference between two proportions.

Because the null hypothesis assumes that there is no difference between the two population proportions, it would be more appropriate to modify Equation 9-6 and to use the combined proportions from both samples to estimate the overall proportion of successes in the combined populations. Equation 9-7 combines the proportions from both samples. Note that the value of \(\hat{q}\) is equal to \(1-\hat{p}\).

Now we can substitute the results of Equation 9-7, both \(\hat{p}\) and \(\hat{q}\), into Equation 9-6 and get a more correct version of Equation 9-6. This new equation, 9-8, gives us the estimated standard error of the difference between the two proportions using combined estimates from both samples.

\section*{Review and Application Exercises}

9-31 Clic Pens has tested two types of point-of-purchase displays for its new erasable pen. A shelf display was placed in a random sample of 40 stores in the test market, and a floor display was placed in 40 other stores in the area. The mean number of pens sold per store in one month
with the shelf display was 42 , and the sample standard deviation was 8 . With the floor display, the mean number of pens sold per store in the same month was 45 , and the sample standard deviation was 7 . At \(\alpha=0.02\), was there a significant difference between sales with the two types of displays?
9-32 In 2012, a survey of 50 municipal hospitals revealed an average occupancy rate of 73.6 percent, and the sample standard deviation was 18.2 percent. Another survey of 75 municipal hospitals in 2015 found an average occupancy rate of 68.9 percent, and the sample standard deviation was 19.7 percent. At \(\alpha=0.10\), can we conclude that the average occupancy rate changed significantly during the 3 years between surveys?
9-33 General Cereals has just concluded a new advertising campaign for Fruit Crunch, its allnatural breakfast cereal with nuts, grains, and dried fruits. To test the effectiveness of the campaign, brand manager Alan Neebe surveyed 11 customers before the campaign and another 11 customers after the campaign. Given are the customers' reported weekly consumption (in ounces) of Fruit Crunch:
\begin{tabular}{lccccccccccc}
Before & 14 & 5 & 18 & 18 & 30 & 10 & 8 & 26 & 13 & 29 & 24 \\
After & 23 & 14 & 13 & 29 & 33 & 11 & 12 & 25 & 21 & 26 & 34
\end{tabular}
(a) At \(\alpha=0.05\), can Alan conclude that the campaign has succeeded in increasing demand for Fruit Crunch?
(b) Given Alan's initial survey before the campaign, can you suggest a better sampling procedure for him to follow after the campaign?
9-34 Students Against Drunk Driving has targeted seat-belt usage as a positive step to reduce accidents and injuries. Before a major campaign at one high school, 44 percent of 150 drivers entering the school parking lot were using their seat belts. After the seat-belt awareness program, the proportion using seat belts had risen to 52 percent in a sample of 200 vehicles. At a 0.04 significance level, can the students conclude that their campaign was effective?
9-35 Allen Distributing Company hypothesizes that a phone call is more effective than a letter in speeding up collection of slow accounts. Two groups of slow accounts were contacted, one by each method, and the length of time between mailing the letter or making the call and the receipt of payment was recorded:
\begin{tabular}{lrrrrrrr}
\hline Method Used & \multicolumn{7}{c}{ Days to Collection } \\
\hline Letter & 10 & 8 & 9 & 11 & 11 & 14 & 10 \\
Phone call & 7 & 4 & 5 & 4 & 8 & 6 & 9 \\
\hline
\end{tabular}
(a) At \(\alpha=0.025\), should Allen conclude that slow accounts are collected more quickly with calls than with letters?
(b) Can Allen conclude that slow accounts respond more quickly to calls?

9-36 A buffered aspirin recently lost some of its market share to a new competitor. The competitor advertised that its brand enters the bloodstream faster than the buffered aspirin does and,
as a result, it relieves pain sooner. The buffered-aspirin company would like to prove that there is no significant difference between the two products and, hence, that the competitor's claim is false. As a preliminary test, 9 subjects were given buffered aspirin once a day for 3 weeks. For another 3 weeks, the same subjects were given the competitive product. For each medication, the average number of minutes it took to reach each subject's bloodstream was recorded:
\begin{tabular}{lccccccccc}
Subject & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
Buffered aspirin & 16.5 & 25.5 & 23.0 & 14.5 & 28.0 & 10.0 & 21.5 & 18.5 & 15.5 \\
Competitor & 12.0 & 20.5 & 25.0 & 16.5 & 24.0 & 11.5 & 17.0 & 15.0 & 13.0
\end{tabular}

At \(\alpha=0.10\), is there any significant difference in the times the two medications take to reach the bloodstream?

9-37 A chemist developing insect repellents wishes to know whether a newly developed formula gives greater protection from insect bites than that given by the leading product on the market. In an experiment, 14 volunteers each had one arm sprayed with the old product and the other sprayed with the new formula. Then each subject placed his arms into two chambers filled with equal numbers of mosquitoes, gnats, and other biting insects. The numbers of bites received on each arm follow. At \(\alpha=0.01\), should the chemist conclude that the new formula is, indeed, more effective than the current market leader?
\begin{tabular}{lrrrrrrrrrrrrrr}
Subject & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
Old formula & 5 & 2 & 5 & 4 & 3 & 6 & 2 & 4 & 2 & 6 & 5 & 7 & 1 & 3 \\
New formula & 3 & 1 & 5 & 1 & 1 & 4 & 4 & 2 & 5 & 2 & 3 & 3 & 1 & 2
\end{tabular}

9-38 Long Distance Carrier is trying to see the effect of offering " 1 month free" with a monthly fixed fee of \(\$ 10.95\), versus an offer of a low monthly fee \(\$ 8.75\) with no free month. To test which might be more attractive to consumers, Long Distance runs a brief market test: 12 phone reps make calls using one approach, and 10 use the other. The following number of customers agreed to switch from their present carrier to LDC:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Offer & \multicolumn{12}{|c|}{Number of Switches} \\
\hline 1 month free & 118 & 115 & 122 & 99 & 106 & 125 & 102 & 100 & 92 & 103 & 113 & 129 \\
\hline Low monthly fee & 115 & 126 & 113 & 110 & 135 & 102 & 124 & 137 & 108 & 128 & & \\
\hline
\end{tabular}

Test at a significance level of 10 percent whether there are significant productivity differences with the two offers.

9-39 Is the perceived level of responsibility for an action related to the severity of its consequences? That question was the basis of a study of responsibility in which the subjects read a description
of an accident on an interstate high-way. The consequences, in terms of cost and injury, were described as either very minor or serious. A questionnaire was used to rate the degree of responsibility that the subjects believed should be placed on the main figure in the story. Below are the ratings for both the mild-consequences and the severe-consequences groups. High ratings correspond to higher responsibility attributed to the main figure. If a 0.025 significance level was used, did the study conclude that severe consequences lead to a greater attribution of responsibility?
\begin{tabular}{lllllllll}
\hline Consequences & \multicolumn{7}{c}{ Degree of Responsibility } \\
\hline Mild & 4 & 5 & 3 & 3 & 4 & 1 & 2 & 6 \\
Severe & 4 & 5 & 4 & 6 & 7 & 8 & 6 & 5 \\
\hline
\end{tabular}

9-40 In October 2015, a survey of 120 macroeconomists found 87 who believed that the recession had already ended. A survey of 150 purchasing agents found 89 who believed the recession had ended. At \(\alpha=0.10\), should you conclude that the purchasing agents were more pessimistic about the economy than the macroeconomists were?
9-41 The MBA program at Piedmont Business School offers Analytic Skills Workshop (ASW) during the summer to help entering students brush up on their accounting, economics, and mathematics. Program Director Andy Bunch wonders whether ASW has been advantageous to the students enrolled. He has taken random samples of grade-point averages for students enrolled in ASW over the past 5 years and for students who started the MBA program without ASW during the same time span. At \(\alpha=0.02\), have the ASW students gotten significantly higher GPAs? Should Andy advertise that ASW helps student achievement in the MBA program?
\begin{tabular}{lccc}
\hline & \(\overline{\boldsymbol{x}}\) & \(\boldsymbol{s}\) & \(\boldsymbol{n}\) \\
\hline ASW & 3.37 & 1.13 & 26 \\
Non-ASW & 3.15 & 1.89 & 35 \\
\hline
\end{tabular}

9-42 Fifty-eight of 2,000 randomly sampled corporations had their 2015 federal income tax returns audited. In another sample of 2,500 corporations, 61 had their 2014 returns audited. Was the fraction of corporate returns audited in 2015 significantly different from the 2014 fraction? Test the appropriate hypotheses at \(\alpha=0.01\).
9-43 Ellen Singer asserted to one of her colleagues at Triangle Realty that homes in southern Durham County sold for about \(\$ 15,000\) less than similar homes in Chapel Hill. To test this assertion, her colleague randomly chose 10 recent sales in Chapel Hill and matched them with 10 recent sales in southern Durham County in terms of style, size, age, number of rooms, and size of lot. At \(\alpha=0.05\), do the following data (selling prices in thousands of \(\$\)) support Ellen's claim?
\begin{tabular}{lrrrrrrrrrr}
Chapel Hill & 97.3 & 108.4 & 135.7 & 142.3 & 151.8 & 158.5 & 177.4 & 183.9 & 195.2 & 207.6 \\
Durham County & 81.5 & 92.0 & 115.8 & 137.8 & 150.9 & 149.2 & 168.2 & 173.9 & 175.9 & 194.4
\end{tabular}

9-44 TV network executive Terri Black has just received a proposal and a pilot tape for a new show. Empty Nest No Longer is a situation comedy about a middle-aged couple whose two collegegraduate offspring cannot find jobs and have returned home. Terri wonders whether the show will appeal to twenty-somethings as well as to an older audience. Figuring that people in her office are reasonably representative of their age group in the population as a whole, she asks them to evaluate the pilot tape on a scale from 0 to 100, and gets the following responses.
\begin{tabular}{clllclll}
\hline Age & \multicolumn{7}{c}{ Response } \\
\hline \(20-29\) & 86 & 74 & 73 & 65 & 82 & 78 & 79 \\
\(\geq 30\) & 63 & 72 & 68 & 75 & 73 & 80 & \\
\hline
\end{tabular}
(a) At a 0.05 significance level, should Terri conclude the show will be equally attractive to the two age groups?
(b) Independent of your answer to (a), do you think Terry should use the results of her office survey to decide how to design an advertising campaign for Empty Nest No Longer? Explain.
9-45 A manufacturer of pet foods was wondering whether cat owners and dog owners reacted differently to premium pet foods. They commissioned a consumer survey that yielded the following data.
\begin{tabular}{lcc}
\hline Pet & Owners Surveyed & \begin{tabular}{c}
Number Using \\
Premium Food
\end{tabular} \\
\hline Cat & 280 & 152 \\
Dog & 190 & 81 \\
\hline
\end{tabular}

Is it reasonable to conclude, at \(\alpha=0.02\), that cat owners are more likely than dog owners to feed their pets premium food?
9-46 Shivam Kapoor has been offered a transfer from Nagpur to Bangalore, but he is holding out for more money, "because the cost of living there is so much more". Looking at a grocery receipt and deleting big-ticket items, Shivam came up with 35 items under ₹ 100 with a mean of ₹ 49 , standard deviation of ₹ 21.5 in Nagpur. The HR-manager, who is based in Bangalore, buys 39 items, with the same ₹ 100 limit from a typical grocery store. His mean price is ₹ 53.5 , with standard deviation of ₹ 19 . Is Shivam's demand justified that the cost of groceries is more in Bangalore than in Nagpur?
9-47 Nirmal Pvt. Limited is a FMCG company, selling a range of products. It has 1150 salesoutlets. A sample of 60 sales-outlets was chosen, using random sampling for the purpose of sales analysis. The sample consists of sales-outlets from rural and urban areas belonging to the four regions of the country as Northern, Eastern, Western and Southern. The information related to annual sales has been was collected from them in the month of December 2010. This process has been repeated in December 2011. In the meanwhile, in 2010 a comprehensive sales-promotion program was launched to augment the sales. The information is presented in the data sheet in the DVD (Nirmal Pvt. Ltd DATA). Analyze the data and give answer to the following questions:
(a) Can you conclude that there is significant difference between sales of urban outlets and rural outlets in 2010?
(b) Does the pattern of differentiation between urban and rural outlets remain the same in 2011 also?
(c) Do the data indicate that there is significant increase in the sales in 2011 as compared to 2010? Comment on the success of the sales-promotion program.

\section*{Questions on Running Case: SURYA Bank Pvt. Ltd.}
1. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across the gender. (Q9 \& Q15)
2. Test the hypothesis that both males and females perceive that private sector banks are better than the public sector banks in terms of the e-banking services provided by them. (Q13b \& Q15)
3. Test the hypothesis that irrespective of the marital status of the respondents, people felt that e-banking lacks personal touch. (Q13k \& Q16).

\section*{Flow Chart: Two-Sample Tests of Hypotheses}

This page is intentionally left blank

\section*{Quality and Quality Control}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To examine why the concept of qualitymaking sure that a product or service is consistent, reliable, and free from errors and defects-is important in decision making
- To learn how to use control charts to monitor the output of a process and see whether it is meeting established quality standards
- To recognize patterns that indicate that a process is out-of-control
- To understand how to construct \(\bar{x}, R\), and \(p\) charts
- To introduce basic concepts of Total Quality Management
- To learn how acceptance sampling is used to monitor the input to a process to ensure that it meets established quality standards

\section*{CHAPTER CONTENTS}
10.1 Introduction 466
10.2 Statistical Process Control 468
\(10.3 \bar{x}\) Charts: Control Charts for Process
Means 470
10.4 \(R\) Charts: Control Charts for Process Variability 481
10.5 \(p\) Charts: Control Charts for Attributes 487
10.6 Total Quality Management 494
10.7 Acceptance Sampling 500
- Terms Introduced in Chapter 10509
- Equations Introduced in Chapter 10510
- Review and Application Exercises 511
- Flow Chart: Quality and Quality Control 515

TThe Durham City Executive for TransCarolina Bank has just established an express teller to handle transactions consisting of a single deposit or withdrawal. She hopes ultimately to be able to complete express transactions in an average of less than 60 seconds. For the moment, however, she wants to be sure that the express line works smoothly and consistently. Once the process is in-control, she can devote her attention to reducing its average time to meet her 60 -second goal. For the past month, she has randomly sampled six express transactions each business day:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{r}
\text { Day } \\
\hline \mathrm{M}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { Date } \\
\hline 5 / 03
\end{gathered}
\]} & \multicolumn{6}{|c|}{Transaction Time (seconds)} & \multirow[t]{2}{*}{\[
\frac{\text { Day }}{M}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Date } \\
\hline 5 / 17
\end{gathered}
\]} & \multicolumn{6}{|c|}{Transaction Times (seconds)} \\
\hline & & 63 & 55 & 56 & 53 & 61 & 64 & & & 57 & 63 & 56 & 64 & 62 & 59 \\
\hline T & 5/04 & 60 & 63 & 60 & 65 & 61 & 66 & T & 5/18 & 66 & 63 & 65 & 59 & 70 & 61 \\
\hline W & 5/05 & 57 & 60 & 61 & 65 & 66 & 62 & W & 5/19 & 63 & 53 & 69 & 60 & 61 & 58 \\
\hline Th & 5/06 & 58 & 64 & 60 & 61 & 57 & 65 & Th & 5/20 & 68 & 67 & 59 & 58 & 65 & 59 \\
\hline F & 5/07 & 79 & 68 & 65 & 61 & 74 & 71 & F & 5/21 & 70 & 62 & 66 & 80 & 71 & 76 \\
\hline M & 5/10 & 55 & 66 & 62 & 63 & 56 & 52 & M & 5/24 & 65 & 59 & 60 & 61 & 62 & 65 \\
\hline T & 5/11 & 57 & 61 & 58 & 64 & 55 & 63 & T & 5/25 & 63 & 69 & 58 & 56 & 66 & 61 \\
\hline W & 5/12 & 58 & 51 & 61 & 57 & 66 & 59 & W & 5/26 & 61 & 56 & 62 & 59 & 57 & 55 \\
\hline Th & 5/13 & 65 & 66 & 62 & 68 & 61 & 67 & Th & 5/27 & 65 & 57 & 69 & 62 & 58 & 72 \\
\hline F & 5/14 & 73 & 66 & 61 & 70 & 72 & 78 & F & 5/28 & 70 & 60 & 67 & 79 & 75 & 68 \\
\hline
\end{tabular}

Using the techniques discussed in this chapter, the Durham city executive can determine whether the express-teller line is in-control or out-of-control.

\subsection*{10.1 INTRODUCTION}

We often hear that everyone talks about the weather but no one Responding to global challenge is prepared to do anything about it. Until recently, the same was true about American business and quality. However, as the relative isolation of national economies has been succeeded by the increasing globalization of commerce, American industry has had to respond to challenges from abroad. One of those challenges was a dedication to quality control and the management of quality in production that came to be epitomized by such Japanese products as automobiles and consumer electronics. In response to this challenge, the philosophy and techniques of quality control and management are becoming widespread in American manufacturing. In addition, the rapidly growing circle of applications of Total Quality
Management (known by the acronym TQM) has expanded from manufacturing industries to service industries such as

\section*{TQM for services as well as for manufacturing} health care and legal services.

In this chapter, you'll see how simple applications of some of the ideas we've already discussed about estimation and hypothesis testing can be used for quality control and improvement. We'll look at control charts and acceptance sampling, two commonly used quality control techniques. Along the way, you'll meet some of the pioneers in the field and learn some of the language of quality control.

\section*{What Is Quality?}

When you hear a commercial for a "high-quality automobile," do you conjure up images of such luxurious options as leather seats and fancy sound systems? Most of us do connect luxury and

\section*{Distinguish between luxury and quality} quality. But expensive leather seats don't mean very much if the engine won't start on a cold morning, and the latest noise-reduction technology is hard to appreciate if the tape deck starts chewing up your tapes. These examples show us that it's important to separate the notion of luxury from our discussion of quality.

In fact, some of the cheapest items in everyday life can have very high quality. Consider the paper used in a copying machine. For little more than a penny a page, you can buy smooth white paper, less than one hundredth of an inch thick and of uniform size. You have come to expect such high quality in copier paper that you don't examine individual pages before loading it into a copier. You wouldn't think of measuring the thickness of each page to make sure that it was thin enough not to•jam the copier, but thick enough so that you could print on both sides and not have the two images interfere with each other.

The copy paper example gives us a clue to a working defini- Quality means fitness for use tion of quality. Things that are of high quality are those that work in the way we expect them to. As quality expert Joseph M. Juran has put it, quality implies fitness for use. In this sense, quality means conformance to requirements. Note that this is not quite the same as conformance to specifications. Copy paper that is cut to size for American copy machines won't fit European machines that demand the slightly narrower A4 metric format.

Note that the idea of "things that work in the way we expect them to" points out that quality is defined by customers as well as by producers. As you shall see, meeting the needs of customers is central to TQM. Working definitions of quality vary in different contexts, especially when we contrast goods and services. But in keeping with our notion of conformance to requirements, most working definitions of quality will include the concepts of consistency, reliability, and lack of errors and defects.
```

Consistency, reliability, and lack
of defects

```

\section*{Variability Is the Enemy of Quality}

When a craftsman makes something by hand, there is a continuous process of checking, measuring, and reworking. If you'd

\section*{Mass production makes quality} an issue watched Michelangelo completing a sculpture, you wouldn't
have seen a final "quality control" step before he shipped his artwork to his patron. Indeed, quality control is not an issue when you are producing goods and services that are essentially unique. However, when mass production became common during the nineteenth century, it was soon realized that individual pieces could not be identical-a certain amount of variation is inevitable. But this leads to a problem: With too much variation, parts that are supposed to fit together won't fit! In this sense, you can see why variability is the enemy of quality.

\section*{Controlling Variability: Inspection vs. Prevention}

How should we deal with variability? Think about a stack of two-by-fours in a lumberyard. Most of them will conform to requirements, but some won't because of twisting and warping as they dried, splitting when the saw hit a knot, or sundry other causes. One approach to mass production says it's cheaper to push material through the process and sort out the defects at the end. This leads our lumberyard to
have an inspector examine two-by-fours as they come out of the drying kiln. Defective pieces go to the scrap heap.

In the early days of mass production, sorting out defects became Early quality control: Sorting out the chief method of quality control. Armies of white-coated inspecdefective finished goods tors tested goods at the end of a production line and released only some of them to customers. It was widely believed that the cost of a few rejects didn't amount to much because the marginal cost of each unit was small. But by the late 1970s, people were pointing out that the costs of defects were much higher than supposed. The armies of inspectors had to be paid, and if defective products slipped through, there were warranty costs and loss of customers' goodwill.

They argued that it is simply cheaper to do things right the Zero defects as a goal first time. They preached the concept of zero defects. If your electrical power was 99 percent reliable, you'd spend a lot of time resetting your clocks. A major airline with a 99.9 percent safety record would have several crashes each week! If we demand near-perfect performance from power companies and airlines, perhaps we should expect no less from the producers of all our goods and services.

When poorly made parts are passed down a production line, all subsequent work is wasted when the final product is rejected by

\section*{Preventing defects and increasing workers' pride} quality control inspectors. But it's expensive to keep inspecting components to make sure they conform to requirements. Imagine how much time would be wasted if you had to examine each piece of paper for defects before loading a copier. This leads to the goal of preventing defects at each stage of manufacturing a product or delivering a service. To accomplish this, the people who make things are given the responsibility to check their work before it is passed on, rather than just letting sloppy work slide by to be caught at a final inspection. This also has the benefit of giving workers a greater investment of pride in the work they are doing-in this sense, they are more like craftsmen.

\section*{EXERCISES 10.1}

\section*{Basic Concepts}

10-1 Give an example of a very expensive product that has very low quality.
10-2 Give an example of a very inexpensive product that has very high quality.
10-3 What is a reasonable working definition of quality?
10-4 What actually makes quality control an issue of concern to management?
10-5 What kinds of costs would you gather to perform an "inspection versus prevention" analysis?
10-6 Define zero defects as a concept.

\subsection*{10.2 STATISTICAL PROCESS CONTROL}

The key to managing for quality is to believe that excessive

\section*{Variability is not inevitable.} variability is not inevitable. When the output of some process is found to be unreliable, not always conforming to requirements, we must carefully examine the process and see how it can be controlled.

In the 1920s, Walter A. Shewhart, a researcher at Bell Labs, created a system for tracking variation and identifying its causes. Shewhart's system of statistical process control (or SPC) was developed further and championed by his one-time colleague, W. Edwards Deming. For many years, Deming was a prophet without honor in the United States, but when Japan was rebuilding its economy after World

War II, Japanese managers incorporated Deming's ideas into their management philosophy. Many American industries, including automobiles and consumer electronics, encountered severe competitive pressures from the Japanese in the late 1970s and 1980s. As a result, the contributions made to quality control by Deming and others were reconsidered by American managers.

Let's look at some basic ideas of Shewhart's statistical process Random variation in process control. Consider a production line that makes driveshafts for automobiles. Requirements for well-functioning shafts have
output
been established. We would like to monitor and improve the quality of the shafts we produce. The shafts are made in large quantities on an automatic lathe. If we measured the diameter of each shaft after manufacture, we would expect to see some variability (perhaps a normal distribution) of the measurements around a mean value. These observed random variations in the measurements could result from variations in the hardness of the steel used for the shafts, power surges affecting the lathe, or even errors in making the measurements on the finished shafts.

But imagine what happens as the cutting tool begins to dull. The Nonrandom variation in the average diameter will gradually increase unless the lathe is recalibrated. And if the bearings on the lathe wear over time, the cutting edge might move around. Then some shafts would be too large, and some too small. Although the mean diameter might well be the same, the variability in the measurements would increase. It would be important to note such nonrandom (or systematic) variation, to identify its source, and to correct the problem.

From this discussion, you can see that there are two kinds of variation that are observed in the output from most processes, in general, and from our automatic lathe, in particular:
- Random variation (sometimes called common, or inherent, variation)
- Systematic variation (sometimes called assignable, or special cause, variation)

These two kinds of variation call for different managerial responses. Although one of the goals of quality management is constant improvement by the reduction of inherent variation, this cannot ordinarily be accomplished without changing the process.

Managerial responses to inherent and assignable variation And you should not change the process until you are sure that all assignable variation has been identified and brought under control. So the idea is this: If the process is out-of-control because there is still some special cause variation present, identify and correct the cause of that variation. Then, when the process has been brought in-control, quality can be improved by redesigning the process to reduce its inherent variability.

In the next three sections, we shall look at control charts, devices that Shewhart invented for monitoring process outputs to identify when they slip out of control.

\section*{HINTS \& ASSUMPTIONS}

There are a lot of catch phrases associated with quality control programs today: "Put Quality First," "Variation Is the Enemy of Quality," "Make It Right the First Time," and "Zero Defects" are only a few. As you read these phrases in the popular press it may seem like a paradox that statistical process control, the topic of this chapter, focuses on variation. Hint: Until we can measure a process and find out the sources of the variation (random variation and systematic variation) we are not able to bring the process into control. Warning: Quality control programs based solely on slogans instead of sound statistical methods do not work.

\section*{EXERCISES 10.2}

\section*{Basic Concepts}

10-7 What happened in the 1970s and 1980s to cause American managers to pay more attention to Deming's ideas?
10-8 Explain why work produced by a robot might have less random variation than work produced by a human.
10-9 When the manager of a baseball team decides to change pitchers, is he responding to random or assignable variation? Explain.
10-10 What kinds of systematic variation are the managers of supermarkets trying to control when they establish express lanes at some of their cash registers?

\section*{10.3 즈N CHARTS: CONTROL CHARTS FOR PROCESS MEANS}

The essence of statistical process control is to identify a parameter that is easy to measure and whose value is important for the quality of the process output (the shaft diameter in our example), ments to a process. These plots are known genetically as control charts. Suppose, for the moment, that we want to produce shafts whose diameters are distributed normally with \(\mu=60\) millimeters and \(\sigma=1\) millimeter. (An assumption of normality with \(\mu\) and \(\sigma\) known is unreasonable in most situations, and we will drop it later. However, it facilitates our discussion of the basic ideas of control charts.)

To monitor the process, we take a random sample of 16 measurements each day and compute their means, \(\bar{x}\). From Chapter 6, we know that the sample means have a sampling distribution with
\[
\begin{align*}
\mu_{\bar{x}} & =\mu=60 \tag{6-1}\\
\sigma_{\bar{x}} & =\frac{\sigma}{\sqrt{n}} \\
& =\frac{1}{\sqrt{16}} \\
& =0.25
\end{align*}
\]

For a period of 2 weeks, let's plot the daily sample means

\section*{\(\bar{x}\) charts} against time. This is called an \(\bar{x}\) chart. In Figure 10-1, we have plotted the results from three hypothetical sets of two weeks' worth of daily sample means. In each of these three \(\bar{x}\) charts, we have also included
- A center line (CL), with value \(\mu_{\bar{x}}=60\)
- An upper control limit (UCL) line, with value \(\mu_{\bar{x}}+3 \sigma_{\bar{x}}=60+3(0.25)=60.75\)
- A lower control limit (\(L C L\)) line, with value \(\mu_{\bar{x}}-3 \sigma_{\bar{x}}=60-3(0.25)=59.25\)

The number 3 in the upper and lower control limits is used by standard convention. Where does it come from? Recall Chebyshev's theorem, which we discussed on page 122. No mat-
deviations from the mean. And recall that for normal populations (see Appendix Table 1), over 99.7 percent of all observations fall within that interval.

So, if a process is in-control, essentially all observations should fall within the control limits. Conversely, observations that fall outside those limits suggest that the process is out-of-control, and they warrant further investigation to see if some special cause can be found to explain why they fall outside the limits. With this in mind, let's look at Figure 10-1.

\section*{Basic Interpretation of Control Charts}

In Figure 10-1(a), all observations fall within the control limits, so

\section*{Outliers should be investigated} the process is in-control. In Figure 10-1(b), the second and eighth observations are outliers-they fall outside the control limits. In this instance, the process is out-of-control. The production staff should try to find out whether something out of the ordinary happened on those 2 days. Perhaps the lathe was not recalibrated those mornings, or maybe the regular operator was out sick. An investigation may not turn up anything. After all, even purely random variation will produce outliers 0.3 percent of the time. In such cases, concluding that something has gone awry corresponds to making a Type I error in hypothesis testing. However, because legitimate outliers happen so infrequently, it makes good sense to investigate whenever an outlier is observed.

What should we conclude about Figure 10-1(c)? Even though all 10 observations fall within the control limits, they exhibit anything but random variation. They show a distinct pattern of increase over time. Whenever you see such lack of randomness, you should assume that something systematic is causing it and seek to determine what that assignable cause is. Even though all the observations fall within the control limits, we still say that the process is out-of-control. In this example, the lathe blade was getting duller each day, and the maintenance department had neglected to sharpen it as scheduled.

What sort of patterns should you be looking out for? Among Common out-of-control patterns the more commonly noted patterns are
- Individual outliers (Figure 10-1(b)).
- Increasing or decreasing trends (Figure \(10-1(\mathrm{c})\)). These indicate that the process mean may be drifting.
- Jumps in the level around which the observations vary (Figure 10-2(a)). These indicate that the process mean may have shifted.
- Cycles (Figure 10-2(b)). Such regularly repeating waves above and below the center line could indicate such things as worker fatigue and changeover between work shifts.
- "Hugging the control limits" (Figure 10-2(c)). Uniformly large deviations from the mean can indicate that two distinct populations are being observed.
- "Hugging the center line" (Figure 10-2(d)). Uniformly small deviations from the mean indicate that variability has been reduced from historic levels; this is generally desirable. If it can be maintained, the control limits should be tightened to make sure that this improved quality continues.

\section*{\(\bar{x}\) Charts when \(\mu\) and \(\sigma\) Are Not Known}

Now that you understand the basic ideas for interpreting \(\bar{x}\) charts, let's see how to construct them when \(\mu\) and \(\sigma\) aren't known. Recall the express-teller line at TransCarolina Bank, which opened this chapter. Lisa Klein, Durham City Executive for TransCarolina, wants express-teller transactions to be completed
(a) Process is in-control

(b) Process is out-of-control: outliers beyond control limits

(c) Process is out-of-control: increasing trend in observations

FIGURE 10-2 NONRANDOM PATTERNS IN CONTROL CHARTS
in an average of less than 60 seconds. Her sample data for last month are repeated in Table 10-1, which also includes daily sample means and ranges.

As we saw in Chapters 7-9, a common theme in statistics is the use of sample information to estimate unknown parameters. Because Lisa doesn't know the true process mean, \(\mu\), she will use the sample mean, \(\bar{x}\), in its place. But

\section*{Estimate \(\mu\) by \(\overline{\bar{x}}\)} which of the twenty daily \(\bar{x}\) 's should she use? None of them!
Each of them contains information from only six observations, but she has a total of 120 observations available (six observations for each of 20 days). She captures all this information by using \(\overline{\bar{x}}\), the grand mean, which can be calculated in two equivalent ways:

\section*{Grand Mean from Several Samples of the Same Size}
\[
\begin{equation*}
\overline{\bar{x}}=\frac{\Sigma x}{n \times k}=\frac{\Sigma \bar{x}}{k} \tag{10-1}
\end{equation*}
\]

TABLE 10-1 RAW DATA AND DAILY SAMPLE MEANS AND RANGES FOR TRANSCAROLINA BANK EXPRESS-TELLER LINE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Day & Date & \multicolumn{6}{|c|}{Transaction Times (seconds)} & \[
\begin{gathered}
\text { Mean } \\
\bar{x}
\end{gathered}
\] & \begin{tabular}{l}
Range \\
(R)
\end{tabular} \\
\hline M & 5/03 & 63 & 55 & 56 & 53 & 61 & 64 & 58.7 & 11 \\
\hline T & 5/04 & 60 & 63 & 60 & 65 & 61 & 66 & 62.5 & 6 \\
\hline W & 5/05 & 57 & 60 & 61 & 65 & 66 & 62 & 61.8 & 9 \\
\hline TH & 5/06 & 58 & 64 & 60 & 61 & 57 & 65 & 60.8 & 8 \\
\hline F & 5/07 & 79 & 68 & 65 & 61 & 74 & 71 & 69.7 & 18 \\
\hline M & 5/10 & 55 & 66 & 62 & 63 & 56 & 52 & 59.0 & 14 \\
\hline T & 5/11 & 57 & 61 & 58 & 64 & 55 & 63 & 59.7 & 9 \\
\hline W & 5/12 & 58 & 51 & 61 & 57 & 66 & 59 & 58.7 & 15 \\
\hline TH & 5/13 & 65 & 66 & 62 & 68 & 61 & 67 & 64.8 & 7 \\
\hline F & 5/14 & 73 & 66 & 61 & 70 & 72 & 78 & 70.0 & 17 \\
\hline M & 5/17 & 57 & 63 & 56 & 64 & 62 & 59 & 60.2 & 8 \\
\hline T & 5/18 & 66 & 63 & 65 & 59 & 70 & 61 & 64.0 & 11 \\
\hline W & 5/19 & 63 & 53 & 69 & 60 & 61 & 58 & 60.7 & 16 \\
\hline TH & 5/20 & 68 & 67 & 59 & 58 & 65 & 59 & 62.7 & 10 \\
\hline F & 5/21 & 70 & 62 & 66 & 80 & 71 & 76 & 70.8 & 18 \\
\hline M & 5/24 & 65 & 59 & 60 & 61 & 62 & 65 & 62.0 & 6 \\
\hline T & 5/25 & 63 & 69 & 58 & 56 & 66 & 61 & 62.2 & 13 \\
\hline W & 5/26 & 61 & 56 & 62 & 59 & 57 & 55 & 58.3 & 7 \\
\hline TH & 5/27 & 65 & 57 & 69 & 62 & 58 & 72 & 63.8 & 15 \\
\hline F & 5/28 & 70 & 60 & 67 & 79 & 75 & 68 & 69.8 & 19 \\
\hline \multicolumn{9}{|r|}{\(\underline{\sum} \bar{x}=\overline{\mathbf{1 , 2 6 0 . 2}}\)} & \(\Sigma R=\overline{237}\) \\
\hline
\end{tabular}
where
- \(\overline{\bar{x}}=\) grand mean
- \(\sum x=\) sum of all observations
- \(\Sigma \bar{x}=\) sum of the sample means
- \(n=\) number of observations in each sample
- \(k=\) number of samples taken

In our example, \(n=6\) and \(k=20\), so we find
\[
\begin{align*}
& \overline{\bar{x}}=\frac{\Sigma x}{n \times k}=\frac{7,561}{6(20)}=63.0 \text { or } \tag{10-1}\\
& \overline{\bar{x}}=\frac{\Sigma \bar{x}}{k}=\frac{1,260.2}{20}=63.0
\end{align*}
\]

Once \(\overline{\bar{x}}\) has been calculated, its value is used as the center line (CL) in the \(\bar{x}\) chart.

How should Lisa estimate \(\sigma\) ? In Chapters 7-9, we used \(s\), the sample standard deviation, to estimate \(\sigma\). However, in control charts, it has become customary to base an estimate of \(\sigma\) on \(\bar{R}\), the average of the sample ranges. This custom arose because control charts were often plotted on the factory floor, and it was a lot easier for workers to compute sample ranges (the difference between the highest and lowest observations in the sample)

\section*{Estimate \(\sigma\) from \(\bar{R}\) using \(d_{2}\)} than to compute sample standard deviations using Equation 3-18 (see p. 124). The relationship between \(\sigma\) and \(\bar{R}\) is captured in a factor called \(d_{2}\), which depends on \(n\), the sample size. The values of \(d_{2}\) are given in Appendix Table 9 .

The upper and lower control limits (UCL and LCL) for an \(\bar{x}\) chart are computed with the following formulas:

\section*{Control Limits for an \(\overline{\boldsymbol{x}}\) Chart}
\[
\begin{align*}
& \mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}} \tag{10-2}\\
& \mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}
\end{align*}
\]
where
- \(\bar{x}=\) grand mean
- \(\bar{R}=\) average of the sample ranges \((=\Sigma R / k)\)
- \(d_{2}=\) control chart factor from Appendix Table 9
- \(n=\) number of observations in each sample

To make life simple on the factory floor, these limits are often calculated as \(\overline{\bar{x}} \pm A_{2} \bar{R}\), where \(A_{2}=3 /\left(d_{2} \sqrt{n}\right)\). Appendix Table 9 also gives the values of \(A_{2}\).

Using Equation 10-2, Lisa computes \(\bar{R}=\Sigma R / k=237 / 20=11.85\), looks up \(d_{2}\) for \(n=6\) in Appendix Table \(9\left(d_{2}=2.534\right)\), and then finds the control limits for her \(\bar{x}\) chart:
\[
\begin{align*}
& \mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=63.0+\frac{3(11.85)}{2.534 \sqrt{6}}=63.0+5.7=68.7 \tag{10-2}\\
& \mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=63.0-\frac{3(11.85)}{2.534 \sqrt{6}}=63.0-5.7=57.3
\end{align*}
\]

Lisa now plots the CL, UCL, LCL, and the daily values of \(\bar{x}\), to get the \(\bar{x}\) chart in Figure 10-3. A quick glance at the chart shows her that something is awry: Every Friday, the average service time jumps above the UCL. When she investigates more closely, Lisa discovers that the experienced express-line teller is spending Fridays in a professional development course. On those days, a

\section*{Investigating the pattern in the} \(\bar{x}\) chart trainee is manning the express-teller line. Lisa decides to provide more supervision to the trainee to help him improve his processing speed.

Now that she has found out why Fridays are out-of-control, Lisa can see whether the experienced express-line teller is meeting her goal of completing transactions in under 60 seconds on average. To do this, she goes back to the data in Table 10-1, excludes the four Friday outliers, and plots a new control

FIGURE 10-3 \(\bar{x}\) CHART FOR THE EXPRESS-TELLER LINE AT THE TRANSCAROLINA BANK
chart from the remaining \(k=16\) daily samples. For that chart, displayed in Figure 10-4, the center line and control limits are

Redo the chart, excluding the outliers

FIGURE 10-4 \(\bar{x}\) CHART FOR EXPRESS-TELLER LINE AT TRANSCAROLINA BANK, WITH FRIDAYS DELETED
given by
\[
\begin{align*}
\overline{\bar{x}} & =\frac{\Sigma x}{n \times k}=\frac{5,879}{6(16)}=61.2 \tag{10-1}\\
\mathrm{UCL} & =\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=61.2+\frac{3(10.3)}{2.534 \sqrt{6}}=61.2+5.0=66.2 \\
\mathrm{LCL} & =\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=61.2-\frac{3(10.3)}{2.534 \sqrt{6}}=61.2-5.0=56.2 \tag{10-2}
\end{align*}
\]

From Figure 10-4, Lisa sees that the process is in-control. However, with a sample grand mean of 61.2 seconds, even the experienced teller is not yet meeting the under-60-seconds goal. Being in-control does not mean that a process is meeting its goals. In this case, Lisa and the teller will have to work together to analyze the way in which transactions are handled. Perhaps they can redesign procedures to achieve their goal. Or, because the current process is behaving well, they may decide that

Managerial vs. statistical
decisions 61.2 seconds is good enough and not run the risk of spoiling a good system by tinkering with it. This is a managerial decision, not a statistical one. But the statistical analysis has provided Lisa with information she can use in making her managerial decision.

\section*{HINTS \& ASSUMPTIONS}

Recognizing patterns in quality control measurements is the key to fixing an out-of-control situation. When, they exist, these patterns focus our attention on something systematic that is causing our problem. Hint: The distribution of the variable we measure in quality control does not have to be normal in order for us to use statistical methods to control the process. As we take successive samples, the use of upper and lower control limits is a very practical example of Chebyshev's theorem. You will remember that Chebyshev assured us back in Chapter 3 that even when the underlying distribution is not normally distributed, we can still make useful statements about the population from information contained in samples. Warning: The statistical quality control methods we will illustrate in this chapter illuminate problems. From that point on, it takes focused management and effective communication to correct the situation.

\section*{EXERCISES 10.3}

\section*{Self-Check Exercise}

SC 10-1 For each of the following cases, find the CL, UCL, and LCL for an \(\bar{x}\) chart based on the given information.
(a) \(n=9, \overline{\bar{x}}=26.7, \bar{R}=5.3\).
(b) \(n=17, \overline{\bar{x}}=138.6, \bar{R}=15.1\).
(c) \(n=4, \overline{\bar{x}}=84.2, \bar{R}=9.6\).
(d) \(n=22, \overline{\bar{x}}=8.1, \bar{R}=7.4\).

SC 10-2 Altoona Tire Company sells its ATC-50 tires with a 50,000-mile tread-life warranty. Lorrie Ackerman, a quality control engineer with the company, runs simulated road tests to monitor
the life of the output from the ATC-50 production process. From each of the last 12 batches of 1,000 tires, she has tested 5 tires and recorded the following results, with \(\bar{x}\) and \(R\) measured in thousands of miles:
\begin{tabular}{crrrrrrrrrrrr}
\hline Batch & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) \\
\hline \(\bar{x}\) & 50.5 & 49.7 & 50.0 & 50.7 & 50.7 & 50.6 & 49.8 & 51.1 & 50.2 & 50.4 & 50.6 & 50.7 \\
\(R\) & 1.1 & 1.6 & 1.8 & 0.1 & 0.9 & 2.1 & 0.3 & 0.8 & 2.3 & 1.3 & 2.0 & 2.1 \\
\hline
\end{tabular}
(a) Use the data above to help Lorrie construct an \(\bar{x}\) chart.
(b) Is the production process in-control? Explain.

\section*{Basic Concepts}

10-11 List four types of patterns that indicate that a process is out-of-control. Give examples where each might arise.
10-12 For each of the following cases, find the CL, UCL, and LCL for an \(\bar{x}\) chart based on the given information.
(a) \(n=12, \overline{\bar{x}}=16.4, \sigma_{\bar{x}}=1.2\).
(b) \(n=12, \overline{\bar{x}}=16.4, \bar{R}=7.6\).
(c) \(n=8, \overline{\bar{x}}=4.1, \bar{R}=1.3\).
(d) \(n=15, \overline{\bar{x}}=141.7, \bar{R}=18.6\).

\section*{Applications}

10-13 The Wilson Piston Company manufactures pistons for LawnGuy mowers, and the diameter of each piston must be carefully monitored. Jeff Wilson, the quality control engineer, has sampled 8 pistons from each of the last 15 batches of 500 pistons and has recorded the following results, with \(\bar{x}\) and \(R\) measured in centimeters:
\begin{tabular}{cccccccccccccccc}
\hline Batch & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) \\
\hline \(\bar{x}\) & 15.85 & 15.95 & 15.86 & 15.84 & 15.91 & 15.81 & 15.86 & 15.84 & 15.83 & 15.83 & 15.72 & 15.96 & 15.88 & 15.84 & 15.89 \\
\(R\) & 0.15 & 0.17 & 0.18 & 0.16 & 0.14 & 0.21 & 0.13 & 0.22 & 0.19 & 0.21 & 0.28 & 0.12 & 0.19 & 0.22 & 0.24 \\
\hline
\end{tabular}
(a) Use the data above to help Jeff construct an \(\bar{x}\) chart.
(b) Is the production process in-control? Explain.

10-14 Dick Burney is director of 911 emergency medical services in Ann Arbor, Michigan. He is concerned about response time, the amount of time that elapses between the receipt of a call at the 911 switchboard and the arrival of a municipal rescue squad crew at the calling location. For the last 3 weeks, he has randomly sampled response times for 9 calls each day to get the following results, with \(\bar{x}\) and \(R\) measured in minutes:
\begin{tabular}{cccccccc}
\hline Day & M & Tu & W & Th & F & Sa & Su \\
\hline \(\bar{x}\) & 11.6 & 17.4 & 14.8 & 13.8 & 13.9 & 22.7 & 16.6 \\
\(R\) & 14.1 & 19.1 & 22.9 & 18.0 & 14.6 & 23.7 & 21.0 \\
\hline Day & M & Tu & W & Th & F & Sa & Su \\
\hline \(\bar{x}\) & 9.5 & 12.7 & 17.7 & 16.3 & 10.5 & 22.5 & 12.6 \\
\(R\) & 12.6 & 17.0 & 12.0 & 15.1 & 22.1 & 24.1 & 21.3 \\
\hline
\end{tabular}
\begin{tabular}{cccccccc}
\hline Day & M & Tu & W & Th & F & Sa & Su \\
\hline \(\bar{x}\) & 11.4 & 16.0 & 11.0 & 13.3 & 9.3 & 21.5 & 17.9 \\
\(R\) & 12.1 & 21.1 & 13.5 & 20.3 & 16.8 & 20.7 & 23.2 \\
\hline
\end{tabular}
(a) Construct an \(\bar{x}\) chart to help Dick see whether the response-time process is in-control.
(b) What aspect of the chart should disturb him? What action might he take to address this problem?
(c) Excluding the data identified as outlying in part (b), is the process in-control? Explain.

10-15 Track Bicycle Parts manufactures precision ball bearings for wheel hubs, bottom brackets, head sets, and pedals. Seth Adams is responsible for quality control at Track. He has been checking the output of the \(5-\mathrm{mm}\) bearings used in front wheel hubs. For each of the last 18 hours, he has sampled 5 bearings, with the following results:
\begin{tabular}{cccccc}
\hline Hour & \multicolumn{5}{c}{ Bearing Diameters (mm) } \\
\hline 1 & 5.03 & 5.06 & 4.86 & 4.90 & 4.95 \\
2 & 4.97 & 4.94 & 5.09 & 4.78 & 4.88 \\
3 & 5.02 & 4.98 & 4.94 & 4.95 & 4.80 \\
4 & 4.92 & 4.93 & 4.90 & 4.92 & 4.96 \\
5 & 5.01 & 4.99 & 4.93 & 5.06 & 5.01 \\
6 & 5.00 & 4.95 & 5.10 & 4.85 & 4.91 \\
7 & 4.94 & 4.91 & 5.05 & 5.07 & 4.88 \\
8 & 5.00 & 4.98 & 5.05 & 4.96 & 4.97 \\
9 & 4.99 & 5.01 & 4.93 & 5.10 & 4.98 \\
10 & 5.03 & 4.96 & 4.92 & 5.01 & 4.93 \\
11 & 5.02 & 4.88 & 5.00 & 4.98 & 5.09 \\
12 & 5.09 & 5.01 & 5.13 & 4.89 & 5.02 \\
13 & 4.90 & 4.93 & 4.97 & 4.98 & 5.12 \\
14 & 5.04 & 4.96 & 5.15 & 5.04 & 5.02 \\
15 & 5.09 & 4.90 & 5.04 & 5.19 & 5.03 \\
16 & 5.10 & 5.01 & 5.04 & 5.05 & 5.02 \\
17 & 4.97 & 5.10 & 5.12 & 4.92 & 5.04 \\
18 & 5.01 & 4.99 & 5.06 & 5.04 & 5.12 \\
\hline
\end{tabular}
(a) Construct an \(\bar{x}\) chart to help Seth determine whether the production of \(5-\mathrm{mm}\) bearings is in-control.
(b) Should Seth conclude that the process is in-control? Explain.

10-16 Northern White Metals Corp. uses an extrusion process to produce various kinds of aluminum brackets. Raw aluminum ingots are forced under pressure through steel dies to produce long sections of a desired cross-sectional shape. These sections are then fed through an automatic saw, where they are cut into brackets of the desired length. NWMC operates for three shifts of 4 hours each day, and the saw is recalibrated at the beginning of each shift. This week NWMC is producing \#409 brackets with a specified cut length of 4 inches. Silvia Serrano, NWMC's quality specialist, has recorded the lengths of 15 randomly chosen brackets during each halfhour of today's three shifts to get the following data:
\begin{tabular}{ccccccccc}
\hline Shift 1 & & & & & & & \\
\hline Time & \(\mathbf{0 6 3 0}\) & \(\mathbf{0 7 0 0}\) & \(\mathbf{0 7 3 0}\) & \(\mathbf{0 8 0 0}\) & \(\mathbf{0 8 3 0}\) & \(\mathbf{0 9 0 0}\) & \(\mathbf{0 9 3 0}\) & \(\mathbf{1 0 0 0}\) \\
\hline \(\bar{x}\) & 4.00 & 4.02 & 4.01 & 4.00 & 4.03 & 4.01 & 4.03 & 4.00 \\
\(R\) & 0.09 & 0.10 & 0.10 & 0.11 & 0.09 & 0.11 & 0.11 & 0.10 \\
\hline Shift 2 & & & & & & & & \\
\hline Time & \(\mathbf{1 0 3 0}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 1 3 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 2 3 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 3 3 0}\) & \(\mathbf{1 4 0 0}\) \\
\hline \(\bar{x}\) & 4.03 & 4.06 & 4.04 & 4.06 & 4.04 & 4.03 & 4.06 & 4.05 \\
\(R\) & 0.12 & 0.11 & 0.09 & 0.10 & 0.11 & 0.09 & 0.10 & 0.10 \\
\hline Shift 3 & & & & & & & & \\
\hline Time & \(\mathbf{1 4 3 0}\) & \(\mathbf{1 5 0 0}\) & \(\mathbf{1 5 3 0}\) & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 6 3 0}\) & \(\mathbf{1 7 0 0}\) & \(\mathbf{1 7 3 0}\) & \(\mathbf{1 8 0 0}\) \\
\hline \(\bar{x}\) & 4.01 & 4.01 & 4.00 & 4.02 & 3.99 & 4.02 & 4.00 & 4.00 \\
\(R\) & 0.10 & 0.11 & 0.10 & 0.09 & 0.10 & 0.11 & 0.09 & 0.09 \\
\hline
\end{tabular}
(a) Help Silvia construct an \(\bar{x}\) chart to monitor the production of the \#409 brackets.
(b) What, if anything, can you see in the chart that would cause Silvia some concern? Explain. What should Silvia do to address this concern?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 10-1 (a) \(\quad \overline{\bar{x}}=26.7 \quad \bar{R}=5.3 \quad n=9 \quad d_{2}=2.970\)
\(\mathrm{CL}=\overline{\overline{\mathrm{x}}}=26.7\)
\(\mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=26.7+\frac{3(5.3)}{2.970 \sqrt{9}}=28.5\)
\(\mathrm{LCL}=\overline{\bar{x}} \frac{3 \bar{R}}{d_{2} \sqrt{n}}=26.7-\frac{3(5.3)}{2.970 \sqrt{9}}=24.9\)
(b) \(\overline{\bar{x}}=138.6 \quad \bar{R}=15.1 \quad n=17 \quad d_{2}=3.588\)
\(\mathrm{CL}=\overline{\bar{x}}=138.6\)
\(\mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=138.6+\frac{3(15.1)}{3.588 \sqrt{17}}=141.7\)
\(\mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=138.6-\frac{3(15.1)}{3.588 \sqrt{17}}=135.5\)
(c) \(\overline{\bar{x}}=84.2 \quad \bar{R}=9.6 \quad n=4 d_{2}=2.059\)

CL \(=\overline{\bar{x}}=84.2\)
\(\mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=84.2+\frac{3(9.6)}{2.059 \sqrt{4}}=91.2\)
\(\mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=84.2-\frac{3(9.6)}{2.059 \sqrt{4}}=77.2\)
(d) \(\overline{\bar{x}}=8.1 \quad \bar{R}=7.4 \quad n=22 \quad d_{2}=3.819\)
\[
\mathrm{CL}=\overline{\bar{x}}=8.1
\]
\[
\mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=8.1+\frac{3(7.4)}{3.819 \sqrt{22}}=9.3
\]
\[
\mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=8.1-\frac{3(7.4)}{3.819 \sqrt{22}}=6.9
\]
\(\mathbf{S C 1 0} \mathbf{2}\) (a) \(n=5 \quad k=12 \quad d_{2}=2.326\)
\(\overline{\bar{x}}=\frac{\Sigma \bar{x}}{k}=\frac{605.0}{12}=50.417 \quad \bar{R}=\frac{\Sigma R}{k}=\frac{16.4}{12}=1.367\)
\(\mathrm{CL}=\overline{\bar{x}}=50.417\)
\(\mathrm{UCL}=\overline{\bar{x}}+\frac{3 \bar{R}}{d_{2} \sqrt{n}}=50.417+\frac{3(1.367)}{2.326 \sqrt{5}}=51.21\)
\(\mathrm{LCL}=\overline{\bar{x}}-\frac{3 \bar{R}}{d_{2} \sqrt{n}}=50.417-\frac{3(1.367)}{2.326 \sqrt{5}}=49.63\)

(b) The production process appears to be in-control. However, there are several batches (batches 2, 7 and 8), that approach the control limits.

\subsection*{10.4 R CHARTS: CONTROL CHARTS FOR PROCESS VARIABILITY}

Recall our discussion of quality in the first two sections of Monitoring variability this chapter. Because quality implies consistency, reliability, and conformance to requirements, variability is the enemy of quality. Stated in a somewhat different way, the way to improve quality is to reduce variability. But before you can decide whether variability is a problem in any instance, you must be able to monitor it.

The control limits in \(\bar{x}\) charts place bounds on the amount of variability we are willing to tolerate in our sample means. However, quality concerns are addressed to individual observations (driveshaft
diameters, express-teller-line transaction times, and so on). We saw in Chapter 6 that sample means are less variable than individual observations. More precisely, Equation 6-1 tells us that
\[
\begin{equation*}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \tag{6-1}
\end{equation*}
\]

To monitor the variability in the individual observations, we use another control chart, known as an \(R\) chart. In \(R\) charts, we

\section*{Center line for \(R\) charts} plot the values of the sample ranges for each of the samples. The center line for \(R\) charts is placed at \(\bar{R}\). To get the control limits, we need to know something about the sampling distribution of \(R\). In particular, what is its standard deviation, \(\sigma_{\mathrm{R}}\) ? Although the derivation of the result is beyond the scope of this text, it turns out that

Standard Deviation of the Sampling Distribution of \(\boldsymbol{R}\)
\[
\begin{equation*}
\sigma_{R}=d_{3} \sigma \tag{10-3}
\end{equation*}
\]
where
- \(\sigma=\) population standard deviation
- \(d_{3}=\) another factor depending on \(n\)

The values of \(d_{3}\) are also given in Appendix Table 9. Now we can
Control limits for \(R\) charts substitute \(\bar{R} / d_{2}\) for \(\sigma\) as we did in Equation 10-2, to compute the control limits for \(R\) charts:

\section*{Control Limits for an \(\boldsymbol{R}\) Chart}
\[
\begin{align*}
& \mathrm{UCL}=\bar{R}+\frac{3 d_{3} \bar{R}}{d_{2}}=\bar{R}\left(1+\frac{3 d_{3}}{d_{2}}\right) \\
& \mathrm{LCL}=\bar{R}-\frac{3 d_{3} \bar{R}}{d_{2}}=\bar{R}\left(1-\frac{3 d_{3}}{d_{2}}\right) \tag{10-4}
\end{align*}
\]

To make life simple on the factory floor, these limits are often calculated as
\[
\begin{aligned}
& \mathrm{UCL}=\bar{R} D_{4}, \text { where } D_{4}=1+3 d_{3} / d_{2} \\
& \mathrm{LCL}=\bar{R} D_{3}, \text { where } D_{3}=1-3 d_{3} / d_{2}
\end{aligned}
\]

The values of \(D_{3}\) and \(D_{4}\) can also be found in Appendix Table 9.
There is one slight wrinkle in using Equation 10-4. A sample \(L C L=0\) if \(n \leq 6\) range is always a nonnegative number (because it is the difference between the largest and smallest observations in the sample). However, when \(n \leq 6\), the LCL computed by Equation 10-4 will be negative. In these cases, we set the value of LCL to zero. Accordingly, the entries for \(D_{3}\) for \(n \leq 6\) in Appendix Table 9 are all zeros.

Although she doesn't have any specific goals for the variability in service times on the express-teller line at the Durham office of TransCarolina Bank, Lisa Klein would like to see whether that aspect of the operation is in-control. Returning to the data in Table \(10-1\), she recalls that \(\bar{R}=11.85\). Using this value

FIGURE 10-5 \(\quad\) R CHART FOR EXPRESS-TELLER LINE AT TRANSCAROLINA BANK
in Equation 10-4, she finds the control limits for the \(\bar{R}\) chart in Figure 10-5:
\[
\begin{align*}
& \mathrm{UCL}=\bar{R}\left(1+\frac{3 d_{3}}{d_{2}}\right)=11.85\left(1+\frac{3(0.848)}{2.534}\right)=23.7 \\
& \mathrm{LCL}=\bar{R}\left(1-\frac{3 d_{3}}{d_{2}}\right)=11.85\left(1-\frac{3(0.848)}{2.534}\right)=0 \tag{10-4}
\end{align*}
\]

Although Figure \(10-5\) seems to indicate that the variability in Noticing a pattern in the \(R\) chart service times on the express-teller line is in-control, Lisa knows that a teller trainee was at work on Fridays (the 7th, 14th, 21st, and 28th of the month). The effect of this can be seen on the \(R\) chart, because Fridays have the most variability (the highest sample ranges) during each of the 4 weeks in the sample.

Just as she did when looking at the process mean in Figures 10-3 and 10-4, Lisa now excludes the four Fridays to monitor the variability in service times on the express-teller line when the experienced teller is providing the service. Now \(\bar{R}=10.3\), and the control limits are
\[
\begin{align*}
& \mathrm{UCL}=\bar{R}\left(1+\frac{3 d_{3}}{d_{2}}\right)=10.3\left(1+\frac{3(0.848)}{2.534}\right)=20.6 \tag{10-4}\\
& \mathrm{LCL}=\bar{R}\left(1-\frac{3 d_{3}}{d_{2}}\right)=10.3\left(1-\frac{3(0.848)}{2.534}\right)=0
\end{align*}
\]

FIGURE 10-6 \(R\) CHART FOR EXPRESS-TELLER LINE AT TRANSCAROLINA BANK, WITH FRIDAYS EXCLUDED

The final \(R\) chart in Figure 10-6 shows that the experienced teller has service-time variability well in-control. There is nothing evident in the control chart to indicate the presence of any other assignable variation.

\section*{HINTS \& ASSUMPTIONS}

Warning: The range we plot in an \(R\) chart is only a convenient substitute for the variability of the process we are studying. Its chief advantages are that it is easy to calculate, plot, and understand. But we need to remember from Chapter 3 that the range considers only the highest and lowest values in a distribution and omits all other observations in the data set. Thus, it can ignore the nature of the variation among all of the other observations and is heavily influenced by extreme values. Also, because it measures only two values, the range can change significantly from one sample to the next in a given population.

\section*{EXERCISES 10.4}

Self-Check Exercises
SC 10-3 For each of the following cases, find the CL, UCL, and LCL for an \(R\) chart based on the given information.
(a) \(n=9, \overline{\bar{x}}=26.7, \bar{R}=5.3\).
(b) \(n=17, \overline{\bar{x}}=138.6, \bar{R}=15.1\).
(c) \(n=4, \overline{\bar{x}}=84.2, \bar{R}=9.6\).
(d) \(n=22, \overline{\bar{x}}=8.1, \bar{R}=7.4\).

SC 10-4 Construct an \(R\) chart for the data given in Exercise SC 10-2. Is the variability in the tread life of the ATC-50 in control? Explain.

\section*{Basic Concepts}

10-17 For each of the following cases, find the CL, UCL, and LCL for an \(R\) chart based on the given information:
(a) \(n=3, \overline{\bar{x}}=18.4, \bar{R}=3.1\).
(b) \(n=19, \overline{\bar{x}}=16.2, \bar{R}=6.9\).
(c) \(n=8, \overline{\bar{x}}=141.7, \bar{R}=18.2\).
(d) \(n=24, \overline{\bar{x}}=8.6, \bar{R}=1.4\).
(e) \(\bar{R}=6.0, \mathrm{LCL}=3.0\), find the UCL.

\section*{Applications}

10-18 Ray Underhall reproduces antique chairs. His apprentices turn spindles for the chair backs on manual lathes. The beads on the spindles are to have average diameters of \(\frac{7}{8}\)-inch at their widest points. Ray monitors the apprentices' work with control charts. Which of the following patterns is he likely to see on the \(R\) chart for a new apprentice? Explain.

10-19 Construct an \(R\) chart for the data given in Exercise 10-13. Is the variability in the piston diameter under control? Explain.
10-20 Consider the emergency medical service data given in Exercise 10-14.
(a) Construct an \(R\) chart for these data.
(b) When he looked at the \(\bar{x}\) chart for these data, Dick Burney noted that the three Saturdays were outliers. Closer investigation revealed that this happened because the number of calls coming in was higher on Saturdays than on any other day of the week. Does the \(R\) chart you constructed in part (a) show any pattern that could be attributed to the same cause? Explain.
(c) Exclude the 3 Saturdays and construct a new \(R\) chart. Does this chart exhibit any patterns that Dick should be concerned about? Explain.

10-21 Construct an \(R\) chart for the data given in Exercise 10-15. Are there any patterns in this chart that should concern Seth Adams, or does the variability in the process appear to be in-control? Explain.
10-22 Construct an \(R\) chart for the data given in Exercise 10-16. Are there any patterns in this chart that should concern Silvia Serrano, or does the variability in the process appear to be in-control? Explain.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 10-3 (a) \(n=9 \quad \bar{R}=5.3 \quad D_{4}=1.816 \quad D_{3}=0.184\)
\(\mathrm{CL}=\bar{R}=5.3\)
\(\mathrm{UCL}=\bar{R} D_{4}=5.3(1.816)=9.62\)
\(\mathrm{LCL}=\bar{R} D_{3}=5.3(0.184)=0.98\)
(b) \(n=17 \quad \bar{R}=15.1 \quad D_{4}=1.622 \quad D_{3}=0.378\)
\(\mathrm{CL}=\bar{R}=15.1\)
\(\mathrm{UCL}=\bar{R} D_{4}=15.1(1.622)=24.49\)
\(\mathrm{LCL}=\bar{R} D_{3}=15.1(0.378)=5.71\)
(c) \(n=4 \quad \bar{R}=9.6 \quad D_{4}=2.282 \quad D_{3}=0\)
\(\mathrm{CL}=\bar{R}=9.6\)
\(\mathrm{UCL}=\bar{R} D_{4}=9.6(2.282)=21.91\)
\(\mathrm{LCL}=\bar{R} D_{3}=9.6(0)=0\)
(d) \(n=22 \quad \bar{R}=7.4 \quad D_{4}=1.566 \quad D_{3}=0.434\)
\(\mathrm{CL}=\bar{R}=7.4\)
\(\mathrm{UCL}=\bar{R} D_{4}=7.4(1.566)=11.59\)
\(\mathrm{LCL}=\mathrm{R} D_{3}=7.4(0.434)=3.21\)
SC 10-4 \(n=5 \quad D_{4}=2.114 \quad D_{3}=0\)
\(\bar{R}=1.367\)
\(\mathrm{CL}=\bar{R}=1.367\)
\(\mathrm{UCL}=\bar{R} D_{4}=1.367(2.114)=2.89\)
\(\mathrm{LCL}=\bar{R} D_{3}=1.367(0)=0\)

Distinct cycling in the values of \(R\) shows that the process is out-of-control.

\section*{10.5 p CHARTS: CONTROL CHARTS FOR ATTRIBUTES}
\(\bar{x}\) charts and \(R\) charts are control charts for quantitative variables, which take on numerical values. Quantitative variables are 'mea-

\section*{Quantitative and qualitative variables} sured (for example, heights, IQs, or speeds) or counted (for example, numbers of employees, phone calls per hour, or points scored in a basketball game). But not all the variables we encounter are quantitative. Variables such as marital status, heads or tails in a coin toss, or winning or losing a basketball game are categorical, or qualitative.

In the area of statistical process control, a qualitative variable that can take on only two values is called an attribute. Recalling, once again, that quality is conformity to requirements, it should not surprise you to learn that the attribute most frequently discussed in SPC is that of conformance or noncomformance of units of output to the process specifications.

Consider the case of Golden Guernsey Dairies. Harry Galloway is in charge of the milk bottling operations at GGD, an

\section*{Attributes}

\section*{A standard to be met} integrated dairy farm and milk packager near Sheboygan, Wisconsin. (Although cartons have long since replaced milk bottles, Harry still refers to the operations as bottling.) There is some variation in the output from GGD's bottling machinery, so Harry monitors the process to be sure that the average half-gallon container is filled with 64.1 ounces of milk. He has long used \(\bar{x}\) charts, based on hourly samples of 100 cartons (taken 10 times each day, from 6 A.m. to 3 p.m.), to monitor the bottling operation, and the process is well under control. The Wisconsin State Department of Agriculture recently instituted a new requirement that not only must half-gallon cartons contain at least 64 ounces on average, but in addition, no more than 3 percent of them can contain less than 63.5 ounces.

The attribute that concerns Harry is whether any particular carton contains at least 63.5 ounces or less than that amount. To monitor the output, he has been keeping a record of the proportions of underfilled cartons (the fraction of cartons not conforming to the Department of Agriculture's 63.5-ounce standard) in his hourly samples for the past week. These data are given in Table 10-2.

Because the fraction underfilled in the total sample of 7,000 cartons (7 days, 10 samples per day, 100 cartons per sample) is

\section*{The relevant data} 0.0306 , Harry is reasonably confident that GGD is meeting the

Testing whether the standard is met new requirement. A formal test of the hypothesis \(\mathrm{H}_{0}: p=0.03\), against the alternative \(\mathrm{H}_{1}: p>0.03\), supports his confidence. The standard deviation of the sample proportion is
\[
\begin{align*}
\sigma_{\bar{x}} & =\sqrt{\frac{p q}{n}} \tag{7-4}\\
& =\sqrt{\frac{0.03(0.97)}{7,000}}=0.0020
\end{align*}
\]

Using this value to convert the observed sample fraction (0.0306) to a standard \(z\) score,
\[
z=\frac{\bar{p}-\mu_{\bar{p}}}{\sigma_{\bar{p}}}=\frac{0.0306}{0.0020}=0.3
\]

TABLE 10-2 FRACTION OF UNDERFILLED HALF-GALLON CARTONS IN HOURLY SAMPLES AT GOLDEN GUERNSEY DAIRIES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Day & Hour & Fraction Underfilled & Day & Hour & Fraction Underfilled \\
\hline \multirow[t]{10}{*}{Sunday} & 6 & 0.02 & Wednesday (Contd.) & 11 & 0.05 \\
\hline & 7 & 0.01 & & 12 & 0.05 \\
\hline & 8 & 0.03 & & 1 & 0.04 \\
\hline & 9 & 0.03 & & 2 & 0.05 \\
\hline & 10 & 0.04 & & 3 & 0.04 \\
\hline & 11 & 0.02 & Thursday & 6 & 0.01 \\
\hline & 12 & 0.03 & & 7 & 0.03 \\
\hline & 1 & 0.03 & & 8 & 0.02 \\
\hline & 2 & 0.03 & & 9 & 0.02 \\
\hline & 3 & 0.03 & & 10 & 0.03 \\
\hline \multirow[t]{10}{*}{Monday} & 6 & 0.01 & & 11 & 0.03 \\
\hline & 7 & 0.01 & & 12 & 0.03 \\
\hline & 8 & 0.03 & & 1 & 0.06 \\
\hline & 9 & 0.03 & & 2 & 0.05 \\
\hline & 10 & 0.03 & & 3 & 0.05 \\
\hline & 11 & 0.02 & Friday & 6 & 0.02 \\
\hline & 12 & 0.02 & & 7 & 0.02 \\
\hline & 1 & 0.04 & & 8 & 0.03 \\
\hline & 2 & 0.03 & & 9 & 0.03 \\
\hline & 3 & 0.05 & & 10 & 0.02 \\
\hline \multirow[t]{10}{*}{Tuesday} & 6 & 0.02 & & 11 & 0.03 \\
\hline & 7 & 0.03 & & 12 & 0.04 \\
\hline & 8 & 0.02 & & 1 & 0.04 \\
\hline & 9 & 0.02 & & 2 & 0.05 \\
\hline & 10 & 0.03 & & 3 & 0.03 \\
\hline & 11 & 0.02 & Saturday & 6 & 0.01 \\
\hline & 12 & 0.02 & & 7 & 0.02 \\
\hline & 1 & 0.03 & & 8 & 0.03 \\
\hline & 2 & 0.05 & & 9 & 0.02 \\
\hline & 3 & 0.06 & & 10 & 0.04 \\
\hline \multirow[t]{5}{*}{Wednesday} & 6 & 0.02 & & 11 & 0.03 \\
\hline & 7 & 0.03 & & 12 & 0.04 \\
\hline & 8 & 0.01 & & 1 & 0.05 \\
\hline & 9 & 0.03 & & 2 & 0.03 \\
\hline & 10 & 0.03 & & 3 & 0.04 \\
\hline
\end{tabular}

We find from Appendix Table 1 that the prob value for our test It is met! is \(0.5000-0.1179=0.3821\). With such a large prob value, Harry can be quite confident in accepting \(\mathrm{H}_{0}\). The fraction of halfgallon cartons being underfilled is not significantly greater than 3 percent; GGD is meeting the Department of Agriculture's new standard.

However, because he has the overall sample broken down into
\(p\) charts give more information \(k=70\) hourly samples of size \(n=100\) over the course of the week, there is more information available for Harry to look at. He can plot the hourly sample fractions in a control chart known as a \(p\) chart. Because
\[
\begin{equation*}
\mu_{\bar{p}}=p \tag{7-3}
\end{equation*}
\]
and
\[
\begin{equation*}
\sigma_{\bar{p}}=\sqrt{\frac{p q}{n}} \tag{7-4}
\end{equation*}
\]
the center line and control limits of \(p\) charts are at
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{ Center Line for a \(\boldsymbol{p}\) Chart } \\
\hline \(\mathrm{CL}=\mu_{\bar{p}}=p\) & {\([10-5]\)} \\
\hline
\end{tabular}
\begin{tabular}{c|}
Control Limits for a \(\boldsymbol{p}\) Chart \\
\(\mathrm{UCL}=\mu_{\bar{p}}+3 \sigma_{\bar{p}}=p+3 \sqrt{\frac{p q}{n}}\) \\
\(\mathrm{LCL}=\mu_{\bar{p}}-3 \sigma_{\bar{p}}=p-3 \sqrt{\frac{p q}{n}}\) \\
\hline
\end{tabular}

Center line and control limits for \(p\) charts
[10-6]

If there is a known or targeted value of \(p\), that value should be used in Equations 10-5 and 10-6. However, if no such value of \(p\) is available, then you should estimate \(p\) by the overall sample fraction
\begin{tabular}{|ll|}
\hline & Estimate of \(\boldsymbol{p}\) \\
\(\overline{\bar{p}}=\frac{\sum \bar{p}_{j}}{k}\) & {\([10-7]\)} \\
\hline
\end{tabular}
where
- \(\bar{p}_{j}=\) sample fraction in the \(j\) th hourly sample
- \(k=\) total number of hourly samples

Recall the slight wrinkle in using Equation 10-4 for the LCL of an \(R\) chart: Ranges cannot be negative; so if Equation 10-4 gave an LCL below 0 , we replaced it by 0 . In the same way, Equation 10-6 can produce a UCL above 1 or an LCL below 0
```

Make sure that $L C L \geq 0$ and
ULC $\leq 1$

```
for a \(p\) chart. Because \(p\) is always between 0 and 1 , we will replace a negative LCL by 0 and a UCL above 1 by 1 .

Because Harry has a target value of \(p=0.03\) (and because he is quite confident that his filling operation is coming close to this target), he uses that value to find the center line and control limits for his \(p\) chart:
\[
\begin{align*}
\mathrm{CL} & =p=0.03 \tag{10-5}\\
\mathrm{UCL} & =p+3 \sqrt{\frac{p q}{n}}=0.03+3 \sqrt{\frac{0.03(0.97)}{100}}=0.081 \tag{10-6}\\
\mathrm{LCL} & =p-3 \sqrt{\frac{p q}{n}}=0.03-3 \sqrt{\frac{0.03(0.97)}{100}}=-0.021
\end{align*}
\]

Harry corrects the LCL to 0 and then plots the \(p\) chart in Figure 10-7.
All of the observations on the control chart fall within the control limits, but there is a, distinct pattern in the chart that repeats every day. The proportion of underfilled cartons tends to start out low in the morning and finish up high in the afternoon. Harry immediately realizes the cause of this pattern. The bottling machinery is cleaned and calibrated each morning and then runs for the entire day. Even though the

fraction of underfilled cartons meets the state standard on average, Harry is unhappy with his finding. Fortunately, cleaning and calibrating are quick and easy, so Harry decides to stop the line briefly at 10 A.M. each day to clean and recalibrate the machinery for the second half of the day.

\section*{HINTS \& ASSUMPTIONS}

Charts of means and ranges help us control quantitative variables that can be measured, such as length of a part, life (in hours) of an engine, or the width of lumber. But many variables take on only two values, such as acceptable part/unacceptable part, fits/does not fit, or fast enough/not fast enough. In statistical process control, such a variable is called an attribute and we control attributes with \(p\) charts. Hint: Think of an attribute in terms of hair color; you are either a redhead or not, you have it or you do not. Warning: If there is a target value for \(p\), you should use it for the center line of the \(p\) chart. If no such value is available, then use the overall sample fraction for the center line. Remember that probabilities are between 0 and 1 ; lower control limits below 0 or upper control limits above 1 are incorrect.

\section*{EXERCISES 10.5}

\section*{Self-Check Exercises}

SC 10-5 For each of the following cases, find the CL, UCL, and LCL for a \(p\) chart based on the given information.
(a) \(n=144, \overline{\bar{p}}=0.10\).
(b) \(n=60, \overline{\bar{p}}=0.9\).
(c) \(n=125,0.36\) is the target value for \(p\).
(d) \(n=48,0.75\) is the target value for \(p\).

SC 10-6 Todd Olmstead is the Meals-on-Wheels dispatcher for the Atlanta metropolitan area. He wants meals delivered to clients within 30 minutes of leaving the kitchens. Meals with longer delivery times tend to be too cold when they arrive. Each of his 10 volunteer drivers is responsible for delivering 15 meals daily. Over the past month, Todd has recorded the percentage of each day's 150 meals that were delivered on-time
\begin{tabular}{lcccccccc}
\hline Day & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) \\
\% on-time & 89.33 & 81.33 & 95.33 & 88.67 & 96.00 & 86.67 & 98.00 & 84.00 \\
\hline Day & \(\mathbf{9}\) & \(\mathbf{1 0}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) \\
\% on-time & 90.67 & 80.67 & 88.00 & 86.67 & 96.67 & 85.33 & 78.67 & 89.33 \\
\hline Day & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) & \(\mathbf{2 1}\) & \(\mathbf{2 2}\) & \(\mathbf{2 3}\) & \(\mathbf{2 4}\) \\
\% on-time & 89.33 & 78.67 & 94.00 & 94.00 & 99.33 & 95.33 & 94.67 & 92.67 \\
\hline Day & \(\mathbf{2 5}\) & \(\mathbf{2 6}\) & \(\mathbf{2 7}\) & \(\mathbf{2 8}\) & \(\mathbf{2 9}\) & \(\mathbf{3 0}\) & & \\
\% on-time & 81.33 & 89.33 & 99.33 & 90.67 & 92.00 & 88.00 & & \\
\hline
\end{tabular}
(a) Help Todd construct a \(p\) chart from these data.
(b) How does your chart show that the attribute "fraction of meals delivered on-time" is out-of-control?
(c) What action do you recommend for Todd?

\section*{Basic Concepts}

10-23 Which of the following qualitative variables are attributes?
(a) Gender of nouns in German.
(b) Gender of nouns in French.
(c) Course grades under a Pass /Fail grading scheme.
(d) Course grades under an A, B, C, D, F grading scheme.

10-24 For each of the following cases, find the CL, UCL, and LCL for a \(p\) chart based on the given information.
(a) \(n=30, \overline{\bar{p}}=0.25\).
(b) \(n=65, \overline{\bar{p}}=0.15\).
(c) \(n=82, \overline{\bar{p}}=0.05\).
(d) \(n=97,0.42\) is the target value for \(p\).
(e) \(n=124,0.63\) is the target value for \(p\).

\section*{Applications}

10-25 After finding out his luggage arrived in San Antonio while his destination was Omaha, Will Richardson, a statistician for USA Airlines, decided to do some research. For the last 3 weeks, Will has sampled 200 passengers daily and determined the percentage of luggage delivered to the expected destination with the results given below
\begin{tabular}{llllllllllllllllllllll}
\hline Day & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21
\end{tabular}
```

Percent
correct 0.890 .910 .930 .950 .940 .960 .920 .910 .930 .900 .880 .940 .970 .940 .950 .920 .930 .920 .910 .930 .89

```
(a) Help Will construct a \(p\) chart from these data.
(b) Is the luggage delivery process in-control? Explain.
(c) What recommendations, if any, can you make?

10-26 BioAssist, Inc., manufactures high potency vitamin supplements. C-Assist, a 1,000-mg capsule of vitamin C, is BioAssist's best seller. Sherry Cohen is responsible for monitoring the quality of C-Assist. The capsules are supposed to contain between 999 and \(1,001 \mathrm{mg}\) of vitamin C, and BioAssist wants no more than 1.5 percent of them to fail to meet this specification. Every quarter-hour, Sherry samples 500 capsules and records the percentage failing to meet the specification (percent bad). She has gotten the following results for the last 8 hours of production:
\begin{tabular}{lccccccccccc}
\hline Time & \(\mathbf{0 9 1 5}\) & \(\mathbf{0 9 3 0}\) & \(\mathbf{0 9 4 5}\) & \(\mathbf{1 0 0 0}\) & \(\mathbf{1 0 1 5}\) & \(\mathbf{1 0 3 0}\) & \(\mathbf{1 0 4 5}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 1 1 5}\) & \(\mathbf{1 1 3 0}\) & \(\mathbf{1 1 4 5}\) \\
\% bad & 2.4 & 1.8 & 1.6 & 0.6 & 1.0 & 1.4 & 2.0 & 2.8 & 2.4 & 1.6 & 1.0 \\
\hline Time & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 2 1 5}\) & \(\mathbf{1 2 3 0}\) & \(\mathbf{1 2 4 5}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 3 1 5}\) & \(\mathbf{1 3 3 0}\) & \(\mathbf{1 3 4 5}\) & \(\mathbf{1 4 0 0}\) & \(\mathbf{1 4 1 5}\) & \(\mathbf{1 4 3 0}\) \\
\% bad & 0.4 & 0.6 & 1.6 & 2.2 & 2.6 & 2.2 & 1.6 & 1.0 & 0.4 & 1.2 & 1.6 \\
\hline Time & \(\mathbf{1 4 4 5}\) & \(\mathbf{1 5 0 0}\) & \(\mathbf{1 5 1 5}\) & \(\mathbf{1 5 3 0}\) & \(\mathbf{1 5 4 5}\) & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 6 1 5}\) & \(\mathbf{1 6 3 0}\) & \(\mathbf{1 6 4 5}\) & \(\mathbf{1 7 0 0}\) & \\
\% bad & 2.2 & 2.8 & 1.8 & 1.6 & 0.8 & 0.4 & 1.2 & 1.4 & 2.0 & 2.8 & \\
\hline
\end{tabular}
(a) Consider all 16,000 capsules Sherry has sampled. Can she be sure that the percentage bad is not significantly greater than 1.5 percent? State and test the appropriate hypotheses.
(b) Use the data above to help Sherry construct a \(p\) chart.
(c) Is there anything in the \(p\) chart about which Sherry should worry? If not, why not? If so, what should she do?
10-27 Andie Duvall is a finance major who has been studying the stock market for her senior honors thesis. On each of the last 100 trading days, she has randomly sampled 100 companies listed on the New York Stock Exchange and recorded the fraction whose share prices increased that day. Andie believes that there is a 50-50 chance that any given stock will increase on any given day. Explain how she can use a \(p\) chart based on her 100 days' worth of data to see if her belief is reasonable or not.
10-28 Ross Darrow is a flight operations analyst for Spacious Skies, Unltd. He has been assigned the task of monitoring flights at the company's hub airport in the southeast. Each day, Spacious Skies has 240 takeoffs scheduled from this hub. Ross has been concerned about the fraction of flights with late departures, and four weeks ago he instituted procedures designed to reduce that fraction. Use the data for the last 30 week-days to construct a \(p\) chart to see whether his new procedures have been successful. What further action, if any, should Ross consider?
\begin{tabular}{lcccccccccc}
\hline \begin{tabular}{lccccccc}
Weeks 1 \& 2 \\
Day
\end{tabular} & M & T & W & Th & F & M & T & W & Th & F \\
\hline \# late & 26 & 19 & 26 & 22 & 24 & 19 & 19 & 20 & 18 & 18 \\
\hline Weeks 3 \& 4 \\
Day & & & & & & & & & & \\
\hline M late & 17 & T & W & Th & F & M & T & W & Th & F \\
\hline Weeks 5 \& 6 & & 13 & 10 & 12 & 14 & 14 & 13 & 9 & 10 \\
\hline Day & M & T & W & Th & F & M & T & w & Th & F \\
\hline \# late & 12 & 15 & 14 & 15 & 16 & 18 & 17 & 16 & 18 & 17 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}

SC 10-5 (a) CL= \(\overline{\bar{p}}=0.10\)
\[
\begin{aligned}
& \mathrm{UCL}=\overline{\bar{p}}+3 \sqrt{\frac{p q}{n}}=0.10+3 \sqrt{\frac{0.10(0.90)}{144}}=0.175 \\
& \mathrm{LCL}=\overline{\bar{p}}-3 \sqrt{\frac{p q}{n}}=0.10-3 \sqrt{\frac{0.10(0.90)}{144}}=0.025
\end{aligned}
\]
(b) \(\mathrm{CL}=\overline{\bar{p}}=9\)
\[
\begin{aligned}
& \mathrm{UCL}=\overline{\bar{p}}+3 \sqrt{\frac{p q}{n}}=0.9+3 \sqrt{\frac{0.9(0.1)}{60}}=1.016, \text { so the } \mathrm{UCL}=1 \\
& \mathrm{LCL}=\overline{\bar{p}}-3 \sqrt{\frac{p q}{n}}=0.9-3 \sqrt{\frac{0.9(0.1)}{60}}=0.784
\end{aligned}
\]
(c) \(\mathrm{CL}=p=0.36\)
\(\mathrm{UCL}=p+3 \sqrt{\frac{p q}{n}}=0.36+3 \sqrt{\frac{0.36(0.64)}{125}}=0.489\)
\[
\mathrm{LCL}=p-3 \sqrt{\frac{p q}{n}}=0.36-3 \sqrt{\frac{0.36(0.64)}{125}}=0.231
\]
(d) \(\mathrm{CL}=p=0.75\)
\(\mathrm{UCL}=p+3 \sqrt{\frac{p q}{n}}=0.75+3 \sqrt{\frac{0.75(0.25)}{48}}=0.938\)
\(\mathrm{LCL}=p-3 \sqrt{\frac{p q}{n}}=0.75-3 \sqrt{\frac{0.75(0.25)}{48}}=0.563\)
SC 10-6 (a) \(n=150 \overline{\bar{p}}=\frac{\sum \bar{p}}{k}=\frac{26.94}{30}=0.898\)
\(\mathrm{UCL}=p+3 \sqrt{\frac{p q}{n}}=0.898+3 \sqrt{\frac{0.898(0.102)}{150}}=0.972\)
\(\mathrm{LCL}=p-3 \sqrt{\frac{p q}{n}}=0.898-3 \sqrt{\frac{0.898(0.102)}{150}}=0.824\)

(b) Five of the 30 days sampled had values of "fraction on-time" that were below the lower control limit. (Being above the upper control limit is not worrisome in this context.)
(c) Because the percentage of meals delivered on-time is out-of-control, Todd might investigate the reasons behind the 5 days that are out-of-control. It might be a particular driver, or those days may provide heavier traffic. He might replace or train the volunteer(s) based on his findings.

\subsection*{10.6 TOTAL QUALITY MANAGEMENT}

Statistical Process Control is very useful for continuous processes such as oil refineries and mass-production facilities. However, many managers feel that their businesses are altogether

Some processes are too complicated for control charts
too complicated to have their important aspects captured and monitored by control charts. Suppose you were the manager of a regional hub airport and were asked to reduce takeoff delays. Although delays are easy to identify, their causes are harder to pin down. Takeoffs can be delayed by weather, equipment problems, lateness of incoming crews, holiday traffic, and so on. At first glance, you wouldn't know what things to measure in order to control delays.

Total Quality Management (TQM) is a set of approaches that enable the managers of complex systems to match the

TQM requires companywide commitment firm's products to customers' expectations. The airport manager can use TQM to reduce delays so that planes match the schedules that their passengers expect. Because so many factors are involved, and because different workers have responsibility for these factors, successful use of TQM requires commitments at all levels of the firm in order to be successful. In particular, top-level management must provide strong leadership for quality, and workers at all levels must be empowered to identify problems and make changes in the system.

\section*{Fishbone Diagrams: Identifying and Grouping Causes}

The TQM approach to complex businesses begins with the realization that all errors, defects, and problems have causes, and that there is only a finite number of these. The first step is to identify

\section*{Identify what's right and what's wrong} and discriminate between things gone right and things gone wrong. In our airport example, some of the planes do leave on time (things gone right). When you look at the late departures (things gone wrong), you can begin to build up a list of causes behind their delays.

Even in complicated systems, causes of problems can be gathered into logical groups. For example, in our airport delays case, some of the late takeoffs are due to problems with the air-

\section*{Gather causes into logical}
groups craft themselves, others result from baggage handling, and so on. As you collect the various reasons for departure delays into logical groups, it becomes clear that there are cause-and-effect relationships among them. These relationships can be captured pictorially in a cause-and-effect diagram such as Figure 10-8. Such cause-and-effect diagrams are sometimes called Ishikawa diagrams, after their Japanese developer, Kaoru Ishikawa. But, because of their appearance, these diagrams are most often called fishbone diagrams.

The fishbone diagram takes an unstructured list of factors that contribute to delayed takeoffs and organizes that list in two major ways. First, it gathers the factors into logical groups. And then, within the groups, it indicates how the various factors feed into one another in cause-and-effect relationships. Because of this, you can see how the complex system hangs together and recognize that many factors may need to be addressed in order to resolve the problems.

The fishbone diagram also points out why personnel at all levels must be involved if TQM is to be successful. Baggage han-

\section*{Successful use of TQM involves \\ personnel at all levels} dlers are much more likely than top management or consultants to be able to identify a complete list of baggage problems that contribute to takeoff delays. In addition, because of their familiarity with details of the baggage-handling operation, they are also very likely to be able to suggest ways to improve that operation.

However, unless they are empowered to identify problems and make changes, they are unlikely to be willing to do so.

FIGURE 10-8 A FISHBONE DIAGRAM: CAUSE-AND-EFFECT REASONS FOR AIRPORT TAKEOFF DELAYS

\section*{Slay the Dragons Firs \(\dagger\)}

In any quality improvement process, as we have seen, there are likely to be a very large number of causes for defects and errors. Looking at all the possible things that can go wrong, even if they

\section*{Concentrate first on common causes} are organized, into a neat fishbone diagram, can lead even well-motivated people to despair that "this problem is bigger that any of us can handle!" Joseph Juran's important contribution was to insist that TQM companies distinguish between the vital few and the trivial many. In our airport example, if most of the delays are due to baggage handling, and only one delay a year is attributable to a freak hail storm, it makes good sense to start by looking at ways to improve baggage handling. In TQM parlance, companies must slay the dragons first in working to improve the quality of their goods or services.

A Pareto chart is a bar graph showing groups of error causes Pareto charts arranged by their frequencies of occurrence. It's constructed by simply counting data from observations of things gone wrong. The results are usually ordered in a sequence from most common to least common, with a residual "other" category at the end. These charts are named after Vilfredo Pareto (1848-1923), an Italian economist who studied the distribution of wealth. Just as Pareto found that most of the wealth in a society is held by relatively few people, Juran noted that in most complex systems, 80 percent of defects and errors can be attributed to 20 percent of the causes. Looking at the Pareto chart for late departures in Figure 10-9, you can see that about \(\frac{2}{3}\) of the delays (45 of 68 observations) were caused by baggage-handling and equipment problems. The airport manager should begin system-improvement efforts by concentrating on these two areas.

FIGURE 10-9 A PARETO DIAGRAM OF REASONS FOR AIRPORT TAKEOFF DELAYS

\section*{Continuous Quality Improvement}

Once the causes of errors and defects have been identified, resources can be devoted to making changes to improve the quality of the systems' goods or services. This can sometimes involve the institution of SPC methods in the process, but more often it requires reconfiguration of the system or the reallocation of resources within the system. Improved baggage handling could require a fix as simple as hiring more baggage handlers or as complex as installing scanners that read bar-coded destination labels on pieces of luggage to facilitate their automatic routing between connecting flights or to passenger pickup areas when reaching a final destination.

When TQM efforts are successful, it is not uncommon for the leading cause of errors to drop to zero on the Pareto chart. This means that another cause becomes the "dragon," and management attention now will shift to another part of the system. This constant attention to the identification and resolution of problems is known as Continuous Quality Improvement (CQI).

\section*{HINTS \& ASSUMPTIONS}

In the typical complex process we study, we find many possible causes of failure. Warning: Unless you use an organized, systematic method to look at all of these causes, you run a high risk of missing something that's important. Fishbone diagrams and Pareto charts are very effective ways of focusing and guiding your analysis of quality problems so that everything that affects quality is examined, nothing is overlooked, and the most important things get looked at first. A hint learned from many years of quality control experience is that Total Quality Control programs work only when you have strong top management leadership that involves line employees in the responsibility for controlling their own processes.

\section*{EXERCISES 10.6}

\section*{Self-Check Exercise}

SC 10-7 Northway Computers has just begun a TQM program to manage the quality of the personal computers it assembles. A careful analysis of 25,000 computer systems located the following faults:
\begin{tabular}{lc}
\hline Component & Number of Faults \\
\hline CPU & 25 \\
Floppy disk drives & 106 \\
Hard disk drive & 237 \\
I/O ports & 36 \\
Keyboard & 60 \\
Monitor & 42 \\
Power supply & 186 \\
RAM memory & 30 \\
ROM BIOS & 7 \\
Video adapter & 47 \\
Other & 163 \\
\hline
\end{tabular}

Construct a Pareto chart for Northway. Northway's President, Ted White, is going to set up a series of meetings with his component suppliers. With whom should the first meetings be?

\section*{Basic Concepts}

10-29 Explain why successful application of TQM requires the participation of employees at all levels of an organization.
10-30 After hearing a lecture on TQM, Joe Smithies said, "Once you've identified and slain the dragon, then you can forget TQM and get on with business as usual." Comment on Joe's understanding of TQM.

\section*{Applications}

10-31 The News and Reporter has a long-standing TQM policy, and it is time to analyze this quarter's complaints and problems. The following problems have been traced by the quality control engineer:
\begin{tabular}{llc}
\hline Problem & Department & Number of Occurrences \\
\hline Omitted advertisement & Classified & 18 \\
Incorrect special instructions & Classified & 37 \\
Typographical error in a news story & Reporting & 14 \\
Advertisement in the wrong section & Classified & 16 \\
Incorrectly priced advertisement & Classified & 8 \\
Factual error in news story & Reporting & 16 \\
Late delivery of all papers & Printing & 3 \\
\begin{tabular}{l}
Advertisement placed on incorrect date
\end{tabular} & Classified & 6 \\
\begin{tabular}{l}
Typographical error in \\
commercial advertisement
\end{tabular} & Advertising & 8 \\
\hline
\end{tabular}
(Contd.)
\begin{tabular}{lcc}
\hline Problem & Department & Number of Occurrences \\
\hline Failure to respond to news report & Reporting & 16 \\
Editorialized factual story & Reporting & 2 \\
Misquoted news story & Reporting & 4 \\
Incorrect size of advertisement & Classified & 7 \\
Incorrect phone number in advertisement & Classified & 9 \\
Incorrect address in advertisement & Classified & 3 \\
\hline
\end{tabular}

Construct two Pareto charts for The News and Reporter. The first chart should identify which department is in need of most attention and the second chart should identify which area that department should focus on. What's the first order of business for the TQM team?
10-32 Zippy Cola is bottled in several plants around the country. Brand manager Tim Harnett has been keeping track of customer complaints about variability in the drink's flavor. Use the data below to help Tim construct a Pareto chart and decide which plants should first be visited by Zippy Cola's production specialists.
\begin{tabular}{lc}
\hline City & Number of Complaints \\
\hline Atlanta & 267 \\
Boston & 23 \\
Chicago & 37 \\
Houston & 175 \\
Milwaukee & 19 \\
New Orleans & 78 \\
San Francisco & 28 \\
Seattle & 43 \\
\hline
\end{tabular}

10-33 Construct a fishbone diagram to organize the reasons why you are late to your first class of the day.

\section*{Worked-Out Answers to Self-Check Exercise}

\section*{SC 10-7}

The first meetings should be with the suppliers of the hard disk drives and the power supplies.

\subsection*{10.7 ACCEPTANCE SAMPLING}

Adoption of TQM techniques implies a goal that the inputs to each stage of an operation should be defectfree because the operations at the preceding stage are under control. But manufacturers often have to accept raw materials and components from suppliers. To be sure that the results of their own operations are of high quality, they must often test inputs to make sure that they conform to requirements. In most production situations, complete inspection of an entire batch of input is impractical because of time and cost considerations. Instead, a sample of the batch is inspected, and the decision to accept or reject the entire batch is based on the quality of the sample.

You may feel that reliance on sampling to ensure the quality of inputs is just moving the old-time white-coated inspectors from the end of the production line to the beginning. Many experts in quality engineering would agree with you. The whole process of inspection implies that some materials will be rejected and that amounts to a waste of materials and time. However, acceptance sampling can be an effective way to motivate suppliers to improve the quality of their outputs. In fact, it can even be more effective than inspection of the entire batch. Let's look more carefully at this apparently paradoxical assertion.

Suppose you inspect an entire batch of components sent to you by a supplier. You sort the individual units into two groups, acceptable and unacceptable. Then you send the latter units back to the supplier for replacements. If only 5 percent of the units

\section*{Acceptance sampling can} motivate suppliers to improve quality are rejected, you have imposed a large cost on yourself and a small cost on the supplier. And to boot, you have saved the supplier the cost of being responsible for the quality of its output! On the other hand, suppose you test a small sample from the batch, find 5 percent unsatisfactory units in the sample, and on the basis of the sample send the entire batch back for replacement. This imposes a small cost on you and a large cost on the supplier. The supplier may resent the fact that you are sending the acceptable units back along with the unacceptable ones. However, if the supplier values your business, it is ultimately going to take responsibility for ensuring the quality of its output. And if the supplier does not value your business, then you are well served by learning this and seeking another supplier.

The statistical techniques used in acceptance sampling will be familiar to you as applications of the sampling and hypothesis-testing ideas we discussed in Chapters 6, 8 and 9. Much of the original work in acceptance sampling was done in the 1920s and 1930s by Harold F. Dodge and Harry G. Romig, who, like Walter Shewhart, did their research at Bell Labs. They discussed single-sampling and doublesampling schemes:

In single sampling, two numbers are specified: a sample size,

\section*{Single sampling} \(n\), and an acceptance number, c , the maximum number of allowable pieces with defects. A sample of size \(n\) is taken, and the lot is accepted if there are \(c\) or fewer defective pieces in the sample, but rejected if the number of defective pieces is greater than \(c\).

Double sampling is more complicated, and depends on four Double sampling specified numbers, \(n_{1}, n_{2}, c_{1}\), and \(c_{2}\left(>c_{1}\right)\), which are used as follows:

First a sample of size \(n_{1}\) is taken. Let \(b_{1}\) (\(b\) for \(b a d\)) be the number of defective pieces in this sample:
- If \(b_{1} \leq c_{1}\), the lot is accepted.
- If \(b_{1}>c_{2}\), the lot is rejected.
- If \(c_{1}<b_{1} \leq c_{2}\), an additional \(n_{2}\) units are sampled.

Let \(b_{2}\) be the total number of defective pieces in the combined sample of \(n_{1}+n_{2}\) units:
- If \(b_{2} \leq c_{2}\), the lot is accepted.
- If \(b_{2}>c_{2}\), the lot is rejected.

As you can imagine, the analysis of double-sampling schemes is considerably more complicated than that of single-sampling schemes. Although double-sampling schemes are more powerful and more widely used in practice, we shall restrict our discussion to single sampling. This will enable you to learn the concepts without getting bogged down in the details.

\section*{An Example of Acceptance Sampling}

Consider a problem faced by Maureen Brennan, the quality control engineer at Northway Computers, a manufacturer of personal computers. Northway is negotiating a contract for batches of \(1,00031 / 2\)-inch disk drives with Drives Unlimited. Drives Unlimited has a reputation as a supplier of high-quality drives, but its output is not perfect. It claims that it can produce drives with rates of defects below 1 percent, a level that is acceptable to Maureen Brennan. This 1 percent level is called the acceptable quality level (AQL). Loosely speaking,

\section*{Acceptable quality level} it defines how high a defect level still constitutes a "good" lot.

Now, what happens when Maureen chooses values of \(n\) and \(c\) for her sampling scheme? For instance, suppose she picks \(n=100\) and \(c=1\). If \(p\) is Drives Unlimited's true rate of defects, the probability that any batch will be rejected can be computed using the binomial distribution. This is because Maureen's random sample of 100 taken from a batch of 1,000 drives is also a random sample taken from Drives Unlimited's total output stream. Now, with \(n=100\) and \(p=0.01\),
\[
\begin{align*}
P(r=0 \text { defects }) & =\frac{n!}{r!(n-r)!} p^{r} q^{n-r} \tag{5-1}\\
& =\frac{100!}{0!100!}(0.01)^{0}(0.99)^{100} \\
P(r=1 \text { defect }) & =\frac{100!}{1!99!}(0.01)^{1}(0.99)^{99}
\end{align*}
\]

Hence, the probability a batch will be rejected is \(1-0.3660\) - Producer's risk: a Type I error \(0.3697=0.2643\). This probability is called the producer's risk. It is the chance of rejecting a batch even when Drives Unlimited's true rate of defects is only 1 percent. This corresponds to a Type I error in hypothesis testing.

The corresponding Type II error leads to consumer's risk (a Consumer's risk: a Type II error buyer's risk). Suppose that the minimum defect rate Northway would like to reject in a batch of diskette drives is 2 percent. This 2 percent level is called the lot tolerance percent defective (LTPD). Loosely speaking, it defines how low a defect level still

\section*{Lot tolerance percent defective} constitutes a "bad" lot. Suppose that a batch of 1,000 drives with 20 defective units is received by Northway. What is the probability that this batch will be accepted because Maureen's sample of 100 contains no more than one defective unit? This probability is the consumer's risk.

Because she is sampling without replacement, the binomial distribution is not the correct distribution for computing this probability. The correct distribution is a relative of the binomial, known as the hypergeometric distribution. It is common to use the binomial distribution to approximate consumer's risk. This approximation always overestimates the true Approximating consumer's risk value of the consumer's risk whenever that risk is less than 0.5 . With Maureen's sampling scheme, the approximate binomial probability of accepting a batch of 1,000 units with 20 defective units is computed using Equation 5-1, with \(n=100\) and \(p=0.02\) :
\[
\begin{align*}
P(r=0 \text { defects }) & =\frac{n!}{r!(n-r)!} p^{r} q^{n-r} \tag{5-1}\\
& =\frac{100!}{0!100!}(0.02)^{0}(0.98)^{100}=0.1326 \\
P(r=1 \text { defect }) & =\frac{100!}{1!99!}(0.02)^{1}(0.98)^{99}=0.2707
\end{align*}
\]

Hence, the approximate probability the batch will be accepted is \(0.1326+0.2707=0.4033\). The exact hypergeometric probability of accepting a batch with 20 defective units is 0.3892 , so the approximation is fairly good (the error is only \(141 / 3,892\), or about 3.6 percent). In general, the smaller the fraction of the batch that is sampled, the better the job the binomial distribution does to approximate the hypergeometric. This is analogous to the situation we encountered in Chapter 6 (p. 303), where we saw that the finite population multiplier had little effect on the calculation of the standard error of the mean if the sampling fraction was less than 0.05 .

Maureen is unwilling to accept such a high level of risk. She can Tradeoffs between the two risks reduce her risk by lowering \(c\) to 0 and rejecting lots in which any defective units show up in her sample of 100 . This will reduce her risk to exactly 0.1326 (0.1190 approximate), but it will increase the producer's risk to 0.6340 , which Drives Unlimited is unwilling to accept. Is there any way to reduce both the producer's and the consumer's risks? Yes, by increasing the sample size. Suppose she increases her sample size to \(n=250\), and allows 1.2 percent defects in the sample by setting \(c=3\). Then Northway's consumer's risk is now reduced to 0.2225 Increasing \(n\) to decrease both exact, 0.2622 approximate, and Drives Unlimited's producer's risks
risk is reduced to 0.2419 . Of course, this will increase the cost of the inspections that Maureen will have to make. Similar results can be achieved with double sampling without such a drastic increase in total sample size.

\section*{Acceptance Sampling in Practice: Tables and Computer Programs}

As you can see from our example, the relationships between sample size (\(n\)), acceptance number (\(c\)), and the two types of risk are very complex. Extensive tables exist for helping quality engineers to choose appropriate acceptance sample schemes.*

\footnotetext{
* For example, see Sampling Inspection Tables—Single and Double Sampling, by H. F. Dodge and H. G. Romig, John Wiley, New York, 1959.
}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & A B & C & D & E & F & G & H \\
\hline 1 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ACCEPTSA}} & NG BY & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\begin{array}{ll}\text { ATTRIBUTES } & \text { Alt } \\ & \text { Alt }\end{array}\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
View AOQ curve \\
View OC curve
\end{tabular}}} \\
\hline 2 & & & & & & & \\
\hline 3 & \multicolumn{2}{|l|}{INPUT:} & \multicolumn{5}{|l|}{OUIPUT:} \\
\hline 4 & Lot Size & \multicolumn{2}{|l|}{1000} & \multicolumn{4}{|l|}{Producer's risk (Prob. lot with 0.2682} \\
\hline 5 & Sample size & \multicolumn{2}{|l|}{100} & \multicolumn{4}{|l|}{defects \(=\) AQL will be rejected)} \\
\hline 6 & Acceptance number & \multicolumn{2}{|l|}{1} & \multicolumn{4}{|l|}{\multirow[b]{2}{*}{}} \\
\hline 7 & AQL & \multicolumn{2}{|l|}{1.00\%} & & & & \\
\hline 8 & LTPD & \multicolumn{2}{|l|}{1. \(50 \%\)} & \multicolumn{4}{|l|}{defects = LTPD will be accepted)} \\
\hline 9 & \multicolumn{7}{|l|}{} \\
\hline 10 & 非 defects & \multicolumn{4}{|r|}{Insoming quality (lot \% defective)} & & \\
\hline 11 & in sample X ! & 0.0\% & 1.0\% & 1.5\% & 3.0\% & 4.0\% & 5.0\% \\
\hline 12 & \(0 \quad 1\) & 1.0000 & 0.3679 & 0.2231 & 0.0498 & 0.0183 & 0.0067 \\
\hline 13 & 1 & 0.0000 & 0.3679 & 0.3347 & 0.1494 & 0.0733 & 0.0337 \\
\hline 14 & 22 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 15 & 36 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 16 & 424 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 17 & 5120 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 18 & & & & & & & \\
\hline 19 & Prob. accept. lot & 1.0000 & 0.7358 & 0.5578 & 0.1991 & 0.0916 & 0.0404 \\
\hline 20 & AOQ & 0.00\% & 0.66\% & 0.75\% & 0.54\% & 0.33\% & 0.18\% \\
\hline
\end{tabular}

\section*{FIGURE 10-10 A SPREADSHEET TO EVALUATE ACCEPTANCE-SAMPLING SCHEMES}

As an alternative to looking up sampling schemes in tables, there are many computer programs available for evaluating

\section*{A spreadsheet template} choices of \(n\) and \(c\). A particularly easy one to use is a Lotus 1-2-3 spreadsheet template, developed by Everette S. Gardner, Jr.,* and used with his permission. Figure 10-10 shows the application of that spreadsheet to evaluate Maureen Brennan's original (\(n=100\), \(c=1)\) sampling scheme.

In cells C4 to C8 (shaded in color), Maureen entered the lot size (1,000), sample size (\(n=100\)), acceptance number \((c=1)\), AQL (0.01), and LTPD (0.015). In cells H4 and H7 (shaded in color), the template calculates the producer's risk (0.2642) and the binomial approximation to the consumer's risk (0.5578). (These figures are slightly different from those we calculated earlier because Gardner uses the Poisson approximation to the binomial—see p. 235 in his spreadsheet calculations.)

The bottom part of the template calculates various probabilities that give Maureen more information about the behavior of her sampling scheme. Cells C11 to H11 originally contained

The OC curve: consumer's risk as a function of input quality incoming qualities ranging from 0 to 5 percent, by single percentage points. Because our LTPD was 1.5 percent, we replaced the original 2 percent in cell E11 (shaded in color) by 1.5 percent. The additional information can be seen most easily in two graphs that the template can produce. Maureen can get an operating characteristic (OC) graph (Figure 10-11). The height of the OC curve tells her the consumer's risk, the probability that her sampling scheme will accept a lot from a production process with an input quality read on the horizontal axis. Subtracting that probability from one gives the producer's risk as the input quality varies. As you would expect, the probability that a lot will be accepted falls as production quality becomes worse.

\footnotetext{
* The Spreadsheet Operations Manager, McGraw-Hill, New York, 1992.
}

FIGURE 10-11 THE OPERATING CHARACTERISTIC (OC) CURVE FOR MAUREEN'S ACCEPTANCESAMPLING SCHEME

Maureen can also get an average outgoing quality (AOQ) graph (Figure 10-12). The height of the AOQ curve tells her how the long-run average fraction of defective units in lots accepted by her sampling scheme varies as a function of the quality of the

The AOQ curve: average outgoing quality as a function
of input quality drives supplied to Northway by Drives Unlimited. You can see from that graph that the worst long-run average quality would be 0.75 percent, or about 7.5 defective drives per accepted batch of 1,000 . Of course, because AOQ is an average, some accepted batches will have more defective drives.

\section*{HINTS \& ASSUMPTIONS}

Warning: Making up or changing your sampling plan as you go generally leads to failure. Carefully planning your sampling plan using sound statistical analysis and then adhering to the plan makes it much less likely that you will be misled by random patterns. Hint: If a municipality tests 200 street light-bulbs from a shipment of 10,000 , finds that the first 100 work perfectly, and quits sampling, it can get into serious trouble. Most acceptance situations like this are looking for very low-probability defects, say 1 in 100. Because you know that random events are not uniformly distributed, you should not be swayed by the absence of defects in the first 100 and you should stick with the sampling plan you first designed if you want to benefit from the power of statistical quality control.

FIGURE 10-12 THE AVERAGE OUTGOING QUALITY (AOQ) CURVE FOR MAUREEN'S ACCEPTANCE-SAMPLING SCHEME

\section*{EXERCISES 10.7}

\section*{Self-Check Exercises}

SC 10-8 Compute the producer's risks for the following single-sampling schemes from batches of 2,000 items, with \(\mathrm{AQL}=0.005\).
(a) \(n=150, c=1\).
(b) \(n=150, c=2\).
(c) \(n=200, c=1\).
(d) \(n=200, c=2\).

SC 10-9 Use the binomial distribution to approximate the consumer's risks in the sampling schemes in Exercise SC \(10-8\) if LTPD \(=0.01\).

\section*{Basic Concepts}

10-34 Why is it impractical to inspect an entire batch of input from a supplier?
10-35 What is the significance of the acceptance number, \(c\), in single sampling?

\section*{Applications}

10-36 Compute the producer's risks for the following single sampling schemes from batches of 1,500 items, with \(\mathrm{AQL}=0.02\).
(a) \(n=175, c=3\).
(b) \(n=175, c=5\).
(c) \(n=250, c=3\).
(d) \(n=250, c=5\).

10-37 Use the binomial distribution to approximate the consumer's risks in the sampling schemes in Exercise 10-36 if LTPD \(=0.03\).
10-38 The graph below, is an OC curve for a single-sampling scheme from batches of 2,500 with \(n=250\) and \(c=2\). Find the producer's risk if the AQL is
(a) 0.005 .
(b) 0.010 .
(c) 0.015 .

10-39 For the single-sampling scheme in Exercise 10-38, use the OC curve to find the consumer's risk if the LTPD is
(a) 0.010 .
(b) 0.015 .
(c) 0.020 .

\section*{Worked-Out Answers to Self-Check Exercises}

SC 10-8 AQL \(=0.005\)
(a) \(n=150 \quad c=1\)
\(r=0\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{0!(150)!}(0.005)^{0}(0.995)^{150}=0.4715\)
\(r=1\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{1!(149)!}(0.005)^{1}(0.995)^{149}=0.3554\)
\(1-0.4715-0.3554=0.1731\), the producer's risk.
(b) \(n=150 \quad c=2\)
\(r=2\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{2!(148)!}(0.005)^{2}(0.995)^{148}=0.1330\)
\(1-0.4715-0.3554-0.1330=0.0401\) is the producer's risk.
(c) \(n=200 \quad c=1\)
\(r=0\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{0!(200)!}(0.005)^{0}(0.995)^{200}=0.3670\)
\(r=1\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{1!(199)!}(0.005)^{1}(0.995)^{199}=0.3688\)
\(1-0.3670-0.1330=0.2642\), the producer's risk.
(d) \(n=200 \quad c=2\)
\(r=2\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{2!(198)!}(0.005)^{2}(0.995)^{198}=0.1844\)
\(1-0.3670-0.3688-0.1844=0.0798\), the producer's risk.
SC 10-9 LTPD \(=0.01\)
(a) \(n=150 \quad c=1\)
\(r=0\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{0!(150)!}(0.01)^{0}(0.99)^{150}=0.2215\)
\(r=1\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{1!(149)!}(0.01)^{1}(0.99)^{149}=0.3355\)
\(0.2215+0.3355=0.557\), the consumer's risk.
(b) \(n=150 \quad c=2\)
\(r=2\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{150!}{2!(148)!}(0.01)^{2}(0.99)^{148}=0.2525\)
\(0.2215+0.3355+0.2525=0.8095\), the consumer's risk.
(c) \(n=200 c=1\)
\[
r=0
\]
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{0!(200)!}(0.01)^{0}(0.99)^{200}=0.1340\)
\(r=1\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{1!(199)!}(0.01)^{1}(0.99)^{199}=0.2707\)
\(0.1340+0.2707=0.4047\), the consumer's risk.
(d) \(n=200 c=2\)
\(r=2\) :
\(\frac{n!}{r!(n-r)!} p^{r} q^{n-r}=\frac{200!}{2!(198)!}(0.01)^{2}(0.99)^{198}=0.2720\)
\(0.1340+0.2707+0.2720=0.6767\), the consumer's risk.

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 10: Quality and Quality Control Walter Azko prided himself on his open-door policy, and any member of the firm was welcome to stop by with ideas. The only difficulty was finding Walter in his office, or indeed, in the country. He still traveled frequently to Pacific Rim countries in search of new suppliers and better prices.

But Walter was in town-and in his office-going over budget projections with Lee when Jeff Cohen from Purchasing and Harry Patel, the firm's financial controller, dropped by. Jeff and Harry were the only two CPAs in the firm so they were often found deep in conversation.
"Boss, we both went to a seminar put on by the State CPA Association," Harry began.
"So we wanted to talk with you about quality initiatives at Loveland Computers," added Jeff. The two were known for finishing each other's sentences.
"I'm not going to pay good money for a bunch of high-priced consultants to come in and preach to us," Walter greeted their enthusiasm with skepticism. "In any case, I've always told you-at this end of the market we compete on price, not on quality. Our customers only care whether a Loveland Computer works and whether we have it in stock when they want to order it. And if it doesn't work, they just have to ship it back to us and we'll send them out a new one."
"Right. And how much is that costing us?" Harry asked.
"You have the figures - the money we write off on computers that we have to scrap is very small compared to our volume. You know that."
"Well, after that seminar, I'm sure that we don't really capture all the costs of a failure," the controller disputed.
"Anyway, we test all the computers overnight at the end of the line before we ship them. What do you want me to do-run them for a week before we ship them out?" Walter remained unconvinced that thinking about quality could change the way Loveland did business.
"Doesn't this relate to customer satisfaction?" Lee interjected. "I read where J. D. Power-the company that reports on what automobile customers think about new models-is going to start rating PCs."
"There's much more to quality than more testing before we ship things, in fact, if we do things right, I'm convinced we'd need less testing on the production line," Jeff added. "Let Harry and me buy you lunch and tell you what we learned at the seminar."

Study Questions: What arguments will Jeff and Harry make against Walter's assertion that Loveland competes only on price? What are the total costs of replacing a machine that Harry refers to? How does quality relate to customer satisfaction? Why would Loveland need less end-of-the-line testing if it adopted quality control measures? Does it matter whether Walter Azko ends up with a better understanding of quality by the end of lunch?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 10}

Acceptable Quality Level (AQL) The average quality level promised by a producer; the maximum number or percentage of defective pieces in a "good" lot.
Acceptance Number The maximum number of defective pieces with which a lot will still be accepted.
Acceptance Sampling Procedures for deciding whether to accept or reject a batch of input materials based on the quality of a sample taken from that batch
Assignable Variation Nonrandom, systematic variability in a process. It usually can be corrected without redesigning the entire process.
Attributes Qualitative variables with only two categories.
Average Outgoing Quality (AOQ) Curve A graph showing how the long-run average fraction of defective units in lots accepted by a sampling scheme varies as a function of the input quality of the lots.
Cause-and-Effect Diagram Another name for a fish-bone diagram.
Common Variation Random variability inherent in a process. It usually cannot be reduced without re-designing the entire process.
Consumer's Risk The chance that a "bad" lot will be accepted.
Continuous Quality Improvement (CQI) Constant attention to the identification and resolution of problems in TQM.
Control Charts A plot of some parameter of interest (such as \(\bar{x}, R\), or \(p\)) over time, used to identify assignable variations and to make adjustments to the process being monitored.
Control Limits Upper and lower bounds on control charts. For the process to be in-control, all observations must fall within these limits.
Fishbone Diagram A pictorial device for organizing cause-and-effect relationships among the factors causing problems in complex systems.
Hypergeometric Distribution The correct distribution for computing consumer's risk; it is often approximated by the binomial distribution.
Inherent Variation Another name for common variation.
Ishikawa Diagram Another name for a fishbone diagram.
Lot Tolerance Percent Defective (LTPD) The minimum number or percentage of defective pieces in a "bad" lot.
Operating Characteristic (OC) Curve A graph showing the probability an acceptance-sampling scheme will accept a batch as a function of the input quality of the batch.
Outliers Observations falling outside the control limits on a control chart.
Out-of-Control A process exhibiting outliers on a control chart, or showing nonrandom patterns even though there are no outliers.
\(\boldsymbol{p}\) Charts Control charts for monitoring the proportion of items in a batch that meet specifications.
Pareto Chart A bar graph showing groups of error causes arranged by their frequencies of occurrence.
Producer's Risk The chance that a "good" lot will be rejected.
Qualitative Variables Variables whose values are categorical rather than numerical.
Quality Fitness for use or conformance to requirements.
Quantitative Variables Variables with numerical values resulting from measuring or counting.
\(\boldsymbol{R}\) Charts Control charts for monitoring process variability.
Special Cause Variation Another name for assignable variation.
Statistical Process Control (SPC) Shewhart's system of using control charts to track variation and identify its causes.

Total Quality Management (TQM) A set of approaches that enables the managers of complex systems to match the firm's products to customers' expectations.
\(\overline{\boldsymbol{x}}\) Chart Control charts for monitoring process means.

\section*{Equations Introduced in Chapter 10}

10-1

10-2

10-4
To get the standard deviation of the sampling distribution of \(R\), multiply the population standard deviation, \(\sigma\), by \(d_{3}\), another factor that is also given in Appendix Table 9.
\[
\begin{align*}
& \mathrm{UCL}=\bar{R}+\frac{3 d_{3} \bar{R}}{d_{2}}=\bar{R}\left(1+\frac{3 d_{3}}{d_{2}}\right) \tag{p. 482}\\
& \mathrm{LCL}=\bar{R}-\frac{3 d_{3} \bar{R}}{d_{2}}=\bar{R}\left(1-\frac{3 d_{3}}{d_{2}}\right)
\end{align*}
\]

To compute the control limits for an \(R\) chart, multiply the average sample range (\(\bar{R}=\sum R / k\)) by \(1 \pm 3 d_{3} / d_{2}\). Alternatively, you can compute these limits as
\[
\begin{aligned}
& \mathrm{UCL}=\bar{R} D_{4}, \text { where } D_{4}=1+3 d_{3} / d_{2} \\
& \mathrm{LCL}=\bar{R} D_{3}, \text { where } D_{3}=1-3 d_{3} / d_{2}
\end{aligned}
\]

Values of \(D_{3}\) and \(D_{4}\) are also given in Appendix Table 9. Because ranges are always nonnegative, \(D_{3}\) and the LCL are taken to be 0 when \(n \leq 6\).
10-5

10-6
\[
\begin{equation*}
\mathrm{CL}=\mu_{\bar{p}}=p \tag{p. 489}
\end{equation*}
\]
\[
\begin{align*}
& \mathrm{UCL}=\mu_{\bar{p}}+3 \sigma_{\bar{p}}=p+3 \sqrt{\frac{p q}{n}} \tag{p. 489}\\
& \mathrm{LCL}=\mu_{\bar{p}}-3 \sigma_{\bar{p}}=p-3 \sqrt{\frac{p q}{n}}
\end{align*}
\]

If there is a known or targeted value of \(p\), that value should be used in Equations 10-5 and 10-6 to get the center line and control limits for a \(p\) chart. However, if no such value of \(p\) is available, then you should use the overall sample fraction

10-7
\[
\begin{equation*}
\overline{\bar{p}}=\frac{\sum \bar{p}_{j}}{k} \tag{p. 489}
\end{equation*}
\]
where
- \(\bar{p}_{j}=\) sample fraction in the \(j\) th sample
- \(k=\) total number of samples

\section*{Review and Application Exercises}

10-40 R\&H Bloch is a large accounting firm specializing in the preparation of individual federal tax returns. The firm is very conservative in its practices and tries to avoid having more than 2 percent of its clients audited. As part of a summer internship, Jane Bloch has been asked to see whether this goal is being met on a consistent basis. For each week during a 16 -week interval centered on April 15 of last year, she has randomly selected 125 returns prepared by the firm. (Those filed after April 15 had paid their estimated taxes due and requested an extension.) Her data follow:
\begin{tabular}{lcccccccc}
\hline Week Ending & \(\mathbf{2 / 2 5}\) & \(\mathbf{3 / 0 4}\) & \(\mathbf{3 / 1 1}\) & \(\mathbf{3 / 1 8}\) & \(\mathbf{3 / 2 5}\) & \(\mathbf{4 / 0 1}\) & \(\mathbf{4 / 0 8}\) & \(\mathbf{4 / 1 5}\) \\
\hline \# Audited & 2 & 1 & 2 & 3 & 5 & 4 & 5 & 6 \\
\hline \# Week Ending & \(\mathbf{4 / 2 2}\) & \(\mathbf{4 / 2 9}\) & \(\mathbf{5 / 0 6}\) & \(\mathbf{5 / 1 3}\) & \(\mathbf{5 / 2 0}\) & \(\mathbf{5 / 2 7}\) & \(\mathbf{6 / 0 3}\) & \(\mathbf{6 / 1 0}\) \\
\hline \# Audited & 3 & 1 & 1 & 3 & 2 & 2 & 3 & 2 \\
\hline
\end{tabular}
(a) Are significantly more than 2 percent of R\&H Bloch's clients being audited? State and test appropriate hypotheses using all 2,000 clients in Jane's sample.
(b) Notwithstanding your result in part (a), construct a \(p\) chart based on Jane's data. Is there anything evident in the chart that Jane should bring to the attention of the partners in the firm? Explain.
10-41 When slaying dragons, should you be concerned with the "trivial many" or the "vital few"? Explain.
10-42 If marital status is coded as "currently married" or "never married," then marital status is an attribute. However, if it is coded as "single," "married," "widowed," or "divorced," then it is not an attribute. Explain this apparent inconsistency.
10-43 The amount of time a bank teller needs to process a deposit depends on how many items the customer has. Is this inherent or special cause variation? Explain.
10-44 All checks drafted on accounts at Global Bank are returned to the bank's check-processing center. There each check is encoded with optically scannable characters that indicate the amount for which it is drawn. The encoded checks are then scanned so that payment can be made and the accounts on which they have been drawn can be debited. Shih-Hsing Liu has been monitoring the encoding operation, and has counted the number of checks processed in 10 randomly chosen 2 -minute periods during each hour of the last two 8 -hour shifts. She has
recorded the following data:
\begin{tabular}{ccccccccc}
\hline Shift 1 Time & \(\mathbf{0 7 0 0}\) & \(\mathbf{0 8 0 0}\) & \(\mathbf{0 9 0 0}\) & \(\mathbf{1 0 0 0}\) & \(\mathbf{1 1 0 0}\) & \(\mathbf{1 2 0 0}\) & \(\mathbf{1 3 0 0}\) & \(\mathbf{1 4 0 0}\) \\
\hline \(\bar{x}\) & 49.4 & 49.9 & 48.8 & 50.1 & 49.7 & 48.1 & 48.6 & 48.7 \\
\(R\) & 4 & 7 & 7 & 4 & 7 & 10 & 7 & 10 \\
\hline Shift 2 time & \(\mathbf{1 5 0 0}\) & \(\mathbf{1 6 0 0}\) & \(\mathbf{1 7 0 0}\) & \(\mathbf{1 8 0 0}\) & \(\mathbf{1 9 0 0}\) & \(\mathbf{2 0 0 0}\) & \(\mathbf{2 1 0 0}\) & \(\mathbf{2 2 0 0}\) \\
\hline \(\bar{x}\) & 50.7 & 51.3 & 51.1 & 51.6 & 50.0 & 50.5 & 51.4 & 50.1 \\
\(R\) & 6 & 4 & 9 & 9 & 6 & 7 & 4 & 7 \\
\hline
\end{tabular}
(a) Help Shih-Hsing construct an \(\bar{x}\) chart from the data.
(b) Is the process in-control? Does anything in the chart indicate that Shih-Hsing should examine the process more closely? Explain.
10-45 (a) Use Shih-Hsing Liu's data from Exercise 10-44 to construct an \(R\) chart.
(b) Does anything in the chart indicate that Shih-Hsing should examine the process more closely? Explain.
10-46 Security Construction uses many subcontractors for the condominium apartments it builds throughout the American sunbelt. Dawn Locklear, Security's customer service representative, has been reviewing the "punch lists" submitted by the purchasers of 500 condos. A punch list is a list of problems noted when the owner moves into the apartment. Security does not receive final payment until the items on the list have been corrected. Dawn has categorized the items on the lists according to the responsible subcontractor. Use her information to construct a Pareto chart to identify which subcontractors require additional supervision.
\begin{tabular}{lc}
\hline Subcontractor & Number of Problems \\
\hline Electrical & 257 \\
Flooring & 23 \\
Heating/AC & 35 \\
Painting & 19 \\
Plumbing & 22 \\
Roofing & 31 \\
Tile & 51 \\
Wallboard & 303 \\
Windows & 16 \\
Other & 68 \\
\hline
\end{tabular}

10-47 Compute the producer's risks for the following single-sampling schemes from batches of 2,500 items, with \(\mathrm{AQL}=0.01\).
(a) \(n-200, c=1\).
(b) \(n=200, c=2\).
(c) \(n=250, c=1\).
(d) \(n=250, c=2\).

10-48 Use the binomial distribution to approximate the consumer's risks in the sampling schemes in Exercise 10-47 if LTPD \(=0.015\).
10-49 In service operations (as opposed to manufacturing) can the principle Variation is the enemy of quality be applied? Aren't all customers different?

10-50 Deshawn Jackson is the quality supervisor for Reliance Storage Media, a manufacturer of diskettes for personal computers. The company has been concerned about the quality of their Reliant economy-grade \(31 / 2^{\prime \prime}\) diskettes, and has completely revamped the production process. Reliant diskettes consist of a cobalt-enhanced iron-oxide coating deposited on a polyethylene terephthalate substrate. The nominal thickness of the coating is 75.0 microns (0.075 mm), but a deviation of \(\pm 3.0\) microns is acceptable. The diskettes are manufactured in batches of 2,500 . In order to evaluate the new production process, Deshawn has sampled two dozen diskettes from each of the last 20 batches and recorded the following data:
\begin{tabular}{cllllllllll}
\hline Batch & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) \\
\hline \(\bar{x}\) & 75.3 & 75.0 & 74.8 & 75.0 & 75.3 & 74.8 & 74.8 & 74.9 & 74.6 & 74.9 \\
\(R\) & 3.2 & 3.3 & 3.6 & 3.5 & 3.8 & 3.7 & 3.4 & 3.3 & 3.4 & 3.1 \\
\hline Batch & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) \\
\hline \(\bar{x}\) & 75.2 & 75.1 & 74.8 & 74.9 & 74.9 & 75.1 & 75.0 & 74.9 & 74.9 & 75.1 \\
\(R\) & 3.1 & 3.0 & 3.1 & 2.9 & 2.8 & 2.8 & 2.7 & 2.9 & 2.8 & 2.9 \\
\hline
\end{tabular}
(a) Use the data to construct an \(\bar{x}\) chart.
(b) Is the process in-control?
(c) Deshawn looks at the \(\bar{x}\) chart and says, "The last 10 batches have means that appear to "be less variable than the means of the first 10 batches." Is this observation valid? Explain. Should Deshawn be concerned? Explain.
10-51 Consider the data Deshawn Jackson collected for Exercise 10-50:
(a) Construct an \(R\) chart.
(b) Should Deshawn worry about the obvious pattern in the chart? Explain.
(c) Is there any relationship between the pattern in the \(R\) chart and the one Deshawn noticed in the \(\bar{x}\) chart? (See Exercise 10-50(c).) Is this good news or bad news for Deshawn? Explain.
10-52 Photomatic prints customers' 35 mm film using automated equipment. This high-volume, low-cost approach works for most typical situations, but variation in the input can lead to poor results. For example, if a customer's film has been left in a hot car, it may be printable with special handling, but the results from the automated process are unacceptable. When prints are rejected by customers, Photomatic must reprint by hand-a process that costs more than the price charged-so each "defect" is a loss for the firm. The equipment supplier notes that sophisticated light measuring circuitry should produce acceptable print quality with no more than one defect per thousand. Quality engineer B. J. Nighthorse randomly sampled 2,000 prints from each of the last 20 production runs and recorded the following information:
\begin{tabular}{lcccccccccc}
\hline Run & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 0}\) \\
\hline \# Defective & 3 & 1 & 2 & 4 & 4 & 2 & 2 & 3 & 1 & 0 \\
\hline Run & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1 5}\) & \(\mathbf{1 6}\) & \(\mathbf{1 7}\) & \(\mathbf{1 8}\) & \(\mathbf{1 9}\) & \(\mathbf{2 0}\) \\
\hline \# Defective & 2 & 2 & 1 & 3 & 2 & 2 & 0 & 4 & 2 & 0 \\
\hline
\end{tabular}

Construct a \(p\) chart to see whether the equipment is performing within the manufacturer's specifications and whether the process is in-control.

10-53 Explain how producer's and consumer's risks in acceptance sampling correspond to Type I and Type II errors in hypothesis testing.
10-54 A14-ounce box of soda crackers will almost never weigh exactly 14 ounces. What sources of common and special cause variation might explain this observation?
10-55 The graph below is an OC curve for a single-sampling scheme from batches of 3,000 with \(n=300\) and \(c=3\). Find the producer's risk if the AQL is:
(a) 0.005 .
(b) 0.010 .
(c) 0.015 .

10-56 For the single-sampling scheme in Exercise 10-55, use the OC curve to find the consumer's risk if the LTPD is:
(a) 0.010 .
(b) 0.015 .
(c) 0.020 .

10-57 Connie Rodrigues, the Dean of Students at Midstate College, is wondering about grade inflation at the school. She has randomly selected 200 students from each of the last 20 graduating classes and has looked up their grade-point averages. In addition, for each year's sample she has calculated the percentage of A and B grades for all 200 students as a group. Explain how she can use control charts to analyze whether Midstate has been experiencing grade inflation.
10-58 Explain how acceptance sampling can be more effective in the long run than sampling entire batches of input.
10-59 Education seems to be a difficult field in which to use quality techniques. One possible outcome measure for colleges is the graduation rate (the percentage of students matriculating who graduate on time). Would you recommend using \(p\) or R charts to examine graduation rates at a school? Would this be a good measure of quality?

\section*{Flow Chart: Quality and Quality Control}

This page is intentionally left blank

\section*{Chi-Square and Analysis of Variance}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To recognize situations requiring the comparison of more than two means or proportions
- To introduce the chi-square and \(F\) distributions and learn how to use them in statistical inferences
- To use the chi-square distribution to see whether two classifications of the same data are independent of each other
- To use a chi-square test to check whether a particular collection of data is well described by a specified distribution
- To use the chi-square distribution for confidence intervals and testing hypotheses about a single population variance
- To compare more than two population means using analysis of variance
- To use the \(F\) distribution to test hypotheses about two population variances

\section*{CHAPTER CONTENTS}

\subsection*{11.1 Introduction \\ 518}

\subsection*{11.2 Chi-Square as a Test of Independence \\ 519}
11.3 Chi-Square as a Test of Goodness ofFit: Testing the Appropriateness of aDistribution534
11.4 Analysis of Variance 542
11.5 Inferences about a Population Variance 568
11.6 Inferences about Two Population Variances 576
- Statistics at Work 583
- Terms Introduced in Chapter 11584
- Equations Introduced in Chapter 11585
- Review and Application Exercises 587
- Flow Chart: Chi-Square and Analysis of Variance 594

\section*{518}

TThe training director of a company is trying to evaluate three different methods of training new employees. The first method assigns each to an experienced employee for individual help in the factory. The second method puts all new employees in a training room separate from the factory, and the third method uses training films and programmed learning materials. The training director chooses 16 new employees assigned at random to the three training methods and records their daily production after they complete the programs:
\begin{tabular}{lllllll}
\hline Method 1 & 15 & 18 & 19 & 22 & 11 & \\
Method 2 & 22 & 27 & 18 & 21 & 17 & \\
Method 3 & 18 & 24 & 19 & 16 & 22 & 15 \\
\hline
\end{tabular}

The director wonders whether there are differences in effectiveness among the methods. Using techniques learned in this chapter, we can help answer that question.

\subsection*{11.1 INTRODUCTION}

In Chapters 8 and 9, we learned how to test hypotheses using data from either one or two samples. We used one-sample tests to determine whether a mean or a proportion was significantly different from a hypothesized value. In the two-sample tests, we examined the difference between either two means or two proportions, and we tried to learn whether this difference was significant.

Suppose we have proportions from five populations instead Uses of the chi-square test of only two. In this case, the methods for comparing proportions described in Chapter 9 do not apply; we must use the chi-square test, the subject of the first portion of this chapter. Chi-square tests enable us to test whether more than two population proportions can be considered equal.

Actually, chi-square tests allow us to do a lot more than just test for the equality of several proportions. If we classify a population into several categories with respect to two attributes (such as age and job performance), we can then use a chi-square test to determine whether the two attributes are independent of each other.

Managers also encounter situations in which it is useful to test Function of analysis of for the equality of more than two population means. Again, we canvariance not apply the methods introduced in Chapter 9 because they are limited to testing for the equality of only two means. The analysis of variance, discussed in the fourth section of this chapter, will enable us to test whether more than two population means can be considered equal.

It is clear that we will not always be interested in means and proportions. There are many managerial situations where we will be concerned about the variability in a population. Section 11.5 shows

\section*{Inferences about population variances} how to use the chi-square distribution to form confidence intervals and test hypotheses about a population variance. In Section 11.6, we show that hypotheses comparing the variances of two populations can be tested using the \(F\) distribution.

\section*{EXERCISES 11.1}

11-1 Why do we use a chi-square test?
11-2 Why do we use analysis of variance?

11-3 In each of the following situations, state whether a chi-square test, analysis of variance, or inference about population variances should be done.
(a) We want to see whether the variance in spring temperatures is the same on the east and west coasts.
(b) We want to see whether the average speed on Interstate 95 differs depending on the day of the week.
(c) We want to see whether long-term stock performance on Wall Street (classified as good, average, or poor) is independent of the size of the company (classified as small, medium, or large).
(d) Before testing whether \(\mu_{1}=\mu_{2}\), we want to test whether the assumption that \(\sigma_{1}^{2}=\sigma_{2}^{2}\) is reasonable.
11-4 Answer true or false and explain your answers.
(a) After reading this chapter, you should know how to make inferences about two or more population variances.
(b) After reading this chapter, you should know how to make inferences about two or more population means.
(c) After reading this chapter, you should know how to make inferences about two or more population proportions.
11-5 To help remember which distribution or technique is used, complete the following table with either the name of a distribution or the technique involved. The row classification refers to the number of parameters involved in a test, and the column classification refers to the type of parameter involved. Some cells may not have an entry; others may have more than one possible entry.
\begin{tabular}{c}
\\
\hline Number of Parameters Involved \\
\hline 1 \\
2 \\
3 or more \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline \multicolumn{3}{c}{ Type of Parameter } \\
\hline\(\mu\) & \(\sigma\) & \(P\) \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\subsection*{11.2 CHI-SQUARE AS A TEST OF INDEPENDENCE}

Many times, managers need to know whether the differences they observe among several sample proportions are significant or only due to chance. Suppose the campaign manager for a presidential candidate studies three geographically different regions and finds that 35,42 , and 51 percent, respectively, of the voters surveyed in the three regions recognize the candidate's name. If this difference is significant, the manager may conclude that location will affect the way the candidate should act. But if the difference is not significant (that is, if the manager concludes that the difference is solely due to chance), then he may decide that the place chosen to make a particular policy-making speech will have no effect on its reception. To run the campaign successfully, then, the manager needs to determine whether location and name recognition are dependent or independent.

\section*{TABLE 11-1 SAMPLE RESPONSE CONCERNING REVIEW SCHEDULES FOR NATIONAL HEALTH CARE HOSPITAL EMPLOYEES}
\begin{tabular}{lccccc}
\hline & Northeast & Southeast & Central & West Coast & Total \\
\hline Number who prefer present method & 68 & 75 & 57 & 79 & \(\mathbf{2 7 9}\) \\
Number who prefer new method & \(\underline{32}\) & \(\underline{45}\) & \(\underline{33}\) & \(\frac{31}{\mathbf{1 4 0}}\) & \(\underline{\mathbf{1 4 1}}\) \\
Total employees sampled in each region & \(\mathbf{1 0 0}\) & \(\overline{\mathbf{1 2 0}}\) & \(\overline{\mathbf{9 0}}\) & \(\mathbf{1 1 0}\) & \\
\hline
\end{tabular}

\section*{Contingency Tables}

Suppose that in four regions, the National Health Care Company samples its hospital employees' attitudes toward job-performance reviews. Respondents are given a choice between the present method (two reviews a year) and a proposed new method (quarterly reviews). Table 11-1, which illustrates the response to this question from the sample polled, is called a contingency table. A table such as this is made up of rows and columns; rows run horizontally, columns vertically. Notice that the four columns in Table 11-1 provide one basis of classification-geographical regions-and that the two rows classify the information another way: preference for review methods. Table 11-1 is called a \(2 \times 4\) contingency table because it consists of two rows and four columns. We describe the dimensions of a contingency table by first stating the number of rows and then the number of columns. The "total" column and the "total" row are not counted as part of the dimensions.

\section*{Observed and Expected Frequencies}

Suppose we now symbolize the true proportions of the total population of employees who prefer the present plan as

\section*{Setting up the problem symbolically}

\section*{Describing a contingency table}
- \(p_{N} \leftarrow\) Proportion in Northeast who prefer present plan
- \(p_{S} \leftarrow\) Proportion in Southeast who prefer present plan
- \(p_{C} \leftarrow\) Proportion in Central region who prefer present plan
- \(p_{W} \leftarrow\) Proportion in West Coast region who prefer present plan

Using these symbols, we can state the null and alternative hypotheses as follows:
\[
\begin{gathered}
\mathrm{H}_{0}: p_{N}=p_{S}=p_{S}=p w \leftarrow \text { Null hypothesis } \\
\mathrm{H}_{1}: p_{N}, p_{S}, p_{C} \text {, and } p_{W} \text { are not all equal } \leftarrow \text { Alternative hypothesis }
\end{gathered}
\]

If the null hypothesis is true, we can combine the data from the four samples and then estimate the proportion of the total workforce (the total population) that prefers the present review method:

Combined proportion who prefer present method assuming the null hypothesis of no difference is true
\[
\begin{aligned}
& =\frac{68+75+57+79}{100+120+90+110} \\
& =\frac{279}{420} \\
& =0.6643
\end{aligned}
\]

TABLE 11-2 PROPORTION OF SAMPLED EMPLOYEES IN EACH REGION EXPECTED TO PREFER THE TWO REVIEW METHODS
\begin{tabular}{lrrrr}
\hline & Northeast & Southeast & Central & West Coast \\
\hline Total number sampled & 100 & 120 & 90 & 110 \\
\begin{tabular}{l}
Estimated proportion who prefer present \\
method
\end{tabular} & \(\times 0.6643\) & \(\times 0.6643\) & \(\times 0.6643\) & \(\times 0.6643\) \\
\cline { 2 - 5 } Number expected to prefer present method & 66.43 & 79.72 & 59.79 & 73.07 \\
Total number sampled & 100 & 120 & 90 & 110 \\
\begin{tabular}{l}
Estimated proportion who prefer new \\
method
\end{tabular} & \(\times 0.3357\) & \(\times 0.3357\) & \(\times 0.3357\) & \(\times 0.3357\) \\
\cline { 2 - 5 } Number expected to prefer new method & 33.57 & 40.28 & 30.21 & 36.93 \\
\hline
\end{tabular}

Obviously, if the value 0.6643 estimates the population proportion expected to prefer the present compensation method, then \(0.3357(=1-0.6643)\) is the estimate of the population proportion

\section*{Determining expected frequencies} expected to prefer the proposed new method. Using 0.6643 as the estimate of the population proportion who prefer the present review method and 0.3357 as the estimate of the population proportion who prefer the new method, we can estimate the number of sampled employees in each region whom we would expect to prefer each of the review methods. The calculations are done in Table 11-2.

Table 11-3 combines all the information from Tables 11-1 and 11-2. It illustrates both the actual, or observed, frequency of the employees sampled who prefer each method of job-review and the

Comparing expected and observed frequencies theoretical, or expected, frequency of sampled employees preferring each method. Remember that the expected frequencies, those in color, were estimated from our combined proportion estimate.

To test the null hypothesis, \(p_{N}=p_{S}=p_{C}=p_{w}\), we must compare the frequencies that were observed (the black ones in Table 11-3) with the frequencies we would expect if the null hypothesis is true. If the sets of observed and expected frequencies are nearly alike, we can reason intuitively that we will accept the null hypothesis. If there is a large difference between these frequencies, we may intuitively reject the null hypothesis and conclude that there are significant differences in the proportions of employees in the four regions preferring the new method.

TABLE 11-3 COMPARISON OF OBSERVED AND EXPECTED FREQUENCIES OF SAMPLED EMPLOYEES
\begin{tabular}{llllc}
\hline & Northeast & Southeast & Central & West Coast \\
\hline FREQUENCY PREFERRING PRESENT METHOD: & & & & \\
Observed (actual) frequency & 68 & 75 & 57 & 79 \\
Expected (theoretical) frequency & 66.43 & 79.72 & 59.79 & 73.07 \\
FREQUENCY PREFERRING NEW METHOD: & & & & \\
Observed (actual) frequency & 32 & 45 & 33 & 31 \\
Expected (theoretical) frequency & 33.57 & 40.28 & 30.21 & 36.93 \\
\hline
\end{tabular}

\section*{The Chi-Square Statistic}

To go beyond our intuitive feelings about the observed and expected frequencies, we can use the chi-square statistic, which is calculated this way:

Calculating the chi-square statistic
\begin{tabular}{|cc|c|c|}
\hline An observed frequency & \\
Chi-square & An expected frequency & \\
\hline
\end{tabular}

This formula says that chi-square, or \(\chi^{2}\), is the sum we will get if we
1. Subtract \(f_{e}\) from \(f_{o}\) for each of the eight values in Table 11-3.
2. Square each of the differences.
3. Divide each squared difference by \(f_{e}\).
4. Sum all eight of the answers.

Numerically, the calculations are easy to do using a table such as Table 11-4, which shows the steps.

The answer of 2.764 is the value for chi-square in our problem comparing preferences for review methods. If this value were as large as, say, 20, it would indicate a substantial difference between our observed values and our

TABLE 11-4 CALCULATION OF \(\chi^{2}\) (CHI-SQUARE) STATISTIC FROM DATA IN TABLE 11-3
\begin{tabular}{ccccc}
\hline & & Step 1 & Step 2 & Step 3 \\
\hline \(\boldsymbol{f}_{o}\) & \(\boldsymbol{f}_{e}\) & \(\boldsymbol{f}_{o}-\boldsymbol{f}_{e}\) & \(\left(\boldsymbol{f}_{o}-\boldsymbol{f}_{e}\right)^{\mathbf{2}}\) & \(\frac{\left(\boldsymbol{f}_{o}-\boldsymbol{f}_{e}\right)^{\mathbf{2}}}{f_{e}}\) \\
\hline 68 & 66.43 & 1.57 & 2.46 & 0.0370 \\
75 & 79.72 & -4.72 & 22.28 & 0.2795 \\
57 & 59.79 & -2.79 & 7.78 & 0.1301 \\
79 & 73.07 & 5.93 & 35.16 & 0.4812 \\
32 & 33.57 & -1.57 & 2.46 & 0.0733 \\
45 & 40.28 & 4.72 & 22.28 & 0.5531 \\
33 & 30.21 & 2.79 & 7.78 & 0.2575 \\
31 & 36.93 & -5.93 & 35.16 & \(\mathbf{0 . 9 5 2 1}\) \\
& & & & \(\mathbf{2 . 7 6 3 8}\)
\end{tabular}

Step \(4 \sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=2.764 \leftarrow \chi^{2}\) (chi-square)
expected values. A chi-square of zero, on the other hand, indicates that the observed frequencies exactly match the expected frequencies. The value of chi-square can never be negative because the differences between the observed and expected frequencies are always squared.

\section*{The Chi-Square Distribution}

If the null hypothesis is true, then the sampling distribution of the chi-square statistic, \(\chi^{2}\), can be closely approximated by a continuous curve known as a chi-square distribution. The important assump-

Describing a chi-square distribution tions required for this approximation are:
1. The sample observations should be independent.
2. The sample size is large (as a thumb rule it should be more than 50).
3. The sum of observed frequencies \(\left(f_{o}\right)\) must be equal to the sum of expected frequencies \(\left(f_{e}\right)\). No expected cell frequencies \(\left(f_{e}\right)\) should be less than 5 otherwise chi-square distribution will lose its character of continuity. In case of class frequency being less than 5 , pooling should be performed with the preceding or succeeding frequency so that pooled frequency is more than 5 and degrees of freedom must be adjusted accordingly.
4. Observations should be independent of each other.

As in the case of the \(t\) distribution, there is a different chi-square distribution for each different number of degrees of freedom. Figure 11-1 shows the three different chi-square distributions that would correspond to 1,5 , and 10 degrees of freedom. For very small numbers of degrees of freedom, the chi-square distribution is severely skewed to the right. As the number of degrees of freedom increases, the curve rapidly becomes more symmetrical until the number reaches large values, at which point the distribution can be approximated by the normal.

The chi-square distribution is a probability distribution. Therefore, the total area under the curve in each chi-square distribution is 1.0. Like the \(t\) distribution, so many different chi-square distributions are possible that it is not practical to construct a table that illustrates the areas under the curve for all possible values of the area. Appendix Table 5 illustrates only the areas in the tail most commonly used in significance tests using the chi-square distribution.

FIGURE 11-1 CHI-SQUARE DISTRIBUTIONS WITH 1, 5, AND 10 DEGREES OF FREEDOM
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Row 1} & \multicolumn{5}{|l|}{Column 1 Column 2 Column 3 Column 4} & \multirow[b]{3}{*}{Row totals} \\
\hline & \(r\) & \(r\) & \(r\) & \(\bigcirc\) & \(R T_{1}\) & \\
\hline Row 2 & \(r\) & \(\checkmark\) & \(r\) & \(\bigcirc\) & \(R T_{2}\) & \\
\hline \multirow[t]{3}{*}{Row 3} & \(\bigcirc\) & \(\bigcirc\) & \(\bigcirc\) & * & \(R T_{3}\) & \multirow[b]{2}{*}{Values that can be freely specified} \\
\hline & \(C T_{1}\) & \(C T_{2}\) & \(C T_{3}\) & \(C T_{4}\) & & \\
\hline & \multicolumn{5}{|c|}{Column totals} & O) Values that cannot \} be freely specified \\
\hline
\end{tabular}

FIGURE 11-2 A \(3 \times 4\) CONTINGENCY TABLE ILLUSTRATING DETERMINATION OF THE NUMBER OF DEGREES OF FREEDOM

\section*{Determining Degrees of Freedom}

To use the chi-square test, we must calculate the number of degrees of freedom in the contingency table by applying Equation 11-2:

\section*{Calculating degrees of freedom}

\section*{Degrees of Freedom in a Chi-Square Test of Independence}
\(\begin{aligned} & \text { Number of degrees } \\ & \text { of freedom }\end{aligned}=(\) number of rows -1\()(\) number of columns -1\()\)
of freedom
Let's examine the appropriateness of this equation. Suppose we have a \(3 \times 4\) contingency table like the one in Figure 11-2. We know the row and column totals that are designated \(R T_{1}, R T_{2}, R T_{3}\), and \(C T_{1}, C T_{2}\), \(C T_{3}, C T_{4}\). As we discussed in Chapter 7, the number of degrees of freedom is equal to the number of values that we can freely specify.

Look now at the first row of the contingency table in Figure 11-2. Once we specify the first three values in that row (denoted by checks in the figure), the fourth value in that row (denoted by a circle) is already determined; we are not free to specify it because we know the row total.

Likewise, in the second row of the contingency table in Figure 11-2, once we specify the first three values (denoted again by checks), the fourth value is determined and cannot be freely specified. We have denoted this fourth value by a circle.

Turning now to the third row, we see that its first entry is determined because we already know the first two entries in the first column and the column total; again, we have denoted this entry with a circle. We can apply this same reasoning to the second and third entries in the third row, both of which have been denoted by circles, too.

Turning finally to the last entry in the third row (denoted by a star), we see that we can not freely specify its value because we have already determined the first two entries in the fourth column. By counting the number of checks in the contingency table in Figure 11-2, you can see that the number of values we are free to specify is 6 (the number of checks). This is equal to \(2 \times 3\), or (the number of rows -1) times (the number of columns -1).

This is exactly what we have in Equation 11-2. Table 11-5 illustrates the row-and-column dimensions of three more contingency tables and indicates the appropriate degrees of freedom in each case.

TABLE 11-5 DETERMINATION OF DEGREES OF FREEDOM IN THREE CONTINGENCY TABLES
\begin{tabular}{cccccc}
\hline \begin{tabular}{c}
Contingency \\
Table
\end{tabular} & \begin{tabular}{c}
Number of \\
Rows \((\boldsymbol{r})\)
\end{tabular} & \begin{tabular}{c}
Number of \\
Columns \((\mathbf{c})\)
\end{tabular} & \(\boldsymbol{r}-\mathbf{1}\) & \(\boldsymbol{c} \boldsymbol{- 1}\) & \begin{tabular}{c}
Degrees of Freedom \\
\((\boldsymbol{r} \boldsymbol{- 1})(\boldsymbol{c}-\mathbf{1})\)
\end{tabular} \\
\hline A & 3 & 4 & \(3-1=2\) & \(4-1=3\) & \((2)(3)=6\) \\
B & 5 & 7 & \(5-1=4\) & \(7-1=6\) & \((4)(6)=24\) \\
C & 6 & 9 & \(6-1=5\) & \(9-1=8\) & \((5)(8)=40\) \\
\hline
\end{tabular}

\section*{Using the Chi-Square Test}

Returning to our example of job-review preferences of National Stating the problem symbolically Health Care hospital employees, we use the chi-square test to determine whether attitude about reviews is independent of geographical region. If the company wants to test the null hypothesis at the 0.10 level of significance, our problem can be summarized:
\[
\begin{aligned}
& \mathrm{H}_{0}: p_{N}=p_{S}=p_{C}=p_{W} \leftarrow \text { Null hypothesis } \\
& \mathrm{H}_{1}: p_{N}, p_{S}, p_{C} \text {, and } p_{W} \text { are not equal } \leftarrow \text { Alternative hypothesis } \\
& \alpha=0.10 \leftarrow \text { Level of significance for testing these hypotheses }
\end{aligned}
\]

Because our contingency table for this problem (Table 11-1) has Calculating degrees of freedom two rows and four columns, the appropriate number of degrees of freedom is

\section*{Number of Degrees of Freedom}

\[
\begin{aligned}
& =(2-1)(4-1) \\
& =(1)(3) \\
& =3 \leftarrow \text { Degrees of freedom }
\end{aligned}
\]

Figure 11-3 illustrates a chi-square distribution with 3 degrees of Illustrating the hypothesis test freedom, showing the significance level in color. In Appendix Table
5 , we can look under the 0.10 column and move down to the 3 degrees of freedom row. There we find the value of the chi-square statistic, 6.251 . We can interpret this to mean that with 3 degrees of freedom, the region to the right of a chi-square value of 6.251 contains 0.10 of the area under the curve. Thus, the acceptance region for the null hypothesis in Figure 11-3 goes from the left tail of the curve to the chi-square value of 6.251 .

As we can see from Figure 11-3, the sample chi-square value of Interpreting the results 2.764 that we calculated in Table 11-4 falls within the acceptance region. Therefore, we accept the null hypothesis that there is no difference between the attitudes about job interviews in the four geographical regions. In other words, we conclude that attitude about performance reviews is independent of geography.

FIGURE 11-3 CHI-SQUARE HYPOTHESIS TEST AT THE 0.10 LEVEL OF SIGNIFICANCE, SHOWING ACCEPTANCE REGION AND SAMPLE CHI-SQUARE VALUE OF 2.764

\section*{Contingency Tables with More Than Two Rows}

Mr. George McMahon, president of National General Health Insurance Company, is opposed to national health insurance. He argues that it would be too costly to implement, particularly since the existence of such a system would, among other effects, tend to

Are hospital stay and insurance coverage independent? encourage people to spend more time in hospitals. George believes that lengths of stays in hospitals are dependent on the types of health insurance that people have. He asked Donna McClish, his staff statistician, to check the matter. Donna collected data on a random sample of 660 hospital stays and summarized them in Table 11-6.

Table 11-6 gives observed frequencies in the nine different length-of-stay and type-of-insurance categories (or "cells") into which we have divided the sample. Donna wishes to test the hypotheses:
\(\mathrm{H}_{0}\) : length of stay and type of insurance are independent
\(H_{1}\) : length of stay depends on type of insurance
\(\alpha=0.01 \leftarrow\) Level of significance for testing these hypotheses
We will use a chi-square test, so we first have to find the expected frequencies for each of the nine cells. Let's demonstrate how to find them by looking at the cell that corresponds to stays of less than 5 days and insurance covering less than 25 percent of costs.

\section*{Stating the hypotheses}

\section*{ging hypotheses}
?

Finding expected frequencies

TABLE 11-6 HOSPITAL-STAY DATA CLASSIFIED BY THE TYPE OF INSURANCE COVERAGE AND LENGTH OF STAY
\begin{tabular}{lrrrrc}
\hline & \multicolumn{5}{c}{ Days in Hospital } \\
\cline { 2 - 6 } & & \(<\mathbf{5}\) & \(\mathbf{5 - 1 0}\) & \(>\mathbf{1 0}\) & Total \\
\hline Fraction of & \(<25 \%\) & 40 & 75 & 65 & \(\mathbf{1 8 0}\) \\
costs covered & \(25-50 \%\) & 30 & 45 & 75 & \(\mathbf{1 5 0}\) \\
by insurance & \(>50 \%\) & 40 & 100 & 190 & \(\mathbf{3 3 0}\) \\
\cline { 2 - 6 } & Total & \(\mathbf{1 1 0}\) & \(\mathbf{2 2 0}\) & \(\mathbf{3 3 0}\) & \(\mathbf{6 6 0}\) \\
\hline
\end{tabular}

A total of 180 of the 660 stays in Table 11-6 had insurance covering less than 25 percent of costs. So we can use the figure 180/660 to

Estimating the proportions in the cells estimate the proportion in the population having insurance covering less than 25 percent of the costs. Similarly, 110/660 estimates the proportion of all hospital stays that last fewer than 5 days. If length of stay and type of insurance really are independent, we can use Equation 4-4 to estimate the proportion in the first cell (less than 5 days and less than 25 percent coverage).

We let
- \(A=\) the event "a stay corresponds to someone whose insurance covers less than 25 percent of the cots"
- \(B=\) the event "a stay lasts less than 5 days"

Then,
\[
\begin{align*}
\mathrm{P}(\text { first cell }) & =\mathrm{P}(A \text { and } B) \tag{4-4}\\
& =\mathrm{P}(A) \times \mathrm{P}(B) \\
& =\left(\frac{180}{660}\right)\left(\frac{110}{660}\right) \\
& =1 / 22
\end{align*}
\]

Because \(1 / 22\) is the expected proportion in the first cell, the expected frequency in that cell is
\[
(1 / 22)(660)=30 \text { observations }
\]

In general, we can calculate the expected frequency for any cell with Equation 11-3:

Calculating the expected frequencies for the cells

Expected Frequency For Any Cell
\[
\begin{equation*}
f_{e}=\frac{R T \times C T}{n} \tag{11-3}
\end{equation*}
\]
where
- \(f_{\mathrm{e}}=\) expected frequency in a given cell
- \(R T=\) row total for the row containing that cell
- \(C T=\) column total for the column containing that cell
- \(n=\) total number of observations

Now we can use Equations 11-3 and 11-1 to compute all of the expected frequencies and the value of the chi-square statistic. The computations are done in Table 11-7.

Figure 11-4 illustrates a chi-square distribution with 4 degrees of freedom (number of rows \(-1=2\)) \(\times\) (number of columns \(-1=2\)), showing the 0.01 significance level in color. Appendix Table 5 (in the 0.01 column and the 4 degrees of freedom row) tells Donna that for her problem, the region to the right of a chi-square value of 13.277 contains 0.01 of the area under the curve. Thus, the acceptance region for the null hypothesis in Figure 11-4 goes from the left tail of the curve to the chi-square value of 13.277.

As Figure 11-4 shows Donna, the sample chi-square value of 24.315 she calculated in Table 11-7 is not within the acceptance region. Thus, Donna must reject the null hypothesis and inform Mr. McMahan that the evidence supports his belief that length of hospital stay and insurance coverage are

TABLE 11-7 CALCULATION OF EXPECTED FREQUENCIES AND CHI-SQUARE FROM DATA IN TABLE 11-6
\begin{tabular}{cccccccc}
Row & Column & \(f_{o}\) & \(f_{e}\) & \(=\) & \(\frac{\boldsymbol{R T} \times \boldsymbol{C T}}{n}\) & \(f_{o}-f_{e}\) & \(\left(f_{o}-f_{e}\right)^{2}\)
\end{tabular}\(\frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}\)
[11-1] \(\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{c}}=24.315 \leftarrow \chi^{2}\) (chi-square)

FIGURE 11-4 CHI-SQUARE HYPOTHESIS TEST AT THE 0.01 LEVEL OF SIGNIFICANCE, SHOWING ACCEPTANCE REGION AND SAMPLE CHI-SQUARE VALUE OF 24.315

\section*{Precautions about Using the Chi-Square Test}

To use a chi-square hypothesis test, we must have a sample size

\section*{Use large sample sizes} large enough to guarantee the similarity between the theoretically correct distribution and our sampling distribution of \(\chi^{2}\), the chi-square statistic. When the expected frequencies are too small, the value of \(\chi^{2}\) will be overestimated and will result in too many rejections of the null hypothesis. To avoid making incorrect inferences from \(\chi^{2}\) hypothesis tests, follow the general rule that an expected frequency of less than 5 in one cell of a contingency table is too small to use.* When the table contains more than one cell with an expected frequency of less than 5 , we can combine these in order to get an expected frequency of 5 or more. But in doing this, we reduce the number of categories of data and will gain less information from the contingency table.

This rule will enable us to use the chi-square hypothesis test properly, but unfortunately, each test can only reflect (and not improve)

\section*{Use carefully collected data} the quality of the data we feed into it. So far, we have rejected the null hypothesis if the difference between the observed and expected frequencies-that is, the computed chi-square value - is too large. In the case of the job-review preferences, we would reject the null hypothesis at a 0.10 level of significance if our chi-square value was 6.251 or more. But if the chi-square value was zero, we should be careful to question whether absolutely no difference exists between observed and expected frequencies. If we have strong feelings that some difference ought to exist, we should examine either the way the data were collected or the manner in which measurements were taken, or both, to be certain that existing differences were not obscured or missed in collecting sample data.

In the 1860s, experiments with the characteristics of peas led the monk Gregor Mendel to propose the existence of genes. Mendel's

\section*{Mendel's pea data} experimental results were astoundingly close to those predicted by his theory. A century later, statisticians looked at Mendel's "pea data," performed a chi-square test, and concluded that chi-square was too small; that is, Mendel's reported experimental data were so close to what was expected that they could only conclude that he had fudged the data.

\section*{Chi-Square Test Using SPSS}

\footnotetext{
*Statisticians have developed correction factors that, in some cases, allow us to use cells with expected frequencies of less than 5. The derivation and use of these correction factors are beyond the scope of this book.
}

The preceding data are used for chi-square test.
In order to determine customer satisfaction rates, a retail company conducted surveys of 582 customers at 4 store locations. From the survey results, you found that the quality of customer service was the most important factor to a customer's overall satisfaction. Given this information, you want to test whether each of the store locations provides a similar and adequate level of customer service.

For \(\chi^{2}\) test go to Analyze \(>\) Descriptive statistics \(>\) Crosstabs \(>\) Select rows and columns \(>\) Select Chi-square > OK.

\section*{Additional Concepts}

When we apply chi-square test to examine the independence or otherwise of the attributes, after examining the significance of relationship through Pearson's chi-square, we might be interested in testing the strength of relationship. This will be provided by nominal directional measures. Further, another recommendation is suggested so that Chi-square can maintain its continuity character for \(2 \times 2\) tables, which is Yate's correction.
1. Nominal directional measures: These indicate the strength and significance of the relationship between the row and column attributes in chi-square. The value of each statistic (Lambda, Goodman and Kruskal Tau, and Uncertainty coefficient) can range from 0 to 1 , and it indicates degree of relationship between the two attributes. Phi is only appropriate for \(2 \times 2\) tables.
2. Yate's correction: In a \(2 \times 2\) contingency table, the number of d.f. \(=(2-1) \times(2-1)=1\). If any of the expected cell frequencies is less than 5 , then on using pooling method, the resultant d.f. would be: \(1-1=0\), which is meaningless. Hence, Yate's correction for continuity has been applied. It consists of adding 0.5 to the expected cell frequency which is less than 5 and then adjusting for the remaining cell frequencies accordingly, and thus, d.f. remains as 1 .

\section*{HINTS \& ASSUMPTIONS}

Warning: The rows and columns of a chi-square contingency table must be mutually exclusive categories that exhaust all of the possibilities of the sample. Hint: Think of the cells as little boxes and each member of the sample as a marble. Each marble must be put in a box and there can be no leftover marbles if you want the test to be valid. For example, a survey of voters that has contingency table cells for just Democrats and Republicans ignores the opinions of unaffiliated voters. Hint: The categories "car owner" and "bicycle owner" don't allow for people who own both.

\section*{EXERCISES 11.2}

\section*{Self-Check Exercises}

SC 11-1 A brand manager is concerned that her brand's share may be unevenly distributed throughout the country. In a survey in which the country was divided into four geographic regions, a random sampling of 100 consumers in each region was surveyed, with the following results:
\begin{tabular}{lrrrrc}
\hline & \multicolumn{4}{c}{ REGION } & \\
\cline { 2 - 5 } & NE & NW & SE & SW & TOTAL \\
\hline Purchase the brand & 40 & 55 & 45 & 50 & 190 \\
Do not purchase & 60 & 45 & 55 & 50 & \(\underline{210}\) \\
Total & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{1 0 0}\) & \(\mathbf{4 0 0}\) \\
\hline
\end{tabular}

Develop a table of observed and expected frequencies for this problem.
SC 11-2 For Exercise SC 11-1:
(a) Calculate the sample \(\chi^{2}\) value.
(b) State the null and alternative hypotheses.
(c) At \(\alpha=0.05\), test whether brand share is the same across the four regions.

\section*{532 Statistics for Management}

\section*{Basic Concepts}

11-6 Given the following dimensions for contingency tables, how many degrees of freedom will the chi-square statistic for each have?
(a) 5 rows, 4 columns.
(b) 6 rows, 2 columns.
(c) 3 rows, 7 columns.
(d) 4 rows, 4 columns.

\section*{Applications}

11-7 An advertising firm is trying to determine the demographics for a new product. They have randomly selected 75 people in each of 5 different age groups and introduced the product to them. The results of the survey are given in the following table:
\begin{tabular}{lccccc}
\hline & \multicolumn{5}{c}{ Age Group } \\
\cline { 2 - 6 } Future Activity & \(\mathbf{1 8 - 2 9}\) & \(\mathbf{3 0 - 3 9}\) & \(\mathbf{4 0 - 4 9}\) & \(\mathbf{5 0 - 5 9}\) & \(\mathbf{6 0 - 6 9}\) \\
\hline Purchase frequently & 12 & 18 & 17 & 22 & 32 \\
Seldom purchase & 18 & 25 & 29 & 24 & 30 \\
Never purchase & 45 & 32 & 29 & 29 & 13 \\
\hline
\end{tabular}

Develop a table of observed and expected frequencies for this problem.
11-8 For Exercise 11-7:
(a) Calculate the sample \(\chi^{2}\) value.
(b) State the null and alternative hypotheses.
(c) If the level of significance is 0.01 , should the null hypothesis be rejected?

11-9 To see whether silicon chip sales are independent of where the U.S. economy is in the business cycle, data have been collected on the weekly sales of Zippy Chippy, a Silicon Valley firm, and on whether the U.S. economy was rising to a cycle peak, at a cycle peak, falling to a cycle trough, or at a cycle trough. The results are:
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ WEEKLY CHIP SALES } \\
\cline { 2 - 5 } Economy & High & Medium & Low & Total \\
\hline At Peak & 20 & 7 & 3 & 30 \\
At Trough & 30 & 40 & 30 & 100 \\
Rising & 20 & 8 & 2 & 30 \\
Falling & 30 & \(\frac{5}{\mathbf{1 0 0}}\) & \(\underline{\mathbf{6 0}}\) & \(\overline{\mathbf{4 0}}\) \\
Total & & \(\underline{\mathbf{2 0 0}}\) \\
\hline
\end{tabular}

Calculate a table of observed and expected frequencies for this problem.
11-10 For Exercise 11-9:
(a) State the null and alternative hypotheses.
(b) Calculate the sample \(\chi^{2}\) value.
(c) At the 0.10 significance level, what is your conclusion?

11-11 A financial consultant is interested in the differences in capital structure within different firm sizes in a certain industry. The consultant surveys a group of firms with assets of different amounts and divides the firms into three groups. Each firm is classified according to whether its total debt is greater than stockholders' equity or whether its total debt is less than stockholders' equity. The results of the survey are:
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Firm Asset Size (in \$ thousands) } \\
\cline { 2 - 5 } & \(<\mathbf{5 0 0}\) & \(\mathbf{5 0 0}-\mathbf{2 , 0 0 0}\) & \(\mathbf{2 , 0 0 0 +}\) & Total \\
\hline Debt less than equity & 7 & 10 & 8 & 25 \\
Debt greater than equity & 10 & \(\frac{18}{\mathbf{1 7}}\) & \(\overline{\mathbf{2 8}}\) & \(\overline{\mathbf{1 7}}\) \\
Total & \(\overline{4}\) & \(\overline{\mathbf{6 2}}\) \\
\hline
\end{tabular}

Do the three firm sizes have the same capital structure? Use the 0.10 significance level.
11-12 A newspaper publisher, trying to pinpoint his market's characteristics, wondered whether newspaper readership in the community is related to readers' educational achievement. A survey questioned adults in the area on their level of education and their frequency of readership. The results are shown in the following table.
\begin{tabular}{lccccc}
\hline & \multicolumn{5}{c}{ Level of Educational Achievement } \\
\cline { 2 - 5 } \begin{tabular}{c}
Frequency of \\
Readership
\end{tabular} & \begin{tabular}{c}
Professional or \\
Postgraduate
\end{tabular} & \begin{tabular}{c}
College \\
Graduate
\end{tabular} & \begin{tabular}{c}
High School \\
Grad
\end{tabular} & \begin{tabular}{c}
Did Not Complete \\
High School
\end{tabular} & Total \\
\hline Never & 10 & 17 & 11 & 21 & 59 \\
Sometimes & 12 & 23 & 8 & 5 & 48 \\
Morning or evening & 35 & 38 & 16 & 7 & 96 \\
Both editions & \(\underline{28}\) & \(\underline{19}\) & 6 & \(\underline{13}\) & \(\underline{66}\) \\
Total & \(\overline{\mathbf{8 5}}\) & \(\overline{\mathbf{9 7}}\) & \(\underline{\mathbf{4 1}}\) & \(\underline{\mathbf{4 6}}\) & \(\mathbf{2 6 9}\) \\
\hline
\end{tabular}

At the 0.10 significance level, does the frequency of newspaper readership in the community differ according to the readers' level of education?
11-13 An educator has the opinion that the grades high school students make depend on the amount of time they spend listening to music. To test this theory, he has randomly given 400 students a questionnaire. Within the questionnaire are the two questions: "How many hours per week do you listen to music?" "What is the average grade for all your classes?" The data from the survey are in the following table. Using a 5 percent significance level, test whether grades and time spent listening to music are independent or dependent.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Hours Spent Listening to Music & \multicolumn{6}{|c|}{Average Grade} \\
\hline & A & B & C & D & F & TOTAL \\
\hline <5 hrs. & 13 & 10 & 11 & 16 & 5 & 55 \\
\hline 5-10 hrs. & 20 & 27 & 27 & 19 & 2 & 95 \\
\hline 11-20 hrs. & 9 & 27 & 71 & 16 & 32 & 155 \\
\hline >20 hrs. & 8 & 11 & 41 & 24 & 11 & 95 \\
\hline Total & 50 & 75 & \(\overline{150}\) & \(\overline{75}\) & 50 & 400 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}

(b) Two ways, either acceptable:
(1) \(\mathrm{H}_{0}\) : Region is independent of purchasing
\(\mathrm{H}_{1}\) : Region is related to purchasing (dependent)
(2) \(\mathrm{H}_{0}: p_{n e}=p_{n w}=p_{s e}=p_{s w}\)
\(\mathrm{H}_{1}\) : Not all the proportions are equal
(c) With \(1 \times 3=3\) degrees of freedom and \(\alpha=0.05\), the critical value of \(\chi^{2}\) is 7.815 , so don't reject \(\mathrm{H}_{0}\), because \(5.012<7.815\). Brand share doesn't differ significantly by region.

\subsection*{11.3 CHI-SQUARE AS A TEST OF GOODNESS OF FIT: TESTING THE APPROPRIATENESS OF A DISTRIBUTION}

In the preceding section, we used the chi-square test to decide whether to accept a null hypothesis that was a hypothesis of independence between two variables. In our example, these two variables were attitude toward job performance reviews and geographical region.

The chi-square test can also be used to decide whether a particular probability distribution, such as the binomial, Poisson, or normal, is the appropriate distribution. This is an important ability because as decision makers using statistics, we will need to choose

Function of a goodness-of-fit test
a certain probability distribution to represent the distribution of the data we happen to be considering. We will need the ability to question how far we can go from the assumptions that underlie a particular distribution before we must conclude that this distribution is no longer applicable. The chi-square test enables us to ask this question and to test whether there is a significant difference between an observed frequency distribution and a theoretical frequency distribution. In this manner, we can determine the goodness of fit of a theoretical distribution (that is, how well it fits the distribution of data that we have actually observed). Thus, we can determine whether we should believe that the observed data constitute a sample drawn from the hypothesized theoretical distribution.

\section*{Assumptions}
1. There should be one categorical variable (i.e., the variable can be dichotomous, nominal, or ordinal).
2. Observations should be independent.
3. The groups of the categorical variable must be mutually exclusive.
4. There must be at least 5 expected frequencies in each group of the categorical variable.

\section*{Calculating Observed and Expected Frequencies}

Suppose that the Gordon Company requires that college seniors who are seeking positions with it be interviewed by three different executives. This enables the company to obtain a consensus evaluation of each candidate. Each executive gives the candidate either a positive or a negative rating. Table 11-8 contains the interview results of the last 100 candidates.

For staffing purposes, the director of recruitment for this company thinks that the interview process can be approximated by a binomial distribution with \(p=0.40\), that is, with a 40 percent chance of any candidate receiving a positive rating on any one interview. If the director wants to test this hypothesis at the 0.20 level of significance, how should he proceed?
\(\mathrm{H}_{0}\) : A binomial distribution with \(p=0.40\) is a good description of the interview process \(\leftarrow\) Null hypothesis

Stating the problem symbolically
\(\mathrm{H}_{1}\) : A binomial distribution with \(p=0.40\) is not a good description of the interview process \(\leftarrow\) Alternative hypothesis
\(\alpha=0.20 \leftarrow\) Level of significance for testing these hypotheses
To solve this problem, we must determine whether the discrepancies between the observed frequencies and those we would expect (if the binomial distribution is the proper model to

\author{
Calculating the binomial probabilities
} use) should be ascribed to chance. We can begin by determining

TABLE 11-8 INTERVIEW RESULTS OF 100 CANDIDATES
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Possible Positive Ratings from \\
Three Interviews
\end{tabular} & \begin{tabular}{c}
Number of Candidates Receiving \\
Each of These Ratings
\end{tabular} \\
\hline 0 & 18 \\
1 & 47 \\
2 & 24 \\
3 & \(\underline{11}\) \\
\hline
\end{tabular}
what the binomial probabilities would be for this interview situation. For three interviews, we would find the probability of success in the Binomial Distribution Table (Appendix Table 3) by looking for the column labeled \(n=3\) and \(p=0.40\). The results are summarized in Table 11-9.

Now we can use the theoretical binomial probabilities of the outcomes to compute the expected frequencies. By comparing these expected frequencies with our observed frequencies using the \(\chi^{2}\) test, we can examine the extent of the difference between them. Table 11-10 lists the observed frequencies, the appropriate binomial probabilities from Table 11-9, and the expected frequencies for the sample of 100 interviews.
TABLE 11-9 BINOMIAL PROBABILITIES FOR INTERVIEW
PROBLEM
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Possible Positive Ratings \\
from Three Interviews
\end{tabular} & \begin{tabular}{c}
Binomial Probabilities of \\
These Outcomes
\end{tabular} \\
\hline 0 & 0.2160 \\
1 & 0.4320 \\
2 & 0.2880 \\
3 & \(\underline{0.0640}\) \\
\(\mathbf{1 . 0 0 0 0}\) \\
\hline
\end{tabular}

TABLE 11-10 OBSERVED FREQUENCIES, APPROPRIATE BINOMIAL PROBABILITIES, AND EXPECTED FREQUENCIES FOR THE INTERVIEW PROBLEM
\begin{tabular}{ccccccc}
\hline \begin{tabular}{c}
Possible \\
Positive Ratings \\
from Three \\
Interviews
\end{tabular} & \begin{tabular}{c}
Observed Frequency \\
of Candidates \\
Receiving These \\
Ratings
\end{tabular} & \begin{tabular}{c}
Binomial \\
Probability \\
of Possible \\
Outcomes
\end{tabular} & & \begin{tabular}{c}
Number of \\
Candidates \\
Interviewed
\end{tabular} & \begin{tabular}{c}
Expected Frequency \\
of Candidates \\
Receiving These \\
Ratings
\end{tabular} \\
\hline 0 & 18 & 0.2160 & \(\times\) & 100 & \(=\) & 21.6 \\
1 & 47 & 0.4320 & \(\times\) & 100 & \(=\) & 43.2 \\
2 & 24 & 0.2880 & \(\times\) & 100 & \(=\) & 28.8 \\
3 & 11 & 0.0640 & \(\times\) & 100 & \(=\) & \(\frac{6.4}{\mathbf{1 0 0 . 0}}\) \\
\hline
\end{tabular}

\section*{Calculating the Chi-Square Statistic}

To compute the chi-square statistic for this problem, we can use Equation 11-1:
\[
\begin{equation*}
\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}} \tag{11-1}
\end{equation*}
\]
and the format we introduced in Table 11-4. This process is illustrated in Table 11-11.

\section*{Determining Degrees of Freedom in a Goodness-of-Fit Test}

Before we can calculate the appropriate number of degrees of freedom for a chi-square goodness-of-fit test, we must count the number of classes (symbolized \(k\)) for which we have compared the

First, count the number of classes

TABLE 11-11 CALCULATION OF THE \(\chi^{2}\) STATISTIC FROM THE INTERVIEW DATA LISTED IN TABLE 11-10
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Observed \\
Frequency \\
\(\left(\boldsymbol{f}_{o}\right)\)
\end{tabular} & \begin{tabular}{c}
Expected \\
Frequency \\
\(\left(\boldsymbol{f}_{\boldsymbol{e}}\right)\)
\end{tabular} & \(\boldsymbol{f}_{\boldsymbol{o}}-\boldsymbol{f}_{\boldsymbol{e}}\) & \(\left(\boldsymbol{f}_{o}-\boldsymbol{f}_{\boldsymbol{e}}\right)^{2}\) & \(\frac{\left(\boldsymbol{f}_{o}-\boldsymbol{f}_{e}\right)^{2}}{\boldsymbol{f}_{\boldsymbol{e}}}\) \\
\hline 18 & 21.6 & -3.6 & 12.96 & 0.6000 \\
47 & 43.2 & 3.8 & 14.44 & 0.3343 \\
24 & 28.8 & -4.8 & 23.04 & 0.8000 \\
11 & 6.4 & 4.6 & 21.16 & \(\frac{3.3063}{\mathbf{5 . 0 4 0 6}}\) \\
& & \(\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=5.0406 \leftarrow \chi^{2}\) & \\
& & & \\
\hline
\end{tabular}
observed and expected frequencies. Our interview problem contains four such classes: \(0,1,2\), and 3 positive ratings. Thus, we begin with 4 degrees of freedom. Yet because the four observed frequencies must sum to 100 , the total number of observed frequencies we can freely specify is only \(k-1\), or 3 . The fourth is determined because the total of the four has to be 100 .

To solve a goodness-of-fit problem, we may be forced to impose additional restrictions on the calculation of the degrees of freedom. Suppose we are using the chi-square test as a goodness-of-fit test to determine whether a normal distribution fits a set of observed fre-

Then, subtract degrees of freedom lost from estimating population parameters quencies. If we have six classes of observed frequencies \((k=6)\), then we would conclude that we have only \(k-1\), or 5 degrees of freedom. If, however, we also have to use the sample mean as an estimate of the population mean, we will have to subtract an additional degree of freedom, which leaves us with only 4 . And, third, if we have to use the sample standard deviation to estimate the population standard deviation, we will have to subtract one more degree of freedom, leaving us with 3. Our general rule in these cases is, first employ the \((\boldsymbol{k}-\mathbf{1})\) rule and then subtract an additional degree of freedom for each population parameter that has to be estimated from the sample data.

In the interview example, we have four classes of observed frequencies. As a result, \(k=4\), and the appropriate number of degrees of freedom is \(k-1\), or 3 . We are not required to estimate any population parameter, so we need not reduce this number further.

\section*{Using the Chi-Square Goodness-of-Fit Test}

In the interview problem, the company desires to test the hypothesis of goodness of fit at the 0.20 level of significance. In Appendix Table 5, then, we must look under the 0.20 column and move down

Finding the limit of the acceptance region to the row labeled 3 degrees of freedom. There we find that the value of the chi-square statistic is 4.642 . We can interpret this value as follows: With 3 degrees of freedom, the region to the right of a chi-square value of 4.642 contains 0.20 of the area under the curve.

Figure 11-5 illustrates a chi-square distribution with 3 degrees of freedom, showing in color a 0.20 level of significance. Notice

\section*{Illustrating the problem} that the acceptance region for the null hypothesis (the hypothesis that the sample data came from a binomial distribution with \(p=0.4\)) extends from the left tail to the chi-square value of 4.642 . Obviously,

FIGURE 11-5 GOODNESS-OF-FIT TEST AT THE 0.20 LEVEL OF SIGNIFICANCE, SHOWING ACCEPTANCE REGION AND SAMPLE CHI-SQUARE VALUE OF 5.0406
the sample chi-square value of 5.0406 falls outside this acceptance region. Therefore, we reject the null hypothesis and conclude that the binomial distribution with \(p=0.4\) fails to provide a good description of our observed frequencies.

\section*{HINTS \& ASSUMPTIONS}

Lots of folks know that a chi-square test can be used as a test of goodness of fit, and most of them can do the calculations. But fewer of them can explain the logic in using the test for this purpose in common-sense terms. Hint: If we have a distribution that we think may be normal, but we're not sure, we use a known normal distribution to generate the expected values and then using chisquare methods, we see how much difference there is between these expected values and the values we observed in a sample taken from the distribution we think is normal. If the difference is too large, our distribution isn't normal.

\section*{EXERCISES 11.3}

\section*{Self-Check Exercises}

SC 11-3 At the 0.10 level of significance, can we conclude that the following 400 observations follow a Poisson distribution with \(\lambda=3\) ?
\begin{tabular}{lcccccc}
\hline Number of arrivals per hour & 0 & 1 & 2 & 3 & 4 & 5 or more \\
Number of hours & 20 & 57 & 98 & 85 & 78 & 62 \\
\hline
\end{tabular}

SC 11-4 After years of working at a weighing station for trucks, Jeff Simpson feels that the weight per truck (in thousands of pounds) follows a normal distribution with \(\mu=71\) and \(\sigma=15\). In order to test this assumption, Jeff collected the following data one Monday, recording the weight of each truck that entered his station.
\begin{tabular}{llllllllll}
85 & 57 & 60 & 81 & 89 & 63 & 52 & 65 & 77 & 64 \\
89 & 86 & 90 & 60 & 57 & 61 & 95 & 78 & 66 & 92 \\
50 & 56 & 95 & 60 & 82 & 55 & 61 & 81 & 61 & 53 \\
63 & 75 & 50 & 98 & 63 & 77 & 50 & 62 & 79 & 69 \\
76 & 66 & 97 & 67 & 54 & 93 & 70 & 80 & 67 & 73
\end{tabular}

If Jeff used a chi-square goodness-of-fit test on these data, what would he conclude about the trucks' weight distribution? (Use a 0.10 significance level and be sure to state the hypotheses of interest.) (Hint: Use five equally probable intervals.)

\section*{Basic Concepts}

11-14 Below is an observed frequency distribution. Using a normal distribution with \(\mu=5\) and \(\sigma=1.5\),
(a) Find the probability of falling in each class.
(b) From part (a), compute the expected frequency of each category.
(c) Calculate the chi-square statistic.
(d) At the 0.10 level of significance, does this frequency distribution seem to be well described by the suggested normal distribution?
\begin{tabular}{lcccccc}
Observed value of the variable & \(<2.6\) & \(2.6-3.79\) & \(3.8-4.99\) & \(5-6.19\) & \(6.2-7.39\) & \(\geq 7.4\) \\
Observed frequency & 6 & 30 & 41 & 52 & 12 & 9
\end{tabular}

11-15 At the 0.05 level of significance, can we conclude the following data follow a Poisson distribution with \(\lambda=5\) ?
\begin{tabular}{lcccccccc}
Number of calls per minute & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 or more \\
Frequency of occurrences & 4 & 15 & 42 & 60 & 89 & 94 & 52 & 80
\end{tabular}

\section*{Applications}

11-16 Louis Armstrong, salesman for the Dillard Paper Company, has five accounts to visit per day. It is suggested that the variable, sales by Mr. Armstrong, may be described by the binomial distribution, with the probability of selling each account being 0.4 . Given the following frequency distribution of Armstrong's number of sales per day, can we conclude that the data do in fact follow the suggested distribution? Use the 0.05 significance level.
\begin{tabular}{lcccccc}
Number of sales per day & 0 & 1 & 2 & 3 & 4 & 5 \\
Frequency of the number of sales & 10 & 41 & 60 & 20 & 6 & 3
\end{tabular}

11-17 The computer coordinator for the business school believes the amount of time a graduate student spends reading and writing e-mail each weekday is normally distributed with mean \(\mu=14\) and standard deviation \(\sigma=5\). In order to examine this belief, the coordinator collected data one Wednesday, recording the amount of time in minutes each graduate student spent checking e-mail. Using a chi-square goodness-of-fit test on these data, what would you conclude about the distribution of e-mail times? (Use a 0.05 significance level and clearly state your hypotheses.) (Hint: Use five equally probable intervals.)
\begin{tabular}{cccccccccc}
8.2 & 7.4 & 9.6 & 12.8 & 22.4 & 6.2 & 8.7 & 9.7 & 12.4 & 10.6 \\
1.2 & 18.6 & 3.3 & 15.7 & 18.4 & 12.4 & 15.9 & 19.4 & 12.8 & 20.4 \\
12.3 & 11.3 & 10.9 & 18.4 & 14.3 & 16.2 & 6.7 & 13.9 & 18.3 & 19.2 \\
14.3 & 14.9 & 16.7 & 11.3 & 18.4 & 18.8 & 20.4 & 12.4 & 18.1 & 20.1
\end{tabular}

11-18 In order to plan how much cash to keep on hand in the vault, a bank is interested in seeing whether the average deposit of a customer is normally distributed. A newly hired employee hoping for a raise has collected the following information:
\begin{tabular}{lccc}
Deposit & \(\$ 0-\$ 999\) & \(\$ 1,000-\$ 1,999\) & \(\$ 2,000\) or more \\
Observed frequency & 20 & 65 & 25
\end{tabular}
(a) Compute the expected frequencies if the data are normally distributed with mean \(\$ 1,500\) and standard deviation \(\$ 600\).
(b) Compute the chi-square statistic.
(c) State explicit null and alternative hypotheses.
(d) Test your hypotheses at the 0.10 level and state an explicit conclusion.

11-19 The post office is interested in modeling the mangled-letter problem. It has been suggested that any letter sent to a certain area has a 0.15 chance of being mangled. Because the post office is so big, it can be assumed that two letters' chances of being mangled are independent. A sample of 310 people was selected and two test letters were mailed to each of them. The number of people receiving zero, one, or two mangled letters was 260,40 , and 10 , respectively. At the 0.10 level of significance, is it reasonable to conclude that the number of mangled letters received by people follows a binomial distribution with \(p=0.15\) ?
11-20 A state lottery commission claims that for a new lottery game, there is a 10 percent chance of getting a \(\$ 1\) prize, a 5 percent chance of \(\$ 100\), and an 85 percent chance of getting nothing. To test whether this claim is correct, a winner from the last lottery went out and bought 1,000 tickets for the new lottery. He had 87 one-dollar prizes, 48 hundred-dollar prizes, and 865 worthless tickets. At the 0.05 significance level, is the state's claim reasonable?
11-21 Dennis Barry, a hospital administrator, has examined past records from 210 randomly selected 8 -hour shifts to determine the frequency with which the hospital treats fractures. The numbers of days in which zero, one, two, three, four, or five or more patients with broken bones were treated were \(25,55,65,35,20\), and 10 , respectively. At the 0.05 level of significance, can we reasonably believe that the incidence of broken-bone cases follows a Poisson distribution with \(\lambda=2\) ?
11-22 A large city fire department calculates that for any given precinct, during any given 8 -hour shift, there is a 30 percent chance of receiving at least one fire alarm. Here is a random sampling of 60 days:
\begin{tabular}{lcccc}
Number of shifts during which alarms were received & 0 & 1 & 2 & 3 \\
Number of days & 16 & 27 & 11 & 6
\end{tabular}

At the 0.05 level of significance, do these fire alarms follow a binomial distribution? (Hint: Combine the last two groups so that all expected frequencies are greater than 5 .)
11-23 A diligent statistics student wants to see whether it is reasonable to assume that some sales data have been sampled from a normal population before performing a hypothesis test on the mean sales. She collected some sales data, computed \(\bar{x}=78\) and \(s=9\), and tabulated the data as follows:
\begin{tabular}{lcccccc}
Sales level & \(\leq 65\) & \(66-70\) & \(71-75\) & \(76-80\) & \(81-85\) & \(\geq 86\) \\
Number of observations & 10 & 20 & 40 & 50 & 40 & 40
\end{tabular}
(a) Is it important for the statistics student to check whether the data are normally distributed? Explain.
(b) State explicit null and alternative hypotheses for checking whether the data are normally distributed.
(c) What is the probability (using a normal distribution with \(\mu=78\) and \(\sigma=9\)) that sales will be less than or equal to 65.5 , between 65.5 and 70.5 , between 70.5 and 75.5 , between 75.5 and 80.5 ; between 80.5 and 85.5 , and greater than or equal to 85.5 ?
(d) At the 0.05 level of significance, does the observed frequency distribution follow a normal distribution?
11-24 A supermarket manager is keeping track of the arrival of customers at checkout counters to see how many cashiers are needed to handle the flow. In a sample of 500 five-minute time periods, there were \(22,74,115,95,94,80\), and 20 periods in which zero, one, two, three, four, five, or six or more customers, respectively, arrived at a checkout counter. Are these data consistent at the 0.05 level of significance with a Poisson distribution with \(\lambda=3\) ?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 11-3 \(\quad \mathrm{H}_{0}\) : Poisson with \(\lambda=3\)
\(\mathrm{H}_{1}\) : Something else
Test at \(\alpha=0.10\), with \(6-1=5\) degrees of freedom.
\begin{tabular}{lrrrrrr}
\hline Arrivals/hour & \multicolumn{1}{c}{0} & \multicolumn{1}{c}{1} & \multicolumn{1}{c}{2} & \multicolumn{1}{c}{3} & \multicolumn{1}{c}{4} & \(5+\) \\
Poisson prob. & 0.0498 & 0.1494 & 0.2240 & 0.2240 & 0.1680 & 0.1848 \\
Observed & 20 & 57 & 98 & 85 & 78 & 62 \\
Expected & 19.92 & 59.76 & 89.60 & 89.60 & 62.20 & 73.92 \\
\(\frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}\) & 0.000 & 0.127 & 0.788 & 0.236 & 1.736 & 1.922 \\
& & \(\chi^{2}=\sum \frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}=4.809\) & & & \\
\hline
\end{tabular}

With 5 degrees of freedom and \(\alpha=0.10\), the critical value of \(\chi^{2}\) is 9.236 , so don't reject \(\mathrm{H}_{0}\), because \(4.809<9.236\). The data are well described by a Poisson distribution with \(\lambda=3\).
SC 11-4 5 equiprobable intervals; 0.2 probability for each interval, \(50 \times 0.2=10\) trucks expected per interval.
\begin{tabular}{lcccccc}
\hline\(z\) & \(-\infty\) & -0.84 & -0.25 & 0.25 & 0.84 & \(+\infty\) \\
\(x=71+15 z\) & \(-\infty\) & 58.40 & 67.25 & 74.75 & 83.60 & \(+\infty\) \\
Observed & 10 & 16 & 3 & 10 & 11 & \\
Expected & 10 & 10 & 10 & 10 & 10 & \\
\(\frac{\left(f_{o}-f_{e}\right)^{2}}{f_{e}}\) & 0.0 & 3.6 & 4.9 & 0.0 & 0.1 & \\
& & & \(\chi^{2}=8.6\) & & & \\
\hline
\end{tabular}
\(\mathrm{H}_{0}\) : Truck weights are distributed normally with \(\mu=71\) and \(\sigma=15\)
\(\mathrm{H}_{1}\) : The weights are distributed differently (either normal with a different \(\mu\) and/or \(\sigma\) or a nonnormal distribution)

With \(5-1=4\) degrees of freedom and \(\alpha=0.10\), the critical value of \(\chi^{2}\) is 7.779 , so reject \(\mathrm{H}_{0}\), because \(8.6>7.779\). The data are not well described by a normal distribution with \(\mu=71\) and \(\sigma=15\). Jeff is wrong.

\subsection*{11.4 ANALYSIS OF VARIANCE}

Earlier in this chapter, we used the chi-square test to examine the differences among more than two sample proportions and to make

\section*{Function of analysis of variance} inferences about whether such samples are drawn from populations each having the same proportion. In this section, we will learn a technique known as analysis of variance (often abbreviated ANOVA) that will enable us to test for the significance of the differences among more than two sample means. Using analysis of variance, we will be able to make inferences about whether our samples are drawn from populations having the same mean.

Analysis of variance is useful in such situations as comparing Situations where we can use the mileage achieved by five different brands of gasoline, testing which of four different training methods produces the fastest learn-

\section*{ANOVA} ing record, or comparing the first-year earnings of the graduates of half a dozen different business schools. In each of these cases, we would compare the means of more than two samples.

\section*{Statement of the Problem}

In the training director's problem that opened this chapter, she wanted to evaluate three different training methods to determine whether there were any differences in effectiveness.

After completion of the training period, the company's statisti- Calculating the grand mean cal staff chose 16 new employees assigned at random to the three training methods.* Counting the production output by these 16 trainees, the staff has summarized the data and calculated the mean production of the trainees (see Table 11-12). Now if we wish to determine the grand mean, or \(\overline{\bar{x}}\) (the mean for the entire group of 16 trainees), we can use one of two methods:
1. \(\overline{\bar{x}}=\frac{15+18+19+22+11+22+27+18+21+17+18+24+19+16+22+15}{16}\)
\(=\frac{304}{16}\)
\(=19 \leftarrow\) Grand mean using all data
2. \(\overline{\bar{x}}=(5 / 16)(17)+(5 / 16)(21)+(6 / 16)(19)\)
\[
=\frac{304}{16}
\]
\(=19 \leftarrow\) Grand mean as a weighted average of the sample means, using the relative sample sizes as the weights

\footnotetext{
* Although in real practice, 16 trainees would not constitute an adequate statistical sample, we have limited the number here to be able to demonstrate the basic techniques of analysis of variance and to avoid tedious calculations.
}

TABLE 11-12 DAILY PRODUCTION OF 16 NEW EMPLOYEES
\begin{tabular}{ccc}
\hline Method 1 & Method 2 & Method 3 \\
\hline- & - & 18 \\
15 & 22 & 24 \\
18 & 27 & 19 \\
19 & 18 & 16 \\
22 & 21 & 22 \\
\(\frac{11}{\mathbf{8 5}}\) & \(\underline{17}\) & \(\underline{\mathbf{1 0 5}}\) \\
\(\div 5\) & \(\div 5\) \\
\hline \(17=\bar{x}_{1}\) & \(21=\bar{x}_{2}\) & \(\frac{\mathbf{1 1 4}}{19=\bar{x}_{3}} \leftarrow\) Sample means \\
\(n_{1}=5\) & \(n_{2}=5\) & \(n_{3}=6 \leftarrow\) Sample sizes \\
\hline
\end{tabular}

\section*{Statement of the Hypotheses}

In this case, our reason for using analysis of variance is to decide whether these three samples (a sample is the small group of employees trained by any one method) were drawn from populations (a population is the total number of employees who could be trained by that method) having the same means. Because we are testing the effectiveness of the three training methods, we must determine whether the three samples, represented by the sample means \(\bar{x}_{1}=17, \bar{x}_{2}=21\), and \(\bar{x}_{3}=19\), could have been drawn from populations having the same mean, \(\mu\). A formal statement of the null and alternative hypotheses we wish to test would be
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3} \leftarrow \text { Null hypothesis } \\
& \mathrm{H}_{1}: \mu_{1}, \mu_{2} \text {, and } \mu_{3} \text { are not } \text { all equal } \leftarrow \text { Alternative hypothesis }
\end{aligned}
\]

If we can conclude from our test that the sample means do not

\section*{Stating the problem \\ symbolically}

Interpreting the results differ significantly, we can infer that the choice of training method does not influence the productivity of the employee. On the other hand, if we find differences among the sample means that are too large to attribute to chance sampling error, we can infer that the method used in training does influence the productivity of the employee. In that case, we would adjust our training program accordingly.

\section*{Analysis of Variance: Basic Concepts}

In order to use analysis of variance, we must assume that each of the samples is drawn from a normal population and that each of these populations has the same variance, \(\sigma^{2}\). However, if the sample sizes are large enough, we do not need the assumption of normality.

In our training-methods problems, our null hypothesis states that the three populations have the same mean. If this hypothesis is true, classifying the data into three columns in Table 11-12 is unnecessary and the entire set of 16 measurements of productivity can be thought of as a sample from one population. This overall population also has a variance of \(\sigma^{2}\).

Analysis of variance is based on a comparison of two different estimates of the variance, \(\sigma^{2}\), of our overall population. In this case, we can calculate one of these estimates by examining the variance among the three sample means, which are 17,21 , and 19 . The other estimate of the population variance is determined by the variation within the three samples themselves, that is, \((15,18,19,22\), \(11),(22,27,18,21,17)\), and \((18,24,19,16,22,15)\). Then we compare these two estimates of the population variance. Because both are estimates of \(\sigma^{2}\), they should be approximately equal in value when the null hypothesis is true. If the null hypothesis is not true, these two estimates will differ considerably. The three steps in analysis of variance, then, are
1. Determine one estimate of the population variance from the Steps in analysis of variance variance among the sample means.
2. Determine a second estimate of the population variance from the variance within the samples.
3. Compare these two estimates. If they are approximately equal in value, accept the null hypothesis.

In the remainder of this section, we shall learn how to calculate these two estimates of the population variance, how to compare these two estimates, and how to perform a hypothesis test and interpret the results. As we learn how to do these computations, however, keep in mind that all are based on the above three steps.

\section*{Calculating the Variance among the Sample Means}

Step 1 in analysis of variance indicates that we must obtain one estimate of the population variance from the variance among the three sample means. In statistical language, this estimate is called

Finding the first estimate of the population variance the between-column variance.

In Chapter 3, we used Equation 3-17 to calculate the sample variance:
\[
\begin{equation*}
\text { Sample variance } \longrightarrow s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \tag{3-17}
\end{equation*}
\]

Now, because we are working with three sample means and a grand mean, let's substitute \(\bar{x}\) for \(x, \overline{\bar{x}}\) for \(\bar{x}\), and \(k\) (the number of samples) for \(n\) to get a formula for the variance among the sample means:

First, find the variance among sample means

Variance among the Sample Means
\[
\begin{equation*}
s_{\bar{x}}^{2}=\frac{\sum(\bar{x}-\overline{\bar{x}})^{2}}{k-1} \tag{11-4}
\end{equation*}
\]

Next, we can return for a moment to Chapter 6, where we defined the standard error of the mean as the standard deviation of all possible samples of a given size. The formula to derive the standard error of the mean is Equation 6-1:

Then, find the population variance using the variance among sample means

Standard error of the mean
\(\begin{aligned} & \text { standard deviation of all } \\ & \text { possible sample means from } \\ & \text { a given sample size }\end{aligned}\)
\(\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}<\) Square root of the sample size
Population standard deviation

We can simplify this equation by cross-multiplying the terms and then squaring both sides in order to change the population standard deviation, \(\sigma\), into the population variance, \(\sigma^{2}\) :
\begin{tabular}{|ccc|}
\hline Population Variance & \\
\hline\(\sigma^{2}=\sigma_{\bar{x}}^{2} \times n\) \\
\(\Sigma^{\text {Standard error squared }}\)\begin{tabular}{l}
(this is the variance \\
among the sample means)
\end{tabular} & {\([11-5]\)} \\
\hline
\end{tabular}

For our training-method problem, we do not have all the information we need to use this equation to find \(\sigma^{2}\). Specifically, we do not know \(\sigma_{\bar{x}}^{2}\). We could, however, calculate the variance among the three sample means, \(s_{\bar{x}}^{2}\), using Equation 11-4. So why not substitute \(s_{\bar{x}}^{2}\) for \(\sigma_{\bar{x}}^{2}\) in Equation 11-5 and calculate an estimate of the population variance? This will give us
\[
\hat{\sigma}^{2}=s_{\bar{x}}^{2} \times n=\frac{\sum n(\bar{x}-\overline{\bar{x}})^{2}}{k-1}
\]

There is a slight difficulty in using this equation as it stands. In Which sample size to use Equation 6-1, \(n\) represents the sample size, but which sample size should we use when the different samples have different sizes? We solve this problem with Equation 11-6, where each \(\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}\) is multiplied by its own appropriate \(n_{j}\).

\section*{Estimate of Between-Column Variance}
\(\underset{\text { population variance }}{\text { First estimate of the }} \longrightarrow \hat{\sigma}_{b}^{2}=\frac{\sum_{j} n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}}{k-1}\)
where
- \(\hat{\sigma}_{b}^{2}=\) our first estimate of the population variance based on the variance among the sample means (the between-column variance)
- \(n_{j}=\) size of the \(j\) th sample
- \(\bar{x}_{j}=\) sample mean of the \(j\) th sample
- \(\overline{\bar{x}}=\) grand mean
- \(k=\) number of samples

Now we can use Equation 11-6 and the data from Table 11-12 to calculate the between column variance. Table 11-13 shows how to do these calculations.

\section*{Calculating the Variance within the Samples}

Step 2 in ANOVA requires a second estimate of the population variance based on the variance within the samples. In statistical

Finding the second estimate of the population variance terms, this can be called the within-column variance. Our

TABLE 11-13 CALCULATION OF THE BETWEEN-COLUMN VARIANCE
\begin{tabular}{llllll}
\hline\(n\) & \(\bar{x}\) & \(\overline{\bar{x}}\) & \(\bar{x}-\overline{\bar{x}}\) & \((\bar{x}-\overline{\bar{x}})^{2}\) & \(n(\bar{x}-\overline{\bar{x}})^{2}\) \\
\hline 5 & 17 & 19 & \(17-19=-2\) & \((-2)^{2}=4\) & \(5 \times 4=20\) \\
5 & 21 & 19 & \(21-19=2\) & \((2)^{2}=4\) & \(5 \times 4=20\) \\
6 & 19 & 19 & \(19-19=0\) & \((0)^{2}=0\) & \(6 \times 0=0\) \\
& & & \(\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}=40\) \\
\(\hat{\sigma}_{b}^{2}=\frac{\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}}{k-1}=\frac{40}{3-1}\) & {\([11-6]\)} & & \\
\(=\frac{40}{2}\) \\
\(=\) & & & \\
\hline
\end{tabular}
employee-training problem has three samples of five or six items each. We can calculate the variance within each of these three samples using Equation 3-17:
\[
\begin{equation*}
\text { Sample variance } \longrightarrow s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \tag{3-17}
\end{equation*}
\]

Because we have assumed that the variances of our three populations are the same, we could use any one of the three sample variances \(\left(s_{1}^{2}\right.\) or \(s_{2}^{2}\) or \(\left.s_{3}^{2}\right)\) as the second estimate of the population variance. Statistically, we can get a better estimate of the population variance by using a weighted average of all three sample variances. The general formula for this second estimate of \(\sigma^{2}\) is
\begin{tabular}{|l|l|}
\hline & Estimate of Within-Column Variance \\
\hline \begin{tabular}{l}
Second estimate of the \\
population variance
\end{tabular}\(\longrightarrow \hat{\sigma}_{w}^{2}=\sum\left(\frac{n_{j}-1}{n_{T}-k}\right) s_{j}^{2}\) \\
\hline
\end{tabular}
where
- \(\hat{\sigma}_{w}^{2}=\) our second estimate of the population variance based on the variances within the samples (the within-column variance)
- \(n_{j}=\) size of the \(j\) th sample
- \(s_{j}^{2}=\) sample variance of the \(j\) th sample
- \(k=\) number of samples
- \(n_{T}=\sum n_{j}=\) total sample size

This formula uses all the information we have at our disposal, not Using all the information at just a portion of it. Had there been seven samples instead of three, our disposal we would have taken a weighted average of all seven. The weights used in Equation 11-7 will be explained shortly. Table 11-14 illustrates how to calculate this second estimate of the population variance using the variances within all three of our samples.

TABLE 11-14 CALCULATION OF VARIANCES WITHIN THE SAMPLES AND THE WITHIN-COLUMN VARIANCE

\section*{The F Hypothesis Test: Computing and Interpreting the F Statistic}

Step 3 in ANOVA compares these two estimates of the population Finding the \(F\) ratio variance by computing their ratio, called \(F\), as follows:
first estimate of the population variance
\[
\begin{equation*}
F=\frac{\text { based on the variance among the sample means }}{\text { second estimate of the population variance }} \tag{11-8}
\end{equation*}
\]
based on the variances within the samples
If we substitute the statistical shorthand for the numerator and denominator of this ratio, Equation 11-8 becomes

\section*{F Statistic}
\[
\begin{equation*}
F=\frac{\text { between-column variance }}{\text { within-column variance }}=\frac{\hat{\sigma}_{b}^{2}}{\hat{\sigma}_{w}^{2}} \tag{11-9}
\end{equation*}
\]

Now we can find the F ratio for the training-method problem with which we have been working:
\[
\begin{align*}
F & =\frac{\text { between }- \text { column variance }}{\text { within-column variance }}=\frac{\hat{\sigma}_{b}^{2}}{\hat{\sigma}_{w}^{2}} \tag{11-9}\\
& =\frac{20}{14.769} \\
& =1.354 \leftarrow F \text { ratio }
\end{align*}
\]

Having found this \(F\) ratio of 1.354 , how can we interpret it? Interpreting the \(F\) ratio First, examine the denominator, which is based on the variance within the samples. The denominator is a good estimator of \(\sigma^{2}\) (the population variance) whether the null hypothesis is true or not. What about the numerator? If the null hypothesis that the three methods of training have equal effects is true, then the numerator, or the variation among the sample means of the three methods, is also a good estimate of \(\sigma^{2}\) (the population variance). As a result, the denominator and numerator should be about equal if the null hypothesis is true. The nearer the \(F\) ratio comes to 1, then the more we are inclined to accept the null hypothesis. Conversely, as the \(F\) ratio becomes larger, we will be more inclined to reject the null hypothesis and accept the alternative (that a difference does exist in the effects of the three training methods).

Shortly, we shall learn a more formal way of deciding when to accept or reject the null hypothesis. But even now, you should understand the basic logic behind the \(F\) statistic. When populations are not the same, the between-column variance (which was derived from the variance among the sample means) tends to be larger than the within-column variance (which was derived from the variances within the samples), and the value of \(\boldsymbol{F}\) tends to be large. This leads us to reject the null hypothesis.

\section*{The F Distribution}

Like other statistics we have studied, if the null hypothesis is true,

\section*{Describing an \(F\) distribution} then the \(F\) statistic has a particular sampling distribution. Like the \(t\) and chi-square distributions, this \(F\) distribution is actually a whole family of distributions, three of which are shown in Figure 11-6. Notice that each is identified by a pair of degrees of freedom, unlike the \(t\) and chi-square distributions, which have only one value for the number of degrees of freedom. The first number is the number of degrees of freedom in the numerator of the \(F\) ratio; the second is the degrees of freedom in the denominator.

As we can see in Figure 11-6, the \(F\) distribution has a single mode. The specific shape of an \(F\) distribution depends on the number of degrees of freedom in both the numerator and the denominator of the \(F\) ratio. But, in general, the \(F\) distribution is skewed to the right and tends to become more symmetrical as the numbers of degrees of freedom in the numerator and denominator increase.

\section*{Using the F Distribution: Degrees of Freedom}

As we have mentioned, each \(F\) distribution has a pair of degrees of freedom, one for the numerator of the \(F\) ratio and the other for the denominator. How can we calculate both of these?

First, think about the numerator, the between-column variance. In Table 11-13, we used three values of \(\bar{x}-\overline{\bar{x}}\), one for each sample, to calculate \(\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}\). Once we knew two of these \(\bar{x}-\overline{\bar{x}}\) values, the third was automatically determined and could not be freely

\section*{Calculating degrees of freedom}

Finding the numerator degrees of freedom

FIGURE 11-6 THREE F DISTRIBUTIONS (FIRST VALUE IN PARENTHESES EQUALS NUMBER OF DEGREES OF FREEDOM IN THE NUMERATOR OF THE F RATIO; SECOND EQUALS NUMBER OF DEGREES OF FREEDOM IN THE DENOMINATOR)
specified. Thus, one degree of freedom is lost when we calculate the between-column variance, and the number of degrees of freedom for the numerator of the \(F\) ratio is always one fewer than the number of samples. The rule, then, is
\begin{tabular}{|l|l|}
\hline Numerator Degrees of Freedom \\
\hline \begin{tabular}{l}
Number of degrees of freedom \\
in the numerator of the \(F\) ratio
\end{tabular}\(=(\) number of samples -1\()\)
\end{tabular}\(\quad[11-10]\)

Now, what of the denominator? Look at Table 11-14 for a moment. There we calculated the variances within the samples, and we used all three samples. For the \(j\) th sample, we used \(n_{j}\) values of

Finding the denominator degrees of freedom \(\left(x-\bar{x}_{j}\right)\) to calculate the \(\sum\left(x-\bar{x}_{j}\right)^{2}\) for that sample. Once we knew all but one of these \(\left(x-\bar{x}_{j}\right)\) values, the last was automatically determined and could not be freely specified. Thus, we lost 1 degree of freedom in the calculations for each sample, leaving us with 4, 4, and 5 degrees of freedom in the samples. Because we had three samples, we were left with \(4+4+5=13\) degrees of freedom (which could also be calculated as \(5+5+6-3=13\)). We can state the rule like this:
\begin{tabular}{|l|l|}
\hline Denominator Degrees of Freedom \\
\hline \begin{tabular}{l}
Number of degrees of freedom \\
in the denominator of the \(F\) ratio
\end{tabular}\(=\sum\left(n_{j}-1\right)=n_{T}-k\) \\
\hline
\end{tabular}
where
- \(n_{j}=\) size of the \(j\) th sample
- \(\quad k=\) number of samples
- \(n_{T}=\sum n_{j}=\) total sample size

Now we can see that the weight assigned to \(s_{j}^{2}\) in Equation 11-7 on p. 546 was just its fraction of the total number of degrees of freedom in the denominator of the \(F\) ratio.

\section*{Using the F Table}

To do \(F\) hypothesis tests, we shall use an \(F\) table in which the columns represent the number of degrees of freedom for the numerator and the rows represent the degrees of freedom for the denominator. Separate tables exist for each level of significance.

Suppose we are testing a hypothesis at the 0.01 level of significance, using the \(F\) distribution. Our degrees of freedom are 8 for the numerator and 11 for the denominator. In this instance, we would turn to Appendix Table 6(b). In the body of that table, the appropriate value for 8 and 11 degrees of freedom is 4.74 . If our calculated sample value of \(F\) exceeds this table value of 4.74 , we would reject the null hypothesis. If not, we would accept it.

\section*{Testing the Hypothesis}

We can now test our hypothesis that the three different training methods produce identical results, using the material we have developed to this point. Let's begin by reviewing how we calcu-

Finding the F statistic and the degrees of freedom lated the \(F\) ratio:
\[
\left.\begin{array}{rl}
\begin{array}{rl}
\text { first estimate of the population variance }
\end{array} \\
F & =\frac{\text { based on the variance among the sample means }}{\text { second estimate of the population variance }} \tag{11-8}\\
\text { based on the variances within the samples }
\end{array}\right] \text { } \begin{aligned}
14.769
\end{aligned}+1.354 \leftarrow F \text { statistic }
\]

Next, calculate the number of degrees of freedom in the numerator of the \(F\) ratio, using Equation 11-10 as follows:
\[
\begin{align*}
& \text { Number of degrees of freedom } \\
& \begin{aligned}
\text { in the numerator of the } F \text { ratio } & =(\text { number of samples }-1) \\
& =3-1 \\
& =2 \leftarrow \text { Degrees of freedom in the numerator }
\end{aligned} \tag{11-10}
\end{align*}
\]

And we can calculate the number of degrees of freedom in the denominator of the \(F\) ratio by use of Equation 11-11:

Number of degrees of freedom
in the denominator of the \(F\) ratio \(\sum\left(n_{j}-1\right)=n_{j}-k\)
\[
\begin{equation*}
=(5-1)+(5-1)+(6-1) \tag{11-11}
\end{equation*}
\]
\[
=4+4+5
\]
\[
=13 \leftarrow \text { Degrees of freedom in the denominator }
\]

FIGURE 11-7 HYPOTHESIS TEST AT THE 0.05 LEVEL OF SIGNIFICANCE, USING THE F DISTRIBUTION AND SHOWING THE ACCEPTANCE REGION AND THE SAMPLE F VALUE

Suppose the director of training wants to test at the 0.05 level the hypothesis that there are no differences among the three training methods. We can look in Appendix Table 6(a) for 2 degrees of free-

Finding the limit of the acceptance region dom in the numerator and 13 in the denominator. The value we find there is 3.81 . Figure 11-7 shows this hypothesis test graphically. The colored region represents the level of significance. The table value of 3.81 sets the upper limit of the acceptance region. Because the calculated sample value for \(F\) of 1.354 lies within the acceptance region, we would accept the null hypothesis and conclude that,

\section*{Interpreting the results} according to the sample information we have, there are no significant differences in the effects of the three training methods on employee productivity.

\section*{Precautions about Using the F Test}

As we stated earlier, our sample sizes in this problem are too small for us to be able to draw valid inferences about the effectiveness of

\section*{Use large sample sizes} the various training methods. We chose small samples so that we could explain the logic of analysis of variance without tedious calculations. In actual practice, our methodology would be the same, but our samples would be larger.

In our example, we have assumed the absence of many factors that might have affected our conclusions. We accepted as given, for example, the fact that all the new employees we sampled had the

Control all factors but the one being tested same demonstrated aptitude for learning, which may or may not be true. We assumed that all the instructors of the three training methods had the same ability to teach and to manage, which may not be true. And we assumed that the company's statistical staff collected the data on productivity during work periods that were similar in terms of time of day, day of the week, time of the year, and so on. To be able to make significant decisions based on analysis of variance, we need to be certain that all these factors are effectively controlled.

Finally, notice that we have discussed only one-way, or onefactor, analysis of variance. Our problem examined the effect of the

A test for one factor only
type of training method on employee productivity, nothing else. Had we wished to measure the effect of two factors, such as the training program and the age of the employee, we would need the ability to use two-way analysis of variance, a statistical method best saved for more advanced textbooks.

\section*{ANOVA: One Way Classification (Shortcut Method)}
\[
\begin{aligned}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3} \ldots \ldots \ldots=\mu_{i} \ldots \ldots \ldots \mu_{m} \\
& \mathrm{H}_{1}: \text { At least two } \mu_{i} \text { 's are different }
\end{aligned}
\]

\section*{Observation Table}
\begin{tabular}{clllcc}
\hline Factor & & & Total & Mean \\
\hline \(\mathrm{A}_{1}\) & \(x_{11}\) & \(x_{12} \cdots \cdots x_{i j} \cdots \cdots x_{i n_{1}}\) & \(\mathrm{~T}_{1}\) & \(\bar{x}_{1}\) \\
\(\mathrm{~A}_{2}\) & \(x_{21}\) & \(x_{22} \cdots \cdots x_{i j} \cdots \cdots x_{i n_{2}}\) & \(\mathrm{~T}_{2}\) & \(\bar{x}_{2}\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(\mathrm{~A}_{i}\) & \(x_{i 1}\) & \(x_{i 2} \cdots \cdots x_{i j} \cdots \cdots x_{i n_{i}}\) & \(\mathrm{~T}_{i}\) & \(\bar{x}_{i}\) \\
\(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) & \(\vdots\) \\
\(\mathrm{~A}_{m}\) & \(x_{m 1}\) & \(x_{m 2} \cdots \cdots x_{m j} \cdots \cdots x_{m n}\) & \(\frac{\mathrm{~T}_{m}}{\mathrm{G}}\) & \(\frac{\bar{x}_{m}}{\overline{\overline{\boldsymbol{x}}}}\) \\
\hline
\end{tabular}

Where
\[
\begin{array}{rlrl}
\mathrm{T}_{i} & =\sum_{j=i}^{n_{i}} x_{i j} & \bar{x}_{i}=\frac{\sum_{j=i}^{n_{i}} x_{i j}}{n_{i}} \\
G & =\sum_{i=1}^{m} \mathrm{~T}_{i} & \overline{\bar{x}} & =\frac{\sum_{i=1}^{m} \mathrm{~T}_{i}}{\sum n_{i}} \\
& =\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} x_{i j} & & =\frac{\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} x_{i j}}{\sum n_{i}}
\end{array} \quad \mathrm{~N}=\sum_{i=1}^{m} n_{i}=\begin{gathered}
\text { Total Number } \\
\text { of observations }
\end{gathered}
\]

Raw Sum of Square (Raw S.S) \(=\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} x_{i j}^{2}\)
Correction Factor (C.F.) \(=\frac{\mathrm{G}^{2}}{\mathrm{~N}}\)
Total Sum of Squares (T.S.S.) = Raw S.S - C.F.

Between Groups Sum of Squares (B.S.S.) \(=\sum_{i=1}^{m}\left(\frac{\mathrm{~T} i^{2}}{n_{i}}\right)-\) C.F.
Within Groups Sum of Squares (W.S.S.) = T.S.S. - B.S.S.
[W.S.S. is also known as Sum of Squares due to error or Error Sum of Squares (S.S.E.)]

\section*{ANOVA Table}
\begin{tabular}{lcccc}
\hline \multicolumn{1}{c}{\begin{tabular}{c}
Sources of \\
Variation
\end{tabular}} & \begin{tabular}{c}
Degree of Freedom \\
(d.f.)
\end{tabular} & \begin{tabular}{c}
Sum of Square \\
(S.S.)
\end{tabular} & \begin{tabular}{c}
Mean Sum of \\
Square (M.S.S.)
\end{tabular} & F-Ratio \\
\hline Between Groups & \(m-1\) & B.S.S. & MSB \(=\frac{\text { BSS }}{m-1}\) & \\
Within Groups & \(\mathrm{N}-m\) & W.S.S. & MSW \(=\frac{\text { BSS }}{\mathrm{N}-m}\) & \(\mathrm{~F}=\frac{\text { MSB }}{\text { MSW }}\) \\
Total Variation & \(\mathrm{N}-1\) & T.S.S. & - & \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{F}_{\text {crit }} & =\mathrm{F}_{\alpha, \text { d.f. }} \\
\alpha & =\text { level of significance } \\
\text { d.f. } & =(m-1),(\mathrm{N}-m)
\end{aligned}
\]

\section*{ANOVA: One Way Using MS-Excel}

MS-Excel can be used to test the significance of difference between more than two samples through Analysis of Variance (One-way Classification). For this purpose, first arrange the data in form of groups, dispalyed in the column form, with no gap. Then the path used would be: Data > Data Analysis > Anova: Single Factor.

When Anova: Single Factor dialogue box opens, enter the entire sample-data range (of all groups) simultaneously in the Input: Input Range, check Label in first row. Level of significance (Alpha) can be changed from \(5 \%\) level of significance, if situation demands. Press OK.

The output sheet will be displayed as below. If the P-value is small, Null Hypothesis \(\left(\mathrm{H}_{0}\right)\) of equality of sample means can be rejected, showing the significant difference among sample means.

\section*{ANOVA: One Way Using SPSS}

For testing the significance of difference between more than two samples through Analysis of Variance (One-way Classification), using SPSS. The path will be: Analyze > Compare Means > One Way ANOVA.

In the One Way ANOVA dialogue box, enter variable containing sample-data series in Dependent List drop box and the variable containing the groups into Factor drop box. Then press Options tab.

The One Way ANOVA: Options Box sub-dialogue box will be opened. Check Statistics: Descriptive check-box. Then press Continue button to go back to main dialogue box. Then press OK.

The output sheet would be displayed as above. If the Sig. is small, Null Hypothesis \(\left(\mathrm{H}_{0}\right)\) of equality of sample means can be rejected, showing the significant difference among sample means.

\section*{Analysis of Variance (ANOVA): Two Way}

\section*{Analysis of Variance (Two Way Classification with one observation per cell)}

Some situations demand that the experiment should be planned in such a manner so as to study the effects of two factors simultaneously. For each factor, there will be a number of classes/levels or categories.

The two factors are: Factor A and Factor B. The factor A has ' \(m\) ' levels/classes:
\[
\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots \cdots \mathrm{~A}_{i} \cdots \cdots \cdot \mathrm{~A}_{m}
\]

Factor B has ' \(n\) ' levels/classes:
\[
\mathrm{B}_{1}, \mathrm{~B}_{2}, \cdots \cdots \mathrm{~B}_{j} \cdots \cdots \mathrm{~B}_{n}
\]

Let \(x_{i j}\) be the observation under the \(i\) th level of Factor A and \(j\) th level of the factor B.
Here, observations should be so taken that there should be one observation per cell \(\left(x_{i j}\right)\) of the bivariate (Cross Tabulation) table. The corresponding analysis of variance is known as Analysis of Variance (Two Way Classification with one observation per cell).

The second option is that the observations should be taken in such a manner that cells of the bivariate table contain more than one observation per cell. This option facilitates the estimation and testing of the interaction effect. Interaction effect is an effect peculiar to the combination \(\left(A_{i}, B_{j}\right)\). If the joint effect of \(\mathrm{A}_{i}\) and \(\mathrm{B}_{j}\) is different from the sum of the effects due to \(\mathrm{A}_{i}\) and \(\mathrm{B}_{j}\) taken individually, then the interaction effect is said to be present.

\section*{Analysis of Variance (Two Way Classification with One Observation Per Cell)}

\section*{Short-Cut Method}
\[
\text { 1st Factor (A): } \mathrm{H}_{01}: \alpha_{1}=\alpha_{2}=\cdots \cdots,=\alpha_{i}=\cdots \cdots \alpha_{m}
\]
\(\mathrm{H}_{11}\) : At least two \(\alpha_{i}^{\prime}\) s are different.
2nd Factor (B): \(\mathrm{H}_{02}: \beta_{1}=\beta_{2}=\cdots \cdots=\beta_{i}=\cdots \cdots \beta_{n}\) \(\mathrm{H}_{12}\) : At least two \(\beta_{j}\) 's are different.

\section*{Observation Table}

Where
\[
\begin{array}{ll}
\mathrm{T}_{i}=\sum_{j=i}^{n} x_{i j} & \bar{x}_{i}=\frac{T_{i} .}{n}=\frac{\sum_{j=i}^{n} x_{i j}}{n} \\
\mathrm{~T}_{._{j}}=\sum_{i=1}^{m} x_{i j} & \bar{x}_{._{j}}=\frac{\mathrm{T}_{\cdot j}}{m}=\frac{\sum_{i=1}^{m} x_{i j}}{m} \\
\mathrm{G}=\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j} & \overline{\bar{x}}=\frac{\mathrm{G}}{\mathrm{~N}}=\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}}{\mathrm{~N}}
\end{array}
\]
\(\mathrm{N}=m \times n\) (Total Number of observations)
\[
\begin{aligned}
\text { Raw Sum of Squares (R.S.S.) } & =\sum_{i=1}^{m} \sum_{j=1}^{n} x_{i j}^{2} \\
\text { Correction Factor (C.F.) } & =\frac{\mathrm{G}^{2}}{\mathrm{~N}}
\end{aligned}
\]

Total Sum of Square (T.S.S.) \(=\) Raw S.S. - C.F.
Sum of Squares due to factor A \((\mathrm{SSA})=\sum_{i=1}^{m}\left(\frac{T_{i}^{2}}{n}\right)-\) C.F.
Sum of Squares due to factor B \((\mathrm{SSB})=\sum_{j=1}^{n}\left(\frac{T_{._{j}^{2}}}{m}\right)-\) C.F
Sum of Squares due to error \((S S E)=\) T.S.S. - S.S.A - S.S.B

\section*{ANOVA Table}

\[
\begin{aligned}
\mathrm{F}_{\mathrm{B}(\text { cinit }} & =\mathrm{F}_{\alpha \text { d.f.(B) }} \\
\text { d.f.(B) } & =(n-1),(m-1) \cdot(n-1)
\end{aligned}
\]

\section*{ANOVA: Two Way Using MS-Excel}

MS-Excel can be used for performing Analysis of Variance (Two-way Classification: Without Replication i.e., one observation per cell). For this purpose, first arrange the data in form of a cross tabulation format, one source of variation in rows and the other in columns. Then the path used would be: Data > Data Analysis > Anova: Two Factor Without Replication.

When Anova: Two Factor without replication dialogue box opens enter the entire sample-data range (in the form of cross table) simultaneously in the Input: Input Range, check Label. Level of significance (Alpha) can be changed from \(5 \%\) level of significance, if situation demands. Press OK.

The output sheet would be displayed as under. If the P -value is small for a particular source of variation then that source of variation will show the significant effect i.e. there will be significant difference between sample-means corresponding to that source of variation.

\section*{ANOVA: Two Way Using SPSS}

For performing Analysis of Variance (Two-way Classification), using SPSS, the path will be: Analyze > General Linear Model > Univariate.

In the Univariate dialogue box, enter the variable containing sample-data series in Dependent Variable drop box and the two variables containing the possible sources of variation into Fixed Factors drop box. Then press OK.

The output sheet would be displayed as under.
```

f) Output1 [Document1] - SPSS Viewer
File Edit View Data Transform Insert Format Analyze Graphs Utilities Add-ons Window Help

```


```

= Univariate Analysis of Variance
[DataSet1] E:\ddrive\Levin \& Rubin\Case_Nirmal-Data.sav

		Value Label	N
Region of the Shop	1	Northern Region	20
	2	Eastern Region	20
	3	Westeren Region	14
	4	Southern Region	6
Type of Shop	1	Urban Shop	31
	2	Rural Shop	29

Tests of Between-Subjects Effects

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$739.978^{\text {a }}$	7	105.711	2.809	015
Intercept	167998.706	1	167998.706	4464.842	. 000
Region	446.439	3	148.813	3.955	. 013
Type	981	1	. 981	. 026	. 872
Region * Type	281.875	3	93.958	2.497	. 070
Error	1956.605	52	37.627		
Total	249097.000	60			

```

\section*{HINTS \& ASSUMPTIONS}

The focus of analysis of variance is to test whether three or more samples have been drawn from populations having the same mean. Analysis of variance is important in research such as the evaluation of new drugs, where we need to examine the effects of dose, frequency of medication, effects of other drugs, and patient differences in a single study. Analysis of variance compares two estimates of the population variance. One estimate comes from the variance among the sample means, the other from the variance within the samples themselves. If they are approximately equal, the chances are high that the samples came from the same population. Warning: It's vital not to abandon common sense when interpreting results. While it may be true that a study can identify differences in brand preferences for instant coffee that apply to coffee purchases made on weekday mornings, it's hard to say what a coffee company should do with this information.

\section*{EXERCISES 11.4}

\section*{Self-Check Exercises}

SC 11-5 A study compared the effects of four 1-month point-of-purchase promotions on sales. The unit sales for five stores using all four promotions in different months follow.
\begin{tabular}{llllll}
Free sample & 78 & 87 & 81 & 89 & 85 \\
One-pack gift & 94 & 91 & 87 & 90 & 88 \\
Cents off & 73 & 78 & 69 & 83 & 76 \\
Refund by mail & 79 & 83 & 78 & 69 & 81
\end{tabular}
(a) Compute the mean unit sales for each promotion and then determine the grand mean.
(b) Estimate the population variance using the between-column variance (Equation 11-6).
(c) Estimate the population variance using the within-column variance computed from the variance within the samples.
(d) Calculate the \(F\) ratio. At the 0.01 level of significance, do the promotions produce different effects on sales?
SC 11-6 A research company has designed three different systems to clean up oil spills. The following table contains the results, measured by how much surface area (in square meters) is cleared in 1 hour. The data were found by testing each method in several trials. Are the three systems equally effective? Use the 0.05 level of significance
\begin{tabular}{lllllll}
System A & 55 & 60 & 63 & 56 & 59 & 55 \\
System B & 57 & 53 & 64 & 49 & 62 & \\
System C & 66 & 52 & 61 & 57 & &
\end{tabular}

\section*{Applications}

11-25 A study compared the number of hours of relief provided by five different brands of antacid administered to 25 different people, each with stomach acid considered strong. The results are given in the following table:
\begin{tabular}{cccccc}
\hline Brand & A & B & C & D & E \\
\hline & 4.4 & 5.8 & 4.8 & 2.9 & 4.6 \\
& 4.6 & 5.2 & 5.9 & 2.7 & 4.3 \\
& 4.5 & 4.9 & 4.9 & 2.9 & 3.8 \\
& 4.1 & 4.7 & 4.6 & 3.9 & 5.2 \\
& 3.8 & 4.6 & 4.3 & 4.3 & 4.4 \\
\hline
\end{tabular}
(a) Compute the mean number of hours of relief for each brand and determine the grand mean.
(b) Estimate the population variance using the between-column variance (Equation 11-6).
(c) Estimate the population variance using the within-column variance computed from the variance within the samples.
(d) Calculate the F ratio. At the 0.05 level of significance, do the brands produce significantly different amounts of relief to people with strong stomach acid?
11-26 Three training methods were compared to see whether they led to greater productivity after training. The following are productivity measures for individuals trained by each method.
\begin{tabular}{lllllll}
Method 1 & 45 & 40 & 50 & 39 & 53 & 44 \\
Method 2 & 59 & 43 & 47 & 51 & 39 & 49 \\
Method 3 & 41 & 37 & 43 & 40 & 52 & 37
\end{tabular}

At the 0.05 level of significance, do the three training methods lead to different levels of productivity?
11-27 The following data show the number of claims processed per day for a group of four insurance company employees observed for a number of days. Test the hypothesis that the employees' mean claims per day are all the same. Use the 0.05 level of significance.
\begin{tabular}{lllllll}
Employee 1 & 15 & 17 & 14 & 12 & & \\
Employee 2 & 12 & 10 & 13 & 17 & & \\
Employee 3 & 11 & 14 & 13 & 15 & 12 & \\
Employee 4 & 13 & 12 & 12 & 14 & 10 & 9
\end{tabular}

11-28 Given the measurements in the four samples that follow, can we conclude that they come from populations having the same mean value? Use the 0.01 level of significance.
\begin{tabular}{lllllll}
Sample 1 & 16 & 21 & 24 & 28 & 29 & \\
Sample 2 & 29 & 18 & 20 & 19 & 30 & 21 \\
Sample 3 & 14 & 15 & 21 & 19 & 28 & 17 \\
Sample 4 & 21 & 28 & 20 & 22 & 18 &
\end{tabular}

11-29 We are interested in testing for differences in the palatability of three spicy salsas: A, B, and C. For each product, a sample of 25 men was chosen. Each rated the product from -3 (terrible) to +3 (excellent).The following SAS output was produced.
\begin{tabular}{|l|l|l|}
\hline \multicolumn{4}{|c|}{ ANALYSIS OF VARIANCE PROCEDURE } \\
DEPENDENT VARIABLE: & SCORE \((-3\) TO +3) \\
SOURCE & DF & SUM OF SQUARES \\
MODEL & 2 & 15.68 \\
ERROR & 72 & 94.4 \\
CORRECTED TOTAL & 74 & 110.08 \\
MODEL \(F=\) & 5.98 & \\
\hline
\end{tabular}
(a) State explicit null and alternative hypotheses.
(b) Test your hypotheses with the SAS output. Use \(\alpha=0.05\).
(c) State an explicit conclusion.

11-30 The supervisor of security at a large department store would like to know whether the store apprehends relatively more shoplifters during the Christmas holiday season than in the weeks before or after the holiday. He gathered data on the number of shoplifters apprehended in the store during the months of November, December, and January over the past 6 years. The information follows:
\begin{tabular}{llccccc}
\hline \multicolumn{7}{c}{ Number of Shoplifters } \\
\hline November & 43 & 37 & 59 & 55 & 38 & 48 \\
December & 54 & 41 & 48 & 35 & 50 & 49 \\
January & 36 & 28 & 34 & 41 & 30 & 32 \\
\hline
\end{tabular}

At the 0.05 level of significance, is the mean number of apprehended shoplifters the same during these 3 months?
11-31 An Introduction to Economics course is offered in 3 sections, each with a different instructor. The final grades from the spring term are presented be low. Is there a significant difference in the average grades given by the instructors? State and test appropriate hypotheses at \(\alpha=0.01\).
\begin{tabular}{ccc}
\hline Section 1 & Section 2 & Section 3 \\
\hline 98.4 & 97.6 & 94.5 \\
97.6 & 99.2 & 92.3 \\
84.7 & 82.6 & 92.4 \\
88.5 & 81.2 & 82.3 \\
77.6 & 64.5 & 62.6 \\
84.3 & 82.3 & 68.6 \\
81.6 & 68.4 & 92.7 \\
88.4 & 75.6 & 82.3 \\
95.1 & & 91.2 \\
90.4 & & 92.6 \\
89.4 & 87.4 \\
65.6 & & \\
94.5 & & \\
99.4 & & \\
68.7 & & \\
83.4 & & \\
\hline
\end{tabular}

11-32 The manufacturer of silicon chips requires so-called clean rooms, where the air is specially filtered to keep the number of dust particles at a minimum. The Outel Corporation wants to make sure that each of its five clean rooms has the same number of dust particles. Five air samples have been taken in each room. The "dust score," on a scale of 1 (low) to 10 (high), was measured. At the 0.05 level of significance, do the rooms have the same average dust score?
\begin{tabular}{llllll}
\hline \multicolumn{6}{c}{ Dust Score (1 to 10) } \\
\hline Room 1 & 5 & 6.5 & 4 & 7 & 6 \\
Room 2 & 3 & 6 & 4 & 4.5 & 3 \\
Room 3 & 1 & 1.5 & 3 & 2.5 & 4 \\
Room 4 & 8 & 9.5 & 7 & 6 & 7.5 \\
Room 5 & 1 & 2 & 3.5 & 1.5 & 3 \\
\hline
\end{tabular}

11-33 A lumber company is concerned about how rising interest rates are affecting the new housing starts in the area. To explore this question, the company has gathered data on new housing starts during the past three quarters for five surrounding counties. This information is presented in the following table. At the 0.05 level of significance, are there any differences in the number of new housing starts during the three quarters?
\begin{tabular}{llllll}
Quarter 1 & 41 & 53 & 54 & 55 & 43 \\
Quarter 2 & 45 & 51 & 48 & 43 & 39 \\
Quarter 3 & 34 & 44 & 46 & 45 & 51
\end{tabular}

11-34 Genes-and-Jeans, Inc., offers clones of such popular jeans as Generic, DNA, RNA, and Oops. The store wants to see whether there are differences in the number of pairs sold of different brands. The manager has counted the number of pairs sold for each brand on several different days. At the 0.05 significance level, are the sales of the four brands the same?
\begin{tabular}{lcccccc}
\hline \multicolumn{7}{c}{ Pairs of Jeans Sold } \\
\hline Generic & 17 & 21 & 13 & 27 & 12 & \\
DNA & 27 & 13 & 29 & 9 & & \\
RNA & 13 & 15 & 17 & 23 & 10 & 21 \\
Oops & 18 & 25 & 15 & 27 & 12 & \\
\hline
\end{tabular}

11-35 In Bigville, a fast-food chain feels it is gaining a bad reputation because it takes too long to serve the customers. Because the chain has four restaurants in this town, it is concerned with whether all four restaurants have the same average service time. One of the owners of the fast-food chain has decided to visit each of the stores and monitor the service time for five randomly selected customers. At his four noontime visits, he records the following service times in minutes:
\begin{tabular}{llllll}
Restaurant 1 & 3 & 4 & 5.5 & 3.5 & 4 \\
Restaurant 2 & 3 & 3.5 & 4.5 & 4 & 5.5 \\
Restaurant 3 & 2 & 3.5 & 5 & 6.5 & 6 \\
Restaurant 4 & 3 & 4 & 5.5 & 2.5 & 3
\end{tabular}
(a) Using a 0.05 significance level, do all the restaurants have the same mean service time?
(b) Based on his results, should the owner make any policy recommendations to any of the restaurant managers?
11-36 LWP is a large multinational company, having more than 2000 employees under its payroll. The management of the LWP company has introduced an intensive and comprehensive
training programme for its managerial level employees. There are four different types of training progammes, currently under consideration. Employees were divided into four groups and different groups were given different training programmes. Now the management of LWP wants to examine the effectiveness of these training programmes i.e. whether these programmes have been resulting into same managerial skill enhancement or their degree of effectiveness is different. Simultaneously, the management also wants to examine whether there is some change in the effectiveness - degree with the level of experience of employees. Management believes that these two factors are independent. There are 5 categories of experience-levels, as envisaged by the HR department of LWP. For this dual purpose, 20 employees were randomly chosen, according to a particular scheme. Five employees were chosen from each training programme and in each subgroup, 5 employees belong to 5 different experience categories. The employees thus selected were given a managerial-skill aptitude examination to examine their managerial aptitude and their scores are tabulated in form of following table:
\begin{tabular}{ccccc}
\hline & \multicolumn{4}{c}{ Training Programme } \\
\cline { 2 - 5 } Experience Category (Years) & Training 1 & Training 2 & Training 3 & Training 4 \\
\hline \(0-2\) & 10 & 20 & 10 & 30 \\
\(2-5\) & 10 & 30 & 5 & 50 \\
\(5-10\) & 20 & 30 & 10 & 20 \\
\(10-15\) & 25 & 30 & 20 & 20 \\
More than 15 & 25 & 40 & 20 & 40 \\
\hline
\end{tabular}

Analyze the data and examine the following perceptions:
(a) The four training programmes are equally effective in enhancing the managerial-skill of the employees.
(b) There is no significant aptitude-difference among employees of different experiencecategories.

Comment on the results.

\section*{Worked-Out Answers to Self-Check Exercises}
\begin{tabular}{|c|c|c|c|c|c|}
\hline SC 11-5 (a) & & Free & Gift & Cents & Refund \\
\hline & & 78 & 94 & 73 & 79 \\
\hline & & 87 & 91 & 78 & 83 \\
\hline & & 81 & 87 & 69 & 78 \\
\hline & & 89 & 90 & 83 & 69 \\
\hline & & 85 & 88 & 76 & 81 \\
\hline & \(\Sigma x\) & 420 & 450 & 379 & 390 \\
\hline & \(n\) & 5 & 5 & 5 & 5 \\
\hline & \(\bar{x}\) & 84 & 90 & 75.8 & 78 \\
\hline & \(\Sigma x^{2}\) & 35,360 & 40,530 & 28,839 & 30,536 \\
\hline & \(s^{2}\) & 20 & 7.5 & 27.7 & 29 \\
\hline & me & \[
\frac{450+379}{20}
\] & & & \\
\hline
\end{tabular}
(b) \(\hat{\sigma}_{b}^{2}=\frac{\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}}{k-1}=\frac{\left.5[84-81.95)^{2}+(90-81.95)^{2}+(75.8-81.95)^{2}+(78-81.95)^{2}\right]}{4-1}\)
\[
=\frac{612.15}{3}=204.05
\]
(c) \(\hat{\sigma}_{w}^{2}=\sum\left(\frac{n_{j}-1}{n_{T}-k}\right) s_{j}^{2}=\frac{4(20+7.5+27.7+29)}{20-4}=\frac{336.8}{16}=21.05\)
(d) \(F=\frac{204.05}{21.05}=9.69\)

With 3 degrees of freedom in the numerator, 16 degrees of freedom in the denominator, and \(\alpha=0.01\), the critical value of \(F\) is 5.29 , so reject \(\mathrm{H}_{0}\), because \(9.69>5.29\). The promotions have significantly different effects on sales.

SC 11-6
\begin{tabular}{lccc}
\hline & \(\boldsymbol{n}\) & \(\overline{\boldsymbol{x}}\) & \(\boldsymbol{s}^{\mathbf{2}}\) \\
\hline System A & 6 & 58 & 10.4000 \\
System B & 5 & 57 & 38.5000 \\
System C & 4 & 59 & 35.3333 \\
\hline
\end{tabular}
\[
\begin{aligned}
\overline{\bar{x}} & =\frac{6(58)+5(57)+4(59)}{6+5+4}=57.9333 \\
\hat{\sigma}_{b}^{2} & =\frac{\sum n_{j}\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}}{k-1} \\
& =\frac{6(58-57.9333)^{2}+5(57-57.9333)^{2}+4(59-57.9333)^{2}}{3-1} \\
& =\frac{8.9333}{2}=4.4667 \\
\sigma_{w}^{2} & =\sum\left(\frac{n_{j}-1}{n_{T}-k}\right) s_{j}^{2}=\frac{5(10.4)+4(38.5)+3(35.3333)}{15-3}=\frac{312}{12}=26 \\
F & =\frac{\hat{\sigma}_{w}^{2}}{\hat{\sigma}_{w}^{2}}=\frac{4.4667}{26}=0.17
\end{aligned}
\]

With 2 degrees of freedom in the numerator, 12 degrees of freedom in the denominator, and \(\alpha=0.05\), the critical value of \(F\) is 3.89 , so don't reject \(\mathrm{H}_{0}\), because \(0.17<3.89\). The systems do not have significantly different effectiveness.

\subsection*{11.5 INFERENCES ABOUT A POPULATION VARIANCE}

In Chapters 7-9, we learned how to form confidence intervals and test hypotheses about one or two population means or proportions. Earlier in this chapter, we used chi-square and \(F\) tests to make inferences about more than two means or proportions. But we are not

Need to make decisions about variability in a population
always interested in means and proportions. In many situations, responsible decision makers have to make inferences about the variability in a population. In order to schedule the labor force at harvest time, a peach grower needs to know not only the mean time to maturity of the peaches, but also their variance around that mean. A sociologist investigating the effect of education on earning power wants to know whether the incomes of college graduates are more variable than those of high school graduates. Precision instruments used in laboratory work must be quite accurate on the average but in addition, repeated measurements should show very little variation. In this section, we shall see how to make inferences about a single population variance. The next section looks at problems involving the variances of two populations.

\section*{The Distribution of the Sample Variance}

In response to a number of complaints about slow mail delivery, the Postmaster General initiates a preliminary investigation. An investigator follows nine letters from New York to Chicago, to estimate the standard deviation in time of delivery. Table 11-15 gives the data and computes \(\bar{x}, s^{2}\), and \(s\). As we saw in Chapter 7, we use \(s\) to estimate \(\sigma\).

We can tell the Postmaster General that the population standard deviation, as estimated by the sample standard deviation, is approximately 23 hours. But he also wants to know how accurate that estimate is and what uncertainty is associated with it. In other words, he wants a confidence interval, not just a point estimate of

Determining the uncertainty attached to estimates of the population standard deviation \(\sigma\). In order to find such an interval, we must know the sampling

\section*{TABLE 11-15 DELIVERY TIME (IN HOURS) FOR LETTERS GOING BETWEEN NEW YORK AND CHICAGO}
\begin{tabular}{|c|c|c|c|c|}
\hline Time \(\boldsymbol{x}\) & \(\bar{x}\) & \(\boldsymbol{x}-\overline{\boldsymbol{x}}\) & \((x-\bar{x})^{2}\) & \\
\hline 50 & 59 & -9 & 81 & \\
\hline 45 & 59 & -14 & 196 & \\
\hline 27 & 59 & -32 & 1,024 & \\
\hline 66 & 59 & 7 & 49 & \\
\hline 43 & 59 & -16 & 256 & \\
\hline 96 & 59 & 37 & 1,369 & \\
\hline 45 & 59 & -14 & 196 & \\
\hline 90 & 59 & 31 & 961 & \\
\hline 69 & 59 & 10 & 100 & \\
\hline \(\sum x=531\) & & & \(\Sigma(x-\bar{x})^{2}=\mathbf{4 , 2 3 2}\) & \\
\hline \[
x=\frac{\sum x}{n}=\frac{531}{9}
\] & [3-2] & & \[
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}=\frac{4,232}{8}
\] & [3-17] \\
\hline \(=59\) hours & & & \[
\begin{aligned}
& =529 \text { hours squared } \\
s=\sqrt{s^{2}} & =\sqrt{529}
\end{aligned}
\] & [3-18] \\
\hline & & & \(=23\) hours & \\
\hline
\end{tabular}
distribution of \(s\). It is traditional to talk about \(s^{2}\) rather than \(s\), but this will cause us no trouble, because we can always go from \(s^{2}\) and \(\sigma^{2}\) to \(s\) and \(\sigma\) by taking square roots; we can go in the other direction by squaring.

\section*{Chi-Square Statistic for Inferences about One Variance}
\[
\begin{equation*}
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \tag{11-12}
\end{equation*}
\]

If the population variance is \(\sigma^{2}\), then the statistic has a chi-square distribution with \(n-1\) degrees of freedom. This result is exact if the population is normal, but even for samples from nonnormal populations, it is often a good approximation. We can now use the chi-square distribution to form confidence intervals and test hypotheses about \(\sigma^{2}\).

\section*{Confidence Intervals for the Population Variance}

Suppose we want a 95 percent confidence interval for the variance in our mail-delivery problem. Figure 11-8 shows how to begin constructing this interval.

We locate two points on the \(\chi^{2}\) distribution: \(\chi_{u_{2}}^{2}\) cuts off 0.025 of the area in the upper tail of the distribution, and \(\chi_{L}^{2}\) cuts off 0.025 of the area in the lower tail. (For a 99 percent confidence interval, we would put 0.005 of the area in each tail, and similarly for other confidence levels.) The values of \(\chi_{L}^{2}\) and \(\chi_{u}^{2}\), can be found in Appendix Table 5. In our mail problem, with \(9-1=8\) degrees of freedom, \(\chi_{L}^{2}=2.180\) and \(\chi_{u}^{2}=17.535\).

Now Equation 11-12 gives \(\chi^{2}\) in terms of \(s^{2}, n\), and \(\sigma^{2}\). To get a confidence interval for \(\sigma^{2}\), we solve Equation 11-12 for \(\sigma^{2}\) :
\[
\begin{equation*}
\sigma^{2}=\frac{(n-1) s^{2}}{\chi^{2}} \tag{11-13}
\end{equation*}
\]

FIGURE 11-8 CONSTRUCTING A CONFIDENCE INTERVAL FOR \(\sigma^{2}\).
and then our confidence interval is given by
\begin{tabular}{|l|l|}
\hline Confidence Interval for \(\boldsymbol{\sigma}^{\mathbf{2}}\) & \\
\(\sigma_{L}^{2}\) & \(=\frac{(n-1) s^{2}}{\chi_{u}^{2}} \leftarrow\) Lower confidence limit \\
\(\sigma_{u}^{2}\) & \(=\frac{(n-1) s^{2}}{\chi_{L}^{2}} \leftarrow\) Upper confidence limit
\end{tabular}

Notice that because \(\chi^{2}\) appears in the denominator in Equation 11-13, we can use \(\chi_{u}^{2}\) to find \(\sigma_{L}^{2}\) and \(\chi_{L}^{2}\) to find \(\sigma_{u}^{2}\). Continuing with the Postmaster General's problem, we see he can be 95 percent confident that the population variance lies between 241.35 and \(1,941.28\) hours squared:
\[
\begin{align*}
& \sigma_{L}^{2}=\frac{(n-1) s^{2}}{\chi_{u}^{2}}=\frac{8(529)}{17.535}=241.35 \tag{11-14}\\
& \sigma_{u}^{2}=\frac{(n-1) s^{2}}{\chi_{L}^{2}}=\frac{8(529)}{2.180}=1,941.28
\end{align*}
\]

So a 95 percent confidence interval for \(\sigma\) would be from \(\sqrt{241.35}\) to \(\sqrt{1,941.28}\) hours, that is, from 15.54 to 44.06 hours.

\section*{A Two-Tailed Test of a Variance}

A management professor has given careful thought to the design of examinations. In order for him to be reasonably certain that an exam does a good job of distinguishing the differences in achieve-

Testing hypotheses about a variance: Two-tailed tests ment shown by the students, the standard deviation of scores on the examination cannot be too small. On the other hand, if the standard deviation is too large, there will tend to be a lot of very low scores, which is bad for student morale. Past experience has led the professor to believe that a standard deviation of about 13 points on a 100-point exam indicates that the exam does a good job of balancing these two objectives.

The professor just gave an examination to his class of 31 freshmen and sophomores. The mean score was 72.7 and the sample standard deviation was 15.9. Does this exam meet his goodness criterion? We can summarize the data:
\[
\begin{aligned}
& \sigma_{\mathrm{H}_{0}}=13 \leftarrow \text { Hypothesized value of the population standard deviation } \\
& s=15.9 \\
& \leftarrow \text { Sample standard deviation } \\
& n=31 \quad \leftarrow \text { Sample size }
\end{aligned}
\]

If the professor uses a significance level of 0.10 in testing his Stating the problem symbolically hypothesis, we can symbolically state the problem:
\[
\begin{aligned}
& \mathrm{H}_{0}: \sigma=13 \leftarrow \text { Null hypothesis: The true standard deviation is } 13 \text { points } \\
& \mathrm{H}_{1}: \sigma \neq 13 \leftarrow \text { Alternative hypothesis: The true standard deviation is not } 13 \text { points }
\end{aligned}
\]

FIGURE 11-9 TWO-TAILED HYPOTHESIS TEST AT THE 0.10 LEVEL OF SIGNIFICANCE, SHOWING ACCEPTANCE REGION AND SAMPLE \(\chi^{2}\)
\[
\alpha=0.10 \leftarrow \text { Level of significance for testing these hypotheses }
\]

The first thing we do is to use Equation 11-12 to calculate the \(\chi^{2}\) Calculating the \(\chi^{2}\) statistic statistic:
\[
\begin{align*}
\chi^{2} & =\frac{(n-1) s^{2}}{\sigma^{2}} \tag{11-12}\\
& =\frac{30(15.9)^{2}}{(13)^{2}} \\
& =44.88
\end{align*}
\]

This statistic has a \(\chi^{2}\) distribution with \(n-1(=30\) in this case \()\) degrees of freedom. We will accept the null hypothesis if \(\chi^{2}\)

\section*{Interpreting the results} is neither too big nor too small. From the \(\chi^{2}\) distribution table (Appendix Table 5), we can see that the appropriate \(\chi^{2}\) values for 0.05 of the area to lie in each tail of the curve are 18.493 and 43.773. These two limits of the acceptance region and the observed sample statistic \(\left(\chi^{2}=44.88\right)\) are shown in Figure \(11-9\). We see that the sample value of \(\chi^{2}\) is not in the acceptance region, so the professor should reject the null hypothesis; this exam does not meet his goodness criterion.

\section*{A One-Tailed Test of a Variance}

Precision Analytics manufactures a wide line of precision instruments and has a fine reputation in the field for quality of its instruments. In order to preserve that reputation, it maintains strict qual-

Testing hypotheses about a variance: One-tailed tests ity control on all of its output. It will not release an analytic balance for sale, for example, unless that balance shows a standard deviation significantly below one microgram (at \(\alpha=0.01\)) when weighing quantities of about 500 grams. A new balance has just been delivered to the quality control division from the production line.

The new balance is tested by using it to weigh the same 500-gram standard weight 30 different times. The sample standard deviation turns out to be 0.73 microgram. Should this balance be sold? We
summarize the data:
\[
\begin{aligned}
\sigma_{\mathrm{H}_{0}} & =1 \quad \leftarrow \text { Hypothesized value of the population standard deviation } \\
s & =0.73 \leftarrow \text { Sample standard deviation } \\
n & =30 \quad \leftarrow \text { Sample size }
\end{aligned}
\]
and state the problem:

\section*{Stating the problem symbolically}
\[
\begin{aligned}
& \mathrm{H}_{0}: \sigma=1 \quad \leftarrow \text { Null hypothesis: The true standard deviation is } 1 \text { microgram } \\
& \mathrm{H}_{1}: \sigma<1 \quad \leftarrow \text { Alternative hypothesis. The true standard deviation is less than } 1 \text { microgram } \\
& \alpha=0.01 \leftarrow \text { Level of significance for testing these hypotheses }
\end{aligned}
\]

We begin by using Equation 11-12 to calculate the \(\chi^{2}\) statistic:

\section*{Calculating the \(\chi^{2}\) statistic}
\[
\begin{aligned}
\chi^{2} & =\frac{(n-1) s^{2}}{\sigma^{2}} \\
& =\frac{29(0.73)^{2}}{(1)^{2}} \\
& =15.45
\end{aligned}
\]

We will reject the null hypothesis and release the balance for sale
Interpreting the results if this statistic is sufficiently small. From Appendix Table 5, we see that with 29 degrees of freedom \((30-1)\), the value of \(\chi^{2}\) that leaves an area of 0.01 in the lower tail of the curve is 14.256 . The acceptance region and the observed value of \(\chi^{2}\) are shown in Figure 11-10. We see that we cannot reject the null hypothesis. The balance will have to be returned to the production line for adjusting.

FIGURE 11-10 ONE-TAILED HYPOTHESIS TEST AT THE 0.01 SIGNIFICANCE LEVEL, SHOWING ACCEPTANCE REGION AND SAMPLE \(\chi^{2}\)

\section*{HINTS \& ASSUMPTIONS}

Up to this point, we've seen how to make inferences about one, two, or several means or proportions. But we're also interested in making inferences about population variability. For one population, we do this by using the sample variance and the chi-square distribution. Warning: Chi-square tests can be one-tailed or two-tailed. Hint: If the question to be answered is worded less than, more than, less than or equal to, or greater than or equal to, use a one-tailed test. If the question concerns different from, or changed from, use a two-tailed test.

\section*{EXERCISES 11.5}

\section*{Self-Check Exercises}

SC 11-7 Given a sample variance of 127 from a set of nine observations, construct a 95 percent confidence interval for the population variance.
SC 11-8 A production manager feels that the output rate of experienced employees is surely greater than that of new employees, but he does not expect the variability in output rates to differ for the two groups. In previous output studies, it has been shown that the average unit output per hour for new employees at this particular type of work is 20 units per hour with a variance of 56 units squared. For a group of 20 employees with 5 years' experience, the average output for this same type of work is 30 units per hour, with a sample variance of 28 units squared. Does the Variability in output appear to differ at the two experience levels? Test the hypotheses at the 0.05 significance level.

\section*{Basic Concepts}

11-37 A sample of 20 observations from a normal distribution has a mean of 37 and a variance of 12.2. Construct a 90 percent confidence interval for the true population variance.

11-38 The standard deviation of a distribution is hypothesized to be 50. If an observed sample of 30 yields a sample standard deviation of 57, should we reject the null hypothesis that the true standard deviation is 50 ? Use the 0.05 level of significance.
11-39 Given a sample standard deviation of 6.4 from a sample of 15 observations, construct a 90 percent confidence interval for the population variance.

\section*{Applications}

11-40 A telescope manufacturer wants its telescopes to have standard deviations in resolution to be significantly below 2 when focusing on objects 500 light-years away. When a new telescope is used to focus on an object 500 light-years away 30 times, the sample standard deviation turns out to be 1.46 . Should this telescope be sold?
(a) State explicit null and alternative hypotheses.
(b) Test your hypotheses at the \(\alpha=0.01\) level.
(c) State an explicit conclusion.

11-41 MacroSwift has designed a new operating system that will revolutionize the computing industry. The only problem is, the company expects the average amount of time required to learn the software to be 124 hours. Even though this is a long educational time, the company is truly concerned with the variance of the learning time. Preliminary data indicate the variance is 171
hours squared. Recent testing of 25 people found an average learning time of 123 hours and a sample variance of 196.5 hours squared. Do these data indicate the variability in learning time is different from the previous estimate? Test your hypotheses at the 0.02 significance level.
11-42 A psychologist is aware of studies showing that the variability of attention spans of 5-yearolds can be summarized by \(\sigma^{2}=64\) minutes squared. She wonders whether the attention span of 6-year-olds is different. A sample of twenty 6 -year-olds gives \(s^{2}=28\) minutes squared.
(a) State explicit null and alternative hypotheses.
(b) Test your hypotheses at the \(\alpha=0.05\) level.
(c) State an explicit conclusion.

11-43 In checking its cars for adherence to emissions standards set by the government, an automaker measured emissions of 30 cars. The average number of particles of pollutants emitted was found to be within the required levels, but the sample variance was 50 . Find a 90 percent confidence interval for the variance in emission particles for these cars.
11-44 A bank is considering ways to reduce the costs associated with passbook savings accounts. The bank has found that the variance in the number of days between account transactions for passbook accounts is 80 days squared. The bank wants to reduce the variance by discouraging the present use of accounts for short-term storage of cash. Therefore, after implementing a new policy that penalizes the customer with a service charge for withdrawals more than once a month, the bank decides to test for a change in the variance of days between account transactions. From a sample of 25 savings accounts, the bank finds the variance between transactions to be 28 days squared. Is the bank justified in claiming that the new policy reduces the variance of days between transactions? Test the hypotheses at the 0.05 level of significance.
11-45 Sam Bogart, the owner of the Play-It-Again Stereo Company, offers 1-year warranties on all the stereos his company sells. For the 30 stereos that were serviced under the warranty last year, the average cost to fix a stereo was \(\$ 75\) and sample standard deviation was \(\$ 15\). Calculate a 95 percent confidence interval for the true standard deviation of the cost of repair. Sam has decided that unless the true standard deviation is less than \(\$ 20\), he will buy his stereos from a different wholesaler. Help Sam test the appropriate hypotheses, using a significance level of 0.01 . Should he switch wholesalers?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 11-7 For a 95 percent confidence interval with 8 degrees of freedom:
\[
\begin{aligned}
& \sigma_{L}^{2}=\frac{(n-1) s^{2}}{\chi_{u}^{2}}=\frac{8(127)}{17.535}=57.941 \\
& \sigma_{u}^{2}=\frac{(n-1) s^{2}}{\chi_{L}^{2}}=\frac{8(127)}{2.180}=466.055
\end{aligned}
\]

Thus, the confidence interval is (57.941, 466.055).
SC 11-8 For testing \(H_{0}: \sigma^{2}=56\) versus \(H_{1}: \sigma^{2} \neq 56\) at \(\alpha=0.05\), the limits of the acceptance region are
\[
\chi^{2}=8.907 \quad \text { and } \quad \chi^{2}=32.852
\]

The observed \(\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{19(28)}{56}=9.5\), so we do not reject \(H_{0}\); the variability is not significantly different.

\subsection*{11.6 INFERENCES ABOUT TWO POPULATION VARIANCES}

In Chapter 9, we saw several situations in which we wanted to compare the means of two different populations. Recall that we did this

\section*{Comparing the variances of two populations} by looking at the difference of the means of two samples drawn from those populations. Here, we want to compare the variances of two populations. However, rather than looking at the difference of the two sample variances, it turns out to be more convenient if we look at their ratio. The next two examples show how this is done.

\section*{A One-Tailed Test of Two Variances}

A prominent sociologist at a large midwestern university believes that incomes earned by college graduates show much greater variability than the earnings of those who did not attend college. In order to test this theory, she dispatches two research assistants to Chicago to look at the earnings of these two populations. The first assistant takes a random sample of 21 college graduates and finds that their earnings have a sample standard deviation of \(s_{1}=\$ 17,000\). The second assistant samples 25 nongraduates and obtains a standard deviation in earnings of \(s_{2}=\$ 7,500\). The data of our problem can be summarized as follows:
\[
\begin{array}{ll}
s_{1}=17,000 & \leftarrow \text { Standard deviation of first sample } \quad \text { Data for the problem } \\
n_{1}=21 & \leftarrow \text { Size of first sample } \\
s_{2}=7,500 & \leftarrow \text { Standard deviation of second sample } \\
n_{2}=25 & \leftarrow \text { Size of second sample }
\end{array}
\]

Because the sociologist theorizes that the earnings of college graduates are more variable than those of people not attending college, a one-tailed test is appropriate. She wishes to verify her theory

Why a one-tailed test is
appropriate at the 0.01 level of significance. We can formally state her hypotheses:
\[
\begin{aligned}
& \mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}\left(\text { or } \sigma_{1}^{2} / \sigma_{2}^{2}=1\right) \leftarrow \text { Null hypothesis: the two variances Statement of the hypotheses } \\
& \text { are the same }
\end{aligned} \quad \begin{aligned}
\mathrm{H}_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}\left(\text { or } \sigma_{1}^{2} / \sigma_{2}^{2}>1\right) & \leftarrow \text { Alternative hypothesis: earnings of college graduates have more variance } \\
\alpha=0.01 & \leftarrow \text { Level of significance for testing these hypotheses }
\end{aligned}
\]

We know that \(s_{1}^{2}\) can be used to estimate \(\sigma_{1}^{2}\), and \(s_{2}^{2}\) can be used to estimate \(\sigma_{2}^{2}\). If the alternative hypothesis is true, we would expect that \(s_{1}^{2}\) will be greater than \(s_{2}^{2}\) (or, equivalently, that \(s_{1}^{2} / s_{2}^{2}\) will be greater than 1). But how much greater must \(s_{1}^{2}\) be in order for us to be able to reject the null hypothesis? To answer this question, we must know the distribution of \(s_{1}^{2} / s_{2}^{2}\). If we assume that the two populations are reasonably well described by normal distributions, then the ratio Description of the \(F\) statistic

\section*{F Ratio for Inferences about Two Variances}
\[
\begin{equation*}
F=\frac{s_{1}^{2}}{s_{2}^{2}} \tag{11-15}
\end{equation*}
\]
has an \(F\) distribution with \(n_{1}-1\) degrees of freedom in the numerator and \(n_{1}-2\) degrees of freedom in the denominator.

FIGURE 11-11 ONE-TAILED HYPOTHESIS TEST AT THE 0.01 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE SAMPLE F STATISTIC

In the earnings problem, we calculate the sample \(F\) statistic:
\[
\begin{align*}
F & =\frac{s_{1}^{2}}{s_{2}^{2}} \tag{11-15}\\
& =\frac{(17,000)^{2}}{(7,500)^{2}} \\
& =\frac{289,000,000}{56,250,000} \\
& =5.14
\end{align*}
\]

For 20 degrees of freedom \((21-1)\) in the numerator and 24 degrees

\section*{Interpreting the results} of freedom (\(25-1\)) in the denominator, Appendix Table 6 tells us that the critical value separating the acceptance and rejection regions is 2.74 . Figure 11-11 shows the acceptance region and the observed \(F\) statistic of 5.14. Our sociologist rejects the null hypothesis, and the sample data support her theory.

A word of caution about the use of Appendix Table 6 is necessary at this point. You will notice that the table gives values of the \(F\) statistic that are appropriate only for upper-tailed tests. How can

Handling lower-tailed tests in
Appendix Table 6 we handle alternative hypotheses of the form \(\sigma_{1}^{2}<\sigma_{2}^{2}\) (or \(\sigma_{1}^{2} / \sigma_{2}^{2}<\) 1)? This is easily done if we notice that \(\sigma_{1}^{2} / \sigma_{2}^{2}<1\) is equivalent to \(\sigma_{2}^{2} / \sigma_{1}^{2}>1\). Thus, all we need to do is calculate the ratio \(s_{2}^{2} / s_{1}^{2}\), which also has an \(F\) distribution (but with \(n_{2}-1\) numerator degrees of freedom and \(n_{1}-1\) denominator degrees of freedom), and then we can use Appendix Table 6. There is another way to say the same thing: Whenever you are doing a one-tailed test of two variances, number the populations so that the alternative hypothesis has the form
\[
\mathrm{H}_{1}: \sigma_{1}^{2}>\sigma_{2}^{2}\left(\text { or } \sigma_{1}^{2} / \sigma_{2}^{2}>1\right)
\]
and then proceed as we did in the earnings example.

\section*{A Two-Tailed Test of Two Variances}

The procedure for a two-tailed test of two variances is similar to that for a one-tailed test. The only problem arises in finding the critical value in the lower tail. This is related to the problem about

Finding the critical value in a two-tailed test lower-tailed tests discussed in the last paragraph, and we will resolve it in a similar way.

One criterion in evaluating oral anesthetics for use in general dentistry is the variability in the length of time between injection and complete loss of sensation in the patient. (This is called the effect delay time.) A large pharmaceutical firm has just developed two new oral anesthetics, which it will market under the names Oralcaine and Novasthetic. From similarities in the chemical structure of the two compounds, it has been predicted that they should show the same variance in effect delay time. Sample data from tests of the two compounds (which controlled other variables such as age and weight) are given in Table 11-16.

The company wants to test at a 2 percent significance level whether the two compounds have the same variance in effect delay time.

TABLE 11-16 EFFECT DELAY TIMES FOR TWO ANESTHETICS
\begin{tabular}{lcc}
\hline & \begin{tabular}{c}
Sample Size \\
\((\boldsymbol{n})\)
\end{tabular} & \begin{tabular}{c}
Sample Variance \\
\((\) Seconds Squared \()\) \\
\(\left(\boldsymbol{s}^{\mathbf{2}}\right)\)
\end{tabular} \\
\hline Anesthetic & 31 & 1,296 \\
Oralcaine & 41 & 784 \\
\hline Novasthetic & & \\
\hline
\end{tabular}

\section*{Statement of the hypotheses} Symbolically, the hypotheses are
\[
\begin{aligned}
\mathrm{H}_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}\left(\text { or } \sigma_{1}^{2} / \sigma_{2}^{2}=1\right) & \leftarrow \text { Null hypothesis: the two variances are the same } \\
\mathrm{H}_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}\left(\text { or } \sigma_{1}^{2} / \sigma_{2}^{2} \neq 1\right) & \leftarrow \text { Alternative hypothesis: the two variances are different } \\
\alpha=0.02 & \leftarrow \text { Significance level of the test }
\end{aligned}
\]

To test these hypotheses, we again use Equation 11-15:
Calculating the F statistic
\[
\begin{align*}
F & =\frac{S_{1}^{2}}{S_{2}^{2}} \tag{11-15}\\
& =\frac{1,296}{784} \\
& =1.65
\end{align*}
\]

This statistic comes from an \(F\) distribution with \(n-1\) degrees of freedom in the numerator (30, in this case) and \(n_{2}-1\) degrees of freedom in the denominator (40, in this case). Let us use the notation
\[
F(n, d, \alpha) \quad \text { Same useful notation for the test }
\]
to denote that value of \(F\) with \(n\) numerator degrees of freedom, \(d\) denominator degrees of freedom, and an area of \(\alpha\) in the upper tail. In our problem, the acceptance region extends from \(F(30,40,0.99)\) to \(F(30,40,0.01)\), as illustrated in Figure 11-12.

We can get the value of \(F(30,40,0.01)\) directly from Appendix Table 6 ; it is 2.20 . However, the value of \(F(30,40,0.99)\) is not in the table. Now \(\mathrm{F}(30,40,0.99)\) will correspond to a small value of \(s_{1}^{2} / s_{2}^{2}\), and hence to a large value of, \(s_{2}^{2} / s_{1}^{2}\), which is just the reciprocal of \(s_{1}^{2} / s_{2}^{2}\). Given the discussion on p. 577 about lower-tailed tests, we might suspect that

FIGURE 11-12 TWO-TAILED TEST OF HYPOTHESES AT THE 0.02 SIGNIFICANCE LEVEL

\section*{Lower-Tail Value of \(\boldsymbol{F}\) for Two-Tailed Tests}
\[
\begin{equation*}
F(n, d, \alpha)=\frac{1}{F(d, n, 1-\alpha)} \tag{11-16}
\end{equation*}
\]
and this turns out to be true. We can use this equation to find \(F(30,40,0.99)\) :
\[
\begin{aligned}
F(30,40,0.99) & =\frac{1}{F(40,30,0.01)} \\
& =\frac{1}{2.30} \\
& =0.43
\end{aligned}
\]

In Figure 11-13 we have illustrated the acceptance region for this Interpreting the results hypothesis test and the observed value of \(F\). We see there that the null hypothesis is accepted, so we conclude that the observed difference in the sample variances of effect delay times for the two anesthetics is not statistically significant.

FIGURE 11-13 TWO-TAILED HYPOTHESIS TEST AT THE 0.02 LEVEL OF SIGNIFICANCE, SHOWING ACCEPTANCE REGION AND THE SAMPLE F STATISTIC

\section*{HINTS \& ASSUMPTIONS}

This section has been about using an \(F\) test to compare the variances of two populations by looking at the ratio of the variances from two samples. Warning: Appendix Table 6 gives values of \(F\) that are appropriate for upper-tailed tests only. Hint: If you want to do a lower-tailed test, be sure to convert it to an upper-tailed test as shown on p. 577. And if you want to do a two-tailed test, use Equation 11-16 to convert an upper-tailed value from the table into the lower-tailed value needed for your test.

\section*{EXERCISES 11.6}

\section*{Self-Check Exercises}

SC 11-9 A quality control supervisor for an automobile manufacturer is concerned with uniformity in the number of defects in cars coming off the assembly line. If one assembly line has significantly more variability in the number of defects, then changes have to be made. The supervisor has collected the following data:
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{ Number of Defects } \\
\cline { 2 - 3 } & Assembly Line A & Assembly Line B \\
\hline Mean & 10 & 11 \\
Variance & 9 & 25 \\
Sample size & 20 & 16 \\
\hline
\end{tabular}

Does assembly line B have significantly more variability in the number of defects? Test at the 0.05 significance level.

SC11-10 Techgene, Inc., is concerned about variability in the number of bacteria produced by different cultures. If the cultures have significantly different variability in the number of bacteria produced, then experiments are messed up and some strange things get produced. (The management of the company gets understandably anxious when the scientists produce strange things.) The following data have been collected:
\begin{tabular}{llllllllllll}
\hline \multicolumn{17}{c}{ Number of Bacteria (in thousands) } \\
\hline Culture Type A & 91 & 89 & 83 & 101 & 93 & 98 & 144 & 118 & 108 & 125 & 138 \\
Culture Type B & 62 & 76 & 90 & 75 & 88 & 99 & 110 & 140 & 145 & 130 & 110 \\
\hline
\end{tabular}
(a) Compute \(s_{A}^{2}\) and \(s_{B}^{2}\).
(b) State explicit null and alternative hypotheses and then test at the 0.02 significance level.

\section*{Basic Concepts}

11-46 For two populations thought to have the same variance, the following information was found. A sample of 16 from population 1 exhibited a sample variance of 3.75 , and a sample of 10 from population 2 had a variance of 5.38 .
(a) Calculate the \(F\) ratio for the test of equality of variances.
(b) Find the critical \(F\) value for the upper tail, using the 0.10 significance level.
(c) Find the corresponding \(F\) value for the lower tail.
(d) State the conclusion of your test.

11-47 In our study of comparisons between the means of two groups, it was noted that the most common form of the two-group \(t\)-test for the difference between two means assumes that the population variances for the two groups are the same. One experimenter, using a control condition and an experimental condition in his study of drug reaction, wished to verify that this assumption held, that is, that the treatment administered affected only the mean, not the variance of the variable under study. From his data, he calculated the variance of the experimental group to be 25.8 and that of the control group to be 20.6. The experimental group had 25 subjects, and the control group had 31 . Can he proceed to use the \(t\)-test, which assumes equal variances for the two groups? Use \(\alpha=0.10\).
11-48 From a sample of 25 observations, the estimate of the standard deviation of the population was found to be 15.0. From another sample of 14 observations, the estimate was found to be 9.7. Can we accept the hypothesis that the two samples come from populations with equal variances, or must we conclude that the variance of the second population is smaller? Use the 0.01 level of significance.

\section*{Applications}

11-49 Raj, an investor, has narrowed his search for a mutual fund down to the Oppy fund or the MLPFS fund. Oppy's rate of return is lower, but seems to be more stable than MLPFS's. If Oppy's variability in rate of return is significantly lower than MLPFS's, then he will invest his money there. If there is no significant difference in variability, he'll go with MLPFS. To make a decision, Raj has taken a sample of 21 monthly rates of return for both firms. For Oppy, the standard deviation was 2, and for MLPFS, the standard deviation was 3 . Which firm should Raj invest in? Test at the \(\alpha=0.05\) level.
11-50 An insurance company is interested in the length of hospital-stays for various illnesses. The company has randomly selected 20 patients from hospital A and 25 from hospital B who were treated for the same ailment. The amount of time spent in hospital A had an average of 2.4 days with a standard deviation of 0.6 day. The treatment time in hospital B averaged 2.3 days with a standard deviation of 0.9 day. Do patients at hospital A have significantly less variability in their recovery time? Test at a 0.01 significance level.
11-51 Nation's Broadcasting Company is interested in the number of people who tune in to their hit shows Buddies and Ride to Nowhere; more importantly, the company is very concerned in the variability in the number of people who watch the shows. Advertisers want consistent viewers in hopes that consistent prolonged advertising will help to sell a product. Data are given below (in millions of viewers) for the past few months.
\begin{tabular}{lllllllllll}
\hline \multicolumn{14}{c}{ Number of Viewers (in millions) } \\
\hline Buddies & 57.4 & 62.6 & 54.6 & 52.4 & 60.5 & 61.8 & 71.4 & 67.5 & 62.6 & 58.4 \\
Ride to Nowhere & 64.5 & 58.2 & 39.5 & 24.7 & 40.2 & 41.6 & 38.4 & 33.6 & 34.4 & 37.8 \\
\hline
\end{tabular}
(a) Compute \(S_{\text {BUDDIES }}^{2}\) and \(S_{\text {RIDE }}^{2}\).
(b) State explicit hypotheses to determine whether the variability is the same between the two populations. Test at a 0.10 significance level.
11-52 The HAL Corporation is about to unveil a new, faster personal computer, PAL, to replace its old model, CAL. Although PAL is faster than CAL on average, PAL's processing speed seems
more variable. (Processing speed depends on the program being run, the amount of input, and the amount of output.) Two samples of 25 runs, covering the range of jobs expected, were submitted to PAL and CAL (one sample to each). The results were as follows:
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c}
Processing Time \\
(in hundredths of a second)
\end{tabular}} \\
\cline { 2 - 3 } & PAL & CAL \\
\hline Mean & 50 & 75 \\
Standard deviation & 20 & 10 \\
\hline
\end{tabular}

At the 0.05 level of significance, is PAL's processing speed significantly more variable than CAL's?
11-53 Two brand managers were in disagreement over the issue of whether urban homemakers had greater variability in grocery shopping patterns than did rural homemakers. To test their conflicting ideas, they took random samples of 70 homemakers from urban areas and 60 homemakers from rural areas. They found that the variance in days squared between shopping visits for urban homemakers was 14 and the sample variance for the rural homemakers was 3.5 . Is the difference between the variances in days between shopping visits significant at the 0.01 level?

11-54 Two competing ice cream stores, Yum-Yum and Goody, both advertise quarter-pound scoops of ice cream. There is some concern about the variability in the serving sizes, so two members of a local consumer group have sampled 25 scoops of Yum-Yum's ice cream and 11 scoops of Goody's. Of course, both members now have stomachaches, so you must help them out. Is there a difference in the variance of ice cream weights between Yum-Yum and Goody? The following data have been collected. Test at the 0.10 level.
\begin{tabular}{lcc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c}
Scoop Weight \\
(in hundredths of a pound)
\end{tabular}} \\
\cline { 2 - 3 } & Yum-Yum & Goody \\
\hline Mean & 25 & 25 \\
Variance & 16 & 10 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}

SC 11-9 \(\mathrm{H}_{0}: \sigma_{B}^{2}=\sigma_{A}^{2}\)
\(\mathrm{H}_{1}: \sigma_{B}^{2}>\sigma_{A}^{2}\)
Observed \(F=\frac{s_{B}^{2}}{s_{A}^{2}}=\frac{25}{9}=2.778\)
\(F_{\text {CRIT }}=F_{0.05}(15,19)=2.23\)
Thus, we reject \(\mathrm{H}_{0}\); assembly line B does have significantly more variability in the number of defects, so some changes have to be made. (Note: We are just checking for uniformity here; the cars could be uniformly bad.)

SC11-10 (a) \(s_{A}^{2}=423.4 \quad s_{B}^{2}=755.818\)
(b) \(\mathrm{H}_{0}: \sigma_{A}^{2}=\sigma_{B}^{2}\)
\[
\mathrm{H}_{1}: \sigma_{A}^{2} \neq \sigma_{B}^{2}
\]
\[
\text { Observed } F=\frac{s_{B}^{2}}{s_{A}^{2}}=\frac{423.4}{755.818}=0.56
\]
\[
F_{0.01}(10,10)=4.85
\]
\[
F_{0.99}(10,10)=\frac{1}{F(10,10,0.01)}=\frac{1}{4.85}=0.21
\]

Thus, accept \(\mathrm{H}_{0}\); management doesn't have to worry about strange things in the laboratory.

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 11: Chi-Square and Anova Tom Hodges had been supervisor of Loveland Computers' technical support team for a little over a year. Like many computer suppliers, Loveland contracted with a nationwide service company to provide 1 year of on-site repair. This guarantee was important in inducing customers to buy computers by phone. But Loveland had found that more than 90 percent of customers' problems could be solved by simply reading the instruction manuals that were packed with each machine, and 95 percent of all problems could be "talked through" if customers were encouraged to call customer service before seeking on-site repair. To save on warranty costs, Loveland had invested heavily in its customersupport center, where as many as 24 staff members would respond to customers' calls.

The customer-support staff were of two types. Most of the staff did not have much background in computers. These first-level support staff had been recruited for their telephone skills and had been trained internally to run through a routine checklist for common problems. When a customer's problem couldn't be corrected with the standard protocol, or when a customer called in with a "difficult" question, the call was transferred to a technician. Some of the technicians were full-time employees, but Hodges had found that plenty of part-time help could be found by recruiting students from the local engineering and computer science graduate programs. To suit their class schedule, most were scheduled to work a late shift, beginning at 4 P.m.

Examples of the kinds of problems that first-level support staff handled included talking customers through loading programs from floppy disks onto the hard drive and helping them check cable connections. The technicians handled problems such as the incompatibility of some "memory-resident" programs, and how to recover "lost" data.

The heads of several departments were meeting together to plan a strategy for improving telephone support. Loveland's support rating had slipped from "excellent" to "good" in a recent poll conducted by a marketing research firm. Walter Azko sent Lee along to "sit in on the meeting and see if you can be of any help."

Margot Derby, head of marketing, began the meeting with an air of finality: "Tom, the problem's obvious. When we call people back who've written complaint letters, they say they can never get
through to a technician. They talk with the first-level support staff and then hold forever. It's obvious that it's business customers who are most likely to have a 'difficult' question that's beyond the scope of the first-level staff. You just need to schedule more technicians on the early shift."

Hodges replied, "On the contrary, Margot. It's the home users who need to talk with the technicians, so most of those calls come in on the late shift. They come up with these rocket-scientist questions while they're playing with their machines after work. In any case, the technicians are keeping busy on the late shift-I get a printout of their total time on the phone."
"Yes, but I'll bet that if you look at the average call time, it goes way up in the evening. I think your technicians are just chatting with the customers to fill in time."
"Well, we clearly need to know when the 'difficult' calls typically come in," said Lee, hoping to turn the discussion in a more productive direction. "Because no one ever talks to a technician without talking to a first-level service rep, we can have the first-level support staff assign each question to the easy or difficult category and gather data for each shift. Then, we can test to see if there really are more technical questions on the day shift or the late shift."
"Don't forget that it's my business customers who have more of the difficult questions," said Margot.
"1 still think you're wrong on that. And, by the way, I have a gut feeling that the day of the week makes things different," added Tom. "We get a lot of technician-level calls early in the week but not toward the weekend."

Study Questions: In what format should the data be tabulated? Which statistical test might be useful if Lee just focuses on the shift issue (and sets aside the comments about business customers and the day of the week)? And which technique would be most useful for examining the effects of customer type, shift, and day of the week? What might distort the data that Lee asks the customer-support group to collect?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 11}

Analysis of Variance (ANOVA) A statistical technique used to test the equality of three or more sample means and thus make inferences as to whether the samples come from populations having the same mean.

Between-Column Variance An estimate of the population variance derived from the variance among the sample means.

Chi-Square Distribution A family of probability distributions, differentiated by their degrees of freedom, used to test a number of different hypotheses about variances, proportions, and distributional goodness of fit.

Contingency Table A table having \(R\) rows and \(C\) columns. Each row corresponds to a level of one variable, each column to a level of another variable. Entries in the body of the table are the frequencies with which each variable combination occurred.

Expected Frequencies The frequencies we would expect to see in a contingency table or frequency distribution if the null hypothesis is true.
\(\boldsymbol{F}\) Distribution A family of distributions differentiated by two parameters (df-numerator, df-denominator), used primarily to test hypotheses regarding variances.
\(\boldsymbol{F}\) Ratio A ratio used in the analysis of variance, among other tests, to compare the magnitude of two estimates of the population variance to determine whether the two estimates are approximately equal; in ANOVA, the ratio of between-column variance to within-column variance is used.

Goodness-of-Fit Test A statistical test for determining whether there is a significant difference between an observed frequency distribution and a theoretical probability distribution hypothesized to describe the observed distribution.

Grand Mean The mean for the entire group of subjects from all the samples in the experiment.
Test of Independence A statistical test of proportions of frequencies to determine whether membership in categories of one variable is different as a function of membership in the categories of a second variable.

Within-Column Variance An estimate of the population variance based on the variances within the \(k\) samples, using a weighted average of the \(k\) sample variances.

\section*{Equations Introduced in Chapter 11}

11-1
\[
\begin{equation*}
\chi^{2}=\sum \frac{\left(f_{0}-f_{e}\right)^{2}}{f_{e}} \tag{p. 522}
\end{equation*}
\]

This formula says that the chi-square statistic \(\left(\chi^{2}\right)\) is equal to the sum \((\Sigma)\) we will get if we
1. Subtract the expected frequencies, \(f_{e}\), from the observed frequencies, \(f_{o}\), for each category of our contingency table.
2. Square each of the differences.
3. Divide each squared difference by \(f_{e}\).
4. Sum all the results of step 3 .

11-2 \(\quad\) Number of degrees of freedom \(=(\) number of rows -1\()\) (number of columns - 1) p. 524 To calculate number of degrees of freedom in a chi-square test of independence, multiply the number of rows (less 1) times the number of columns (less 1).
\[
\begin{equation*}
f_{e}=\frac{R T \times C T}{n} \tag{p. 527}
\end{equation*}
\]

With this formula, we can calculate the expected frequency for any cell in a contingency table. \(R T\) is the row total for the row containing the cell, \(C T\) is the column total for the column containing the cell, and \(n\) is the total number of observations.
\[
\begin{equation*}
s_{\bar{x}}^{2}=\frac{\sum(\bar{x}-\overline{\bar{x}})^{2}}{k-1} \tag{p. 544}
\end{equation*}
\]

To calculate the variance among the sample means, use this formula.
11-5
\[
\begin{equation*}
\sigma^{2}=\sigma_{\bar{x}}^{2} \times n \tag{p. 545}
\end{equation*}
\]

The population variance is equal to the product of the square of the standard error of the mean and the sample size.

11-6
\[
\begin{align*}
& \text { Number of degrees of freedom }=\sum\left(n_{j}-1\right)=n_{T}-k \tag{p. 549}\\
& \text { in the denominator of the } F \text { ratio }
\end{align*}
\]

We use this equation to calculate the number of degrees of freedom in the denominator of the \(F\) ratio. This turns out to be the total sample size, \(n_{T}\), minus the number of samples, \(k\).
To do an analysis of variance, we calculate the number of degrees of freedom in the betweencolumn variance (the numerator of the \(F\) ratio) by subtracting 1 from the number of samples collected.
This restates Equation 11-8, using statistical shorthand for the numerator and the denominator of the \(F\) ratio.
This ratio is the way we can compare the two estimates of the population variance, which we calculated in Equations 11-6 and 11-7. In a hypothesis test based on an \(F\) distribution, we are more likely to accept the null hypothesis if this \(F\) ratio or \(F\) statistic is near to the value of 1. As the \(F\) ratio increases, the more likely it is that we will reject the null hypothesis.
A second estimate of the population variance (the within-column variance) can be obtained from this equation. This equation uses a weighted-average of all the sample variances. In this formulation, \(n_{T}=\sum n_{j}\), the total sample size.
first estimate of the population variance
One estimate of the population variance (the between-column variance) can be obtained by using this equation. We obtain this equation by first substituting \(s_{\bar{x}}^{2}\) for \(\sigma_{\bar{x}}^{2}\) in Equation 11-5, and then by weighting each \(\left(\bar{x}_{j}-\overline{\bar{x}}\right)^{2}\) by its own appropriate sample \(\operatorname{size}\left(n_{j}\right)\).
\[
\text { formulation, } n_{T}=2 n_{j} \text {, the total sample size. }
\]
\[
\begin{gather*}
F=\frac{\text { based on the variance among the sample means }}{\text { second estimate of the popluation variance }} \tag{p. 547}\\
\text { based on the variances within the samples }
\end{gather*}
\] .
\[
\begin{align*}
& \text { Number of degrees of freedom } \tag{p. 549}\\
& \text { in the numerator of the } F \text { ratio }
\end{align*}=(\text { number of samples }-1)
\]
\[
\begin{equation*}
F=\frac{\text { between-column variance }}{\text { within-column variance }}=\frac{\hat{\sigma}_{b}^{2}}{\hat{\sigma}_{w}^{2}} \tag{p. 547}
\end{equation*}
\] . (\(n-1)^{2}\),
\[
\begin{equation*}
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \tag{p. 570}
\end{equation*}
\]

With a population variance of \(\sigma^{2}\), the \(\chi^{2}\) statistic given by this equation has a chi-square distribution with \(n-1\) degrees of freedom. This result is exact if the population is normal, but even in samples from nonnormal populations, it is often a good approximation.
\[
\begin{equation*}
\sigma^{2}=\frac{(n-1) s^{2}}{\chi^{2}} \tag{p. 570}
\end{equation*}
\]

To get a confidence interval for \(\sigma^{2}\), we solve Equation \(11-12\) for \(\sigma^{2}\).
\[
\begin{align*}
& \sigma_{L}^{2}=\frac{(n-1) s^{2}}{\chi_{u}^{2}} \leftarrow \text { Lower confidence limit } \tag{p. 571}\\
& \sigma_{u}^{2}=\frac{(n-1) s^{2}}{\chi_{L}^{2}} \leftarrow \text { Upper confidence limit }
\end{align*}
\]

These formulas give the lower and upper confidence limits for a confidence interval for \(\sigma^{2}\). (Notice that because \(\chi^{2}\) appears in the denominator, we use \(\chi_{u}^{2}\) to find \(\sigma_{u}^{2}\) and \(\chi_{L}^{2}\) to find \(\sigma_{u}^{2}\).)
\[
F=\frac{s_{1}^{2}}{s_{2}^{2}}
\]
\[
\text { p. } 576
\]

This ratio has an \(F\) distribution with \(n_{1}-1\) degrees of freedom in the numerator and \(n_{2}-1\) degrees of freedom in the denominator. (This assumes that the two populations are reasonably well described by normal distributions.) It is used to test hypotheses about two population variances.
\[
\begin{equation*}
F(n, d, \alpha)=\frac{1}{F(d, n, 1-\alpha)} \tag{p. 579}
\end{equation*}
\]

Appendix Table 6 gives values of \(F\) for upper-tailed tests only, but this equation enables us to find appropriate values of \(F\) for lower-tailed and two-tailed tests.

\section*{Review and Application Exercises}

11-55 The post office is concerned about the variability in the number of days it takes a letter to go from the east coast to the west coast. A sample of letters was mailed from the east coast, and the time taken for the letters to arrive at their address on the west coast was recorded. The following data were collected:
\begin{tabular}{cccccccccc}
\hline \multicolumn{9}{c}{ Mailing Time (in days) } \\
\hline 2.2 & 1.7 & 3.0 & 2.9 & 1.9 & 3.1 & 4.2 & 1.5 & 4.0 & 2.5 \\
\hline
\end{tabular}

Find a 90 percent confidence interval for the variance in mailing times.
11-56 For the following contingency table, calculate the observed and expected frequencies and the chi-square statistic. State and test the appropriate hypotheses at the 0.05 significance level.
\begin{tabular}{lccc}
\hline \multicolumn{4}{c}{ Attitude Toward Social Legislation } \\
\hline Occupation & Favor & Neutral & Oppose \\
\hline Blue-collar & 19 & 16 & 37 \\
White-collar & 15 & 22 & 46 \\
Professional & 24 & 11 & 32 \\
\hline
\end{tabular}

11-57 Marketers know that tastes differ in various regions of the country. In the rental car business, an industry expert has given the opinion that there are strong regional preferences for size of car and quotes the following data in support of that view:
\begin{tabular}{lcccc}
\hline \multicolumn{5}{c}{ Region of Country } \\
\hline Preferred Car Type & Northeast & Southeast & Northwest & Southwest \\
\hline Full-size & 105 & 120 & 105 & 70 \\
Intermediate & 120 & 100 & 130 & 150 \\
All other & 25 & 30 & 15 & 30 \\
\hline
\end{tabular}
(a) State the appropriate null and alternative hypotheses.
(b) Do the data support the expert's opinion at the 0.05 significance level?
(c) What about at the 0.20 significance level?

11-58 What probability distribution is used in each of these types of statistical tests?
(a) Comparing two population proportions.
(b) Value of a single population variance.
(c) Comparing three or more population means.
(d) Comparing two population means from small, dependent samples.

11-59 What probability distribution is used in each of these types of statistical tests?
(a) Comparing the means of two small samples from populations with unknown variances.
(b) Comparing two population variances.
(c) Value of a single population mean based on large samples.
(d) Comparing three or more population proportions.

11-60 Retail stores set prices, but manufacturers have an interest in final retail price as this is part of their promotion strategy. The marketing manager for Brand C ballpoint pens complains that excessive price-cutting by stores results in the perception of Brand C as an "off brand." The sales manager replies that, "Everyone discounts-all the brands-to some extent." During sales calls, they collected data on the final sales price for four brands of pens, including their own, from five different stores. At the 0.05 confidence level, is there significant variation in price between the brands?
\begin{tabular}{cccc}
\hline \multicolumn{4}{c}{ Price (in cents) } \\
\hline Brand A & Brand B & Brand C & Brand D \\
\hline 61 & 52 & 47 & 67 \\
55 & 58 & 52 & 63 \\
57 & 54 & 49 & 68 \\
60 & 55 & 49 & 59 \\
62 & 58 & 57 & 65 \\
\hline
\end{tabular}

11-61 An outdoor advertising company must know whether significantly different traffic volumes pass three billboard locations in Newark because the company charges different rates for different traffic volumes. The company measures the volume of traffic at the three locations during randomly selected 5 -minute intervals. The table shows the data gathered. At the 0.05 level of significance, are the volumes of traffic passing the three billboards the same?
\begin{tabular}{llllllllll}
\hline \multicolumn{9}{c}{ Volume of Traffic } \\
\hline Billboard 1 & 30 & 45 & 26 & 44 & 18 & 38 & 42 & 29 & \\
Billboard 2 & 29 & 38 & 36 & 21 & 36 & 18 & 17 & 30 & 32 \\
Billboard 3 & 32 & 44 & 40 & 43 & 24 & 28 & 18 & & \\
\hline
\end{tabular}

11-62 An investor is interested in seeing whether there are significant differences in the rates of return on stocks, bonds, and mutual funds. He has taken random samples of each type of investment and has recorded the following data.
\begin{tabular}{lllllll}
\hline \multicolumn{8}{l}{ Rate of Return (percent) } \\
\hline Stocks & 2.0 & 6.0 & 2.0 & 2.1 & 6.2 & 2.9 \\
Bonds & 4.0 & 3.1 & 2.2 & 5.3 & 5.9 & \\
Mutual funds & 3.5 & 3.1 & 2.9 & 6.0 & & \\
\hline
\end{tabular}
(a) State null and alternative hypotheses.
(b) Test your hypotheses at the 0.05 significance level.
(c) State an explicit conclusion.

11-63 For the following contingency table:
(a) Construct a table of observed and expected frequencies.
(b) Calculate the chi-square statistic.
(c) State the null and alternative hypotheses.
(d) At a 0.05 level of significance, should the null hypothesis be rejected?
\begin{tabular}{lccc}
\hline \multicolumn{1}{c}{ Church } & \multicolumn{3}{c}{ Income Level } \\
\hline \multicolumn{1}{c}{ Attendance } & Low & Middle & High \\
\hline Never & 27 & 48 & 15 \\
Occasional & 25 & 63 & 14 \\
Regular & 22 & 74 & 12 \\
\hline
\end{tabular}

11-64 Quick Logistic Company (QLC) is a national level logistic company. QLC uses three modes of transportation for fetching goods to the desired destinations: Heavy-Duty Trucks, Buses and Medium Capacity Mobile Vans. QLC divides the order received for shipping into two categories: 'charted' and 'contracted', depending upon the choice of the customers. The differences between the two categories are the cost of transportation, reliability and the locking period of the couriered goods. 'Charted' mode involves higher cost; longer locking period but chances of the safe delivery of the couriered goods is much higher. QLC collected the data regarding frequency of the shipments sent last month. Analyze the data at \(10 \%\) level of significance and comment whether three types of shipments are equally likely to be used for the category of 'charted'.
\begin{tabular}{lccc}
\hline & Heavy Duty Trucks & Mobile Vans & Buses \\
\cline { 2 - 4 } Charted & 12 & 13 & 11 \\
Contracted & 18 & 7 & 4 \\
\hline
\end{tabular}

11-65 Swami Zhami claims to be psychic. He says he can correctly guess the suit (diamonds, clubs, hearts, spades) of a randomly chosen card with probability 0.5 . Because the cards are chosen randomly from a big pile, we assume that Zhami's guesses are independent. On 100 randomly chosen days, Zhami made 10 guesses, and the number of correct guesses was recorded. We want to see whether the number of correct guesses is binomially distributed with \(n-10\), \(p=0.5\). The following data have been collected:
\begin{tabular}{lcccc}
\hline Number of correct guesses per day & \(0-2\) & \(3-5\) & \(6-8\) & \(9-10\) \\
Frequency of number of correct guesses & 50 & 47 & 2 & 1 \\
\hline
\end{tabular}
(a) State explicit null and alternative hypotheses.
(a) Test your hypotheses. Use \(\alpha=0.10\).
(a) If Zhami has no psychic power, then he should have a probability of 0.25 of guessing a card correctly. (Why?) See whether the number of correct guesses is distributed binomially with \(n=10, p=0.25\).
11-66 There has been some sociological evidence that women as a group are more variable than men in their attitudes and beliefs. A large private research organization has conducted a survey of men's attitudes on a certain issue and found the standard deviation on this attitude scale to be 16 points. A sociologist gave the same scale to a group of 30 women and found that the sample variance was 400 points squared. At the 0.01 significance level, is there reason to believe that women do indeed show greater variability on this attitude scale?
11-67 Jim Kreeg makes predictions about the number of baskets that will be made by his favorite basketball team. We are interested in testing whether his errors are normally distributed with mean 0 and variance 16 . Using the following data, state explicit null and alternative hypotheses and test them at the \(\alpha=0.05\) level.
\begin{tabular}{lcccc}
\hline Error & \(\leq-7\) & -6 to 0 & 1 to 6 & \(\geq 7\) \\
Number of predictions & 5 & 45 & 45 & 5 \\
\hline
\end{tabular}

11-68 Psychologists have often wondered about the effects of stress and anxiety on test performance. An aptitude test was given to two randomly chosen groups of 18 college students, one group in a nonstressful situation and the other in a stressful situation. The experimenter expects the stress treatment to increase the variance of scores on the test because he feels some students perform better under stress while others experience adverse reactions to stress. The variances computed for the two groups are \(s^{2}=23.9\) for the non-stress group and \(s^{2}=\) 81.2 for the stress group. Was his hypothesis confirmed? Use the 0.05 level of significance to test the hypotheses.
11-69 In order to determine how women respond to brands of business attire, On the Job, an area boutique, surveyed groups of realtors, secretaries, entrepreneurs, and account executives about what fashion style they wore most often (A, B, C, D). The following data were collected:
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Style } \\
\cline { 2 - 5 } Occupation & A & B & C & D \\
\hline Realtor & 5 & 7 & 6 & 8 \\
Secretary & 10 & 15 & 12 & 8 \\
Entrepreneur & 8 & 12 & 21 & 25 \\
Account Executive & 12 & 14 & 20 & 25 \\
\hline
\end{tabular}

At the 0.10 level of significance, test whether the style a woman prefers depends on her occupation.
11-70 In the development of new drugs for the treatment of anxiety, it is important to check the drugs' effects on various motor functions, one of which is driving. The Confab Pharmaceutical

Company is testing four different tranquilizing drugs for their effects on driving skill. Subjects take a simulated driving test, and their scores reflect their errors. More severe errors lead to higher scores. The results of these tests produced the following table:
\begin{tabular}{llllll}
\hline Drug 1 & 245 & 258 & 239 & 241 & \\
Drug 2 & 277 & 276 & 263 & 274 & \\
Drug 3 & 215 & 232 & 225 & 247 & 226 \\
Drug 4 & 241 & 253 & 237 & 246 & 240 \\
\hline
\end{tabular}

At the 0.05 level of significance, do the four drugs affect driving skill differently?
11-71 Fuel costs are important to profitability in the airline business. A small regional carrier has been operating three types of aircraft and has collected the following cost data from its 14 planes, expressed as fuel cost (in cents) per available seat mile:
\begin{tabular}{lllllll}
\hline Type A & 7.3 & 8.3 & 7.6 & 6.8 & 8.0 & \\
Type B & 5.6 & 7.6 & 7.2 & & & \\
Type C & 7.9 & 9.5 & 8.7 & 8.3 & 9.4 & 8.4 \\
\hline
\end{tabular}

At the 0.01 level of significance, can we conclude that there is no true difference between plane types in fuel costs?
11-72 Different news papers contain a special section "classified", having advertisements on different categories of products on Sundays. It is expected that readers will have more free-time to go through these advertisements. Mr. Rahman regularly follows this section in different news papers like Morning Times (MT), News Express (NE) and Voice of Nation (VON). On a particular Sunday, he observed the following numbers of for sale advertisements for Petrol Cars, Diesel Cars and Passenger Vans.
\begin{tabular}{lccc}
\hline & MT & NE & VON \\
\hline Petrol Cars & 27 & 36 & 11 \\
Diesel Cars & 44 & 22 & 15 \\
Passenger Vans & 29 & 22 & 24 \\
\hline
\end{tabular}
(a) Test whether the proportions of three types of advertisements vary significantly among the three newspapers.
(b) In your conclusion in the part (a) helpful in deciding which newspaper should be followed if you are interested in getting a good bargain for a car at a level of significance of \(5 \%\) ?
11-73 Sagar Krishna is the Chief Consultant of TXI Solutions, a firm specialized in providing consultation to business organizations on business solutions and strategic planning. Recently, he is working on a project related to the conflict situations resulting due to interactions among different departments/wings in an organization. He wants to check the perception that "Planning Issues" take more time to be resolved after deliberations than issues related to other functions. He has collected relevant data.

The following values are the number of weeks spent by different departments to arrive at a acceptable solution, in some of the successful organizations.

Using level of significance as \(5 \%\), analyze the data and comment on the research of Mr Sagar.
\begin{tabular}{ccc}
\hline Planning Issues & Implementation Issues & Evaluation Issues \\
\hline 3.5 & 3.0 & 1.0 \\
4.8 & 5.5 & 2.5 \\
3.0 & 6.0 & 2.0 \\
6.5 & 4.0 & 1.5 \\
7.5 & 4.0 & 1.5 \\
8.0 & 4.5 & 6.0 \\
2.0 & 6.0 & 3.8 \\
6.0 & 2.0 & 4.5 \\
5.5 & 9.0 & 0.5 \\
6.5 & 4.5 & 2.0 \\
7.0 & 5.0 & 3.5 \\
9.0 & 2.5 & 1.0 \\
5.0 & 7.0 & 2.0 \\
10.0 & & \\
6.0 & & \\
\hline
\end{tabular}

11-74 The following table shows the price/earnings ratios for 26 companies belonging to the different sector of the Indian Market. These 26 companies can be further classified into three categories: Marketing Companies, Financial Services Companies and Banking Companies. They are coded as industry code 1, 2 and 3 respectively. Analyze the data and comment which type of industry (Marketing Companies, Financial Services Companies and Banking Companies) dominates the market on the basis of price/earnings ratios.
\begin{tabular}{ccc|ccc}
\hline Company & Industry Code & P/E & Company & Industry Code & P/E \\
\hline A & 1 & 21 & N & 2 & 17 \\
B & 1 & 12 & O & 2 & 15 \\
C & 1 & 23 & P & 2 & 21 \\
D & 1 & 15 & Q & 2 & 20 \\
E & 1 & 16 & R & 2 & 16 \\
F & 1 & 14 & S & 3 & 20 \\
G & 1 & 20 & T & 3 & 17 \\
H & 1 & 15 & U & 3 & 21 \\
I & 1 & 17 & V & 3 & 18 \\
J & 1 & 16 & W & 3 & 10 \\
K & 1 & 18 & X & 3 & 15 \\
L & 1 & 15 & Y & 3 & 20 \\
M & 2 & 21 & Z & 3 & 13 \\
\hline
\end{tabular}
1. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different educational groups. (Q9 \& Q17)
2. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different professions. (Q9 \& Q18)
3. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different age groups. (Q9 \& Q14)
4. Test the hypothesis that the satisfaction level of the respondent with respect to the e-banking services provided by their bank depends upon the age of the respondent. (Q9 \& Q14)
5. Test the hypothesis that the perception of the respondents towards the reliability of the e-banking services provided by their banks dependent upon the profession of the respondents. (Q8b \& Q18)

\section*{Flow Chart: Chi-Square and Analysis of Variance}

\section*{Simple Regression and Correlation}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To learn how many business decisions depend on knowing the specific relationship between two or more variables
- To use scatter diagrams to visualize the relationship between two variables
- To use regression analysis to estimate the relationship between two variables
- To use the least-squares estimating equation to predict future values of the dependent variable
- To learn how correlation analysis describes the degree to which two variables are linearly related to each other
- To understand the coefficient of determination as a measure of the strength of the relationship between two variables
- To learn limitations of regression and correlation analyses and caveats about their use

\section*{CHAPTER CONTENTS}
12.1 Introduction 596
12.2 Estimation Using the Regression
Line 603
12.3 Correlation Analysis 629
12.4 Making Inferences about Population
Parameters 643
12.5 Using Regression and Correlation Analyses: Limitations, Errors, and Caveats 650
- Statistics at Work 653
- Terms Introduced in Chapter 12653
- Equations Introduced in Chapter 12654
- Review and Application Exercises 656
- Flow Chart: Regression and Correlation 662

TThe vice president for research and development of a large chemical and fiber manufacturing company believes that the firm's annual profits depend on the amount spent on R\&D. The new chief executive officer does not agree and has asked for evidence. Here are data for 6 years:
\begin{tabular}{ccc}
\hline Year & \begin{tabular}{c}
Amount Spent on Research and \\
Development (Millions)
\end{tabular} & Annual Profit (Millions) \\
\hline 1990 & 2 & 20 \\
1991 & 3 & 25 \\
1992 & 5 & 34 \\
1993 & 4 & 30 \\
1994 & 11 & 40 \\
1995 & 5 & 31 \\
\hline
\end{tabular}

The vice president for R\&D wants an equation for predicting annual profits from the amount budgeted for R\&D. With methods in this chapter, we can supply such a decision-making tool and tell him something about the accuracy he can expect in using it to make decisions.

\subsection*{12.1 INTRODUCTION}

Every day, managers make personal and professional decisions
Relationship between variables that are based on predictions of future events. To make these forecasts, they rely on the relationship (intuitive and calculated) between what is already known and what is to be estimated. If decision makers can determine how the known is related to the future event, they can aid the decision-making process considerably. That is the subject of this chapter: how to determine the relationship between variables.

In Chapter 11, we used chi-square tests of independence to determine whether a statistical relationship existed between two variables. The chi-square test tells us whether there is such a rela-

\section*{Difference between chi-square and topics in this chapter} tionship, but it does not tell us what that relationship is. Regression and correlation analyses show us how to determine both the nature and the strength of a relationship between two variables. We will learn to predict, with some accuracy, the value of an unknown variable based on past observations of that variable and others.

The term regression was first used as a statistical concept in 1877 by Sir Francis Galton. Galton made a study that showed that the height of children born to tall parents tends to move back,
```

Origin of terms regression and
multiple regression

```
or "regress," toward the mean height of the population. He designated the word regression as the name of the general process of predicting one variable (the height of the children) from another (the height of the parent). Later, statisticians coined the term multiple regression to describe the process by which several variables are used to predict another.

In regression analysis, we shall develop an estimating equa-tion-that is, a mathematical formula that relates the known vari-

Development of an estimating equation ables to the unknown variable. Then, after we have learned the pattern of this relationship, we can apply correlation analysis to determine the degree to which the variables are related. Correlation analysis, then, tells us how well the estimating equation actually describes the relationship.

\section*{Types of Relationships}

Regression and correlation analyses are based on the relationship, or association, between two (or more) variables. The known variable (or variables) is called the independent variable(s). The

\section*{Independent and dependent variables} variable we are trying to predict is the dependent variable.

Scientists know, for example, that there is a relationship between the annual sales of aerosol spray cans and the quantity of fluorocarbons released into the atmosphere each year. If we studied this relationship, "the number of aerosol cans sold each year" would be the independent variable and "the quantity of fluorocarbons released annually" would be the dependent variable.

Let's take another example. Economists might base their predictions of the annual gross domestic product, or GDP, on the final consumption spending within the economy. Thus, "the final consumption spending" is the independent variable and "the GDP" is the dependent variable.

In regression, we can have only one dependent variable in our estimating equation. However, we can use more than one independent variable. Often when we add independent variables, we improve the accuracy of our prediction. Economists, for example, often add a second independent variable, "the level of investment spending," to improve their estimate of the nation's GDP.

Our two examples of fluorocarbons and GDP are illustrations Direct relationship between of direct associations between independent and dependent variables. As the independent variable increases, the dependent vari-

\section*{\(X\) and \(Y\)} able also increases. In like manner, we expect the sales of a company to increase as the advertising budget increases. We can graph such a direct relationship, plotting the independent variable on the \(X\)-axis and the dependent variable on the \(Y\)-axis. We have done this in Figure 12-1(a). Notice how the line slopes up as \(X\) takes on larger and larger values. The slope of this line is said to be positive because \(Y\) increases as \(X\) increases.

Relationships can also be inverse rather than direct. In these cases, the dependent variable decreases as the independent variable increases. The government assumes that such an inverse

Inverse relationship between \(X\) and \(Y\) association exists between a company's increased annual expenditures for pollution-abatement devices and decreased pollution emissions. This type of relationship is illustrated in Figure 12-1(b), and is characterized by a negative slope (the dependent variable \(Y\) decreases as the independent variable \(X\) increases).

FIGURE 12-1 DIRECT AND INVERSE RELATIONSHIPS BETWEEN INDEPENDENT VARIABLE X AND DEPENDENT VARIABLE \(Y\)

We often find a causal relationship between variables; that is, the independent variable "causes" the dependent variable to change. This is the case in the antipollution example above. But in many cases, other factors cause the changes in both the dependent and the independent variables. We might be able to predict the sales of diamond earrings from the sales of new Cadillacs, but we could not say that one is caused by the other. Instead, we realize that the sales levels of both Cadillacs and diamond earrings are caused by another factor, such as the level of disposable income.

For this reason, it is important that you consider the relationships found by regression to be relationships of association but not necessarily of cause and effect. Unless you have

Relationships of association, not cause and effect specific reasons for believing that the values of the dependent variable are caused by the values of the independent variable(s), do not infer causality from the relationships you find by regression.

\section*{Scatter Diagrams}

The first step in determining whether there is a relationship

\section*{Scatter diagram} between two variables is to examine the graph of the observed (or known) data. This graph, or chart, is called a scatter diagram.

A scatter diagram can give us two types of information. Visually, we can look for patterns that indicate that the variables are related. Then, if the variables are related, we can see what kind of line, or estimating equation, describes this relationship.

We are going to develop and use a specific scatter diagram. Suppose a university admissions director asks us to determine whether any relationship exists between a student's scores on an entrance examination and that student's cumulative grade-point average (GPA) upon graduation. The administrator has accumulated a random sample of data from the records of the university. This information is recorded in Table 12-1.

To begin, we should transfer the information in Table 12-1 to Transfer tabular information to a graph. Because the director wishes to use examination scores to a graph predict success in college, we have placed the cumulative GPA (the dependent variable) on the vertical or \(Y\)-axis and the entrance examination score (the independent variable) on the horizontal or \(X\)-axis. Figure 12-2 shows the completed scatter diagram.

At first glance, we can see why we call this a scatter diagram. Drawing, or "fitting," a straight The pattern of points resuits because each pair of data from Table 12-1 has been recorded as a single point. When we view all line through a scatter diagram these points together, we can visualize the relationship that exists between the two variables. As a result, we can draw, or "fit," a straight line through our scatter diagram to represent the relationship. We have done this in Figure 12-3. It is common to try to draw these lines so that an equal number of points lies on either side of the line.

TABLE 12-1 STUDENT SCORES ON ENTRANCE EXAMINATIONS AND CUMULATIVE GRADE-POINT AVERAGES AT GRADUATION
\begin{tabular}{lcccccccc}
\hline Student & A & B & C & D & E & F & G & H \\
\hline \begin{tabular}{l}
Entrance examination scores \\
\((100=\) maximum possible score \()\)
\end{tabular} & 74 & 69 & 85 & 63 & 82 & 60 & 79 & 91 \\
Cumulative GPA \((4.0=\) A) & 2.6 & 2.2 & 3.4 & 2.3 & 3.1 & 2.1 & 3.2 & 3.8 \\
\hline
\end{tabular}

FIGURE 12-2 SCATTER DIAGRAM OF STUDENT SCORES ON ENTRANCE EXAMINATIONS PLOTTED AGAINST CUMULATIVE GRADE-POINT AVERAGES

FIGURE 12-3 SCATTER DIAGRAM WITH STRAIGHT LINE REPRESENTING THE RELATIONSHIP BETWEEN X AND Y "FITTED" THROUGH IT

In this case, the line drawn through our data points represents
Interpreting our straight line a direct relationship because \(Y\) increases as \(X\) increases. Because the data points are relatively close to this line, we can say that there is a high degree of association between the examination scores and the cumulative GPA. In Figure 12-3, we can see that the relationship described by the data points is well described by a straight line. Thus, we can say that it is a linear relationship.

The relationship between \(X\) and \(Y\) variables can also take the

\section*{Curvilinear relationships} form of a curve. Statisticians call such a relationship curvilinear. The employees of many industries, for example, experience what is called a "learning curve"; that is, as they produce a new product, the time required to produce one unit is reduced by some fixed proportion as the total number of units doubles. One such industry is aviation. Manufacturing time per unit for a new aircraft tends to decrease by 20 percent each time the total number of completed new planes doubles. Figure 12-4 illustrates the curvilinear relationship of this "learning curve" phenomenon.

The direction of the curve can indicate whether the curvilinear relationship is direct or inverse. The curve in Figure 12-4 describes an inverse relationship because \(Y\) decreases as \(X\) increases.

FIGURE 12-4 CURVILINEAR RELATIONSHIP BETWEEN NEW-AIRCRAFT CONSTRUCTION TIME AND NUMBER OF UNITS PRODUCED

To review the relationships possible in a scatter diagram, Review of possible relationships examine the graphs in Figure 12-5. Graphs (a) and (b) show direct and inverse linear relationships. Graphs (c) and (d) are examples of curvilinear relationships that demonstrate direct and inverse associations between variables, respectively. Graph (e) illustrates an inverse linear relationship with a widely scattered pattern of points. The wider scattering indicates that there is a lower degree of association between the

(d) Inverse curvilinear

(e) Inverse linear with

(f) No relationship

independent and dependent variables than there is in graph (b). The pattern of points in graph (f) seems to indicate that there is no linear relationship between the two variables; therefore, knowledge of the past concerning one variable does not allow us to predict future occurrences of the other.

\section*{EXERCISES 12.1}

\section*{Self-Check Exercise}

SC 12-1 An instructor is interested in finding out how the number of students absent on a given day is related to the mean temperature that day. A random sample of 10 days was used for the study. The following data indicate the number of students absent (ABS) and the mean temperature (TEMP) for each day.
\begin{tabular}{lrrrrrrrrrr}
ABS & 8 & 7 & 5 & 4 & 2 & 3 & 5 & 6 & 8 & 9 \\
TEMP & 10 & 20 & 25 & 30 & 40 & 45 & 50 & 55 & 59 & 60
\end{tabular}
(a) State the dependent (\(Y\)) variable and the independent \((X)\) variable.
(b) Draw a scatter diagram of these data.
(c) Does the relationship between the variables appear to be linear or curvilinear?
(d) What type of curve could you draw through the data?
(e) What is the logical explanation for the observed relationship?

\section*{Basic Concepts}

12-1 What is regression analysis?
12-2 In regression analysis, what is an estimating equation?
12-3 What is the purpose of correlation analysis?
12-4 Define direct and inverse relationships.
12-5 To what does the term causal relationship refer?
12-6 Explain the difference between linear and curvilinear relationships.
12-7 Explain why and how we construct a scatter diagram.
12-8 What is multiple-regression analysis?
12-9 For each of the following scatter diagrams, indicate whether a relationship exists and, if so, whether it is direct or inverse and linear or curvilinear.

\section*{Applications}

12-10 A professor is trying to show his students the importance of quizzes even though 90 percent of the final grade is determined by exams. He believes that the higher the quiz grade, the higher
the final grade. A random sample of 15 students in his class was selected with the data given below:
\begin{tabular}{cc}
\hline Quiz Average & Final Average \\
\hline 59 & 65 \\
92 & 84 \\
72 & 77 \\
90 & 80 \\
95 & 77 \\
87 & 81 \\
89 & 80 \\
77 & 84 \\
76 & 80 \\
65 & 69 \\
97 & 83 \\
42 & 40 \\
94 & 78 \\
62 & 65 \\
91 & 90 \\
\hline
\end{tabular}
(a) State the dependent (\(Y\)) variable and the independent \((X)\) variable.
(b) Draw a scatter diagram of these data.
(c) Does the relationship between the variables appear to be linear or curvilinear?
(d) Does the professor's belief appear to be justified? Explain your reasoning.

12-11 William Hawkins, VP of personnel for International Motors, is working on the relationship between a worker's salary and absentee rate. Hawkins divided the salary range of International into twelve grades or levels (1 being the lowest grade, 12 the highest) and then randomly sampled a group of workers. He determined the salary grade for each worker and the number of days that employee had missed over the last 3 years.
\begin{tabular}{lrrrrrrrr}
Salary ranking & 11 & 10 & 8 & 5 & 9 & 9 & 7 & 3 \\
Absences & 18 & 17 & 29 & 36 & 11 & 26 & 28 & 35 \\
Salary ranking & 11 & 8 & 7 & 2 & 9 & 8 & 6 & 3 \\
Absences & 14 & 20 & 32 & 39 & 16 & 26 & 31 & 40
\end{tabular}

Construct a scatter diagram for these data and indicate the type of relationship.
12-12 The National Institute of Environmental Health Sciences (NIEHS) has been studying the statistical relationships between many different variables and the common cold. One of the variables being examined is the use of facial tissues \((X)\) and the number of days that cold symptoms were exhibited \((Y)\) by seven people over a 12-month period. What relationship, if any seems to hold between the two variables? Does this indicate any causal effect?
\begin{tabular}{rrrrrrrr}
\(\boldsymbol{X}\) & 2,000 & 1,500 & 500 & 750 & 600 & 900 & 1,000 \\
\(\boldsymbol{Y}\) & 60 & 40 & 10 & 15 & 5 & 25 & 30
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercise}

SC 12-1 (a) We want to see whether absences (ABS) depend on temperature (TEMP).
(b)

(c) Curvilinear.
(d) Quadratic curve (parabola).
(e) When it is very cold and when it is very hot there are many absences. For moderate temperatures, there are not as many absences.

\subsection*{12.2 ESTIMATION USING THE REGRESSION LINE}

In the scatter diagrams we have used to this point, the regression lines were put in place by fitting the lines visually among the data points. In this section, we shall learn how to calculate the regres-

\section*{Calculating the regression line using an equation} sion line somewhat more precisely, using an equation that relates the two variables mathematically. Here, we examine only linear relationships involving two variables. We shall deal with relationships among more than two variables in the next chapter.

The equation for a straight line where the dependent variable
Equation for a straight line \(Y\) is determined by the independent variable \(X\) is:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Equation for a Straight Line} \\
\hline & [12-1] \\
\hline
\end{tabular}

Using this equation, we can take a given value of \(X\) and com-

\section*{Interpreting the equation} pute the value of \(Y\). The \(a\) is called the \(Y\)-intercept because its value is the point at which the regression line crosses the \(Y\)-axis-that is, the vertical axis. The \(b\) in Equation 12-1 is the slope of the line. It represents how much each unit change of the independent variable \(X\) changes the dependent variable \(Y\). Both \(a\) and \(b\) are numerical constants because for any given straight line, their values do not change.

Suppose we know that \(a\) is 3 and \(b\) is 2 . Let us determine what \(Y\) would be for an \(X\) equal to 5 . When we substitute the values of

Calculating \(Y\) from \(X\) using the equation for a straight line
\(a, b\), and \(X\) in Equation 12-1, we find the corresponding value of \(Y\) to be
\[
\begin{align*}
Y & =a+b X \tag{12-1}\\
& =3+2(5) \\
& =3+10 \\
& =3 \leftarrow \text { Value for } Y \text { given } X=5
\end{align*}
\]

\section*{Using the Estimation Equation for a Straight Line}

How can we find the values of the numerical constants, \(a\) and \(b\) ? Finding the values for \(a\) and \(b\) To illustrate this process, let's use the straight line in Figure 12-6.

Visually, we can find \(a\) (the \(Y\)-intercept) by locating the point where the line crosses the \(Y\)-axis. In Figure 12-6, this happens where \(a=3\).

To find the slope of the line, \(b\), we must determine how the dependent variable, \(Y\), changes as the independent variable, \(X\), changes. We can begin by picking two points on the line in Figure 12-6. Now, we must find the values of \(X\) and \(Y\) (the coordinates) of both points. We can call the coordinates of our first point \(\left(X_{1}, Y_{1}\right)\) and those of the second point \(\left(X_{2}, Y_{2}\right)\). By examining Figure 12-6, we can see that \(\left(X_{1}, Y_{1}\right)=\) \((1,5)\) and \(\left(X_{2}, Y_{2}\right)=(2,7)\). At this point, then, we can calculate the value of \(b\) using this equation:

The Slope of a Straight Line
\[
\begin{equation*}
b=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \tag{12-2}
\end{equation*}
\]

FIGURE 12-6 STRAIGHT LINE WITH A POSITIVE SLOPE, WITH THE Y-INTERCEPT AND TWO POINTS ON THE LINE DESIGNATED
\[
\begin{aligned}
b & =\frac{7-5}{2-1} \\
& =\frac{2}{1} \\
& =2 \leftarrow \text { Slope of the line }
\end{aligned}
\]

In this manner, we can learn the values of the numerical constants, \(a\) and \(b\), and write the equation for a straight line. The line in Figure 12-6 can be described by Equation 12-1, where \(a=3\) and \(b=2\). Thus
\[
\begin{equation*}
Y=a+b X \tag{12-1}
\end{equation*}
\]
and
\[
Y=3+2 X
\]

Using this equation, we can determine the corresponding value of the dependent variable for any value of \(X\). Suppose we wish to find the value of \(Y\) when \(X=7\). The answer would be
\[
\begin{align*}
y & =a+b X \tag{12-1}\\
& =3+2(7) \\
& =3+14 \\
& =17
\end{align*}
\]

If you substitute more values for \(X\) into the equation, you will Direct relationship; positive notice that \(Y\) increases as \(X\) increases. Thus, the relationship slope between the variables is direct and the slope is positive.

Now consider the line in Figure 12-7. We see that it crosses the \(Y\)-axis at 6. Therefore, we know that \(a=6\). If we select the two points where \(\left(X_{1}, Y_{1}\right)=(0,6)\) and \(\left(X_{2}, Y_{2}\right)=(1,3)\), we find that the slope of the line is
\[
\begin{align*}
b & =\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \tag{12-2}\\
& =\frac{3-6}{1-0} \\
& =\frac{-3}{1} \\
& =-3
\end{align*}
\]

Notice that when \(b\) is negative, the line represents an inverse relationship and the slope is negative (\(Y\) decreases as \(X\) increases). Now, with the numerical values of \(a\) and \(b\) determined, we can substitute them into the general equation for a straight line:
\[
\begin{aligned}
Y & =a+b X \\
& =6+(-3) X \\
& =6-3 X
\end{aligned}
\]

Inverse relationship; negative slope

FIGURE 12-7 STRAIGHT LINE WITH A NEGATIVE SLOPE

Assume that we wish to find the value of the dependent vari-
Finding \(Y\) given \(X\) able that corresponds to \(X=2\). Substituting into Equation 12-1, we get
\[
\begin{aligned}
Y & =6-(3)(2) \\
& =6-6 \\
& =0
\end{aligned}
\]

Thus, when \(X=2, Y\) must equal 0 . If we refer to the line in Figure 12-7, we can see that the point \((2,0)\) does lie on the line.

\section*{The Method of Least Squares}

Now that we have seen how to determine the equation for a straight line, let's think about how we can calculate an equation

Fitting a regression line mathematically for a line that is drawn through the middle of a set of points in a scatter diagram. How can we "fit" a line mathematically if none of the points lies on the line? To a statistician, the line will have a "good fit" if it minimizes the error between the estimated points on the line and the actual observed points that were used to draw it.

Before we proceed, we need to introduce a new symbol. So far, Introduction of Y we have used \(Y\) to represent the individual values of the observed points measured along the \(Y\)-axis. Now we should begin to use \(\hat{Y}\) (Y hat) to symbolize the individual values of the estimated points-that is, the points that lie on the estimating line. Accordingly, we shall write the equation for the estimating line as

FIGURE 12-8 TWO DIFFERENT ESTIMATING LINES FITTED TO THE SAME THREE OBSERVED DATA POINTS, SHOWING ERRORS IN BOTH CASES

\section*{The Estimating Line \\ \[
\begin{equation*}
\hat{Y}=a+b X \tag{12-3}
\end{equation*}
\]}

In Figure 12-8, we have two estimating lines that have been fitted to the same set of three data points. These three given, or

Which line fits best? observed, data points are shown in black. Two very different lines have been drawn to describe the relationship between the two variables. Obviously, we need a way to decide which of these lines gives us a better fit.

One way we can "measure the error" of our estimating line is to sum all the individual differences, or errors, between the

Using total error to determine best fit estimated points shown in color and the observed points shown in black. In Table 12-2, we have calculated the individual differences between the corresponding \(Y\) and \(\hat{Y}\), and then we have found the sum of these differences.

TABLE 12-2 SUMMING THE ERRORS OF THE TWO ESTIMATING LINES IN FIGURE 12-8
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Graph \((\boldsymbol{a})\) \\
\(\boldsymbol{Y}-\hat{\boldsymbol{Y}}\)
\end{tabular} & \begin{tabular}{c}
Graph \((\boldsymbol{b})\) \\
\(\boldsymbol{Y}-\hat{\boldsymbol{Y}}\)
\end{tabular} \\
\hline \(8-6=2\) & \(8-2=6\) \\
\(1-5=-4\) & \(1-5=-4\) \\
\(6-4=2\) & \(6-8=\overline{-2}\) \\
\(\overline{\mathbf{0}} \leftarrow\) Total error & \(\overline{\mathbf{0}} \leftarrow\) Total error \\
\hline
\end{tabular}

\section*{TABLE 12-3 SUMMING THE ABSOLUTE VALUES OF THE ERRORS OF THE TWO ESTIMATING LINES IN FIGURE 12-8}
\begin{tabular}{cc}
\hline Graph \((\boldsymbol{a})\) & Graph \((\boldsymbol{b})\) \\
\(|\boldsymbol{Y}-\hat{\boldsymbol{Y}}|\) & \(|\boldsymbol{Y}-\hat{\boldsymbol{Y}}|\) \\
\hline\(|8-6|=2\) & \(|8-2|=6\) \\
\(|1-5|=4\) & \(|1-5|=4\) \\
\(|6-4|=2\) & \(|6-8|=2\) \\
\(\overline{\mathbf{8}} \leftarrow\) Total absolute error & \(\overline{\mathbf{1 2}} \leftarrow\) Total absolute error \\
\hline
\end{tabular}

A quick visual examination of the two estimating lines in Figure 12-8 reveals that the line in graph (a) fits the three data points better than the line in graph (b).* However, our process of summing the individual differences in Table 12-2 indicates that both lines describe the data equally well (the total error in both cases is zero). Thus, we must conclude that the process of summing individual differences for calculating the error is not a reliable way to judge the goodness of fit of an estimating line.

The problem with adding the individual errors is the canceling Using absolute value of error to effect of the positive and negative values. From this, we might measure best fit deduce that the proper criterion for judging the goodness-of-fit would be to add the absolute values (the values without their algebraic signs) of each error. We have done this in Table 12-3. (The symbol for absolute value is two parallel vertical lines ||.) Because the absolute error in graph (a) is smaller than the absolute error in graph (b), and because we are looking for the minimum absolute error, we have confirmed our intuitive impression that the estimating line in graph (a) is the better fit.

On the basis of this success, we might conclude that minimizing the sum of the absolute values of the errors is the best criterion for finding a good fit. But before we feel too comfortable with it, we should examine a different situation.

In Figure 12-9, we again have two identical scatter diagrams with two different estimating lines fitted to the three data points. In Table 12-4, we have added the absolute values of the errors and found that the estimating line in graph (a) is a better fit than the line in graph (b). Intuitively, however, it appears that the line in graph (b) is the better fit line because it has been moved vertically to take the middle point into consideration. Graph (a) on the other hand, seems to ignore the middle point completely. So we would probably discard this second criterion for finding the best fit. Why? The sum of the absolute values does not stress the magnitude of the error.

It seems reasonable that the farther away a point is from the estimating line, the more serious is the error. We would rather

Giving more weight to farther points; squaring the error have several small absolute errors than one large one, as we saw in the last example. In effect, we want to find a way to "penalize" large absolute errors so that we can avoid them. We can accomplish this if we square the individual errors before we add them. Squaring each term accomplishes two goals:

\footnotetext{
* We can reason that this is so by noticing that whereas both estimating lines miss the second and third points (reading from left to right) by an equal distance, the line in graph (a) misses the first point by considerably less than the line in graph (b).
}

FIGURE 12-9 TWO DIFFERENT ESTIMATING LINES FITTED TO THE SAME THREE OBSERVED DATA POINTS, SHOWING ERRORS IN BOTH CASES

TABLE 12-4 SUMMING THE ABSOLUTE VALUES OF THE ERRORS OF THE TWO ESTIMATING LINES IN FIGURE 12-9
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Graph (a) \\
\(|\boldsymbol{Y}-\hat{\boldsymbol{Y}}|\)
\end{tabular} & \begin{tabular}{c}
Graph \((\boldsymbol{b})\) \\
\(|\boldsymbol{Y}-\hat{\boldsymbol{Y}}|\)
\end{tabular} \\
\hline\(|4-4|=0\) & \(|4-5|=1\) \\
\(|7-3|=4\) & \(|7-4|=3\) \\
\(|2-4|=0\) & \(|2-3|=\frac{1}{\mathbf{5}} \leftarrow\) Total absolute error \\
\(\overline{\mathbf{4} \leftarrow \text { Total absolute error }}\) & \\
\hline
\end{tabular}
1. It magnifies, or penalizes, the larger errors.
2. It cancels the effect of the positive and negative values (a negative error squared is still positive).

Because we are looking for the estimating line that minimizes the sum of the squares of the errors, we call this the least-squares method.

Let's apply the least-squares criterion to the problem in Figure 12-9. After we have organized the data and summed the squares in Table 12-5, we can see that, as we thought, the estimating line in graph (b) is the better fit.

Using the criterion of least squares, we can now determine whether one estimating line is a better fit than another. But for a set of data points through which we could draw an infinite num-

Finding the best-fitting leastsquares line mathematically ber of estimating lines, how can we tell when we have found the best-fitting line?

Statisticians have derived two equations we can use to find the slope and the \(Y\)-intercept of the bestfitting regression line. The first formula calculates the slope:

TABLE 12-5 APPLYING THE LEAST-SQUARES CRITERION TO THE ESTIMATING LINES
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\operatorname{Graph}_{(\boldsymbol{Y}-\hat{Y})^{2}}
\end{gathered}
\] & \[
\begin{gathered}
\operatorname{Graph}_{(}(b) \\
(Y-\hat{Y})^{2}
\end{gathered}
\] \\
\hline \((4-4)^{2}=(0)^{2}=0\) & \((4-5)^{2}=(-1)^{2}=1\) \\
\hline \((7-3)^{2}=(4)^{2}=16\) & \((7-4)^{2}=(3)^{2}=9\) \\
\hline \((2-2)^{2}=(0)^{2}=0\) & \((2-3)^{2}=(-1)^{2}=1\) \\
\hline \(\overline{\mathbf{1 6}} \leftarrow\) Sum of the squares & \(\overline{\mathbf{1 1}} \leftarrow\) Sum of the squares \\
\hline
\end{tabular}
\[
\begin{align*}
& \text { Slope of the Best-Fitting Regression Line } \\
& \qquad b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \tag{12-4}
\end{align*}
\]

Slope of the least-squares
regression line
where
- \(b=\) slope of the best-fitting estimating line
- \(X=\) values of the independent variable
- \(Y=\) values of the dependent variable
- \(\bar{X}=\) mean of the values of the independent variable
- \(\bar{Y}=\) mean of the values of the dependent variable
- \(n=\) number of data points (that is, the number of pairs of values for the independent and dependent variables)

The second formula calculates the \(Y\)-intercept of the line whose slope we calculated using Equation 12-4:
\begin{tabular}{|c|}
\hline Y-Intercept of the Best-Fitting Regression Line \\
\(\qquad a=\bar{Y}-b \bar{X}\) \\
\hline
\end{tabular}

Intercept of the least-squares
regression line
where
- \(a=Y\)-intercept
- \(\frac{b}{}=\) slope from Equation 12-4
- \(\bar{Y}=\) mean of the values of the dependent variable
- \(\bar{X}=\) mean of the values of the independent variable

With these two equations, we can find the best-fitting regression line for any two-variable set of data points.

\section*{Using the Least-Squares Method in Two Problems}

Suppose the director of the Chapel Hill Sanitation Department is interested in the relationship between the age of a garbage truck and the annual repair expense she should expect to incur. In order to determine this relationship, the director has accumulated information concerning four of the trucks the city currently owns (Table 12-6).

TABLE 12-6 ANNUAL TRUCK-REPAIR EXPENSES
\begin{tabular}{ccc}
\hline Truck Number & \begin{tabular}{c}
Age of Truck in \\
Years \((\boldsymbol{X})\)
\end{tabular} & \begin{tabular}{c}
Repair Expense During Last \\
Year in Hundreds of \$(\(\boldsymbol{Y})\)
\end{tabular} \\
\hline 101 & 5 & 7 \\
102 & 3 & 7 \\
103 & 3 & 6 \\
104 & 1 & 4 \\
\hline
\end{tabular}

The first step in calculating the regression line for this problem is to organize the data as outlined in Table 12-7. This allows

Example of the least-squares method us to substitute directly into Equations 12-4 and 12-5 in order to find the slope and the \(Y\)-intercept of the best-fitting regression line.

With the information in Table 12-7, we can now use the equations for the slope (Equation 12-4) and the \(Y\)-intercept (Equation 12-5) to find the numerical constants for our regression line. The slope is:
\[
\begin{aligned}
b & =\frac{\sum X Y-x \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \quad[12-4] \quad \text { Finding the value of } \mathrm{b} \\
& \frac{78(4)(3)(6)}{44(4)(3)} \\
& =\frac{78-32}{44-36} \\
& =\frac{6}{8} \\
& =0.75 \leftarrow \text { The slope of the line }
\end{aligned}
\]

TABLE 12-7 CALCULATION OF INPUTS FOR EQUATIONS 12-4 AND 12-5
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Trucks (\(n=4\)) \\
(1)
\end{tabular} & \[
\begin{gathered}
\hline \operatorname{Age}(X) \\
\text { (2) }
\end{gathered}
\] & \begin{tabular}{l}
Repair Expense (\(Y\)) \\
(3)
\end{tabular} & \[
\begin{gathered}
X Y \\
(2) \times(3)
\end{gathered}
\] & \[
\begin{gathered}
X^{2} \\
(\mathbf{2})^{2}
\end{gathered}
\] \\
\hline 101 & 5 & 7 & 35 & 25 \\
\hline 102 & 3 & 7 & 21 & 9 \\
\hline 103 & 3 & 6 & 18 & 9 \\
\hline 104 & 1 & 4 & 4 & 1 \\
\hline & \(\overline{\Sigma X=12}\) & \(\Sigma Y=24\) & \(\sum X Y=78\) & \(\sum X^{2}=44\) \\
\hline \multicolumn{5}{|l|}{\[
\bar{X}=\underline{\sum X}
\]} \\
\hline \multicolumn{5}{|l|}{\[
=\frac{12}{4}
\]} \\
\hline \multicolumn{5}{|l|}{\[
\bar{Y}=\frac{\sum Y}{n}
\]} \\
\hline \multicolumn{5}{|l|}{\[
=\underline{24}
\]} \\
\hline \(=6\) & of the values & dependent variable & & \\
\hline
\end{tabular}

And the \(Y\)-intercept is
\[
\begin{align*}
a & =\bar{Y}-b \bar{X} \tag{12-5}\\
& =6-(0.75)(3) \\
& =6-2.25 \\
& =3.75 \leftarrow \text { The } Y \text {-intercept }
\end{align*}
\]

\section*{Finding the value of a}

Now, to get the estimating equation that describes the relationship between the age of a truck and its annual repair expense, we can substitute the values of \(a\) and \(b\) in the equation for the estimating line:
\[
\begin{align*}
\hat{Y} & =a+b X \tag{12-3}\\
& =3.75+0.75 X
\end{align*}
\]

\section*{Determining the estimating equation}
\(\qquad\)

Using this estimating equation (which we could plot as a regression line if we wished), the Sanitation Department direc-

Using the estimating equation tor can estimate the annual repair expense, given the age of her equipment. For example, if the city has a truck that is 4 years old, the director could use the equation to predict the annual repair expense for this truck as follows:
\[
\begin{aligned}
\hat{Y} & =3.75+0.75(4) \\
& =3.75+3 \\
& =6.75 \leftarrow \text { Expected annual repair expense of } \$ 675.00
\end{aligned}
\]

Thus, the city might expect to spend about \(\$ 675\) annually in repairs on a 4 -year-old truck.
Now we can solve the chapter-opening problem concerning Another example the relationship between money spent on research and development and the chemical firm's annual profits. Table 12-8 presents the information for the preceding 6 years. With this, we can determine the regression equation describing the relationship.

Again, we can facilitate the collection of the necessary information if we perform the calculations in a table such as Table 12-9.

TABLE 12-8 ANNUAL RELATIONSHIP BETWEEN RESEARCH AND DEVELOPMENT AND PROFITS
\begin{tabular}{ccc}
\hline \multicolumn{3}{c}{\begin{tabular}{c}
Amount of Money Spent on Research \\
and Development (\$ Millions) \\
\((\boldsymbol{X})\)
\end{tabular}}
\end{tabular} \begin{tabular}{c}
Annual Profit (\$ Millions) \\
Year
\end{tabular}

TABLE 12-9 CALCULATION OF INPUTS FOR EQUATIONS 12-4 AND 12-5
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Year } \\
(n=6)
\end{gathered}
\] & \begin{tabular}{l}
Expenditures for R\&D \\
(\(X\))
\end{tabular} & Annual Profits (\(Y\)) & XY & \(\boldsymbol{X}^{2}\) \\
\hline 1995 & 5 & 31 & 155 & 25 \\
\hline 1994 & 11 & 40 & 440 & 121 \\
\hline 1993 & 4 & 30 & 120 & 16 \\
\hline 1992 & 5 & 34 & 170 & 25 \\
\hline 1991 & 3 & 25 & 75 & 9 \\
\hline \multirow[t]{5}{*}{1990} & 2 & 20 & 40 & 4 \\
\hline & \[
\overline{\Sigma X=30}
\] & \[
\overline{\Sigma Y=180}
\] & \[
\overline{\Sigma X Y=1,000}
\] & \[
\overline{\sum X^{2}=200}
\] \\
\hline & \[
\begin{align*}
\bar{X} & =\frac{\sum X}{n} \tag{3-2}\\
& =\frac{30}{6}
\end{align*}
\] & & & \\
\hline & \[
\begin{align*}
& =5 \leftarrow \text { Mean of the value } \\
\bar{Y} & =\frac{\sum Y}{n} \tag{3-2}\\
& =\frac{180}{6}
\end{align*}
\] & of the independent & & \\
\hline & \[
=30 \leftarrow \text { Mean of the valu }
\] & s of the dependent \(v\) & & \\
\hline
\end{tabular}

With this information, we are ready to find the numerical constants \(a\) and \(b\) for the estimating equation. The value of \(b\) is
\[
\begin{aligned}
b & =\frac{\sum X Y-x \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \\
& =\frac{1,000-(6)(5)(30)}{200-(6)(5)^{2}} \\
& =\frac{1,000-900}{200-150} \\
& =\frac{100}{50} \\
& =2 \leftarrow \text { The slope of the line }
\end{aligned}
\]
[12-4] Finding b

And the value for \(a\) is
\[
\begin{align*}
a & =\bar{Y}-b \bar{X} \tag{12-5}\\
& =30-(2)(5) \\
& =30-10 \\
& =20 \leftarrow \text { The } Y \text {-intercept }
\end{align*}
\]

Finding a

So we can substitute these values of \(a\) and \(b\) into Equation 12-3 and get
\[
\begin{aligned}
\hat{Y} & =a+b X \\
& =20+2 X
\end{aligned}
\]
Determining the estimating equation
[12-3]

Using this estimating equation, the vice president for research and development can predict what the annual profits will be from the amount budgeted for \(R \& D\). If the firm spends \(\$ 8\) million for

Using the estimating equation to predict R\&D in 1996, it can expect to earn approximately \(\$ 36\) million in profits during that year:
\[
\begin{aligned}
\hat{Y} & =20+2(8) \\
& =20+16 \\
& =36 \leftarrow \text { Expected annual profit (\$ millions) }
\end{aligned}
\]

Estimating equations are not perfect predictors. In Shortcoming of the estimating Figure 12-10, which plots the points found in Table 12-8, the \(\$ 36\) million estimate of profit for 1996 is only that -an estimate.
equation
equan

Even so, the regression does give us an idea of what to expect for the coming year.

\section*{Checking the Estimating Equation}

Now that we know how to calculate the regression line, we can learn how to check our work. A crude way to verify the accuracy of the estimating equation is to examine the graph of the sample

Checking the estimating equation: One way points. As we can see from the previous problem, the regression line in Figure 12-10 does appear to follow the path described by the sample points.

FIGURE 12-10 SCATTERING OF POINTS AROUND THE REGRESSION LINE

TABLE 12-10 CALCULATING THE SUM OF THE INDIVIDUAL ERRORS IN TABLE 12-9
\begin{tabular}{|c|c|c|c|c|}
\hline \(\boldsymbol{Y}\) & & \(\hat{Y}(\) That Is, \(20+2 X)\) & & Individual Error \\
\hline 31 & - & [20 + (2)(5)] & \(=\) & 1 \\
\hline 40 & - & [20 + (2)(11)] & = & -2 \\
\hline 30 & - & [20 + (2)(4)] & = & 2 \\
\hline 34 & - & [20 + (2)(5)] & = & 4 \\
\hline 25 & - & [20 + (2)(3)] & = & -1 \\
\hline 20 & - & [20 + (2)(2)] & = & -4 \\
\hline & & & & \(\mathbf{0} \leftarrow \mathrm{T}\) \\
\hline
\end{tabular}

A more sophisticated method comes from one of the mathematical properties of a line fitted by the method of least squares; that is, the individual positive and negative errors must sum to zero. Using the information from Table 12-9, check to see whether the sum of the errors in the last problem is equal to zero. This is done in Table 12-10.

Because the sum of the errors in Table 12-10 does equal zero, and because the regression line appears to "fit" the points in Figure 12-10, we can be reasonably certain that we have not committed any serious mathematical mistakes in determining the estimating equation for this problem.

\section*{The Standard Error of Estimate}

The next process we need to learn in our study of regression analysis is how to measure the reliability of the estimating equation we have developed. We alluded to this topic when we introduced

Measuring the reliability of the estimating equation scatter diagrams. There, we realized intuitively that a line is more accurate as an estimator when the data points lie close to the line (as in Figure 12-11 (a)) than when the points are farther away from the line (as in Figure 12-11 (b)).

To measure the reliability of the estimating equation, statisticians have developed the standard error of estimate. This stan-

\section*{Definition and use of the} standard error of estimate dard error is symbolized \(s_{e}\) and is similar to the standard devia-

Another way to check the estimating equation

\section*{FIGURE 12-11 CONTRASTING DEGREES OF SCATTERING OF DATA POINTS AND THE RESULTING EFFECT ON THE ACCURACY OF THE REGRESSION LINE}
where
- \(Y=\) values of the dependent variable
- \(\hat{Y}=\) estimated values from the estimating equation that correspond to each \(Y\) value
- \(n=\) number of data points used to fit the regression line

Notice that in Equation 12-6, the sum of the squared devia- \(n-2\) is the divisor in tions is divided by \(n-2\), not by \(n\). This happens because we

\section*{Equation 12-6} have lost 2 degrees of freedom in estimating the regression line. We can reason that because the values of \(a\) and \(b\) were obtained from a sample of data points, we lose 2 degrees of freedom when we use these points to estimate the regression line.

Now let's refer again to our earlier example of the Sanitation Department director who related the age of her trucks to the amount of annual repairs. We found the estimating equation in that situation to be
\[
\hat{Y}=3.75+0.75 X
\]
where \(X\) is the age of the truck and \(\hat{Y}\) is the estimated amount of annual repairs (in hundreds of dollars).

To calculate \(s_{e}\) for this problem, we must first determine the Calculating the standard error value of \(\sum(Y-\hat{Y})^{2}\), that is, the numerator of Equation 12-6. We have done this in Table 12-11, using \((3.75+0.75 X)\) for \(\hat{Y}\) whenof estimate
ever it was necessary. Because \(\sum(Y-\hat{Y})^{2}\) is equal to 1.50 , we can now use Equation 12-6 to find the standard error of estimate:
\[
\begin{align*}
S_{e} & =\sqrt{\frac{\sum(X-\hat{Y})^{2}}{n-2}} \tag{12-6}\\
& =\sqrt{\frac{1.50}{4-2}} \\
& =\sqrt{0.75} \\
& =0.866 \leftarrow \text { Standard error of estimate of } \$ 86.60
\end{align*}
\]

TABLE 12-11 CALCULATING THE NUMERATOR OF THE FRACTION IN EQUATION 12-6
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\underset{(1)}{X}
\] & \begin{tabular}{l}
Y \\
(2)
\end{tabular} & \[
\hat{Y}(\text { That is, } 3.75+0.75 X)
\] & Individual Error \((\boldsymbol{Y}-\hat{\boldsymbol{Y}})\)
\[
\text { (2) }-(\mathbf{3})
\] & \[
\begin{gathered}
(\boldsymbol{Y}-\hat{\boldsymbol{Y}})^{2} \\
{[(\mathbf{2})-(\mathbf{3})]^{2}}
\end{gathered}
\] \\
\hline 5 & 7 & \(3.75+(0.75)(5)\) & \(7-7.5=-0.5\) & 0.25 \\
\hline 3 & 7 & \(3.75+(0.75)(3)\) & \(7-6.0=1.0\) & 1.00 \\
\hline 3 & 6 & \(3.75+(0.75)(3)\) & \(6-6.0=0.0\) & 0.00 \\
\hline 1 & 4 & \(3.75+(0.75)(1)\) & \(4-4.5=-0.5\) & 0.25 \\
\hline \multicolumn{5}{|r|}{\(\Sigma(Y-\hat{Y})^{2}=1.50 \leftarrow\) Sum of squared errors} \\
\hline
\end{tabular}

\section*{Using a Short-Cut Method to Calculate the Standard Error of Estimate}

To use Equation 12-6, we must do the tedious series of calculations outlined in Table 12-11. For every value of \(Y\), we must compute the corresponding value of \(\hat{Y}\). Then we must substitute these values into the expression \(\Sigma(Y-\hat{Y})^{2}\).

Fortunately, we can eliminate some of the steps in this task by using the short cut provided by Equation 12-7, that is:
\[
\begin{aligned}
& \text { Short-Cut Method for Finding the Standard Error } \\
& \text { of Estimate } \\
& \qquad s_{e}=\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}}
\end{aligned}
\]

A quicker way to calculate \(s_{e}\)
where
- \(X=\) values of the independent variable
- \(Y=\) values of the dependent variable
- \(a=Y\)-intercept from Equation 12-5
- \(b=\) slope of the estimating equation from Equation 12-4
- \(n=\) number of data points

This equation is a short cut because, when we first organized the data in this problem so that we could calculate the slope and the \(Y\)-intercept (Table 12-7), we determined every value we need for Equation 12-7 except one: the value of \(\sum Y^{2}\). Table 12-12 is a repeat of Table 12-7 with the \(Y^{2}\) column added.

Now we can refer to Table 12-12 and our previous calculations of \(a\) and \(b\) in order to calculate \(s_{e}\) using the short-cut method:
\[
\begin{align*}
s_{e} & =\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}} \tag{12-7}\\
& =\sqrt{\frac{150-(3.75)(24)-(0.75)(78)}{4-2}}
\end{align*}
\]

TABLE 12-12 CALCULATION OF INPUTS FOR EQUATION 12-7
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Trucks (\(n=4\)) \\
(1)
\end{tabular} & \begin{tabular}{l}
Age \(X\) \\
(2)
\end{tabular} & Repair Expense \(\boldsymbol{Y}\) (3) & \[
\begin{gathered}
X Y \\
(2) \times(3)
\end{gathered}
\] & \[
\begin{gathered}
\boldsymbol{X}^{2} \\
(2)^{2}
\end{gathered}
\] & \[
\begin{gathered}
\boldsymbol{Y}^{2} \\
(\mathbf{3})^{2}
\end{gathered}
\] \\
\hline 101 & 5 & 7 & 35 & 25 & 49 \\
\hline 102 & 3 & 7 & 21 & 9 & 49 \\
\hline 103 & 3 & 6 & 18 & 9 & 36 \\
\hline \multirow[t]{2}{*}{104} & 1 & 4 & 4 & 1 & 16 \\
\hline & \(\overline{\sum X=12}\) & \(\overline{\Sigma y=24}\) & \(\overline{\sum X Y=78}\) & \(\overline{\sum X^{2}=44}\) & \(\overline{\sum X^{2}=150}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& =\sqrt{\frac{150-90-58.5}{2}} \\
& =\sqrt{0.75} \\
& =0.866 \leftarrow \text { Standard error of } \$ 86.60
\end{aligned}
\]

This is the same result as the one we obtained using Equation 12-6, but think of how many steps we saved!

\section*{Interpreting the Standard Error of Estimate}

As was true of the standard deviation, the larger the standard error of estimate, the greater the scattering (or dispersion) of points around the regression line. Conversely, if \(s_{e}=0\), we expect the estimating equation to be a "perfect" estimator of the dependent variable. In that case, all the data points would lie directly on the regression line, and no points would be scattered around it.

We shall use the standard error of estimate as a tool in the same way that we can use the standard deviation. That is to say, assuming that the observed points are normally distributed

Using \(s_{e}\) to form bounds around the regression line around the regression line, we can expect to find 68 percent of the points within \(\pm 1 s_{e}\) (or plus and minus 1 standard error of estimate), 95.5 percent of the points within \(\pm 2 s_{e}\), and 99.7 percent of the points within \(\pm 3 s_{e}\). Figure 12-12 illustrates these "bounds" around the regression line. Another thing to notice in Figure 12-12 is that the standard error of estimate is measured along the \(Y\)-axis, rather than perpendicularly from the regression line.

At this point, we should state the assumptions we are making because shortly we shall make some probability statements based

Assumptions we make in use
of \(s_{e}\) on these assumptions. Specifically, we have assumed

Interpreting and using the standard error of estimate
1. The observed values for \(Y\) are normally distributed around each estimated value of \(\hat{Y}\).
2. The variance of the distributions around each possible value of \(Y\) is the same.

If this second assumption were not true, then the standard error at one point on the regression line could differ from the standard error at another point on the line.

FIGURE 12-12 \(\pm 1 S_{e^{\prime}} \pm 2 S_{e}\) AND \(\pm 3 S_{e}\) BOUNDS AROUND THE REGRESSION LINE (MEASURED ON THE Y AXIS)

\section*{Approximate Prediction Intervals}

One way to view the standard error of estimate is to think of it as the statistical tool we can use to make a probability statement about the interval around an estimated value of \(\hat{Y}\), within which

Using \(s_{e}\) to generate prediction intervals the actual value of \(Y\) lies. We can see, for instance, in Figure 12-12 that we can be 95.5 percent certain that the actual value of \(Y\) will lie within 2 standard errors of the estimated value of \(\hat{Y}\). We call these intervals around the estimated \(\hat{Y}\) approximate prediction intervals. They serve the same function as the confidence intervals did in Chapter 7.

Now, applying the concept of approximate prediction intervals to the Sanitation Department director's repair expenses, we know that the estimating equation used to predict the annual repair expense is
\[
\hat{Y}=3.75+0.75 X
\]

And we know that if the department has a 4-year-old truck, we predict it will have an annual repair expense of \(\$ 675\) :

\section*{Applying prediction intervals}
\[
\begin{aligned}
\hat{Y} & =3.75+0.75(4) \\
& =3.75+3.00 \\
& =6.75 \leftarrow \text { Expected annual repair expense of } \$ 675
\end{aligned}
\]

Finally, you will recall that we calculated the standard error of estimate to be \(s_{e}=0.866\) (\(\$ 86.60\)). We can now combine

One-standard-error prediction interval these two pieces of information and say that we are roughly 68 percent confident that the actual repair expense will be within \(\pm 1\) standard error of estimate from \(\hat{Y}\). We can calculate the upper and lower limits of this prediction interval for the repair
expense as follows:
\[
\begin{aligned}
\hat{Y}+1 s_{e} & =\$ 675+(1)(\$ 86.60) \\
& =\$ 761.60 \leftarrow \text { Upper limit of prediction interval }
\end{aligned}
\]
and
\[
\begin{aligned}
\hat{Y}+1 s_{e} & =\$ 675+(1)(\$ 86.60) \\
& =\$ 588.40 \leftarrow \text { Lower limit of prediction interval }
\end{aligned}
\]

If, instead, we say that we are roughly 95.5 percent confident that the actual repair expense will be within \(\pm 2\) standard errors of estimate from \(\hat{Y}\), we would calculate the limits of this new prediction interval like this:
\[
\begin{aligned}
\hat{Y}+2 s_{e} & =\$ 675+(2)(\$ 86.60) \\
& =\$ 848.20 \leftarrow \text { Upper limit }
\end{aligned}
\]
and
\[
\begin{aligned}
\hat{Y}+2 s_{e} & =\$ 675-(2)(\$ 86.60) \\
& =\$ 501.80 \leftarrow \text { Lower limit }
\end{aligned}
\]

Keep in mind that statisticians apply prediction intervals based on the normal distribution (68 percent for \(1 s_{e}, 95.5\) percent for \(2 s_{e}\), and 99.7 percent for \(3 s_{e}\)) only to large samples, that is, where \(n>30\). In this problem, our sample size is too small (\(n=\) 4). Thus, our conclusions are inaccurate. But the method we have used nevertheless demonstrates the principle involved in prediction intervals.

If we wish to avoid the inaccuracies caused by the size of the sample, we need to use the \(t\) distribution. Recall that the \(t\) distribution is appropriate when \(n\) is less than 30 and the population standard deviation is unknown. We meet both these conditions because \(n=4\), and \(s_{e}\) is an estimate rather than the known population standard deviation.

Now suppose the Sanitation Department director wants to be roughly 90 percent certain that the annual truck-repair expense will lie within the prediction interval. How should we calculate this interval? Because the \(t\) distribution table focuses on the prob-

\section*{Using the \(t\) distribution for prediction intervals} distribution

Two-standard-error prediction interval
-
and
\[
\begin{aligned}
\hat{Y}+t\left(s_{e}\right) & =\$ 675-(2.920)(\$ 86.60) \\
& =\$ 675-\$ 252.87 \\
& =\$ 422.13 \leftarrow \text { Lower limit }
\end{aligned}
\]

So the director can be 90 percent certain that the annual repair expense on a 4 -year old truck will lie between \(\$ 422.13\) and \(\$ 927.87\).

We stress again that these prediction intervals are only approximate. In fact, statisticians can calculate the exact standard error for the prediction \(s_{p}\) using this formula:
\[
s_{p}=s_{e} \sqrt{1+\frac{1}{n}+\frac{\left(X_{0}-\bar{X}\right)^{2}}{\sum X^{2}-n \bar{X}^{2}}}
\]
where \(X_{0}\) is the specific value of \(X\) at which we want to predict the value of \(Y\).
Notice that if we use this formula, \(s_{p}\) is different for each value of \(X_{0}\). In particular, if \(X_{0}\) is far from \(\bar{X}\), then \(s_{p}\) is large because \(\left(X_{0}-\bar{X}\right)^{2}\) is large. On the other hand, if \(X_{0}\) is close to \(X\) and \(n\) is moderately large (greater than 10), then \(s_{p}\) is close to \(s_{e}\). This happens because \(1 / n\) is small and \(\left(X_{0}-\bar{X}\right)^{2}\) is small. Therefore, the value under the square-root sign is close to 1 , the square root is even closer to 1 , and \(s_{p}\) is very close to \(s_{e}\). This justifies our use of \(s_{e}\) to compute approximate prediction intervals.

\section*{HINTS \& ASSUMPTIONS}

Hint: Before you spend time computing a regression line for a set of data points, it makes sense to sketch the scatter diagram for those points. This lets you investigate any outlying points because some of the data you have may not represent the problem you are trying to solve. For example, the manager of a restaurant chain near college campuses who wants to examine the hypothesis that lunchtime sales are lower on hot days may find that data gathered during spring break or university holidays distort an otherwise useful regression. Warning: It is dangerous to pick and choose data points because they do or don't "fit" with your preconceived idea about what the conclusion should be. In regression analysis, thoughtful selection and consistent use of the best database lead to the most useful estimating equation.

\section*{Simple Linear Regression Using SPSS}

For Simple Regression Go to Analyze>Regression>Linear Regression>Choose dependent and independent variables \(>\) Select desired statistics

\section*{Statistics for Management}

\section*{EXERCISES 12.2}

\section*{Self-Check Exercises}

SC 12-2 For the following set of data:
(a) Plot the scatter diagram.
(b) Develop the estimating equation that best describes the data.
(c) Predict \(Y\) for \(X=10,15,20\).
\begin{tabular}{rrrrrrrrrrr}
\(\boldsymbol{X}\) & 13 & 6 & 14 & 11 & 17 & 9 & 13 & 17 & 18 & 12 \\
\(\boldsymbol{Y}\) & 6.2 & 8.6 & 7.2 & 4.5 & 9.0 & 3.5 & 6.5 & 9.3 & 9.5 & 5.7
\end{tabular}

SC 12-3 Cost accountants often estimate overhead based on the level of production. At the Standard Knitting Co., they have collected information on overhead expenses and units produced at different plants, and want to estimate a regression equation to predict future overhead.
\begin{tabular}{lrrrrrrrrrr}
Overhead & 191 & 170 & 272 & 155 & 280 & 173 & 234 & 116 & 153 & 178 \\
Units & 40 & 42 & 53 & 35 & 56 & 39 & 48 & 30 & 37 & 40
\end{tabular}
(a) Develop the regression equation for the cost accountants.
(b) Predict overhead when 50 units are produced.
(c) Calculate the standard error of estimate.

\section*{Basic Concepts}

12-13 For the following data
(a) Plot the scatter diagram.
(b) Develop the estimating equation that best describes the data.
(c) Predict \(Y\) for \(X=6,13.4,20.5\).
\begin{tabular}{ccccccccc}
\(\boldsymbol{X}\) & 2.7 & 4.8 & 5.6 & 18.4 & 19.6 & 21.5 & 18.7 & 14.3 \\
\(\boldsymbol{Y}\) & 16.66 & 16.92 & 22.3 & 71.8 & 80.88 & 81.4 & 77.46 & 48.7 \\
\(\boldsymbol{X}\) & 11.6 & 10.9 & 18.4 & 19.7 & 12.3 & 6.8 & 13.8 & \\
\(\boldsymbol{Y}\) & 50.48 & 47.82 & 71.5 & 81.26 & 50.1 & 39.4 & 52.8 &
\end{tabular}

12-14 Using the data given below
(a) Plot the scatter diagram.
(b) Develop the estimating equation that best describes the data.
(c) Predict \(Y\) for \(X=5,6,7\).
\begin{tabular}{rrrrrrr}
\(\boldsymbol{X}\) & 16 & 6 & 10 & 5 & 12 & 14 \\
\(\boldsymbol{Y}\) & -4.4 & 8.0 & 2.1 & 8.7 & 0.1 & -2.9
\end{tabular}

12-15 Given the following set of data:
(a) Find the best-fitting line.
(b) Compute the standard error of estimate.
(c) Find an approximate prediction interval (with a 95 percent confidence level) for the dependent variable given that \(X\) is 44 .
\begin{tabular}{rrrrrrrr}
\(\boldsymbol{X}\) & 56 & 48 & 42 & 58 & 40 & 39 & 50 \\
\(\boldsymbol{Y}\) & 45 & 38.5 & 34.5 & 46.1 & 33.3 & 32.1 & 40.4
\end{tabular}

\section*{Applications}

12-16 Sales of major appliances vary with the new housing market: when new home sales are good, so are the sales of dishwashers, washing machines, driers, and refrigerators. A trade association compiled the following historical data (in thousands of units) on major appliance sales and housing starts:
\begin{tabular}{cc}
\hline \begin{tabular}{c}
Housing Starts \\
(thousands)
\end{tabular} & \begin{tabular}{c}
Appliance Sales \\
(thousands)
\end{tabular} \\
\hline 2.0 & 5.0 \\
2.5 & 5.5 \\
3.2 & 6.0 \\
3.6 & 7.0 \\
3.3 & 7.2 \\
4.0 & 7.7 \\
4.2 & 8.4 \\
4.6 & 9.0 \\
4.8 & 9.7 \\
5.0 & 10.0 \\
\hline
\end{tabular}
(a) Develop an equation for the relationship between appliance sales (in thousands) and housing starts (in thousands).
(b) Interpret the slope of the regression line.
(c) Compute and interpret the standard error of estimate.
(d) Housing starts next year may be beyond the recorded range; estimates as high as 8.0 million units have been predicted. Compute an approximate 90 percent prediction interval for appliance sales, based on the previous data and the new prediction of housing starts.
12-17 During recent tennis matches, Diane has noticed that her lobs have been less than totally effective because her opponents have been returning more of them. Some of the people she plays are quite tall, so she was wondering whether the height of her opponent could be used to explain the number of lobs not returned during a match. The following data were collected from five recent matches.
\begin{tabular}{cc}
\hline Opponent's Height \((H)\) & Unreturned Lobs \((L)\) \\
\hline 5.0 & 9 \\
5.5 & 6 \\
6.0 & 3 \\
6.5 & 0 \\
5.0 & 7 \\
\hline
\end{tabular}
(a) Which variable is the dependent variable?
(b) What is the least-squares estimating equation for these data?
(c) What is your best estimate of the number of unreturned lobs in her match tomorrow with an opponent who is 5.9 feet tall?
12-18 A study by the Atlanta, Georgia, Department of Transportation on the effect of bus-ticket prices on the number of passengers produced the following results:
\begin{tabular}{lrrrrrrrr}
Ticket price (cents) & 25 & 30 & 35 & 40 & 45 & 50 & 55 & 60 \\
Passengers per 100 miles & 800 & 780 & 780 & 660 & 640 & 600 & 620 & 620
\end{tabular}
(a) Plot these data.
(b) Develop the estimating equation that best describes these data.
(c) Predict the number of passengers per 100 miles if the ticket price were 50 cents. Use a 95 percent approximate prediction interval.
12-19 William C. Andrews, an organizational behavior consultant for Victory Motorcycles, has designed a test to show the company's supervisors the dangers of oversupervising their workers. A worker from the assembly line is given a series of complicated tasks to perform. During the worker's performance, a supervisor constantly interrupts the worker to assist him or her in completing the tasks. The worker, upon completion of the tasks, is then given a psychological test designed to measure the worker's hostility toward authority (a high score equals low hostility). Eight different workers were assigned the tasks and then interrupted for the purpose of instructional assistance various numbers of times (line \(X\)). Their corresponding scores on the hostility test are revealed in line \(Y\).
\begin{tabular}{lrlllllll}
\(\boldsymbol{X}\) (number of times worker interrupted) & 5 & 10 & 10 & 15 & 15 & 20 & 20 & 25 \\
\(\boldsymbol{Y}\) (worker's score on hostility test) & 58 & 41 & 45 & 27 & 26 & 12 & 16 & 3
\end{tabular}
(a) Plot these data.
(b) Develop the equation that best describes the relationship between the number of times interrupted and the test score.
(c) Predict the expected test score if the worker is interrupted 18 times.

12-20 The editor-in-chief of a major metropolitan newspaper has been trying to convince the paper's owner to improve the working conditions in the pressroom. He is convinced that the noise level when the presses are running creates unhealthy levels of tension and anxiety. He recently
had a psychologist conduct a test during which press operators were placed in rooms with varying levels of noise and then given a test to measure mood and anxiety levels. The following table shows the index of their degree of arousal or nervousness and the level of noise to which they were exposed (1.0 is low and 10.0 is high).
\begin{tabular}{lrrrrrrrr}
Noise level & 4 & 3 & 1 & 2 & 6 & 7 & 2 & 3 \\
Degree of arousal & 39 & 38 & 16 & 18 & 41 & 45 & 25 & 38
\end{tabular}
(a) Plot these data.
(b) Develop an estimating equation that describes these data.
(c) Predict the degree of arousal we might expect when the noise level is 5.

12-21 A firm administers a test to sales trainees before they go into the field. The management of the firm is interested in determining the relationship between the test scores and the sales made by the trainees at the end of one year in the field. The following data were collected for 10 sales personnel who have been in the field one year.
\begin{tabular}{ccc}
\hline Salesperson Number & Test Score \((\boldsymbol{T})\) & Number of Units Sold \((\boldsymbol{S})\) \\
\hline 1 & 2.6 & 95 \\
2 & 3.7 & 140 \\
3 & 2.4 & 85 \\
4 & 4.5 & 180 \\
5 & 2.6 & 100 \\
6 & 5.0 & 195 \\
7 & 2.8 & 115 \\
8 & 3.0 & 136 \\
9 & 4.0 & 175 \\
10 & 3.4 & 150 \\
\hline
\end{tabular}
(a) Find the least-squares regression line that could be used to predict sales from trainee test scores.
(b) How much does the expected number of units sold increase for each 1-point increase in a trainee's test score?
(c) Use the least-squares regression line to predict the number of units that would be sold by a trainee who received an average test score.
12-22 The city council of Bowie, Maryland, has gathered data on the number of minor traffic accidents and the number of youth soccer games that occur in town over a weekend.
\begin{tabular}{lrrrrrrr}
\(\boldsymbol{X}\) (soccer games) & 20 & 30 & 10 & 12 & 15 & 25 & 34 \\
\(\boldsymbol{Y}\) (minor accidents) & 6 & 9 & 4 & 5 & 7 & 8 & 9
\end{tabular}
(a) Plot these data.
(b) Develop the estimating equation that best describes these data.
(c) Predict the number of minor traffic accidents that will occur on a weekend during which 33 soccer games take place in Bowie.
(d) Calculate the standard error of estimate.

12-23 In economics, the demand function for a product is often estimated by regressing the quantity sold \((Q)\) on the price \((P)\). The Bamsy Company is trying to estimate the demand function for its new doll "Ma'am," and has collected the following data:
\begin{tabular}{ccccccccc}
\(\boldsymbol{p}\) & 20.0 & 17.5 & 16.0 & 14.0 & 12.5 & 10.0 & 8.0 & 6.5 \\
\(\boldsymbol{q}\) & 125 & 156 & 183 & 190 & 212 & 238 & 250 & 276
\end{tabular}
(a) Plot these data.
(b) Calculate the least-squares regression line.
(c) Draw the fitted regression line on your plot from part (a).

12-24 A tire manufacturing company is interested in removing pollutants from the exhaust at the factory, and cost is a concern. The company has collected data from other companies concerning the amount of money spent on environmental measures and the resulting amount of dangerous pollutants released (as a percentage of total emissions).
\begin{tabular}{lrrrrrrr}
Money Spent (\$ thousands) & 8.4 & 10.2 & 16.5 & 21.7 & 9.4 & 8.3 & 11.5 \\
Percentage of Dangerous Pollutants & 35.9 & 31.8 & 24.7 & 25.2 & 36.8 & 35.8 & 33.4 \\
Money Spent (\$ thousands) & 18.4 & 16.7 & 19.3 & 28.4 & 4.7 & 12.3 & \\
Percentage of Dangerous Pollutants & 25.4 & 31.4 & 27.4 & 15.8 & 31.5 & 28.9 &
\end{tabular}
(a) Compute the regression equation.
(b) Predict the percentage of dangerous pollutants released when \(\$ 20,000\) is spent on control measures.
(c) Calculate the standard error of estimate.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 12-2 (a)

(b) \begin{tabular}{ccrc}
\hline \(\boldsymbol{X}\) & \(\boldsymbol{Y}\) & \(\boldsymbol{X} \boldsymbol{Y}\) & \(\boldsymbol{X}^{2}\) \\
\hline 13 & 6.2 & 80.6 & 169 \\
16 & 8.6 & 137.6 & 256 \\
14 & 7.2 & 100.8 & 196 \\
11 & 4.5 & 49.5 & 121 \\
17 & 9.0 & 153.0 & 289 \\
\hline
\end{tabular}
(Continued)
\begin{tabular}{|c|c|c|c|}
\hline X & \(\boldsymbol{Y}\) & XY & \(\boldsymbol{X}^{2}\) \\
\hline 9 & 3.5 & 31.5 & 81 \\
\hline 13 & 6.5 & 84.5 & 169 \\
\hline 17 & 9.3 & 158.1 & 289 \\
\hline 18 & 9.5 & 171.0 & 324 \\
\hline 12 & 5.7 & 68.4 & 144 \\
\hline \[
\begin{aligned}
& \overline{\sum X=} \\
& 140
\end{aligned}
\] & \(\bar{\Sigma} Y=70.0\) & \(\bar{\Sigma} Y Y=1,035.0\) & \(\overline{\sum X^{2}=2,038}\) \\
\hline \multicolumn{4}{|c|}{\(\bar{X}=140 / 10=14 \quad \bar{Y}=70.0 / 10=7.0\)} \\
\hline \multicolumn{4}{|r|}{\[
\begin{aligned}
& b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}}=\frac{1,035.0-10(14)(7.0)}{2,038-10(14)^{2}}=0.7051 \\
& a=\bar{Y}-b \bar{X}=7.0-(0.7051)(14)=-2.8714
\end{aligned}
\]} \\
\hline
\end{tabular}

Thus, \(\hat{Y}=-2.8714+0.7051 X\). If you used a computer regression package to do your computation, you probably got
\[
\hat{Y}=-2.8718+0.7051 X
\]

This slight difference occurs because most computer packages carry their calculations to more than ten decimal places, but we rounded \(b\) to only four places before finding \(a\). For most practical purposes, this slight difference (i.e., \(a=-2.8714\) instead of -2.8718) is inconsequential.
(c) \(X=10, \hat{Y}=-2.8714+0.7051(10)=4.1796\)
\(X=15, \hat{Y}=-2.8714+0.7051(15)=7.7051\)
\(X=20, \hat{Y}=-2.8714+0.7051(20)=11.2306\)
SC 12-3 In this problem, \(Y=\) overhead and \(X=\) units produced.
\begin{tabular}{|c|c|c|c|c|}
\hline X & \(Y\) & XY & \(\boldsymbol{X}^{2}\) & \(Y^{2}\) \\
\hline 40 & 191 & 7,640 & 1,600 & 36,481 \\
\hline 42 & 170 & 7,140 & 1,764 & 28,900 \\
\hline \[
53
\] & 272 & 14,416 & 2,809 & 73,984 \\
\hline \[
35
\] & 155 & 5,425 & 1,225 & 24,025 \\
\hline 56 & 280 & 15,680 & 3,136 & 78,400 \\
\hline 39 & 173 & 6,747 & 1,521 & 29,929 \\
\hline 48 & 234 & 11,232 & 2,304 & 54,756 \\
\hline 30 & 116 & 3,480 & 900 & 13,456 \\
\hline 37 & 153 & 5,661 & 1,369 & 23,409 \\
\hline 40 & 178 & 7,120 & 1,600 & 31,684 \\
\hline \(\Sigma X=420\) & \(\overline{\Sigma Y=1,922}\) & \(\overline{\Sigma X Y=84,541}\) & \(\overline{\Sigma X^{2}=18,228}\) & \(\overline{\Sigma Y^{2}=395,024}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
\bar{X} & =\frac{420}{10}=42 \quad \bar{Y}=\frac{1,922}{10}=192.2 \\
b & =\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}}=\frac{84,541-10(42)(192.2)}{18,228-10(42)^{2}}=6.4915 \\
a & =\bar{Y}-b \bar{X}=192.2-6.4915(42)=-80.4430
\end{aligned}
\]

Thus, \(\hat{Y}=-80.4430+6.4915 X\) (Computer packages: \(\hat{Y}=-80.4428+6.4915 X\)).
(b) \(\hat{Y}=-80.4430+6.4915(50)=244.1320\)
(c) \(s_{e}=\frac{\sqrt{\sum Y^{2}-a \sum Y-b \sum X Y}}{n-2}\)
\[
=\sqrt{\frac{395,024-(-80.4430)(1,922)-6.4915(84,541)}{8}}=10.2320
\]

\subsection*{12.3 CORRELATION ANALYSIS}

Correlation analysis is the statistical tool we can use to describe the degree to which one variable is linearly related to
another. Often, correlation analysis is used in conjunction with regression analysis to measure how well the regression line explains the variation of the dependent variable, \(Y\). Correlation can also be used by itself, however, to measure the degree of association between two variables.

Statisticians have developed two measures for describing the correlation between two variables: the coefficient of determination and the coefficient of correlation. Introducing these two

\section*{Two measures that describe} correlation measures of association is the purpose of this section.

What correlation analysis does

\section*{The Coefficient of Determination}

The coefficient of determination is the primary way we can measure the extent, or strength, of the association that exists between two variables, \(X\) and \(Y\). Because we have used a sample of points

Developing the sample coefficient of determination to develop regression lines, we refer to this measure as the sample coefficient of determination.

The sample coefficient of determination is developed from the relationship between two kinds of variation: the variation of the \(Y\) values in a data set around
1. The fitted regression line
2. Their own mean

The term variation in both cases is used in its usual statistical sense to mean "the sum of a group of squared deviations." By using this definition, then, it is reasonable to express the variation of the \(Y\) values around the regression line with this equation:

\section*{Variation of \(\boldsymbol{Y}\) Values around the Regression Line}

Variation of the \(Y\) values around the regression line \(=\Sigma(Y-\hat{Y})^{2}\)

The second variation, that of the \(Y\) values around their own mean, is determined by
\begin{tabular}{|cc|}
\hline Variation of \(\boldsymbol{Y}\) Values around Their Own Mean \\
\hline Variation of the \(Y\) values around their own mean \(=\Sigma(Y-\hat{Y})^{2}\) & {\([12-9]\)} \\
\hline
\end{tabular}

One minus the ratio between these two variations is the sample coefficient of determination, which is symbolized \(r^{2}\) :

\section*{Sample Coefficient of Determination}
\[
\begin{equation*}
r^{2}=1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \tag{12-10}
\end{equation*}
\]

The next two sections will show you that \(r^{2}\), as defined by Equation 12-10, is a measure of the degree of linear association between \(X\) and \(Y\).

\section*{An Intuitive Interpretation of \(r^{2}\)}

Consider the two extreme ways in which variables \(X\) and \(Y\) can be related. In Table 12-13, every observed value of \(Y\) lies on the estimating line, as can be verified visually by Figure 12-13. This is perfect correlation.

The estimating equation appropriate for these data is easy to determine. Because the regression line passes through the origin, we know that the \(Y\)-intercept is zero; because \(Y\) increases by 4

Estimating equation appropriate
for perfect correlation example every time \(X\) increases by 1 , the slope must equal 4 . Thus, the regression line is
\[
\hat{Y}=4 X
\]

TABLE 12-13 ILLUSTRATION OF PERFECT CORRELATION BETWEEN TWO VARIABLES, \(X\) AND \(Y\)
\begin{tabular}{ccc}
\hline Data Point & Value of \(\boldsymbol{X}\) & Value of \(\boldsymbol{Y}\) \\
\hline 1st & 1 & 4 \\
2nd & 2 & 8 \\
3rd & 3 & 12 \\
4th & 4 & 16 \\
5th & 5 & 20 \\
6th & 6 & \(24 \bar{Y}=\frac{144}{8}=18 \leftarrow\) Mean of the values of \(Y\) \\
7th & 7 & 28 \\
8th & 8 & 32 \\
\hline
\end{tabular}

FIGURE 12-13 PERFECT CORRELATION BETWEEN X AND Y: EVERY DATA POINT LIES ON THE REGRESSION LINE

Now, to determine the sample coefficient of determination for the regression line in Figure 12-13, we first calculate the numerator of the fraction in Equation 12-10:

Determining the sample coefficient of determination for the perfect correlation example

Variation of the \(Y\) values around the regression line \(=\Sigma(Y-\hat{Y})^{2}\)
\[
\begin{align*}
& =\Sigma(0)^{2} \tag{12-8}\\
& =0
\end{aligned} \begin{aligned}
& \text { Because every } Y \text { value is on the } \\
& \text { regression line, the difference } \\
& \text { between } Y \text { and } \hat{Y} \text { is zero in each case }
\end{align*}
\]

Then we can find the denominator of the fraction:
Variation of the \(Y\) values
around their own mean \(=\Sigma(Y-\bar{Y})^{2}\)
\[
\begin{equation*}
(4-18)^{2}=(-14)^{2}=196 \tag{12-9}
\end{equation*}
\]
\[
\begin{equation*}
(8-18)^{2}=(-10)^{2}=100 \tag{12-9}
\end{equation*}
\]
\[
(12-18)^{2}=(-6)^{2}=36
\]
\[
(16-18)^{2}=(-2)^{2}=4
\]
\[
(20-18)^{2}=(2)^{2}=4
\]
\[
(24-18)^{2}=(6)^{2}=36
\]
\[
(28-18)^{2}=(10)^{2}=100
\]
\[
(32-18)^{2}=(14)^{2}=\frac{196}{\mathbf{6 7 2}} \leftarrow \Sigma(Y-\bar{Y})^{2}
\]

FIGURE 12-14 ZERO CORRELATION BETWEEN X AND Y: SAME VALUES OF Y APPEAR FOR DIFFERENT VALUES OF X

With these values to substitute into Equation 12-10, we can find that the sample coefficient of determination is equal to +1 :
\[
\begin{align*}
& r^{2}=1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \tag{12-10}\\
&=1-\frac{0}{672} \\
&=1-0 \\
&=1 \leftarrow \quad \text { Sample coefficient of determination } \\
& \quad \text { when there is perfect correlation }
\end{align*}
\]

In fact, \(r^{2}\) is equal to +1 whenever the regression line is a perfect estimator.
A second extreme way in which the variables \(X\) and \(Y\) can be related is that the points could lie at equal distances on both sides of a horizontal regression line, as pictured in Figure 12-14. The data set here consists of eight points, all of which have been recorded in Table 12-14.

From Figure 12-14, we can see that the least-squares regression line appropriate for these data is given by the equation \(\hat{Y}=9\). The slope of the line is zero because the same values of \(Y\) appear for all the different values of \(X\). Both the \(Y\)-intercept and the mean of the \(Y\) values are equal to 9 .

Now we'll compute the two variations using Equations 12-8 Determining the sample and \(12-9\) so that we can calculate the sample coefficient of determination for this regression line. First, the variation of the \(Y\) values around the estimating line \(\hat{Y}=9\) :

TABLE 12-14 ILLUSTRATION OF ZERO CORRELATION BETWEEN TWO VARIABLES, X AND Y
\begin{tabular}{ccc}
\hline Data Point & Value of \(\boldsymbol{X}\) & Value of \(\boldsymbol{Y}\) \\
\hline 1st & 1 & 6 \\
2nd & 1 & 12 \\
3rd & 3 & 6 \\
4th & 3 & 12 \\
5th & 5 & 6 \\
6th & 5 & 12 \\
7th & 7 & 6 \\
8th & 7 & \(\underline{12}\) \\
& \(\sum Y=\overline{\mathbf{7 2}}\) \\
& \(\bar{Y}=\frac{72}{8}\) \\
& \(=9 \leftarrow\) Mean of the values of \(Y\) \\
\hline
\end{tabular}

Variation of the \(Y\) values
around the regression line \(=\Sigma(Y-\hat{Y})^{2}\)

Variation of the \(Y\) values around their own mean \(=\Sigma(Y-\bar{Y})^{2}\)
\[
\begin{align*}
(6-9)^{2} & =(-3)^{2}=9 \tag{12-9}\\
(12-9)^{2} & =(3)^{2}=9 \\
(6-9)^{2} & =(-3)^{2}=9 \\
(12-9)^{2} & =(3)^{2}=9 \\
(6-9)^{2} & =(-3)^{2}=9 \\
(12-9)^{2} & =(3)^{2}=9 \\
(6-9)^{2} & =(-3)^{2}=9 \\
(12-9)^{2} & =(3)^{2}=\frac{9}{\mathbf{7 2}} \leftarrow \Sigma(Y-\bar{Y})^{2}
\end{align*}
\]

Substituting these two values into Equation 12-10, we see that the sample coefficient of determination is 0 :
\[
\begin{align*}
r^{2} & =1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \tag{12-10}\\
& =1-\frac{72}{72} \\
& =1-1 \\
& =0 \leftarrow \begin{array}{l}
\text { Sample coefficient of determination } \\
\text { when there is no correlation }
\end{array}
\end{align*}
\]

Thus, the value of \(r^{2}\) is zero when there is no correlation.
In the problems most decision makers encounter, \(r^{2}\) lies somewhere between these two extremes of 1 and 0 . Keep in mind, however, that an \(r^{2}\) close to 1 indicates a strong correlation between \(X\) and \(Y\), whereas an \(r^{2}\) near 0 means that there is little correlation between these two variables.

One point that we must emphasize strongly is that \(r^{2}\) measures only the strength of a linear relationship between two variables. For example, if we had a lot of \(X, Y\) points that fell on the circumference of a circle but at randomly scattered places, clearly there would be a relationship among these points (they all lie on the same circle). But in this instance, if we computed \(r^{2}\), it would turn out to be close to zero, because the points do not have a linear relationship with each other.

\section*{Interpreting \(r^{2}\) Another Way}

Statisticians also interpret the sample coefficient of determination by looking at the amount of the variation in \(Y\) that is explained by the regression line. To understand this meaning of \(r^{2}\), consider the regression line (shown in color) in Figure 12-15.

\section*{Another way to interpret the sample coefficient of determination} Here, we have singled out one observed value of \(Y\), shown as the upper black-circle. If we use the mean of the \(Y\) values, \(\bar{Y}\), to estimate this black-circled value of \(Y\), then the total deviation of this \(Y\) from its mean would be \((Y-\bar{Y})\). Notice that if we used the regression line

FIGURE 12-15 TOTAL DEVIATION, EXPLAINED DEVIATION, AND UNEXPLAINED DEVIATION FOR ONE OBSERVED VALUE OF Y
to estimate this black-circled value of \(Y\), we would get a better Explained and unexplained estimate. However, even though the regression line accounts for, or explains \((\hat{Y}-Y)\) of the total deviation, the remaining portion

\section*{deviation} of the total deviation, \((Y-\hat{Y})\), is still unexplained.

But consider a whole set of observed \(Y\) values instead of only one value. The total variation-that is, the sum of the squared total deviations-of these points from their mean would be
\[
\begin{equation*}
\sum(Y-\bar{Y})^{2} \tag{12-9}
\end{equation*}
\]
and the explained portion of the total variation, or the sum of the squared explained deviations of these points from their mean,

\section*{Explained and unexplained}
variation
would be
\[
\Sigma(\hat{Y}-\bar{Y})^{2}
\]

The unexplained portion of the total variation (the sum of the squared unexplained deviations) of these points from the regression line would be
\[
\begin{equation*}
\Sigma(Y-\hat{Y})^{2} \tag{12-8}
\end{equation*}
\]

If we want to express the fraction of the total variation that remains unexplained, we would divide the unexplained variation, \(\Sigma(Y-\hat{Y})^{2}\), by the total variation, \(\Sigma(Y-\bar{Y})^{2}\), as follows
\[
\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \leftarrow \text { Fraction of the total variation that is unexplained }
\]

Finally, if we subtract the fraction of the total variation that remains unexplained from 1, we will have the formula for finding that fraction of the total variation of \(Y\) that is explained by the regression line. That formula is
\[
\begin{equation*}
r^{2}=1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \tag{12-10}
\end{equation*}
\]
the same equation we have previously used to calculate \(r^{2}\). It is in this sense, then, that \(r^{2}\) measures how well \(X\) explains \(Y\), that is, the degree of association between \(X\) and \(Y\).

One final word about calculating \(r^{2}\). To obtain \(r^{2}\) using Equations Short-cut method to calculate \(r^{2}\) 12-8, 12-9, and 12-10 requires a series of tedious calculations. To bypass these calculations, statisticians have developed a short-cut version, using values we would have determined already in the regression analysis. The formula is

\section*{Short-Cut Method for Finding Sample Coefficient of Determination}
\[
\begin{equation*}
r^{2} \text { calculated by short-cut method } \rightarrow r^{2}=\frac{a \sum Y+b \sum X Y-n \bar{Y}^{2}}{\sum^{2}-n \bar{Y}^{2}} \tag{12-11}
\end{equation*}
\]

TABLE 12-15 CALCULATIONS OF INPUTS FOR EQUATION 12-11
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
\begin{gathered}
\text { Year } \\
(n=6)
\end{gathered}
\] \\
(1)
\end{tabular} & \[
\begin{gathered}
\text { R\&D } \\
\text { Expense (} \boldsymbol{X}) \\
(2) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Anual Profit \\
(\(\boldsymbol{Y}\)) \\
(3)
\end{tabular} & \[
\begin{gathered}
X Y \\
(2) \times(3)
\end{gathered}
\] & \[
\begin{gathered}
X^{2} \\
(\mathbf{2})^{2} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
Y^{2} \\
(\mathbf{3})^{2}
\end{gathered}
\] \\
\hline 1995 & 5 & 31 & 155 & 25 & 961 \\
\hline 1994 & 11 & 40 & 440 & 121 & 1,600 \\
\hline 1993 & 4 & 30 & 120 & 16 & 900 \\
\hline 1992 & 5 & 34 & 170 & 25 & 1,156 \\
\hline 1991 & 3 & 25 & 75 & 9 & 625 \\
\hline 1990 & 2 & 20 & 40 & 4 & 400 \\
\hline & \(\overline{\sum X=30}\) & \(\bar{\sum} Y=\mathbf{1 8 0}\) & \(\overline{\sum X Y=\mathbf{1 , 0 0 0}}\) & \(\Sigma X^{2}=\mathbf{2 0 0}\) & \(\overline{\sum Y^{2}=\mathbf{5 , 6 4 2}}\) \\
\hline & \[
\bar{Y}=
\] & & & & \\
\hline \multicolumn{6}{|c|}{\(=30 \leftarrow\) Mean of the values of the dependent variable} \\
\hline
\end{tabular}
where
- \(r^{2}=\) sample coefficient of determination
- \(a=Y\)-intercept
- \(b=\) slope of the best-fitting estimating line
- \(n=\) number of data points
- \(X=\) values of the independent variable
- \(Y=\) values of the dependent variable
- \(\bar{Y}=\) mean of the observed values of the dependent variable

To see why this formula is a short cut, apply it to our earlier
Applying the short-cut method regression relating research and development expenditures to profits. In Table 12-15, we have repeated the columns from Table 12-9, adding a \(Y^{2}\) column. Recall that when we found the values for \(a\) and \(b\), the regression line for this problem was
\[
\hat{Y}=20+2 X
\]

Using this line and the information in Table 12-15, we can calculate \(r^{2}\) as follows:
\[
\begin{align*}
r^{2} & =\frac{a \sum Y+b \sum X Y-n \bar{Y}^{2}}{\sum Y^{2}-n \bar{Y}^{2}} \tag{12-11}\\
& =\frac{(20)(180)+(2)(1,000)-(6)(30)^{2}}{5,642-(6)(30)^{2}} \\
& =\frac{3,600+2,000-5,400}{5,642-5,400} \\
& =\frac{200}{242} \\
& =0.826 \leftarrow \text { Sample coefficient of determination }
\end{align*}
\]

Thus, we can conclude that the variation in the research and development expenditures (the independent variable \(X\)) explains

Interpreting r \({ }^{2}\)
82.6 percent of the variation in the annual profits (the dependent variable \(Y\)).

\section*{The Coefficient of Correlation}

The coefficient of correlation is the second measure that we can use to describe how well one variable is explained by another.

Sample coefficient of correlation When we are dealing with samples, the sample coefficient of correlation is denoted by \(r\) and is the square root of the sample coefficient of determination:

\section*{Sample Coefficient of Correlation \\ \[
\begin{equation*}
r=\sqrt{r^{2}} \tag{12-12}
\end{equation*}
\]}

When the slope of the estimating equation is positive, \(r\) is the positive square root, but if \(b\) is negative, \(r\) is the negative square root. Thus, the sign of \(r\) indicates the direction of the relationship between the two variables \(\boldsymbol{X}\) and \(\boldsymbol{Y}\). If an inverse relationship exists-that is, if \(Y\) decreases as \(X\) increases-then \(r\) will fall between 0 and -1 . Likewise, if there is a direct relationship (if \(Y\) increases as \(X\) increases), then \(r\) will be a value within the range of 0 to 1 . Figure 12-16 illustrates these various characteristics of \(r\).

The coefficient of correlation is more difficult to interpret than

\section*{Interpreting r} \(r^{2}\). What does \(r=0.9\) mean? To answer that question, we must remember that \(r=0.9\) is the same as \(r^{2}=0.81\). The latter tells us that 81 percent of the variation in \(Y\) is explained by the regression line. So we see that \(r\) is nothing more than the square root of \(r^{2}\), and we cannot interpret its meaning directly.

FIGURE 12-16 VARIOUS CHARACTERISTICS OF \(r\), THE SAMPLE COEFFICIENT OF CORRELATION

Now let's find the coefficient of correlation of our problem relating research and development expenditures and annual profits. In the previous section, we found that the sample coefficient
\[
\begin{align*}
r & =\sqrt{r^{2}} \tag{12-12}\\
& =\sqrt{0.826} \\
& =0.909 \leftarrow \text { Sample coefficient of correlation }
\end{align*}
\]

The relation between the two variables is direct and the slope is positive; therefore, the sign for \(r\) is positive.

\section*{HINTS \& ASSUMPTIONS}

Warning: Because you know that the coefficient of determination \(\left(r^{2}\right)\) is the square of the coefficient of correlation, \(r\), you should be wary of using all but the highest correlations as the basis for making decisions. Hint: If we find that the amount spent on movies correlates 0.6 with family income, that seems like a fairly strong correlation (0.6 is closer to 1.0 than it is to zero). But when you square 0.6 you see that it accounts for only \(0.6 \times 0.6=0.36\) or 36 percent of the variation in the amount of money families spend on movies. If you designed your marketing strategy to appeal only to families with high incomes, you'd miss a lot of potential customers. Hint: Instead, try to find what else is influencing family movie decisions.

\section*{Simple Correlation Using SPSS}

For Correlation go to Analyze>Correlation>Bivariate>Select variables for coorelation
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|l|}{师 *car_sales.sav [DataSet2] - SPSS Data Editor} & \multicolumn{2}{|l|}{-} \\
\hline \multicolumn{16}{|l|}{Eile Edit View Data Iransform Analyze Graphs Utilities Add-ons Whindow Help} \\
\hline \multicolumn{16}{|l|}{} \\
\hline \multirow[t]{2}{*}{1: sales} & \multicolumn{3}{|l|}{16.919} & \multirow[b]{2}{*}{Insales} & \multirow[b]{2}{*}{zresale} & \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{zprice} & \multirow[b]{2}{*}{zengine_} & \multirow[b]{2}{*}{zhorsepo} & \multirow[b]{2}{*}{zwheelba} & \multirow[b]{2}{*}{zwidth} & \multirow[b]{2}{*}{zlength} & \multirow[b]{2}{*}{zcurb_wg} & \multicolumn{2}{|l|}{Visible: 26 of 26 Variables} \\
\hline & sales & fuel_cap & mpg & & & & & & & & & & & \multirow[t]{2}{*}{\begin{tabular}{l}
zfuel_ca \\
\(-1.22223\)
\end{tabular}} & \multirow[b]{2}{*}{-} \\
\hline 1 & 16.919 & 13.2 & 28 & 2.83 & -0.14956 & -0.59262 & -0.41046 & -1.20700 & -0.81038 & -0.82279 & -1.11534 & -1.11256 & -1.17212 & & \\
\hline 2 & 39.384 & 17.2 & 25 & 3.67 & 0.15734 & -0.59262 & 0.07032 & 0.13316 & 0.68873 & 0.08020 & -0.24624 & 0.41368 & 0.22042 & -0.19340 & \\
\hline 3 & 14.114 & 17.2 & 26 & 2.65 & 0.01327 & -0.59262 & & 0.13316 & 0.68873 & -0.07684 & -0.15933 & 0.34667 & 0.14587 & -0.19340 & \\
\hline 4 & 8.588 & 18.0 & 22 & 2.15 & 1.01734 & -0.59262 & 1.01795 & 0.42033 & 0.42418 & 0.93084 & 0.07242 & 0.68914 & 0.74857 & 0.01237 & \\
\hline 5 & 20.397 & 16.4 & 27 & 3.02 & 0.36513 & -0.59262 & -0.23696 & -1.20700 & -0.63401 & -0.63957 & -0.85461 & -0.69563 & -0.60274 & -0.39917 & \\
\hline 6 & 18.780 & 18.5 & 22 & 2.93 & 0.47864 & -0.59262 & 0.45704 & -0.24975 & 0.24782 & 0.15872 & 1.43400 & 0.34667 & 0.29020 & 0.14097 & \\
\hline 7 & 1.380 & 23.7 & 21 & 0.32 & 1.82715 & -0.59262 & 2.41152 & 1.09041 & 2.18784 & 0.72145 & 0.82564 & 0.80826 & 0.83104 & 1.47844 & \\
\hline 8 & 19.747 & 16.6 & 26 & 2.98 & & -0.59262 & -0.02792 & -0.53692 & -0.28128 & -0.02450 & -0.79667 & -0.84454 & -0.31566 & -0.34772 & \\
\hline 9 & 9.231 & 16.6 & 24 & 2.22 & 0.92567 & -0.59262 & 0.41871 & -0.24975 & 0.12436 & -0.02450 & -0.76770 & -0.84454 & -0.28711 & -0.34772 & \\
\hline 10 & 17.527 & 18.5 & 25 & 2.86 & 1.57613 & -0.59262 & 0.80195 & -0.24975 & 0.12436 & 0.51206 & -0.07242 & 0.04887 & 0.14905 & 0.14097 & \\
\hline 11 & 91.561 & 17.5 & 25 & 4.52 & -0.48876 & -0.59262 & -0.37736 & 0.03743 & -0.19310 & 0.19798 & 0.44903 & 0.54024 & -0.01590 & -0.11624 & \\
\hline 12 & 39.350 & 17.5 & 23 & 3.67 & -0.37831 & -0.59262 & -0.14568 & 0.70751 & 0.95328 & 0.19798 & 0.44903 & 0.65936 & 0.26166 & -0.11624 & \\
\hline 13 & 27.851 & 18.5 & 24 & 3.33 & 0.18484 & -0.59262 & 0.31873 & 0.70751 & 0.33600 & 0.82614 & 1.02843 & 1.44854 & 0.63437 & 0.14097 & \\
\hline 14 & 83.257 & 17.5 & 25 & 4.42 & -0.41149 & -0.59262 & 0.03444 & 0.70751 & 0.33600 & 0.61676 & 0.68079 & 0.94228 & 0.33779 & -0.11624 & \\
\hline 15 & 63.729 & 18.5 & 22 & 4.15 & 0.38871 & -0.59262 & 0.87128 & 1.47331 & 1.57056 & 1.02245 & 0.97049 & 1.47832 & 0.95158 & 0.14097 & \\
\hline 16 & 15.943 & 18.5 & 22 & 2.77 & 0.78815 & -0.59262 & 1.19040 & 1.47331 & 1.57056 & 0.61676 & 1.11534 & 1.01673 & & 0.14097 & \\
\hline 17 & 6.536 & 19.0 & 22 & 1.88 & 0.66810 & -0.59262 & 0.85525 & 1.47331 & 1.57056 & 0.06711 & 1.26019 & 0.98695 & 0.73747 & 0.26957 & \\
\hline 18 & 11.185 & 18.0 & 22 & 2.41 & 0.01327 & -0.59262 & 0.25218 & -0.05829 & 0.24782 & -0.01141 & -0.24624 & 0.55513 & 0.62169 & 0.01237 & \\
\hline 19 & 14.785 & 30.0 & 15 & 2.69 & & 1.67668 & 1.31234 & 2.52630 & 1.21783 & 1.31036 & 1.69473 & 1.03162 & 3.47973 & 3.09885 & \\
\hline 20 & 145.519 & 14.3 & 27 & 4.98 & -0.77034 & -0.59262 & -0.98461 & \(-0.82410\) & -1.25129 & -0.44327 & -0.94152 & -0.47973 & -1.11344 & -0.93930 & \\
\hline 21 & 135.126 & 15.0 & 25 & 4.91 & -0.59790 & -0.59262 & -0.75641 & 0.03743 & -0.28128 & -0.06376 & -0.50697 & 0.22755 & -0.51868 & -0.75925 & \\
\hline 22 & 24.629 & 16.6 & 25 & 3.20 & -0.67779 & -0.59262 & -0.59232 & 0.03743 & -0.19310 & 0.00168 & 0.39109 & 1.00928 & -0.07617 & -0.34772 & \\
\hline 23 & 42.593 & 17.0 & 27 & 3.75 & -0.57171 & -0.59262 & -0.55748 & 0.32461 & -0.10492 & 0.39428 & 0.44903 & 0.78593 & -0.06031 & -0.24484 & \\
\hline 24 & 26.402 & 16.8 & 25 & 3.27 & -0.44074 & -0.59262 & -0.21257 & 0.70751 & 0.24782 & -0.83588 & 0.85461 & 0.43601 & 0.19346 & -0.29628 & \\
\hline 25 & 17.947 & 19.1 & 22 & 2.89 & 1.58486 & -0.59262 & 1.27611 & 2.52630 & 2.80512 & -0.39093 & 0.70976 & -0.56907 & -0.26650 & 0.29529 & \\
\hline 26 & 32.299 & 13.2 & 33 & 3.48 & -0.78125 & -0.59262 & -0.93583 & -1.20700 & -1.16311 & -1.35935 & -1.28916 & -0.97110 & -1.55436 & -1.22223 & - \\
\hline \multicolumn{2}{|r|}{1.1} & & & & & & & & & & & & & & \\
\hline Data View & Variable View & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & SPSS Pr & ris readv & & \\
\hline
\end{tabular}

[Test of Significance
- Iwo-tailed One-tailed

Flag significant correlations
OK Raste Reset Cancel Help

\section*{Simple Correlation Using MS Excel}

For Correlation go to Data>Data Analysis>Correlation>Define Input range \& variable grouping

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Data Analysis} & 8 & 83 \\
\hline \multicolumn{2}{|l|}{Analysis Tools} & \multicolumn{2}{|l|}{OK} \\
\hline \begin{tabular}{l}
Anova: Single Factor \\
Anova: Two-Factor With Replication \\
Anova: Two-Factor Without Replication
\end{tabular} & - & Can & \\
\hline Correlation & \(\equiv\) & & \\
\hline \begin{tabular}{l}
Covariance \\
Descriptive Statistics \\
Exponential Smoothing \\
F-Test Two-Sample for Variances \\
Fourier Analysis \\
Histogram
\end{tabular} & - & Help & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Correlation} & 8 & \(\Sigma 3\) \\
\hline \multicolumn{4}{|l|}{Input} \\
\hline Input Range: & \$A\$1:\$8\$158 [画] & OK & \\
\hline Grouped By: & (0) Columns & Cancel & \\
\hline & - Rows & Help & \\
\hline \multicolumn{2}{|l|}{\(\square\) Labels in First Row} & & \\
\hline \multicolumn{4}{|l|}{Output options} \\
\hline \(\bigcirc\) Qutput Range: & 焉 & & \\
\hline (O) New Worksheet Ply: & & & \\
\hline \(\bigcirc\) New Workbook & & & \\
\hline
\end{tabular}

\section*{EXERCISES 12.3}

\section*{Self-Check Exercises}

SC 12-4 Campus Stores has been selling the Believe It or Not: Wonders of Statistics Study Guide for 12 semesters and would like to estimate the relationship between sales and number of sections of elementary statistics taught in each semester. The following data have been collected:
\begin{tabular}{lrrrrrr}
Sales (units) & 33 & 38 & 24 & 61 & 52 & 45 \\
Number of sections & 3 & 7 & 6 & 6 & 10 & 12 \\
Sales (units) & 65 & 82 & 29 & 63 & 50 & 79 \\
Number of sections & 12 & 13 & 12 & 13 & 14 & 15
\end{tabular}
(a) Develop the estimating equation that best fits the data.
(b) Calculate the sample coefficient of determination and the sample coefficient of correlation.

SC 12-5 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise SC 12-3.

\section*{Basic Concepts}

12-25 What type of correlation (positive, negative, or zero) should we expect from these variables?
(a) Ability of supervisors and output of their subordinates.
(b) Age at first full-time job and number of years of education.
(c) Weight and blood pressure.
(d) College grade-point average and student's height.

In the following exercises, calculate the sample coefficient of determination and the sample coefficient of correlation for the problems specified.
12-26 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise 12-17.
12-27 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise 12-18.
12-28 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise 12-19.
12-29 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise 12-20.
12-30 Calculate the sample coefficient of determination and the sample coefficient of correlation for the data in Exercise 12-21.

\section*{Applications}

12-31 Bank of Lincoln is interested in reducing the amount of time people spend waiting to see a personal banker. The bank is interested in the relationship between waiting time \((Y)\) in minutes and number of bankers on duty \((X)\). Customers were randomly selected with the data given below:
\begin{tabular}{cccccccccccccc}
\(\boldsymbol{X}\) & 2 & 3 & 5 & 4 & 2 & 6 & 1 & 3 & 4 & 3 & 3 & 2 & 4 \\
\(\boldsymbol{Y}\) & 12.8 & 11.3 & 3.2 & 6.4 & 11.6 & 3.2 & 8.7 & 10.5 & 8.2 & 11.3 & 9.4 & 12.8 & 8.2
\end{tabular}
(a) Calculate the regression equation that best fits the data.
(b) Calculate the sample coefficient of determination and the sample coefficient of correlation.

12-32 Zippy Cola is studying the effect of its latest advertising campaign. People chosen at random were called and asked how many cans of Zippy Cola they had bought in the past week and how many Zippy Cola advertisements they had either read or seen in the past week.
\begin{tabular}{lrrrrrrrr}
\(\boldsymbol{X}\) (number of ads) & 3 & 7 & 4 & 2 & 0 & 4 & 1 & 2 \\
\(\boldsymbol{Y}\) (cans purchased) & 11 & 18 & 9 & 4 & 7 & 6 & 3 & 8
\end{tabular}
(a) Develop the estimating equation that best fits the data.
(b) Calculate the sample coefficient of determination and the sample coefficient of correlation.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 12-4 In this problem, \(Y=\) sales and \(X=\) number of sections.
(a)
\begin{tabular}{|c|c|c|c|c|}
\hline X & \(\boldsymbol{Y}\) & XY & \(\boldsymbol{X}^{2}\) & \(Y^{2}\) \\
\hline 3 & 33 & 99 & 9 & 1.089 \\
\hline 7 & 38 & 266 & 49 & 1,444 \\
\hline 6 & 24 & 144 & 36 & 576 \\
\hline 6 & 61 & 366 & 36 & 3,721 \\
\hline 10 & 52 & 520 & 100 & 2,704 \\
\hline 12 & 45 & 540 & 144 & 2,025 \\
\hline 12 & 65 & 780 & 144 & 4,225 \\
\hline 13 & 82 & 1,066 & 169 & 6,724 \\
\hline 12 & 29 & 348 & 144 & 841 \\
\hline 13 & 63 & 819 & 169 & 3,969 \\
\hline 14 & 50 & 700 & 196 & 2,500 \\
\hline 15 & 79 & 1,185 & 225 & 6,241 \\
\hline \(\bar{X}=123\) & \(\overline{\sum Y=621}\) & \(\overline{\Sigma X Y}=6,833\) & \(\overline{\sum X^{2}=1,421}\) & \(\overline{\sum Y^{2}=36,059}\) \\
\hline
\end{tabular}
\[
\bar{X}=123 / 12=10.25 \quad \bar{Y}=621 / 12=51.75
\]
\[
b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}}=\frac{6,883-12(10.25)(51.75)}{1,421-12(10.25)^{2}}=2.9189
\]
\[
a=\bar{Y}-b \bar{X}=51.75-2.9189(10.25)=21.8313
\]

Thus, \(\hat{Y}=21.8313+2.9189 X(\) Computer packages: \(\hat{Y}=21.8315+2.9189 X)\).
(b) \(r^{2}=\frac{a \sum Y+b \sum X Y-n \bar{Y}^{2}}{\sum Y^{2}-n \bar{Y}^{2}}\)
\[
\begin{aligned}
& =\frac{21.8313(621)+2.9189(6,833)-12(51.75)^{2}}{36,059-12(51.75)^{2}}=0.3481 \\
r & =\sqrt{0.3481}=0.5900
\end{aligned}
\]

SC 12-5 From the solution to Exercise SC 12-3 on page 623, we have \(n=10, \sum Y=1,922, \bar{Y}=192.2\), \(\Sigma X Y=84,541, \Sigma Y^{2}=395,024, a=-80.4430\), and \(b=6.4915\). Hence
\[
\begin{aligned}
r^{2} & =\frac{a \sum Y+b \sum X Y-n \bar{Y}^{2}}{\sum Y^{2}-n \bar{Y}^{2}} \\
& =\frac{-80.4430(1,922)+6.4915(84,541)-10(192.2)^{2}}{395,024-10(192.2)^{2}} \\
& =0.9673 \\
r & =\sqrt{0.9673}=0.9835
\end{aligned}
\]

\subsection*{12.4 MAKING INFERENCES ABOUT POPULATION PARAMETERS}

So far, we have used regression and correlation analyses to relate two variables on the basis of sample information. But data from a sample represent only part of the total population. Because of this, we may think of our estimated sample regression line as an estimate of a true but unknown population regression line of the form

Relationship of sample regression line and population regression line

\section*{Population Regression Line}
\[
\begin{equation*}
Y=A+B X \tag{12-13}
\end{equation*}
\]

Recall our discussion of the Sanitation Department director who tried to use the age of a truck to explain its annual repair expense. That expense will probably consist of two parts:
1. Regular maintenance that does not depend on the age of the truck: tune-ups, oil changes, and lubrication. This expense is captured in the intercept term \(A\) in Equation 12-13.
2. Expenses for repairs due to aging: relining brakes, engine and transmission overhauls, and painting. Such expenses tend to increase with the age of the truck, and they are captured in the \(B X\) term of the population regression line \(Y=A+B X\) in Equation 12-13.

Of course, all the brakes of all the trucks will not wear out at the same time, and some of the trucks will run for years without engine overhauls. Because of this, the individual data points will

Why data points do not lie exactly on the regression line
probably not lie exactly on the population regression line. Some will be above it; some will fall below it. So, instead of satisfying
\[
\begin{equation*}
Y=A+B X \tag{12-13}
\end{equation*}
\]
the individual data points will satisfy the formula
\begin{tabular}{|cr|}
\hline Population Regression Line with a Random Disturbance \\
\(Y=A+B X+e\) & {\([12-13 \mathrm{a}]\)} \\
\hline
\end{tabular}
where \(e\) is a random disturbance from the population regression line. On the average, \(e\) equals zero because disturbances above the population regression line are canceled out by disturbances

Random disturbance e and its behavior below the line. We can denote the standard deviation of these individual disturbances by \(\sigma_{e}\). The standard error of estimate \(s_{e}\), then, is an estimate of \(\sigma_{e}\), the standard deviation of the disturbance.

Let us look more carefully at Equations 12-13 and 12-13a. Equation 12-13a expresses the individual values of \(Y\) (in this case, annual repair expense) in terms of the individual values of \(X\) (the age of the truck) and the random disturbance (e). Because disturbances above the population regression line are canceled out by those below the line, we know that the expected value of \(e\) is zero, and we see that if we had several trucks of the same age, \(X\), we would expect the average annual repair expense on these trucks to be \(Y=A+B X\). This shows us that the population regression line (Equation 12-13) gives the mean value of \(Y\) associated with each value of \(X\).

Because our sample regression line, \(\hat{Y}=a+b X\) (Equation 12-3), estimates the population regression line, \(Y=A+B X\) (Equation 12-13), we should be able to use it to make inferences

\section*{Making inferences about B from b} about the population regression line. In this section, then, we shall make inferences about the slope \(B\) of the "true" regression equation (the one for the entire population) that are based on the slope \(b\) of the regression equation estimated from a sample of values.

\section*{Slope of the Population Regression Line}

The regression line is derived from a sample and not from the entire population. As a result, we cannot expect the true regression equation, \(Y=A+B X\) (the one for the entire population), to be exactly the same as the equation estimated from the sample observations, or \(\hat{Y}=a+b X\). Even so, we can use the value of \(b\),

Difference between true regression equation and one estimated from sample observations the slope we calculate from a sample, to test hypotheses about the value of \(B\), the slope of the regression line for the entire population.

The procedure for testing a hypothesis about \(B\) is similar to Testing a hypothesis about \(B\) procedures discussed in Chapters 8 and 9, on hypothesis testing. To understand this process, return to the problem that related annual expenditures for research and development to profits. On page 613, we pointed out that \(b=2\). The first step is to find some value for \(B\) to compare with \(b=2\).

Suppose that over an extended past period of time, the slope of the relationship between \(X\) and \(Y\) was 2.1. To test whether this is still the case, we could define the hypotheses as
\[
\begin{aligned}
& \mathrm{H}_{0}: B=2.1 \leftarrow \text { Null hypothesis } \\
& \mathrm{H}_{1}: B \neq 2.1 \leftarrow \text { Alternative hypothesis }
\end{aligned}
\]

In effect, then, we are testing to learn whether current data indicate that \(B\) has changed from its historical value of 2.1.

To find the test statistic for \(B\), it is necessary first to find the

Standard error of the regression coefficient standard error of the regression coefficient. Here, the regression coefficient we are working with is \(b\), so the standard error of this coefficient is denoted \(s_{b}\). Equation 12-14 presents the mathematical formula for \(s_{b}\) :
\begin{tabular}{|cc|}
\hline Standard Error of \(\boldsymbol{b}\) \\
\(s_{b}=\frac{s_{e}}{\sqrt{\sum X^{2}-n \bar{X}^{2}}}\) & [12-14] \\
\hline
\end{tabular}
where
- \(s_{b}=\) standard error of the regression coefficient
- \(s_{e}=\) standard error of estimate
- \(\frac{X}{X}=\) values of the independent variable
- \(\bar{X}=\) mean of the values of the independent variable
- \(n=\) number of data points

Once we have calculated \(s_{b}\), we can use Equation 12-15 to standardize the slope of our fitted regression equation:

Standardizing the regression coefficient

\section*{Standardized Value of \(\boldsymbol{b}\)}
\[
\begin{equation*}
t=\frac{b-B_{\mathrm{H}_{o}}}{s_{b}} \tag{12-15}
\end{equation*}
\]
where
- \(b=\) Slope of fitted regression
- \(B_{\mathrm{H}_{0}}=\) actual slope hypothesized for the population
- \(s_{b}=\) standard error of the regression coefficient

Because the test will be based on the \(t\) distribution with \(n-2\) degrees of freedom, we use \(t\) to denote the standardized statistic.

A glance at Table 12-15 on page 636 enables us to calculate the values of \(\sum X^{2}\) and \(n \bar{X}^{2}\). To obtain \(s_{e}\), we can take the short-cut method, as follows:
\[
\begin{align*}
s_{e} & =\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}} \quad[12-15] \quad \text { Calculating } s_{\mathrm{e}} \tag{12-15}\\
& =\sqrt{\frac{5,642-(20)(180)-(2)(1,000)}{6-2}}
\end{align*}
\]
\[
\begin{aligned}
& =\sqrt{\frac{42}{4}} \\
& =\sqrt{10.5} \\
& =3.24 \leftarrow \text { Standard error of estimate }
\end{aligned}
\]

Now we can determine the standard error of the regression coefficient:
\[
\begin{aligned}
s_{b} & =\frac{s_{e}}{\sqrt{\sum X^{2}-n \bar{X}^{2}}} \\
& =\frac{3.24}{\sqrt{200-(6)(5)^{2}}} \\
& =\frac{3.24}{\sqrt{50}} \\
& =\frac{3.24}{7.07} \\
& =0.46 \leftarrow \text { Standard error of the regression coefficient }
\end{aligned}
\]

Now we use the standard error of the regression coefficient to calculate our standardized test statistic:
\[
\begin{aligned}
t & =\frac{b-B_{\mathrm{H}_{0}}}{s_{b}} \\
& =\frac{2.0-2.1}{0.46} \\
& =-0.217 \leftarrow \text { Standardized regression coefficient }
\end{aligned}
\]

\section*{Calculating \(s_{b}\)}

\section*{Standardizing the regression} coefficient

Suppose we have reason to test our hypothesis at the 10 percent level of significance. Because we have six observations in our

\section*{Conducting the hypothesis test} sample data, we know that we have \(n-2\) or \(6-2=4\) degrees of freedom. We look in Appendix Table 2 under the 10 percent column and come down until we find the 4-degrees-of-freedom row. There we see that the appropriate \(t\) value is 2.132 . Because we are concerned whether \(b\) (the slope of the sample regression line) is significantly different from \(B\) (the hypothesized slope of the population regression line), this is a two-tailed test, and the critical values are \(\pm 2.132\). The standardized regression coefficient is -0.217 , which is inside the acceptance region for our hypothesis test. Therefore, we accept the null hypothesis that \(B\) still equals 2.1. In other words, there is not enough difference between \(b\) and 2.1 for us to conclude that \(B\) has changed from its historical value. Because of this, we feel that each additional million dollars spent on research and development still increases annual profits by about \(\$ 2.1\) million, as it has in the past.

In addition to hypothesis testing, we can also construct a confidence interval for the value of \(B\). In the same way that \(b\) is a point estimate of \(B\), such confidence intervals are interval estimates of \(B\). The problem we just completed, and for which we did a hypothesis test, will illustrate the process of constructing
a confidence interval. There we found that
\[
\begin{aligned}
b & =2.0 \\
s_{b} & =0.46 \\
t & =2.132 \leftarrow 10 \text { percent level of significance and } 4 \text { degrees of freedom }
\end{aligned}
\]

With this information, we can calculate confidence intervals like this:
\[
\begin{aligned}
b+t\left(s_{b}\right) & =2+(2.132)(0.46) \\
& =2+0.981 \\
& =2.981 \leftarrow \text { Upper limit } \\
b-t\left(s_{b}\right) & =2-(2.132)(0.46) \\
& =2-0.981 \\
& =1.019 \leftarrow \text { Lower limit }
\end{aligned}
\]

In this situation, then, we are 90 percent confident that the true value of \(B\) lies between 1.019 and 2.981 ; that is, each additional million dollars spent on research and development increases annual profits by some amount between \(\$ 1.02\) million and \(\$ 2.98\) million.

\section*{Confidence interval for \(B\)}
\(\square\)

Interpreting the confidence interval

\section*{HINTS \& ASSUMPTIONS}

In this section we've been using sample observations to calculate \(b\), the slope of the sample regression line, which we then use to test hypotheses about \(B\), the true slope of the population regression line. Hint: We use \(s_{e}\) to calculate the standard error of the regression coefficient just as we used the sample standard deviation in Chapter 6 to compute the standard error of the mean. Warning: Whenever you use your computer to develop a regression line, don't forget to ask, "Is this regression coefficient significantly different from zero?" If it's not, no matter how much goodlooking computer output you have, you haven't demonstrated any significant relationship between the variables, and you need to keep looking for more useful relationships. For example, if you own a tanning salon and you have a hunch that more people come in on cloudy days, you might do a regression of "number of visits" on "hours of sunshine." If you do that and it yields a regression line with a slope that is not significant, keeping track of the weather is not going to help your business.

\section*{EXERCISES 12.4}

\section*{Self-Check Exercises}

SC 12-6 In finance, it is of interest to look at the relationship between \(Y\), a stock's average return, and \(X\), the overall market return. The slope coefficient computed by linear regression is called the stock's beta by investment analysts. A beta greater than 1 indicates that the stock is relatively sensitive to changes in the market; a beta less than 1 indicates that the stock is relatively insensitive. For the following data, compute the beta and test to see whether it is significantly less than 1 . Use \(\alpha=0.05\).
\begin{tabular}{lrrrrrrrrrr}
\(\boldsymbol{Y}(\%)\) & 10 & 12 & 8 & 15 & 9 & 11 & 8 & 10 & 13 & 11 \\
\(\boldsymbol{X}(\%)\) & 11 & 15 & 3 & 18 & 10 & 12 & 6 & 7 & 18 & 13
\end{tabular}

SC 12-7 In a regression problem with a sample size of 17 , the slope was found to be 3.73 and the standard error of estimate 28.654. The quantity \(\left(\sum X^{2}-n \bar{X}^{2}\right)=871.56\).
(a) Find the standard error of the regression slope coefficient.
(b) Construct a 98 percent confidence interval for the population slope.
(c) Interpret the confidence interval of part (b).

\section*{Basic Concepts}

12-33 In a regression problem with a sample size of 25 , the slope was found to be 1.12 and the standard error of estimate 8.516. The quantity \(\left(\sum X^{2}-n \bar{X}^{2}\right)=327.52\).
(a) Find the standard error of the regression slope coefficient.
(b) Test whether the regression coefficient is different from 0 at a significance level of 0.05 .
(c) Construct a 95 percent confidence interval for the population slope.

\section*{Applications}

12-34 Ned's Beds is considering hiring an advertising firm to stimulate business. Ned's brother Fred has done some research in the bed advertising field, and he has collected the following data concerning the amount of profit \((Y)\) a bed company earns and the amount spent on advertising \((X)\). If Fred computes the regression equation, the slope of the line will indicate the amount of profit increase per dollar spent on advertising. Ned will advertise only if the amount of profit earned from \(\$ 1\) in advertising exceeds \(\$ 1.50\). Compute the slope of the regression equation and test whether it is greater than 1.50 . At a significance level of 0.05 , will Ned advertise?
\begin{tabular}{lccccll}
Amount of Advertising \((\boldsymbol{X}), \$\) hundreds & 3.6 & 4.8 & 9.7 & 12.6 & 11.5 & 10.9 \\
Amount of Profit \((\boldsymbol{Y})\) hundreds & 12.13 & 14.7 & 22.83 & 28.4 & 28.33 & 27.05 \\
Amount of Advertising \((\boldsymbol{X})\), \(\$\) hundreds & 14.6 & 18.2 & 3.7 & 9.8 & 12.4 & 16.9 \\
Amount of Profit \((\boldsymbol{Y})\), hundreds & 33.6 & 40.8 & 9.4 & 24.84 & 30.17 & 34.7
\end{tabular}

12-35 A broker for a local investment firm has been studying the relationship between increases in the price of gold \((X)\) and her customers' requests to liquidate stocks \((Y)\). From a data set based on 15 observations, the sample slope was found to be 2.9 . If the standard error of the regression slope coefficient is 0.18 , is there reason to believe (at the 0.05 significance level) that the slope has changed from its past value of 3.2 ?
12-36 For a sample of 25 , the slope was found to be 1.685 and the standard error of the regression coefficient was 0.11 . Is there reason to believe that the slope has changed from its past value of 1.50 ? Use the 0.05 significance level.
12-37 Realtors are often interested in seeing how the appraised value of a home varies according to the size of the home. Some data on area (in thousands of square feet) and appraised value (in thousands of dollars) for a sample of 11 homes follow.
\begin{tabular}{llllllllllll}
Area & 1.1 & 1.5 & 1.6 & 1.6 & 1.4 & 1.3 & 1.1 & 1.7 & 1.9 & 1.5 & 1.3 \\
Value & 75 & 95 & 110 & 102 & 95 & 87 & 82 & 115 & 122 & 98 & 90
\end{tabular}
(a) Estimate the least-squares regression to predict appraised value from size.
(b) Generally, realtors feel that a home's value goes up by \(\$ 50,000\) (\(=50\) thousands of dollars) for every additional 1,000 square feet in area. For this sample, does this relationship seem to hold? Use \(\alpha=0.10\).

12-38 In 1969, a government health agency found that in a number of counties, the relationship between smokers and heart-disease fatalities per 100,000 population had a slope of 0.08 . A recent study of 18 counties produced a slope of 0.147 and a standard error of the regression slope coefficient of 0.032 .
(a) Construct a 90 percent confidence interval estimate of the slope of the true regression line. Does the result from this study indicate that the true slope has changed?
(b) Construct a 99 percent confidence interval estimate of the slope of the true regression line. Does the result from this study indicate that the true slope has changed?
12-39 The local phone company has always assumed that the average number of daily phone calls goes up by 1.5 for each additional person in a household. It has been suggested that people are more talkative than this. A sample of 64 households was taken, and the slope of the regression of \(Y\) (average number of daily phone calls) on \(X\) (size of household) was computed to be 1.8 with a standard error of the regression slope coefficient of 0.2 . Test whether significantly more calls per additional person are being made than the phone company assumes, using \(\alpha=0.05\). State explicit hypotheses and an explicit conclusion.
12-40 College admissions officers are constantly seeking variables with which to predict grade-point averages for applicants. One commonly used variable is high school grade-point average. For one college, past data indicated that the slope was 0.85 . A recent small study of 20 students found that the sample slope was 0.70 and the standard error of estimate was 0.60 . The quantity (\(\Sigma X^{2}-n \bar{X}^{2}\)) was equal to 0.25 . At the 0.01 level of significance, should the college conclude that the slope has changed?

\section*{Worked-Out Answers to Self-Check Exercises}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{12}{*}{SC 12-6} & X & \(\boldsymbol{Y}\) & XY & \(\boldsymbol{X}^{2}\) & \(Y^{2}\) \\
\hline & 11 & 10 & 110 & 121 & 100 \\
\hline & 15 & 12 & 180 & 225 & 144 \\
\hline & 3 & 8 & 24 & 9 & 64 \\
\hline & 18 & 15 & 270 & 324 & 225 \\
\hline & 10 & 9 & 90 & 100 & 81 \\
\hline & 12 & 11 & 132 & 144 & 121 \\
\hline & 6 & 8 & 48 & 36 & 64 \\
\hline & 7 & 10 & 70 & 49 & 100 \\
\hline & 18 & 13 & 234 & 324 & 169 \\
\hline & 13 & 11 & 143 & 169 & 121 \\
\hline & \(\sum X=113\) & \(\overline{\sum Y=107}\) & \(\bar{X} Y Y=1,301\) & \(\overline{\sum X^{2}=1,501}\) & \(\overline{\sum Y^{2}=1,189}\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& \bar{X}=\frac{113}{10}=11.3 \quad \bar{Y}=\frac{107}{10}=10.7 \\
& b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum \bar{X}^{2}-n \bar{X}^{2}}=\frac{1,301-10(11.3)(10.7)}{1,501-10(11.3)^{2}}=0.4101
\end{aligned}
\]
\[
\begin{aligned}
a & =\bar{Y}-b \bar{X}=10.7-0.4101(11.3)=6.0659 \\
& \quad \text { (Computer packages: 6.0660) } \\
s_{e} & =\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}} \\
& =\sqrt{\frac{1,189-6.0659(107)-0.4101(1,301)}{8}}=0.8950
\end{aligned}
\]
(Computer packages: 0.8953)
\[
\begin{aligned}
& s_{b}=\frac{s_{e}}{\sqrt{\sum X^{2}-n \bar{X}^{2}}}=\frac{0.8950}{\sqrt{224.1}}=0.060 \\
& \mathrm{H}_{0}: B=1 \quad \mathrm{H}_{1}: B<1 \quad \alpha=0.05
\end{aligned}
\]

The standardized statistic is \(t=\frac{b-B_{\mathrm{H}_{0}}}{s_{b}}=\frac{0.4101-1}{0.06}=-9.83\). Because the critical value of \(t(-1.860)\) is greater than -9.83 , we reject \(\mathrm{H}_{0}\). Stock is insensitive to changes in the market (the slope is significantly \(<1\)).

SC 12-7 (a) \(s_{b}=\frac{s_{e}}{\sqrt{\sum X^{2}-n \bar{X}^{2}}}=\frac{28.654}{\sqrt{871.56}}=0.9706\)
(b) The 98 percent confidence interval is \(b \pm t\left(s_{b}\right)=3.73 \pm 2.602(0.9706)=3.73 \pm 2.53=(1.20,6.26)\).
(c) In repeated sampling, 98 out of 100 intervals constructed as above would contain the true, unknown population slope \(B\). For our single sample, we can say that we are 98 percent confident that our computed interval contains \(B\).

\subsection*{12.5 USING REGRESSION AND CORRELATION ANALYSES: LIMITATIONS, ERRORS, AND CAVEATS}

Regression and correlation analyses are statistical tools that, when properly used, can significantly help people make decisions. Unfortunately, they are often misused. As a result, decision

Misuse of regression and correlation makers often make inaccurate forecasts and less-than-desirable decisions. We'll mention the most common errors made in the use of regression and correlation in the hope that you will avoid them.

\section*{Extrapolation beyond the Range of the Observed Data}

A common mistake is to assume that the estimating line can be applied over any range of values. Hospital administrators can properly use regression analysis to predict the relationship

Specific limited range over which regression equation holds between costs per bed and occupancy levels at various occupancy levels. Some administrators, however, incorrectly use the same regression equation to predict the costs per bed for occupancy levels that are significantly higher than those that were used to estimate the
regression line. Although one relationship holds over the range of sample points, an entirely different relationship may exist for a different range. As a result, these people make decisions on one set of costs and find that the costs change drastically as occupancy increases (owing to things such as overtime costs and capacity constraints). Remember that an estimating equation is valid only over the same range as the one from which the sample was taken initially.

\section*{Cause and Effect}

Another mistake we can make when we use regression analysis is to assume that a change in one variable is caused by a change in the other variable. As we discussed earlier, regression and correlation analyses can in no way determine cause and effect. If we say that

\section*{Regression and correlation} analyses do not determine cause and effect there is a correlation between students' grades in college and their annual earnings 5 years after graduation, we are not saying that one causes the other. Rather, both may be caused by other factors, such as sociological background, parental attitudes, quality of teachers, effectiveness of the job-interviewing process, and economic status of parents-to name only a few potential factors.

We have extensively used the example about research and development expenses and annual profits to illustrate various aspects of regression analysis. But it is really highly unlikely that profits in a given year are caused by R\&D expenditures in that year. Certainly, it would be foolhardy for the VP for R\&D to suggest to the chief executive that profits could be immediately increased merely by increasing R\&D expenditures. Particularly in high-technology industries, the R\&D activity can be used to explain profits, but a better way to do so would be to predict current profits in terms of past research and development expenditures as well as in terms of economic conditions, dollars spent on advertising, and other variables. This can be done by using the multiple-regression techniques, to be discussed in the next chapter.

\section*{Using Past Trends to Estimate Future Trends}

We must take care to reappraise the historical data we use to estimate the regression equation. Conditions can change and violate one or more of the assumptions on which our regression analysis depends. Earlier in this chapter, we made the point that we assume that the variance of the disturbance \(e\) around the mean is constant. In many situations, however, this variance changes from year to year.

Another error that can arise from the use of historical data concerns the dependence of some variables on time. Suppose a firm uses regression analysis to determine the relationship

Conditions change and invalidate the regression equation

Values of variables change over time between the number of employees and the production volume. If the observations used in the analysis extend back for several years, the resulting regression line may be too steep because it may fail to recognize the effect of changing technology.

\section*{Misinterpreting the Coefficients of Correlation and Determination}

The coefficient of correlation is occasionally misinterpreted as a percentage. If \(r=0.6\), it is incorrect to state that the regression

\section*{Misinterpreting rand \(r^{2}\)} equation "explains" 60 percent of the total variation in \(Y\). Instead, if \(r=0.6\), then \(r^{2}\) must be \(0.6 \times 0.6=\) 0.36 . Only 36 percent of the total variation is explained by the regression line.

The coefficient of determination is misinterpreted if we use \(r^{2}\) to describe the percentage of the change in the dependent variable that is caused by a change in the independent variable. This is wrong because \(r^{2}\) is a measure only of how well one variable describes another, not of how much of the change in one variable is caused by the other variable.

\section*{Finding Relationships When They Do Not Exist}

When applying regression analysis, people sometimes find a relationship between two variables that, in fact, have no common

\section*{Relationships that have no common bond} bond. Even though one variable does not cause a change in the other, they think that there must be some factor common to both variables. It might be possible, for example, to find a statistical relationship between a random sample of the number of miles per gallon consumed by eight different cars and the distance from earth to each of the other eight planets. But because there is absolutely no common bond between gas mileage and the distance to other planets, this "relationship" would be meaningless.

In this regard, if one were to run a large number of regressions Finding things that do not exist between many pairs of variables, it would probably be possible to get some rather interesting suggested "relationships." It might be possible, for example, to find a high statistical relationship between your income and the amount of beer consumed in the United States, or even between the length of a freight train (in cars) and the weather. But in neither case is there a factor common to both variables; hence, such "relationships" are meaningless. As in most other statistical situations, it takes both knowledge of the inherent limitations of the technique that is used and a large dose of common sense to avoid coming to unwarranted conclusions.

\section*{HINTS \& ASSUMPTIONS}

Warning: Smart managers ought to be able to reason toward a common-sense connection between two variables even before they run a regression analysis on those variables. But computer regressions of large databases sometimes turn up surprising results in terms of unexpected relationships. That doesn't invalidate common sense at all. What it suggests is that these same smart managers should retest these "surprises" on a new sample to see whether the "surprising" relationship continues to hold true. Hint: What you may have is a data problem, not a breakdown of common sense.

\section*{EXERCISES 12.5}

12-41 Explain why an estimating equation is valid over only the range of values used for its development.
12-42 Explain the difference between the coefficient of determination and the coefficient of correlation.
12-43 Why should we be cautious in using past data to predict future trends?
12-44 Why must we not attribute causality in a relationship even when there is strong correlation between the variables or events?

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 12: Simple Regression and Correlation Loveland Computers was running its production line more often to assemble computers from readily available components as the demand for high-end computers grew. Walter Azko was very clear that this was just assembly, not "real manufacturing." He often joked that the only part that was unique to Loveland Computers was the plastic base to the keyboard-it was distinguished by the Loveland logo (an outline of the Front Range of the Rocky Mountains, just as it was visible from the window in Walt's office). The base came in two parts that snapped together. And that was the next problem referred to Lee Azko. Nancy Rainwater, the production supervisor, explained her frustrations to Lee.
"When we started assembling this model last summer, the keyboard bases seemed to go together just fine. Now we are having to reject a lot of them because the little lugs that hold the top to the bottom break off when the operator tries to snap them together. When that happens, we have to throw out both pieces. We do not have any way to recycle that kind of plastic, and it doesn't seem right to be sending all that to the landfill-not to mention what it must be doing to our costs.
"I've talked to purchasing and I had Tyronza Wilson inspect the bases when they are delivered. The lugs measure exactly within specs, and the plastics company that makes them for us did some lab work. They say there is nothing wrong with the plastic they are using.
"I noticed that we had more breakages early in the morning-so 1 wondered whether it just happened because people were being careless on the line. I even wondered if it was because the employees were not properly trained; but the fact is these people are more experienced now than they were last summer-we really have not had much turnover.
"Tyronza wondered if it is not happening because the plastic's too cold. That might fit with more defects in the winter. But the warehouse has a couple of heaters, so I am not sure if that is right. And I can hardly walk around with a thermometer and check out the temperature of each set of base parts before sending them down the line, can I?"
"Maybe there is another way to figure this out," Lee said, remembering that it had been quite simple to get weather statistics from the National Weather Service. "You did record the number of bases thrown away for each day you ran the production line, did not you?"

Study Questions: How should Lee investigate the relationship between the weather and the problem with the plastic bases? Will this "prove" whether Tyronza's explanation is correct?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 12}

Coefficient of Correlation The square root of the coefficient of determination. Its sign indicates the direction of the relationship between two variables, direct or inverse.
Coefficient of Determination A measure of the proportion of variation in \(Y\), the dependent variable, that is explained by the regression line, that is, by \(Y\) 's relationship with the independent variable.
Correlation Analysis A technique to determine the degree to which variables are linearly related.
Curvilinear Relationship An association between two variables that is described by a curved line.
Dependent Variable The variable we are trying to predict in regression analysis.
Direct Relationship A relationship between two variables in which, as the independent variable's value increases, so does the value of the dependent variable.

Estimating Equation A mathematical formula that relates the unknown variable to the known variables in regression analysis.
Independent Variables The known variable or variables in regression analysis.
Inverse Relationship A relationship between two variables in which, as the independent variable increases, the dependent variable decreases.
Least-Squares Method A technique for fitting a straight line through a set of points in such a way that the sum of the squared vertical distances from the \(n\) points to the line is minimized.
Linear Relationship A particular type of association between two variables that can be described mathematically by a straight line.
Multiple Regression The statistical process by which several variables are used to predict another variable.
Regression The general process of predicting one variable from another by statistical means, using previous data.
Regression Line A line fitted to a set of data points to estimate the relationship between two variables.
Scatter Diagram A graph of points on a rectangular grid; the \(X\) and \(Y\) coordinates of each point correspond to the two measurements made on some particular sample element, and the pattern of points illustrates the relationship between the two variables.
Slope A constant for any given straight line whose value represents how much each unit change of the independent variable changes the dependent variable.
Standard Error of Estimate A measure of the reliability of the estimating equation, indicating the variability of the observed points around the regression line, that is, the extent to which observed values differ from their predicted values on the regression line.
Standard Error of the Regression Coefficient A measure of the variability of sample regression coefficient around the true population regression coefficient.
\(\Upsilon\)-Intercept A constant for any given straight line whose value represents the value of the \(\Upsilon\) variable when the \(X\) variable has a value of 0 .

\section*{Equations Introduced in Chapter 12}
\[
\begin{equation*}
Y=a+b X \tag{p. 603}
\end{equation*}
\]

This is the equation for a straight line, where the dependent variable \(Y\) is "determined" by the independent variable \(X\). The \(a\) is called the \(Y\)-intercept because its value is the point at which the line crosses the \(Y\)-axis (the vertical axis). The \(b\) is the slope of the line; that is, it tells how much each unit change of the independent variable \(X\) changes the dependent variable \(Y\). Both \(a\) and \(b\) are numerical constants because for any given straight line, their values do not change.
\[
\begin{equation*}
b=\frac{Y_{2}-Y_{1}}{X_{2}-X_{1}} \tag{p. 604}
\end{equation*}
\]

To calculate the numerical constant \(b\) for any given line, find the value of the coordinates, \(X\) and \(Y\), for two points that lie on the line. The coordinates of the first point are \(\left(X_{1}, Y_{1}\right)\) and the second point \(\left(X_{2}, Y_{2}\right)\). Remember that \(b\) is the slope of the line.
12-3
\[
\begin{equation*}
\hat{Y}=a+b X \tag{p. 607}
\end{equation*}
\]

In regression analysis, \(\hat{Y}\) (\(Y\) hat \()\) symbolizes the individual \(Y\) values of the estimated points, that is, the points that lie on the estimating line. Accordingly, Equation 12-3 is the equation for the estimating line.
\[
\begin{equation*}
b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \tag{p. 610}
\end{equation*}
\]

The equation enables us to calculate the slope of the best-fitting regression line for any twovariable set of data points. We introduce two new symbols in this equation, \(\bar{X}\) and \(\bar{Y}\), which represent the means of the values of the independent variable and the dependent variable, respectively. In addition, this equation contains \(n\), which, in this case, represents the number of data points to which we are fitting the regression line.
12-5

12-6

12-7

12-8
\[
\begin{equation*}
\text { Variation of the } Y \text { values around their own mean }=\Sigma(Y-\bar{Y})^{2} \tag{p. 630}
\end{equation*}
\]

This formula measures the total variation of a whole set of \(Y\) values, that is, the variation of these \(Y\) values around their own mean.
The variation of the \(Y\) values in a data set around the fitted regression line is one of two quan-
tities from which the sample coefficient of determination is developed. Equation 12-8 shows
how to measure this particular dispersion, which is the unexplained portion of the total varia-
The variation of the \(Y\) values in a data set around the fitted regression line is one of two quan-
tities from which the sample coefficient of determination is developed. Equation 12-8 shows
how to measure this particular dispersion, which is the unexplained portion of the total varia-
The variation of the \(Y\) values in a data set around the fitted regression line is one of two quan-
tities from which the sample coefficient of determination is developed. Equation 12-8 shows
how to measure this particular dispersion, which is the unexplained portion of the total variation of the \(Y\) values.
Because Equation 12-6 requires tedious calculations, statisticians have devised this short-cut method for finding the standard error of estimate. In calculating the values for \(b\) and \(a\), we have already calculated every quantity in Equation 12-7 except \(\sum Y^{2}\), which we can do very easily.
The standard error of estimate, \(s_{e}\), measures the variability or scatter of the observed values around the regression line. In effect, it indicates the reliability of the estimating equation. The denominator is \(n-2\) because we lose 2 degrees of freedom (for the values \(a\) and \(b\)) in estimating the regression line.
\[
\begin{equation*}
a=\bar{Y}-b \bar{X} \tag{p. 610}
\end{equation*}
\]

Using this formula, we can compute the \(Y\)-intercept of the best-fitting regression line for any two-variable set of data points.
\[
\begin{equation*}
s_{e}=\sqrt{\frac{\sum Y^{2}-a \sum Y-b \sum X Y}{n-2}} \tag{p. 617}
\end{equation*}
\]
\[
\begin{equation*}
\text { Variation of the } Y \text { values around the regression line }=\Sigma(Y-\hat{Y})^{2} \tag{p. 629}
\end{equation*}
\]
\[
\begin{equation*}
\tilde{r}^{2}=1-\frac{\sum(Y-\hat{Y})^{2}}{\sum(Y-\bar{Y})^{2}} \tag{p. 630}
\end{equation*}
\]

The sample coefficient of determination, \(r^{2}\), gives the fraction of the total variation of \(Y\) that is explained by the regression line. It is an important measure of the degree of association between \(X\) and \(Y\). If the value of \(r^{2}\) is +1 , then the regression line is a perfect estimator. If \(r^{2}=0\), there is no correlation between \(X\) and \(Y\).
\[
\begin{equation*}
r^{2}=\frac{a \sum Y+b \sum X Y-n \bar{Y}^{2}}{\sum Y^{2}-n \bar{Y}^{2}} \tag{p. 635}
\end{equation*}
\]

This is a short-cut equation for calculating \(r^{2}\)
\[
\begin{equation*}
r=\sqrt{r^{2}} \tag{p. 637}
\end{equation*}
\]

The sample coefficient of correlation is denoted by \(r\) and is found by taking the square root of the sample coefficient of determination. It is a second measure (in addition to \(r^{2}\)) we can use to describe how well one variable is explained by another. The sign of \(r\) is the same as the sign of \(b\); it indicates the direction of the relationship between the two variables \(X\) and \(Y\).
\[
\begin{equation*}
Y=A+B X \tag{p. 643}
\end{equation*}
\]

Each population regression line is of the form in Equation 12-13, where \(A\) is the \(Y\)-intercept for the population and \(B\) is the slope.
12-13a
\[
\begin{equation*}
Y=A+B X+e \tag{p. 644}
\end{equation*}
\]

Because all the individual points in a population do not lie on the population regression line, the individual data points will satisfy Equation 12-13a, where \(e\) is a random disturbance from the population regression line. On the average, \(e\) equals zero because disturbances above the population regression line are canceled out by disturbances below it.

12-14
\[
\begin{equation*}
s_{b}=\frac{s_{e}}{\sqrt{\sum X^{2}-n \bar{X}^{2}}} \tag{p. 645}
\end{equation*}
\]

When we are dealing with a sample, we can use this formula to find the standard error of the regression coefficient, \(b\).

12-15
\[
\begin{equation*}
t=\frac{b-B_{H_{0}}}{s_{b}} \tag{p. 645}
\end{equation*}
\]

Once we have calculated \(s_{b}\) using Equation 12-14, we can use this equation to standardize the observed value of the regression coefficient. Then we perform the hypothesis test by comparing this standardized value with the critical value(s) from Appendix Table 2.

\section*{Review and Application Exercises}

12-45 A consultant is interested in seeing how accurately a new job-performance index measures what is important for a corporation. One way to check is to look at the relationship between the job-evaluation index and an employee's salary. A sample of eight employees was taken, and information about salary (in thousands of dollars) and job-performance index (1-10; 10 is best was collected.
\begin{tabular}{lrrrrrrrr}
Job-performance index (\(\boldsymbol{X}\)) & 9 & 7 & 8 & 4 & 7 & 5 & 5 & 6 \\
Salary \((\boldsymbol{Y})\) & 36 & 25 & 33 & 15 & 28 & 19 & 20 & 22
\end{tabular}
(a) Develop an estimating equation that best describes these data.
(b) Calculate the standard error of estimate, \(s_{e}\), for these data.
(c) Calculate the sample coefficient of determination, \(r^{2}\), for these data.

12-46 The Stork Foundation wishes to show with statistics that, contrary to popular belief, storks \(d o\) bring babies. Thus, it has collected data on the number of storks and the number of babies (both in thousands) in several large cities in central Europe.
\begin{tabular}{lrlllrll}
Storks & 27 & 38 & 13 & 24 & 6 & 19 & 15 \\
Babies & 35 & 46 & 19 & 32 & 15 & 31 & 20
\end{tabular}
(a) Compute the sample coefficient of determination and the sample correlation coefficient for these data.
(b) Has statistical science disproved popular belief?

12-47 (Fill in the blanks.) Regression and correlation analyses deal with the \(\qquad\) between variables. Regression analysis, through \(\qquad\) equations, enables us to \(\qquad\) an unknown variable from a set of known variables. The unknown variable is called the \(\qquad\) variable; known variables are called variables. The correlation between two variables indicates the
\(\qquad\) of the linear relationship between them and thus gives an idea of
how well the \(\qquad\) in regression describes the relationship between the variables.
12-48 Calculate the sample coefficient of determination and the sample correlation coefficient for Exercise 12-14.
12-49 "Nothing succeeds like success" is an old adage in the advertising business. The president of a multiline auto dealership has observed that sales staff who earn the biggest end-of-year bonus are the ones who are most likely to exceed their quota for sales in the following year (and hence earn another bonus).
\begin{tabular}{lcccccc}
Last Year's Bonus (\$ thousands) & 7.8 & 6.9 & 6.7 & 6.0 & 6.9 & 5.2 \\
This Year's Sales Over Quota & 64 & 73 & 42 & 49 & 71 & 46 \\
Last Year's Bonus (\$ thousands) & 6.3 & 8.4 & 7.2 & 10.1 & 10.8 & 7.7 \\
This Year's Sales Over Quota & 32 & 88 & 53 & 84 & 85 & 93
\end{tabular}
(a) Develop the line of best fit to describe these data.
(b) Calculate the standard error of estimate for the relationship.
(c) Develop an approximate 90 percent confidence interval for predicting the sales over quota for a sales staff member who earned a bonus of \$9,600 last year.
12-50 For each of the following pairs of plots, state which has a higher value of \(r\), the correlation coefficient, and state the sign of \(r\).

12-51 An operations manager is interested in predicting costs \(C\) (in thousands of dollars) based on the amount of raw material input \(R\) (in hundreds of pounds) for a jeans manufacturer. If the slope is significantly greater than 0.5 in the following sample data, then there is something wrong with the production process and the assembly-line machinery should be adjusted. At the 0.05 significance level, should the machinery be adjusted? State explicit hypotheses and an explicit conclusion.
\begin{tabular}{lrrrrrr}
\(\boldsymbol{C}\) & 10 & 7 & 5 & 6 & 7 & 6 \\
\(\boldsymbol{R}\) & 25 & 20 & 16 & 17 & 19 & 18
\end{tabular}

12-52 Calculate the sample coefficient of determination and the sample correlation coefficient for Exercise 12-13.
12-53 We should not extrapolate to predict values outside the range of data used in constructing the regression line. The reason (choose one):
(a) The relationship between the variables may not be the same for different values of the variables.
(b) The independent variable may not have the causal effect on the dependent variable for these values.
(c) The variables' values may change over time.
(d) There may be no common bond to explain the relationship.

12-54 Economists are often interested in estimating consumption functions. This is done by regressing consumption \(Y\) on income \(X\). (For this regression, economists call the slope the marginal propensity to consume.) For a sample of 25 families, a slope of 0.87 and a standard error of the regression slope coefficient of 0.035 were computed. For this sample, has the marginal propensity to consume decreased below the standard of 0.94 ? Use \(\alpha=0.05\). State explicit hypotheses and an explicit conclusion.
12-55 Unlike the coefficient of determination, the coefficient of correlation (choose one)
(a) Indicates whether the slope of the regression line is positive or negative.
(b) Measures the strength of association between the two variables more exactly.
(c) Can never have an absolute value greater than 1.
(d) Measures the percentage of variance explained by the regression line.

12-56 Are good grades in college important for earning a good salary? A business statistics student has taken a random sample of starting salaries and college grade-point averages for some recently graduated friends of his. The data follow:
\begin{tabular}{lcccccccc}
Starting salary (\$ thousands) & 36 & 30 & 30 & 24 & 27 & 33 & 21 & 27 \\
Grade-point average & 4.0 & 3.0 & 3.5 & 2.0 & 3.0 & 3.5 & 2.5 & 2.5
\end{tabular}
(a) Plot these data.
(b) Develop the estimating equation that best describes these data.
(c) Plot the estimating equation on the scatter plot of part (a).

12-57 A landlord is interested in seeing whether his apartment rents are typical. Thus, he has taken a random sample of 11 rents and apartment sizes of similar apartment complexes. The data follow:
\begin{tabular}{lrrrrrrrrrrr}
Rent & 230 & 190 & 450 & 310 & 218 & 185 & 340 & 245 & 125 & 350 & 280 \\
Number of bedrooms & 2 & 1 & 3 & 2 & 2 & 2 & 2 & 1 & 1 & 2 & 2
\end{tabular}
(a) Develop an estimating equation that best describes these data.
(b) Calculate the coefficient of determination.
(c) Predict the rent for a two-bedroom apartment.

12-58 Many small companies buy advertising without considering its effect. "Hamburger wars" (substantial price rivalry with special "value meals") have cut the profits of Ethiopian Burgers of Santa Cruz, California, a small regional chain. The marketing manager is trying to make the case that "you have to spend money to make money." Spending on billboard advertisements, in the manager's opinion, has a direct result on sales. There are records for 7 months:
\begin{tabular}{llllllll}
\begin{tabular}{l}
Monthly expenditure \\
on billboards \((\times \$ \mathbf{1 , 0 0 0})\)
\end{tabular} & 25 & 16 & 42 & 34 & 10 & 21 & 19 \\
\begin{tabular}{l}
Monthly sales \\
revenue \((\times \$ \mathbf{1 0 0 , 0 0 0})\)
\end{tabular} & 34 & 14 & 48 & 32 & 26 & 29 & 20
\end{tabular}
(a) Develop an estimating equation that best describes these data.
(b) Calculate the standard error of estimate for this relationship.
(c) For a month with a billboard expenditure of \(\$ 28,000\), develop an approximate 95 percent confidence interval for the expected monthly sales for that month.
12-59 In an FAA study of airline operations, a survey of 18 companies disclosed that the relationship between the number of pilots employed and the number of planes in service has a slope of 4.3. Previous studies indicated that the slope of this relationship was 4.0. If the standard error of the regression slope coefficient has been calculated to be 0.17 , is there reason to believe, at the 0.05 level of significance, that the true slope has changed?

12-60 Dave Proffitt, a second-year MBA student, is doing a study of companies going public for the first time. He is curious to see whether there is a significant relationship between the size of the offering (in millions of dollars) and the price per share.
(a) Given the following data, develop the estimating equation that best fits the data.
\begin{tabular}{cc}
\hline Size (\$ Millions) & Price (\$) \\
\hline 108.00 & 12.00 \\
4.40 & 4.00 \\
3.50 & 5.00 \\
3.60 & 6.00 \\
39.00 & 13.00 \\
68.40 & 19.00 \\
7.50 & 8.50 \\
5.50 & 5.00 \\
375.00 & 15.00 \\
12.00 & 6.00 \\
51.00 & 12.00 \\
\hline & (Continued)
\end{tabular}
(Contd.)
\begin{tabular}{rr}
\hline 66.00 & 12.00 \\
10.40 & 6.50 \\
4.00 & 3.00 \\
\hline
\end{tabular}
(b) Calculate the sample coefficient of determination. Should Dave use this regression equation for predictive purposes or search elsewhere for additional explanatory variables?
12-61 A manufacturer of cellular phones is testing two different types of batteries to see how long they last in typical use. Provisional data are in the following table:
\begin{tabular}{ccc}
\hline & \multicolumn{2}{c}{\begin{tabular}{c}
Approximate Life \\
(months)
\end{tabular}} \\
\cline { 2 - 3 } Hours of Daily Use & Lithium & Alkaline \\
\hline 2.0 & 3.1 & 1.3 \\
1.5 & 4.2 & 1.6 \\
1.0 & 5.1 & 1.8 \\
0.5 & 6.3 & 2.2 \\
\hline
\end{tabular}
(a) Develop two linear estimating equations, one to predict product life based on daily use with lithium batteries and one for alkaline batteries.
(b) Find an approximate 90 percent confidence interval for the life (in months) with 1.25 hours of daily use, for each battery type. Can the company make any claims about which battery will provide a longer life based on these numbers?
12-62 A study has been proposed to investigate the relationship between the birthweight of male babies and their adult height. Using the following data, develop the least-squares estimating equation. What percentage of the variation in adult height is explained by this regression line?
\begin{tabular}{lc}
\hline Birthweight & Adult Height \\
\hline \(5 \mathrm{lb}, 8 \mathrm{oz}\) & \(5^{\prime} 9^{\prime \prime}\) \\
7 lb & \(6^{\prime}\) \\
\(6 \mathrm{lb}, 4 \mathrm{oz}\) & \(5^{\prime} 6^{\prime \prime}\) \\
\(7 \mathrm{lb}, 8 \mathrm{oz}\) & \(5^{\prime} 11^{\prime \prime}\) \\
\(8 \mathrm{lb}, 2 \mathrm{oz}\) & \(6^{\prime} 1^{\prime \prime}\) \\
\(6 \mathrm{lb}, 12 \mathrm{oz}\) & \(5^{\prime} 10^{\prime \prime}\) \\
\hline
\end{tabular}

12-63 Many college students transfer in the summer before their junior years. To aid in evaluating the academic potential of these junior transfers, Barbara Hoopes, the Dean of Admissions at Piedmont College, is conducting an analysis that compares students' grade-point averages (GPAs) during their first 2 years of college with their GPAs during their final 2 years, after transferring. Using the following data:
\begin{tabular}{llllllllll}
2.4 & 3.7 & 2.0 & 2.5 & 3.2 & 3.0 & 2.5 & 1.8 & 2.7 & 3.7
\end{tabular}
(a) Calculate the least-squares estimating equation Hoopes should use to predict junior/senior GPAs for students transferring to Piedmont College.
(b) Hoopes will not admit junior-transfer applicants unless approximate 90 percent prediction intervals for their junior/senior GPAs fall entirely above 2.0 . Will she admit a transfer applicant with a 2.5 freshman/sophomore GPA?
12-64 The Accounts Department of MNT Enterprises wants to decide on Travelling Allowances along with Boarding-Lodging Expenses rates for different cities. So far MNT is following a uniform rate system for all the cities but there has been a major complaint among the employees with respect to this rule. The employees' contention is that there is a major variation in this aspect in different cities. The Accounts Department has accepted this contention and ready to modify the system by introducing variable rate system as desired by the employees. The following table gives Hotel rates and the Taxi rates per day in 10 major cities. Should the accounts department consider both hotel costs and the taxi-rates, or would the hotel costs by city provide sufficient information to decide the allowance-rates?
\begin{tabular}{ccc}
\hline City & Hotel Rates (Per Day) & Taxi Rates (Per Day) \\
\hline A & 3000 & 550 \\
B & 2800 & 400 \\
C & 1800 & 200 \\
D & 4500 & 1000 \\
E & 3000 & 700 \\
F & 2000 & 300 \\
G & 2500 & 450 \\
H & 2700 & 600 \\
I & 3600 & 900 \\
J & 1900 & 300 \\
\hline
\end{tabular}

Questions on Running Case: SURYA Bank Pvt. Ltd.
1. Build a regression model to study the impact of reliability of e-banking transactions on the level of satisfaction of customers. \{Regress Q9 on 8(b) \}. Interpret the results.
2. Study the impact of Bank Site congestion in performing e-transactions on the level of satisfaction of customers. \{Regress Q9 on 8(f) \}. Interpret the results.

\section*{Flow Chart: Regression and Correlation}

\section*{Multiple Regression and Modeling}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To extend the regression techniques of the last chapter to handle more than one explanatory variable for a quantity we are trying to predict
- To examine decision-making situations where multiple regression can be used to make predictions
- To interpret the output from computer regression packages
- To test hypotheses about regressions
- To use modeling techniques to incorporate qualitative variables into regression equations
- To learn how to fit curves to data
- To understand the importance of residuals in regression analysis

\section*{CHAPTER CONTENTS}

\subsection*{13.1 Multiple Regression and Correlation Analysis 664}
13.2 Finding the Multiple-Regression Equation 665
13.3 The Computer and Multiple Regression 674
13.4 Making Inferences about Population Parameters 684
13.5 Modeling Techniques 703
- Statistics at Work 719
- Terms Introduced in Chapter 13720
- Equations Introduced in Chapter 13721
- Review and Application Exercises 722
- Flow Chart: Multiple Regression and Modeling 731

Amanufacturer of small office copiers and word-processing machinery pays its salespeople a small base salary plus a commission equal to a fixed percentage of the person's sales. One of the salespeople charges that this salary structure discriminates against women. Current base salaries for the firm's nine salespeople are as follows:
\begin{tabular}{cccc}
\hline \multicolumn{2}{c}{ Salesmen } & \multicolumn{2}{c}{ Saleswomen } \\
\hline \begin{tabular}{c}
Months \\
Employed
\end{tabular} & \begin{tabular}{c}
Base Salary \\
\((\$ 1,000 \mathbf{s})\)
\end{tabular} & \begin{tabular}{c}
Months \\
Employed
\end{tabular} & \begin{tabular}{c}
Base Salary \\
\((\mathbf{\$ 1 , 0 0 0 s})\)
\end{tabular} \\
\hline 6 & 7.5 & 5 & 6.2 \\
10 & 8.6 & 13 & 8.7 \\
12 & 9.1 & 15 & 9.4 \\
18 & 10.3 & 21 & 9.8 \\
30 & 13.0 & & \\
\hline
\end{tabular}

The director of personnel sees that base salary depends on length of service, but she does not know how to use the data to learn whether it also depends on gender and whether there is discrimination against women. Methods in this chapter will enable her to find out.

\subsection*{13.1 MULTIPLE REGRESSION AND CORRELATION ANALYSIS}

As we mentioned in Chapter 12, we can use more than one independent variable to estimate the dependent variable and, in this way, attempt to increase the accuracy of the estimate. This process is called multiple regression and correlation analysis. It is

Using more than one independent variable to estimate the dependent variable based on the same assumptions and procedures we have encountered using simple regression.

Consider the real-estate agent who wishes to relate the number of houses the firm sells in a month to the amount of her monthly advertising. Certainly, we can find a simple estimating equation that relates these two variables. Could we also improve the accuracy of our equation by including in the estimating process the number of salespeople she employs each month? The answer is probably yes. And now, because we want to use both the number of sales agents and the advertising expenditures to predict monthly house sales, we must use multiple, not simple, regression to determine the relationship.

The principal advantage of multiple regression is that it allows us to use more of the information available to us to estimate the dependent variable. Sometimes the correlation between two variables may be insufficient to determine a reliable estimating equation. Yet, if we add the data from more independent variables, we may be able to determine an estimating equation that describes the relationship with greater accuracy.

Multiple regression and correlation analysis involve a threestep process such as the one we used in simple regression. In this process, we

\section*{Advantage of multiple}
regression
?
1. Describe the multiple-regression equation.
2. Examine the multiple-regression standard error of estimate.
3. Use multiple-correlation analysis to determine how well the regression equation describes the observed data.

In addition, in multiple regression, we can look at each individual independent variable and test whether it contributes significantly to the way the regression describes the data.

In this chapter, we shall see how to find the best-fitting Computer regression packages regression equation for a given set of data and how to analyze the equation we get. Although we shall show how to do multiple regression by hand or on a hand-held calculator, it will quickly become obvious to you that you would not want to do even a modest-size real-life problem by hand. Fortunately, there are available many computer packages for doing multiple regressions and other statistical analyses. These packages do the "number crunching" and leave you tree to concentrate on analyzing the significance of the resulting estimating equation.

Multiple regression will also enable as to fit curves as well as lines. Using the technique of dummy variables, we can even include qualitative factors such as gender in our multiple regression. This technique will enable us to analyze the discrimination problem that opened this chapter. Dummy variables and fitting curves are only two of the many modeling techniques that can be used in multiple regression to increase the accuracy of our estimating equations.

\section*{EXERCISES 13.1}

\section*{Basic Concepts}

13-1 Why would we use multiple regression instead of simple regression in estimating a dependent variable?
13-2 How will dummy variables be used in our study of multiple regression?
13-3 To what does the word multiple refer in the phrase multiple regression?
13-4 The owner of a chain of stores would like to predict monthly sales from the size of city in which a store is located. After fitting a simple regression model, she decides that she wants to include the effect of season of the war in the model. Can this be done using the techniques in this chapter?
13-5 Describe the three steps in the process of multiple regression and correlation analysis.
13-6 Will the procedures used in multiple regression differ greatly from those we used in simple regression? Explain.

\subsection*{13.2 FINDING THE MULTIPLE-REGRESSION EQUATION}

Let's see how we can compute the multiple-regression equation. For convenience, we shall use only two independent variables in the problem we work in this section. Keep in mind, however,

\section*{A problem demonstrating multiple regression} that the same sort of technique is, in principle, applicable to any number of independent variables.

The Internal Revenue Service is trying to estimate the monthly amount of unpaid taxes discovered by its auditing division. In the past, the IRS estimated this figure on the basis of the expected number of field-audit labor hours. In recent years, however, field audit labour hours have become an erratic predictor of the actual unpaid taxes. As a result, the IRS is looking for another factor with which it can improve the estimating equation.

The auditing division does keep a record of the number of hours its computers are used to detect unpaid taxes. Could we combine this information with the data on field-audit labor hours and come up

TABLE 13-1 DATA FROM IRS AUDITING RECORDS DURING THE LAST 10 MONTHS
\begin{tabular}{lccc}
\hline & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Field-Audit Labor Hours \\
(00's omitted)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{2}}\) \\
Computer Hours \\
(00's omitted)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Actual Unpaid Taxes Discovered \\
(millions of dollars)
\end{tabular} \\
\hline January & 45 & 16 & 29 \\
February & 42 & 14 & 24 \\
March & 44 & 15 & 27 \\
April & 45 & 13 & 25 \\
May & 43 & 13 & 26 \\
June & 46 & 14 & 28 \\
July & 44 & 16 & 30 \\
August & 45 & 16 & 28 \\
September & 44 & 15 & 28 \\
October & 43 & 15 & 27 \\
\hline
\end{tabular}
with a more accurate estimating equation for the unpaid taxes discovered each month? Table 13-1 presents these data for the last 10 months.

In simple regression, \(X\) is the symbol used for the values of the independent variable. In multiple regression, we have more

\section*{Appropriate symbols} than one independent variable. So we shall continue to use \(X\), but we shall add a subscript (for example, \(X_{1}, X_{2}\)) to distinguish between the independent variables we are using.

In this problem, we will let \(X_{l}\) represent the number of fieldaudit labor hours and \(X_{2}\) represent the number of computer hours. The dependent variable, \(Y\), will be the actual unpaid taxes discovered.

Recall that in simple regression, the estimating equation \(\hat{Y}=a+b X\) describes the relationship between the two variables \(X\) and \(Y\). In multiple regression, we must extend that equa-

\section*{Defining the variables}

Estimating equation for multiple regression tion, adding one term for each new variable. In symbolic form, Equation 13-1 is the formula we can use when we have two independent variables:

\section*{Estimating Equation Describing Relationship among Three Variables}
\[
\begin{equation*}
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2} \tag{13-1}
\end{equation*}
\]
where
- \(\hat{Y}=\) estimated value corresponding to the dependent variable
- \(a=Y\)-intercept
- \(X_{1}\) and \(X_{2}=\) values of the two independent variables
- \(b_{1}\) and \(b_{2}=\) slopes associated with \(X_{1}\) and \(X_{2}\), respectively

We can visualize the simple estimating equation as a line on a graph; similarly, we can picture a two-variable multiple regression

Visualizing multiple regression

FIGURE 13-1 MULTIPLE REGRESSION PLANE FOR 10 DATA POINTS
we have a three-dimensional shape that possesses depth, length, and width. To get an intuitive feel for this three-dimensional shape, visualize the intersection of the axes, \(Y, X_{1}\), and \(X_{2}\) as one corner of a room.

Figure 13-1 is a graph of 10 sample points and the plane about which these points seem to cluster. Some points lie above the plane and some fall below it-just as points lie above and below the simple regression line.

Our problem is to decide which of the possible planes that we could draw will be the best fit. To do this, we shall again use the least-squares criterion and locate the plane that minimizes the

Using the least-squares criterion to fit a regression plane sum of the squares of the errors, that is, the distances from the points around the plane to the corresponding points on the plane. We use our data and the following three equations (which statisticians call the "normal equations") to determine the values of the numerical constants, \(a, b_{1}\), and \(b_{2}\).
\begin{tabular}{|crl|}
\hline Normal Equations & \\
\(\Sigma Y\) & \(=n a+b_{1} \Sigma X_{1}+b_{2} \Sigma X_{2}\) & {\([13-2]\)} \\
\(\Sigma X_{1} Y\) & \(=a \Sigma X_{1}+b_{1} \Sigma X_{1}{ }_{1}+b_{2} \Sigma X_{1} X_{2}\) & {\([13-3]\)} \\
\(\Sigma X_{2} Y\) & \(=a \Sigma X_{2}+b_{1} \Sigma X_{1} X_{2}+b_{2} \Sigma X^{2}{ }_{2}\) & {\([13-4]\)} \\
\hline
\end{tabular}

TABLE 13-2 VALUES FOR FITTING LEAST-SQUARES PLANE, WHERE \(n=10\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline Y \\
(1)
\end{gathered}
\] & \[
\begin{aligned}
& X_{1} \\
& (2)
\end{aligned}
\] & \[
\begin{aligned}
& X_{2} \\
& (3)
\end{aligned}
\] & \[
\begin{gathered}
X_{1} Y \\
(2) \times(1)
\end{gathered}
\] & \[
\begin{gathered}
X_{2} Y \\
(\mathbf{3}) \times(\mathbf{1})
\end{gathered}
\] & \[
\begin{gathered}
X_{1} X_{2} \\
(2) \times(\mathbf{3})
\end{gathered}
\] & \[
\begin{gathered}
X_{1}^{2} \\
(2)^{2}
\end{gathered}
\] & \[
\begin{gathered}
X_{2}^{2} \\
(\mathbf{3})^{2}
\end{gathered}
\] & \[
\begin{gathered}
Y^{2} \\
(\mathbf{1})^{2}
\end{gathered}
\] \\
\hline 29 & 45 & 16 & 1,305 & 464 & 720 & 2,025 & 256 & 841 \\
\hline 24 & 42 & 14 & 1,008 & 336 & 588 & 1,764 & 196 & 576 \\
\hline 27 & 44 & 15 & 1,188 & 405 & 660 & 1,936 & 225 & 729 \\
\hline 25 & 45 & 13 & 1,125 & 325 & 585 & 2,025 & 169 & 625 \\
\hline 26 & 43 & 13 & 1,118 & 338 & 559 & 1,849 & 169 & 676 \\
\hline 28 & 46 & 14 & 1,288 & 392 & 644 & 2,116 & 196 & 784 \\
\hline 30 & 44 & 16 & 1,320 & 480 & 704 & 1,936 & 256 & 900 \\
\hline 28 & 45 & 16 & 1,260 & 448 & 720 & 2,025 & 256 & 784 \\
\hline 28 & 44 & 15 & 1,232 & 420 & 660 & 1,936 & 225 & 784 \\
\hline 27 & 43 & 15 & 1,161 & 405 & 645 & 1,849 & 225 & 729 \\
\hline 272 & 441 & 147 & 12,005 & 4,013 & 6,485 & 19,461 & 2,173 & 7,428 \\
\hline \(\uparrow\) & \(\uparrow\) \\
\hline \(\Sigma Y\) & \(\Sigma X_{1}\) & \(\Sigma X_{2}\) & \(\Sigma X_{1} Y\) & \(\Sigma X_{2} Y\) & \(\Sigma X_{1} X_{2}\) & \(\Sigma X_{1}^{2}\) & \(\Sigma X_{2}^{2}\) & \(\Sigma Y^{2}\) \\
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\bar{Y}=27.2 \\
\bar{X}_{1}=44.1 \\
\bar{X}_{2}=14.7
\end{gathered}
\]}} & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Solving Equations 13-2, 13-3, and 13-4 for a, \(b_{1}\) and \(b_{2}\) will give us the coefficients for the regression plane. Obviously, the best way to compute all the sums in these three equations is to use a table to collect and organize the necessary information, just as we did in simple regression. This we have done for the IRS problem in Table 13-2.

Now, using the information from Table 13-2 in Equations 13-2, 13-3, and 13-4, we get three equations in the three unknown constants \(\left(a, b_{1}\right.\), and \(\left.b_{2}\right)\) :
\[
\begin{aligned}
272 & =10 a+441 b_{1}+147 b_{2} \\
12,005 & =441 a+19,461 b_{1}+6,485 b_{2} \\
4,013 & =147 a+6,485 b_{1}+2,173 b_{2}
\end{aligned}
\]

When we solve these three equations simultaneously, we get
\[
\begin{array}{lr}
a= & -13.828 \\
b_{1}= & 0.564 \\
b_{2}= & 1.099
\end{array}
\]

Substituting these three values into the general two-variable regression equation (Equation 13-1), we get an equation that describes the relationship among the number of field-audit labor hours, the number of computer hours, and the unpaid taxes discovered by the auditing division:
\[
\begin{align*}
\hat{Y} & =a+b_{1} X_{1}+b_{2} X_{2} \tag{13-1}\\
& =-13.828+0.564 X_{1}+1.099 X_{2}
\end{align*}
\]

The auditing division can use this equation monthly to estimate the amount of unpaid taxes it will discover.

Suppose the IRS wants to increase its discoveries in the coming month. Because trained auditors are scarce, the IRS does not intend to hire additional personnel. The number of field-audit

Using the multiple-regression equation to estimate labor hours, then, will remain at October's level of about 4,300 hours. But in order to increase its discoveries of unpaid taxes, the IRS expects to increase the number of computer hours to about 1,600 . As a result:
\[
\begin{aligned}
& X_{1}=43 \leftarrow 4,300 \text { hours of field-audit labor } \\
& X_{2}=16 \leftarrow 1,600 \text { hours of computer time }
\end{aligned}
\]

Substituting these values into the auditing division's regression equation, we get
\[
\begin{aligned}
\hat{Y} & =-13.828+0.564 X_{1}+1.099 X_{2} \\
& =-13.828+(0.564)(43)+(1.099)(16) \\
& =-13.828+24.252+17.584 \\
& =28.008 \leftarrow \text { Estimated discoveries of } \$ 28,008,000
\end{aligned}
\]

Therefore, in the November forecast, the audit division can indicate that it expects about \(\$ 28\) million of discoveries for this combination of factors.

So far, we have referred to \(a\) as the \(Y\)-intercept and to \(b_{1}\) and \(b_{2}\) as the slopes of the multiple-regression plane. But to be more precise, we should say that these numerical constants are the esti-

Interpreting our estimate

\section*{\(a, b_{1}\) and \(b_{2}\) are the estimated regression coefficients} mated regression coefficients. The constant \(a\) is the value of \(\hat{Y}\) (in this case, the estimated unpaid taxes) if both \(X_{1}\) and \(X_{2}\) happen to be zero. The coefficients \(b_{1}\) and \(b_{2}\) describe how changes in \(X_{l}\) and \(X_{2}\) affect the value of \(\hat{Y}\). In our IRS example, we can hold the number of field-audit labor hours, \(X_{1}\), constant and change the number of computer hours, \(X_{2}\). When we do, the value of \(\hat{Y}\) will increase \(\$ 1,099,000\) for every additional 100 hours of computer time. Likewise, we can hold \(X_{2}\) constant and find that, for every 100 -hour increase in the number of field-audit labor hours, \(\hat{Y}\) increases by \(\$ 564,000\).

\section*{HINTS \& ASSUMPTIONS}

Hint: If you have trouble picturing in your mind what multiple regression is actually doing, think back to Chapter 12 and remember that a regression line describes the relationship between two variables. In multiple regression, the regression plane such as the one on page 667 describes the relationship among three variables \(Y, X_{1}\), and \(X_{2}\). The appropriate regression plane is conceptually the same as the appropriate regression line, that is, the one that minimizes the sum of the squared vertical distances between the data points and the plane in this instance. It may help to remember that each independent variable may account for some of the variation in the dependent variable. Multiple regression is just a way to use several independent variables to make a better prediction of the dependent variable.

Assumptions: The classical linear regression model (CLRM) makes certain assumptions about the independent variables \(X_{i}^{\prime} s\) and the error term \(u\), which are very important for the valid interpretation of the regression estimates. The assumptions are:
1. The regression model is linear in parameters, i.e.,
\[
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+u
\]
2. The independent variables are assumed to be non random.
3. For the given values of \(X_{i}\) 's, the expected value of the disturbance term is zero, i.e.,
\[
E\left(u_{i} / X_{i}\right)=0
\]
4. For the given values of \(X_{i}\) 's, the variance of \(u_{i}\) is identical, i.e.,
\[
\operatorname{Var}\left(u_{i} X_{i}\right)=\sigma^{2}(\text { Constant })
\]
5. For any two values of \(X, X_{i}\) and \(X_{j}(i \neq j)\), the correlation between any two \(u_{i}\) and \(u_{j}(i \neq j)\) is zero, i.e.,
\[
\operatorname{Cov}\left(u_{i}, u_{j} / X_{i}, X_{j}\right)=0
\]
6. There are no exact linear relationships between the independent variables.

\section*{EXERCISES 13.2}

Self-Check Exercises
SC 13-1 Given the following set of data
(a) Calculate the multiple-regression plane.
(b) Predict \(Y\) when \(X_{1}=3.0\) and \(X_{2}=2.7\).
\begin{tabular}{ccc}
\hline \(\boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) \\
\hline 25 & 3.5 & 5.0 \\
30 & 6.7 & 4.2 \\
11 & 1.5 & 8.5 \\
22 & 0.3 & 1.4 \\
27 & 4.6 & 3.6 \\
19 & 2.0 & 1.3 \\
\hline
\end{tabular}

SC 13-2 The following information has been gathered from a random sample of apartment renters in a city. We are trying to predict rent (in dollars per month) based on the size of the apartment (number of rooms) and the distance from downtown (in miles).
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Rent \\
\((\$)\)
\end{tabular} & \begin{tabular}{c}
Number of \\
Rooms
\end{tabular} & \begin{tabular}{c}
Distance from \\
Downtown
\end{tabular} \\
\hline 360 & 2 & 1 \\
1,000 & 6 & 1 \\
450 & 3 & 2 \\
525 & 4 & 3 \\
350 & 2 & 10 \\
300 & 1 & 4 \\
\hline
\end{tabular}
(a) Calculate the least-squares equation that best relates these three variables.
(b) If someone is looking for a two-bedroom apartment 2 miles from downtown, what rent should he expect to pay?

\section*{Basic Concepts}

13-7 Given the following set of data
(a) Calculate the multiple-regression plane.
(b) Predict \(Y\) when \(X_{1}=10.5\) and \(X_{2}=13.6\)
\begin{tabular}{rrr}
\hline \(\boldsymbol{Y}\) & \(\boldsymbol{X}_{1}\) & \(\boldsymbol{X}_{2}\) \\
\hline 11.4 & 4.5 & 13.2 \\
16.6 & 8.7 & 18.7 \\
20.5 & 12.6 & 19.8 \\
29.4 & 19.7 & 25.4 \\
7.6 & 2.9 & 22.8 \\
13.8 & 6.7 & 17.8 \\
28.5 & 17.4 & 14.6 \\
\hline
\end{tabular}

13-8 For the following set of data:
(a) Calculate the multiple-regression plane.
(b) Predict \(Y\) for \(X_{1}=28\) and \(X_{2}=10\).
\begin{tabular}{rrr}
\hline \(\boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) \\
\hline 10 & 8 & 4 \\
17 & 21 & 9 \\
18 & 21 & 11 \\
26 & 17 & 20 \\
35 & 36 & 13 \\
8 & 9 & 28 \\
\hline
\end{tabular}

13-9 Given the following set of data
(a) Calculate the multiple-regression plane.
(b) Predict \(Y\) when \(X_{1}=-1\) and \(X_{2}=4\).
\begin{tabular}{rcc}
\hline \(\boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) \\
\hline 6 & 1 & 3 \\
10 & 3 & -1 \\
9 & 2 & 4 \\
14 & -2 & 7 \\
7 & 3 & 2 \\
5 & 6 & -4 \\
\hline
\end{tabular}

\section*{Applications}

13-10 Sam Spade, owner and general manager of the Campus Stationery Store, is concerned about the sales behavior of a compact cassette tape recorder sold at the store. He realizes that there are many factors that might help explain sales, but believes that advertising and price are major determinants. Sam has collected the following data:
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Sales \\
(units sold)
\end{tabular} & \begin{tabular}{c}
Advertising \\
(number of ads)
\end{tabular} & \begin{tabular}{c}
Price \\
(\$)
\end{tabular} \\
\hline 33 & 3 & 125 \\
61 & 6 & 115 \\
70 & 10 & 140 \\
82 & 13 & 130 \\
17 & 9 & 145 \\
24 & 6 & 140 \\
\hline
\end{tabular}
(a) Calculate the least-squares equation to predict sales from advertising and price.
(b) If advertising is 7 and price is \(\$ 132\), what sales would you predict?

13-11 A developer of food for pigs would like to determine what relationship exists among the age of a pig when it starts receiving a newly developed food supplement, the initial weight of the pig, and the amount of weight it gains in a 1-week period with the food supplement. The following information is the result of a study of eight piglets:
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Piglet \\
Number
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Initial Weight \\
(Pounds)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{2}\) \\
Initial Age \\
(Weeks)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Weight \\
Gain
\end{tabular} \\
\hline 1 & 39 & 8 & 7 \\
2 & 52 & 6 & 6 \\
3 & 49 & 7 & 8 \\
4 & 46 & 12 & 10 \\
5 & 61 & 9 & 9 \\
6 & 35 & 6 & 5 \\
7 & 25 & 7 & 3 \\
8 & 55 & 4 & 4 \\
\hline
\end{tabular}
(a) Calculate the least-squares equation that best describes these three variables.
(b) How much might we expect a pig to gain in a week with the food supplement if it were 9 weeks old and weighed 48 pounds?
13-12 A graduate student trying to purchase a used Neptune car has researched the prices. She believes the year of the car and the number of miles the car has been driven both influence the purchase price. Data are given below for 10 cars with the price \((Y)\) in thousands of dollars, year \(\left(X_{1}\right)\) and miles driven \(\left(X_{2}\right)\) in thousands.
(a) Calculate the least-squares equation that best relates these three variables.
(b) The student would like to purchase a 1991 Neptune with about 40,000 miles on it. How much do you predict she will pay?
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
\((\boldsymbol{Y})\) \\
Price \\
(\$ thousands)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Year
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{2}}\) \\
Miles \\
(thousands)
\end{tabular} \\
\hline 2.99 & 1987 & 55.6 \\
6.02 & 1992 & 18.4 \\
8.87 & 1993 & 21.3 \\
3.92 & 1988 & 46.9 \\
9.55 & 1994 & 11.8 \\
9.05 & 1991 & 36.4 \\
9.37 & 1992 & 28.2 \\
4.2 & 1988 & 44.2 \\
4.8 & 1989 & 34.9 \\
5.74 & 1991 & 26.4 \\
\hline
\end{tabular}

13-13 The Federal Reserve is performing a preliminary study to determine the relationship between certain economic indicators and annual percentage change in the gross national product (GNP). Two such indicators being examined are the amount of the federal government's deficit (in billions of dollars) and the Dow Jones Industrial Average (the mean value over the year). Data for 6 years follow:
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Change in GNP
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{1}}\) \\
Federal Deficit
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{2}}\) \\
Dow Jones
\end{tabular} \\
\hline 2.5 & 100 & 2,850 \\
-1.0 & 400 & 2,100 \\
4.0 & 120 & 3,300 \\
1.0 & 200 & 2,400 \\
1.5 & 180 & 2,550 \\
3.0 & 80 & 2,700 \\
\hline
\end{tabular}
(a) Calculate the least-squares equation that best describes the data.
(b) What percentage change in GNP would be expected in a year in which the federal deficit was \(\$ 240\) billion and the mean Dow Jones value was 3,000 ?

\section*{Worked-Out Answers to Self-Check Exercises}

SC 13-1 (a)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Y & \[
X_{1}
\] & \[
X_{2}
\] & \[
X_{1} Y
\] & \[
X_{2} Y
\] & \[
X_{1} X_{2}
\] & \[
X_{1}^{2}
\] & \[
X_{2}^{2}
\] & \(Y^{2}\) \\
\hline 25 & 3.5 & 5.0 & 87.5 & 125.0 & 17.50 & 12.25 & 25.00 & 625 \\
\hline 30 & 6.7 & 4.2 & \[
201.0
\] & 126.0 & 28.14 & 44.89 & 17.64 & 900 \\
\hline 11 & 1.5 & 8.5 & 16.5 & 93.5 & 12.75 & 2.25 & 72.25 & 121 \\
\hline 22 & 0.3 & 1.4 & 6.6 & 30.8 & 0.42 & 0.09 & 1.96 & 484 \\
\hline 27 & 4.6 & 3.6 & 124.2 & 97.2 & 16.56 & 21.16 & 12.96 & 729 \\
\hline 19 & 2.0 & 1.3 & 38.0 & 24.7 & 2.60 & 4.00 & 1.69 & 361 \\
\hline \(\overline{134}\) & \(\overline{18.6}\) & \(\overline{24.0}\) & \(\overline{473.8}\) & \(\overline{497.2}\) & \(\overline{77.97}\) & \(\overline{84.64}\) & \(\overline{131.50}\) & \(\overline{3,220}\) \\
\hline
\end{tabular}

Equations 13-2, 13-3, and 13-4 become
\[
\begin{array}{rlrl}
\sum Y & =n a+b_{1} \sum X_{1}+b_{2} \sum X_{2} & 134 & =6 a+18.6 b_{1}+24.0 b_{2} \\
\sum X_{1} Y & =a \sum X_{1}+b_{2} \sum X_{1}^{2}+b_{2} \sum X_{1} X_{2} & 473.8 & =18.6 a+84.64 b_{1}+77.97 b_{2} \\
\sum X_{2} Y & =a \sum X_{2}+b_{1} \sum X_{1} X_{2}+b_{2} \sum X_{2}^{2} & 497.2 & =24.0 a+77.97 b_{1}+131.50 b_{2}
\end{array}
\]

Solving these equations simultaneously, we get
\[
a=20.3916 \quad b_{1}=2.3403 \quad b_{2}=-1.3283
\]

So the regression equation is \(\hat{Y}=20.3916+2.3403 X_{1}-1.3283 X_{2}\).
(b) With \(X_{1}=3.0\) and \(X_{2}=2.7\),
\[
\hat{Y}=20.3916+2.3403(3.0)-1.3283(2.7)=23.83 .
\]

SC 13-2 (a) In this problem, \(Y=\) rent, \(X_{1}=\) number of rooms, \(X_{2}=\) distance from downtown.
\begin{tabular}{rrrrrrrrr}
\hline \multicolumn{1}{c}{\(\boldsymbol{Y}\)} & \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) & \(\boldsymbol{X}_{\mathbf{1}} \boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{2}} \boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{1}} \boldsymbol{X}_{\mathbf{2}}\) & \(\boldsymbol{X}_{\mathbf{1}}^{2}\) & \(\boldsymbol{X}_{\mathbf{2}}^{2}\) & \multicolumn{1}{c}{\(\boldsymbol{Y}^{\mathbf{2}}\)} \\
\hline 360 & 2 & 1 & 720 & 360 & 2 & 4 & 1 & 129,600 \\
1,000 & 6 & 1 & 6,000 & 1,000 & 6 & 36 & 1 & \(1,000,000\) \\
450 & 3 & 2 & 1,350 & 900 & 6 & 9 & 4 & 202,500 \\
525 & 4 & 3 & 2,100 & 1,575 & 12 & 16 & 9 & 275,625 \\
350 & 2 & 10 & 700 & 3,500 & 20 & 4 & 100 & 122,500 \\
\(\frac{300}{\mathbf{2 , 9 8 5}}\) & \(\underline{\mathbf{1 8}}\) & \(\underline{\mathbf{2 1}}\) & \(\underline{\mathbf{1 1 , 1 7 0}}\) & \(\underline{\mathbf{8 , 5 3 5}}\) & \(\underline{\mathbf{5 0}}\) & \(\underline{\mathbf{7 0}}\) & \(\underline{\mathbf{1 3}}\) & \(\underline{\mathbf{1 3}}\) \\
\hline
\end{tabular}

Equations 13-2, 13-3, and 13-4 become
\[
\begin{array}{rlrl}
\Sigma Y & =n a+b_{1} \Sigma X_{1}+b_{2} \sum X_{2} & 2,985 & =6 a+18 b_{1}+21 b_{2} \\
\Sigma X_{1} Y & =a \Sigma X_{1}+b_{1} \Sigma X_{1}^{2}+b_{2} \Sigma X_{1} X_{2} & 11,170 & =18 a+70 b_{1}+50 b_{2} \\
\Sigma X_{2} Y & =a \Sigma X_{2}+b_{1} \sum X_{1} X_{2}+b_{2} \sum X_{2}^{2} & 8,535 & =21 a+50 b_{1}+131 b_{2}
\end{array}
\]

Solving these equations simultaneously, we get
\[
a=96.4581 \quad b_{1}=136.4847 \quad b_{2}=-2.4035
\]

So the regression equation is
\[
\hat{Y}=96.4581+136.4847 X_{1}-2.4035 X_{2}
\]
(b) When number of rooms \(=2\) and distance from downtown \(=2\),
\[
\hat{Y}=96.4581+136.4847(2)-2.4035(2)=\$ 365
\]

\subsection*{13.3 THE COMPUTER AND MULTIPLE REGRESSION}

In Chapter 12, and so far in this chapter, we have presented simplified problems and samples of small sizes. After the example in the last section, you have probably concluded that you are not

Impracticality of computing regressions by hand
interested in regression if you have to do the computations by hand. In fact, as sample size gets larger and the number of independent variables in the regression increases, it quickly becomes impractical to do the computations even on a hand-held calculator.

As managers, however, we will have to deal with complex problems requiring larger samples and additional independent variables. To assist us in solving these more detailed problems, we will use a computer, which allows us to perform a large number of computations in a very small period of time.

Suppose that we have not one or two independent variables, but rather that we have \(k\) of them: \(X_{1}\), \(X_{2}, \ldots, X_{k}\). As before, we will let \(n\) denote the number of data points we have. The regression equation we are trying to estimate is

\section*{Multiple Regression Estimating Equation \\ \(\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k}\)}

Now we'll see how we can use a computer to estimate the regression coefficients.
To demonstrate how a computer handles multiple-regression analysis, take our IRS problem from the preceding section. Suppose the auditing division adds to its model the information

\section*{Demonstration of multiple} regression using the computer concerning rewards to informants. The IRS wishes to include this third independent variable, \(X_{3}\), because it feels certain that there is some relationship between these payments and the unpaid taxes discovered. Information for the last 10 months is recorded in Table 13-3.

To solve this problem, the auditing division has used the multiple-regression procedure in Minitab. Of course, we do not yet know how to interpret the solution provided by Minitab but as we shall see, most of the numbers given in the solution

Using Minitab to solve multiple
regression problems correspond fairly closely to what we have already discussed in the context of simple regression.

TABLE 13-3 FACTORS RELATED TO THE DISCOVERY OF UNPAID TAXES
\begin{tabular}{lcccc}
\hline & \begin{tabular}{c}
Field-Audit \\
Labor Hours \\
(00's omitted)
\end{tabular} & \begin{tabular}{c}
Computer Hours \\
\((\mathbf{0 0}\) 's omitted)
\end{tabular} & \begin{tabular}{c}
Reward to \\
Informants \\
\((\mathbf{0 0 0}\) 's omitted)
\end{tabular} & \begin{tabular}{c}
Actual Unpaid \\
Taxes Discovered \\
\((\mathbf{0 0 0 , 0 0 0}\) 's omitted)
\end{tabular} \\
Month & \(\boldsymbol{X}_{1}\) & 16 & 71 & \(\boldsymbol{\boldsymbol { X }}\) \\
\hline January & 45 & 14 & 70 & 29 \\
February & 42 & 15 & 72 & 24 \\
March & 44 & 13 & 71 & 27 \\
April & 45 & 13 & 75 & 25 \\
May & 43 & 14 & 74 & 26 \\
June & 46 & 16 & 76 & 28 \\
July & 44 & 16 & 69 & 30 \\
August & 45 & 15 & 74 & 28 \\
September & 44 & 15 & 73 & 28 \\
October & 43 & & & 27 \\
\hline
\end{tabular}

\section*{Minitab Output}

Once all the data have been entered and the independent and dependent variables chosen, Minitab computes the regression coefficients and several statistics associated with the regression

\section*{Output from the Minitab program} equation. Let's look at the output for the IRS problem and see what all the numbers mean. The first part of the output is given in Figure 13-2.
1. The regression equation. From the numbers given in the Coef column, we can read the estimating equation:
\[
\begin{align*}
\hat{Y} & =a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3} \tag{13-5}\\
& =-45.796+0.597 X_{1}+1.177 X_{2}+0.405 X_{3}
\end{align*}
\]

We can interpret this equation in much the same way that we interpreted the two-variable regression equation on page 669. If we hold the number of field-audit labor hours, \(X_{1}\), and the number of computer hours, \(X_{2}\), constant and change the rewards to informants, \(X_{3}\), then the value of \(\hat{Y}\) will increase \(\$ 405,000\) for each additional \$ 1,000 paid to informants. Similarly, holding \(X_{1}\) and \(X_{3}\) constant, we see that each additional 100 hours of computer time used will increase \(\hat{Y}\) by \(\$ 1,177,000\). Finally, if \(X_{2}\) and \(X_{3}\) are held constant, we estimate that an additional 100 hours spent in the field audits will uncover an additional \(\$ 597,000\) in unpaid taxes. Notice that we have rounded the values provided by the Minitab regression output in Figure 13-2.

Suppose that in November, the IRS intends to leave the field-audit labor hours and computer hours at their October levels \((4,300\) and 1,500\()\) but to increase the rewards paid to informants to \(\$ 75,000\). How much in unpaid taxes do they expect to discover in November? Substituting these values into the estimated regression equation, we get
\[
\begin{aligned}
\hat{Y} & =-45.796+0.597 X_{1}+1.177 X_{2}+0.405 X_{3} \\
& =-45.796+0.597(43)+1.177(15)+0.405(75) \\
& =-45.796+25.671+17.655+30.375 \\
& =27.905 \leftarrow \text { Estimated discoveries of } \$ 27,905,000
\end{aligned}
\]

\section*{Finding and interpreting the regression equation}

So the audit division expects to discover about \(\$ 28\) million in unpaid taxes in November.
\begin{tabular}{|lcccc|}
\hline Regression Analysis & \\
The regression equation & is \\
DISCOVER \(=\) & \(-45.8+0.597\) & AUDIT +1.18 & COMPUTER +0.405 & REWARDS \\
Predictor & Coef & Stdev & t-ratio & p \\
Constant & -45.796 & 4.878 & -9.39 & 0.000 \\
AUDIT & 0.59697 & 0.08112 & 7.36 & 0.000 \\
COMPUTER & 1.17684 & 0.08407 & 14.00 & 0.000 \\
REWARDS & 0.40511 & 0.04223 & 9.59 & 0.000 \\
S \(=0.2861\) & \(R-s q=98.3 \%\) & & \\
\hline
\end{tabular}

FIGURE 13-2 MINITAB OUTPUT FOR IRS REGRESSION
2. A measure of dispersion, the standard error of estimate for multiple regression. Now that we have determined the equation that relates our three variables, we need some measure of the dispersion around this multiple-regression plane. In simple regression, the estimation becomes more accurate as the degree of dispersion around the regression gets smaller. The same is true of the sample points around the multiple-regression plane. To measure this variation, we shall again use the measure called the standard error of estimate:

\section*{Standard Error of Estimate}
\[
\begin{equation*}
S_{e}=\sqrt{\frac{\Sigma(Y-\hat{Y})^{2}}{n-k-1}} \tag{13-6}
\end{equation*}
\]
where
- \(Y=\) sample values of the dependent variable
- \(\hat{Y}=\) corresponding estimated values from the regression equation
- \(n=\) number of data points in the sample
- \(k=\) number of independent variables (\(=3\) in our example)

The denominator of this equation indicates that in multiple regression with \(k\) independent variables, the standard error has \(n-k-1\) degrees of freedom. This occurs because the degrees of freedom are reduced from \(n\) by the \(k+1\) numerical constants, \(a, b_{1}, b_{2}, \ldots, b_{k}\) that have all been estimated from the same sample.

To compute \(s_{e}\), we look at the individual errors \((Y-\hat{Y})\) in the fitted regression plane, square them, compute their mean (dividing by \(n-k-1\) instead of \(n\)), and take the square root of the result. Because of the way it is computed, \(s_{e}\) is sometimes called the root-mean-square error (or root mse for short). From the Minitab output, which uses the symbol \(s\), rather than \(s_{e}\) to denote the standard error of estimate, we see that the root mse in our IRS problem is 0.286 , that is, \(\$ 286,000\).

As was the case in simple regression, we can use the standard error of estimate and the \(t\) distribution to form an

\section*{Confidence intervals for \(\hat{y}\)}
approximate confidence interval around our estimated value
\(\hat{Y}\). In the unpaid tax problem, for 4,300 field-audit labor hours, 1,500 computer hours, and \(\$ 75,000\) paid to informants, our \(\hat{Y}\) is \(\$ 27,905,000\) estimated unpaid taxes discovered, and our \(s_{e}\) is \(\$ 286,000\). If we want to construct a 95 percent confidence interval around this estimate of \(\$ 27,905,000\), we look in Appendix Table 2 under the 5 percent column until we locate the \(n-k-1=10-3-1=6\) degrees of freedom row. The appropriate \(t\) value for our interval estimate is 2.447. Therefore, we can calculate the limits of our confidence interval like this:
\[
\begin{aligned}
\hat{Y}+t\left(s_{e}\right) & =27,905,000+(2.447)(286,000) \\
& =27,905,000+699,800 \\
& =28,604,800 \leftarrow \text { Upper limit } \\
\hat{Y}-t\left(s_{e}\right) & =27,905,000-(2.447)(286,000) \\
& =27,905,000-699,800 \\
& =27,205,200 \leftarrow \text { Lower limit }
\end{aligned}
\]

With a confidence level as high as 95 percent, the auditing division can feel certain that the actual discoveries will lie in this large interval from \(\$ 27,205,200\) to \(\$ 28,604,800\). If the

Interpreting the confidence interval IRS wishes to use a lower confidence level, such as 90 percent, it can narrow the range of values in estimating the unpaid taxes discovered. As was true with simple regression, we can use the standard normal distribution, Appendix Table 1, to approximate the \(t\) distribution whenever our degrees of freedom (\(n\) minus the number of estimated regression coefficients) are greater than 30 .

Did adding the third independent variable (rewards to informants) make our regression better? Because \(s_{e}\) measures the dispersion of the data points around the regression plane,

\section*{Value of additional variables} smaller values of \(s_{e}\) should indicate better regressions. For the two-variable regression done earlier in this chapter, \(s_{e}\) turns out to be 1.076. Because the addition of the third variable reduced \(s_{e}\) to 0.286 , we see that adding the third variable did improve the fit of the regression in this example. It is not true in general, however, that adding variables always reduces \(\boldsymbol{s}_{\boldsymbol{e}}\).
3. The coefficient of multiple determination. In our discussion of simple correlation analysis, we measured the strength of the relation between two variables using the sample coefficient of determination, \(r^{2}\). This coefficient of determination is the fraction of the total variation of the dependent variable \(Y\) that is explained by the estimating equation.

Similarly, in multiple correlation, we shall measure the Using the coefficient of multiple strength of the relationship among three variables using the
determination coefficient of multiple determination, \(R^{2}\), or its square root, \(R\) (the coefficient of multiple correlation). This coefficient of multiple determination is also the proportion of the total variation of \(\boldsymbol{Y}\) that is "explained" by the regression plane.

Notice that the output gives the value of \(R^{2}\) as 98.3 percent. This tells us that 98.3 percent of the total variation in unpaid taxes discovered is explained by the three independent variables. For the two-variable regression done earlier, \(R^{2}\) is only 0.729 , so 72.9 percent of the variation is explained by field-audit labor hours and computer hours. Adding in rewards to informants explains another 25.4 percent of the variation.

We still have not explained the numbers in the columns headed Stdev, \(t\)-ratio, and p in Figure 13-2. These numbers will be used to make inferences about the population regression plane, the topic of Section 13.4.

\section*{HINTS \& ASSUMPTIONS}

No one hand-computes regressions anymore; there are too many interesting things to do with your time. We have explained the technique using hand-computed solutions so you won't have to think of your computer as a "black box" that does lots of useful things you can't explain. Hint: The real values of using your computer to do multiple regressions are that you can handle many independent variables, thus working toward a better estimating equation; you can measure whether adding another independent variable really improved your results; and you can quickly see the behavior of \(R^{2}\), which tells you the proportion of the total variation in the dependent variable that is explained by the independent variables. The computer does all the tedious arithmetic quickly, accurately, and without complaints, freeing up your time for the more important work of understanding the results and using them to make better decisions.

\section*{Self-Check Exercise}

SC13-3 Pam Schneider owns and operates an accounting firm in Ithaca, New York. Pam feels that it would be useful to be able to predict in advance the number of rush income-tax returns during the busy March 1 to April 15 period so that she can better plan her personnel needs during this time. She has hypothesized that several factors may be useful in her prediction. Data for these factors and number of rush returns for past years are as follows:
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{1}}\) \\
Ecomic \\
Index
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{2}}\) \\
Population within \\
1 Mile of Office
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{3}}\) \\
Average Income \\
in Ithaca
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Number of Rush Returns, \\
March 1 to April 15
\end{tabular} \\
\hline 99 & 10,188 & 21,465 & 2,306 \\
106 & 8,566 & 22,228 & 1,266 \\
100 & 10,557 & 27,665 & 1,422 \\
129 & 10,219 & 25,200 & 1,721 \\
179 & 9,662 & 26,300 & 2,544 \\
\hline
\end{tabular}
(a) Use the following Minitab output to determine the best-fitting regression equation for these data:
\begin{tabular}{lrrrrr}
The regression equation is & & \\
Y = \(-1275+17.1\) & X1 & +0.541 & X2 & -0.174 & X3 \\
Predictor & Coef & Stdev & t-ratio & p \\
Constant & -1275 & 2699 & -0.47 & 0.719 \\
X1 & 17.059 & 6.908 & 2.47 & 0.245 \\
X2 & 0.5406 & 0.3144 & 1.72 & 0.335 \\
X3 & -0.1743 & 0.1005 & -1.73 & 0.333 \\
S \(=396.1\) & R - sq & \(=\) & \(87.2 \%\) &
\end{tabular}
(b) What percentage of the total variation in the number of rush returns is explained by this equation?
(c) For this year, the economic index is 169 , the population within 1 mile of the office is 10,212 , and the average income in Ithaca is \(\$ 26,925\). How many rush returns should Pam expect to process between March 1 and April 15?

\section*{Basic Concepts}

13-14 Given the following set of data, use whatever computer package is available to find the bestfitting regression equation and answer the following:
(a) What is the regression equation?
(b) What is the standard error of estimate?
(c) What is \(R^{2}\) for this regression?
(d) What is the predicted value for \(Y\) when \(X_{1}=5.8, X_{2}=4.2\), and \(X_{3}=5.1\) ?
\begin{tabular}{cccc}
\hline \(\boldsymbol{Y}\) & \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) & \(\boldsymbol{X}_{\mathbf{3}}\) \\
\hline 64.7 & 3.5 & 5.3 & 8.5 \\
80.9 & 7.4 & 1.6 & 2.6 \\
24.6 & 2.5 & 6.3 & 4.5 \\
43.9 & 3.7 & 9.4 & 8.8 \\
77.7 & 5.5 & 1.4 & 3.6 \\
20.6 & 8.3 & 9.2 & 2.5 \\
66.9 & 6.7 & 2.5 & 2.7 \\
34.3 & 1.2 & 2.2 & 1.3 \\
\hline
\end{tabular}

13-15 Given the following set of data, use whatever computer package is available to find the bestfitting regression equation and answer the following:
(a) What is the regression equation?
(b) What is the standard error of estimate?
(c) What is \(R^{2}\) for this regression?
(d) Give an approximate 95 percent confidence interval for the value of \(Y\) when the values of \(X_{1}, X_{2}, X_{3}\), and \(X_{4}\) are 52.4, 41.6, 35.8, and 3, respectively.
\begin{tabular}{cccrc}
\hline \(\boldsymbol{X}_{\mathbf{1}}\) & \(\boldsymbol{X}_{\mathbf{2}}\) & \(\boldsymbol{X}_{\mathbf{3}}\) & \(\boldsymbol{X}_{4}\) & \(\boldsymbol{Y}\) \\
\hline 21.4 & 62.9 & 21.9 & -2 & 22.8 \\
51.7 & 40.7 & 42.9 & 5 & 93.7 \\
41.8 & 81.8 & 69.8 & 2 & 64.9 \\
11.8 & 41.0 & 90.9 & -4 & 19.2 \\
71.6 & 22.6 & 12.9 & 8 & 55.8 \\
91.9 & 61.5 & 30.9 & 1 & 23.1 \\
\hline
\end{tabular}

\section*{Applications}

13-16 Police stations across the country are interested in predicting the number of arrests they can expect to process each month so as to better schedule office employees. Historically, the average number of arrests \((Y)\) each month is influenced by the number of officers on the police force \(\left(X_{1}\right)\), the population of the city in thousands \(\left(X_{2}\right)\), and the percentage of unemployed people in the city \(\left(X_{3}\right)\). Data for these factors in 15 cities are presented below.
(a) Using whatever computer package is available, determine the best-fitting regression equation for these data.
(b) What percentage of the total variation in the number of arrests \((Y)\) is explained by this equation?
(c) The ChapelBoro police department is trying to predict the number of monthly arrests. ChapelBoro has a population of 75,000 , a police force of 82 , and an unemployment percentage of 10.5 percent. How many arrests do you predict for each month?
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Monthly Average \\
Number of Arrests \((\boldsymbol{Y})\)
\end{tabular} & \begin{tabular}{c}
Number of Officers \\
on the Force \(\left(\boldsymbol{X}_{\mathbf{1}}\right)\)
\end{tabular} & \begin{tabular}{c}
Size of the City \(\left(\boldsymbol{X}_{\mathbf{2}}\right)\) \\
in Thousands
\end{tabular} & \begin{tabular}{c}
Percentage \\
Unemployed \(\left(\boldsymbol{X}_{\mathbf{3}}\right)\)
\end{tabular} \\
\hline 390.6 & 68 & 81.6 & 4.3 \\
504.3 & 94 & 75.1 & 3.9 \\
628.4 & 125 & 97.3 & 5.6 \\
745.6 & 175 & 123.5 & 8.7 \\
585.2 & 113 & 118.4 & 11.4 \\
450.3 & 82 & 65.4 & 9.6 \\
327.8 & 46 & 61.6 & 12.4 \\
260.5 & 32 & 54.3 & 18.3 \\
477.5 & 89 & 97.4 & 4.6 \\
389.8 & 67 & 82.4 & 6.7 \\
312.4 & 47 & 56.4 & 8.4 \\
367.5 & 59 & 71.3 & 7.6 \\
374.4 & 61 & 67.4 & 9.8 \\
494.6 & 87 & 96.3 & 11.3 \\
487.5 & 92 & 86.4 & 4.7 \\
\hline
\end{tabular}

13-17 We are trying to predict the annual demand for widgets (DEMAND) using the following independent variables.
\[
\begin{aligned}
\text { PRICE } & =\text { price of widgets }(\text { in } \$) \\
\text { INCOME } & =\text { consumer income (in } \$) \\
\text { SUB } & =\text { price of a substitute commodity (in } \$ \text {) }
\end{aligned}
\]
(Note: A substitute commodity is one that can be substituted for another commodity. For example, margarine is a substitute commodity for butter.)
Data have been collected from 1982 to 1996:
\begin{tabular}{ccccc}
\hline Year & Demand & Price (\$) & Income (\$) & Sub (\$) \\
\hline 1982 & 40 & 9 & 400 & 10 \\
1983 & 45 & 8 & 500 & 14 \\
1984 & 50 & 9 & 600 & 12 \\
1985 & 55 & 8 & 700 & 13 \\
1986 & 60 & 7 & 800 & 11 \\
1987 & 70 & 6 & 900 & 15 \\
1988 & 65 & 6 & 1,000 & 16 \\
1989 & 65 & 8 & 1,100 & 17 \\
1990 & 75 & 5 & 1,200 & 22 \\
1991 & 75 & 5 & 1,300 & 19 \\
1992 & 80 & 5 & 1,400 & 20 \\
1993 & 100 & 3 & 1,500 & 23 \\
1994 & 90 & 4 & 1,600 & 18 \\
1995 & 95 & 3 & 1,700 & 24 \\
1996 & 85 & 4 & 1,800 & 21 \\
\hline
\end{tabular}
(a) Using whatever computer package is available, determine the best-fitting regression equation for these data.
(b) Are the signs (+ or -) of the regression coefficients of the independent variables as one would expect? Explain briefly. (Note: This is not a statistical question; you just need to think about what the regression coefficients mean.)
(c) State and interpret the coefficient of multiple determination for this problem.
(d) State and interpret the standard error of estimate for this problem.
(e) Using the equation, what would you predict for DEMAND if the price of widgets was \(\$ 6\), consumer income was \(\$ 1,200\), and the price of the substitute commodity was \(\$ 17\) ?
13-18 Bill Buxton, a statistics professor in a leading business school, has a keen interest in factors affecting students' performance on exams. The midterm exam for the past semester had a wide distribution of grades, but Bill feels certain that several factors explain the distribution: He allowed his students to study from as many different books as they liked, their IQs vary, they are of different ages, and they study varying amounts of time for exams. To develop a predicting formula for exam grades, Bill asked each student to answer, at the end of the exam, questions regarding study time and number of books used. Bill's teaching records already contained the IQs and ages for the students, so he compiled the data for the class and ran a multiple regression with Minitab. The output from Bill's computer run was as follows:
\begin{tabular}{lrrrr}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & -49.948 & 41.55 & -1.20 & 0.268 \\
HOURS & 1.06931 & 0.98163 & 1.09 & 0.312 \\
IQ & 1.36460 & 0.37627 & 3.63 & 0.008 \\
BOOKS & 2.03982 & 1.50799 & 1.35 & 0.218 \\
AGE & -1.79890 & 0.67332 & -2.67 & 0.319 \\
S \(=11.657\) & R - Sq & \(=76.7 \%\) & &
\end{tabular}
(a) What is the best-fitting regression equation for these data?
(b) What percentage of the variation in grades is explained by this equation?
(c) What grade would you expect for a 21-year-old student with an IQ of 113, who studied 5 hours and used three different books?
13-19 Fourteen Twenty-Two Food Stores, Inc., is planning to expand its convenience store chain. To aid in selecting locations for the new stores, it has collected weekly sales data from each of its 23 stores. To help explain the variability in weekly sales, it has also collected information describing four variables that it believes are related to sales. The data that were collected follow. The variables are defined as follows:

SALES : average weekly sales for each store in thousands of dollars
AUTOS : average weekly auto traffic volume in thousands of cars
ENTRY : ease of entry/exit measured on a scale of 1 to 100
ANNINC : average annual household income for the area in thousands of dollars
DISTANCE : distance in miles from the store to the nearest supermarket

The data were analyzed using Minitab and the output follows:
\begin{tabular}{lrrrr}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & 175.37 & 92.62 & 1.89 & 0.075 \\
AUTOS & -0.028 & 0.315 & -0.09 & 0.929 \\
ENTRY & 3.775 & 1.272 & 2.97 & 0.008 \\
ANNINC & 1.990 & 4.510 & 0.44 & 0.664 \\
DISTANCE & 212.41 & 28.090 & 7.56 & 0.000 \\
S \(=85.587\) & \(R-s q=95.8 \%\) & &
\end{tabular}
(a) What is the best-fitting regression equation, as given by Minitab?
(b) What is the standard error of estimate for this equation?
(c) What fraction of the variation in sales is explained by this regression?
(d) What sales would you predict for a store located in a neighborhood that had an average annual household income of \(\$ 20,000\), was 2 miles from the nearest supermarket, was on a road with weekly traffic volume of 100,000 autos, and had an ease of entry of 50 ?
13-20 Rick Blackburn is thinking about selling his house. In order to decide what price to ask, he has collected data for 12 recent closings. He has recorded sales price (in \(\$ 1,000\) s), the number of square feet in the house (in 100s of sq ft.), the number of stories, the number of bathrooms, and the age of the house (in years).
\begin{tabular}{ccccc}
\hline Sales Price & Square Feet & Stories & Bathrooms & Age \\
\hline 49.65 & 8.9 & 1 & 1.0 & 2 \\
67.95 & 9.5 & 1 & 1.0 & 6 \\
81.15 & 12.6 & 2 & 1.5 & 11 \\
81.60 & 12.9 & 2 & 1.5 & 8 \\
91.50 & 19.0 & 2 & 1.0 & 22 \\
95.25 & 17.6 & 1 & 1.0 & 17 \\
100.35 & 20.0 & 2 & 1.5 & 12 \\
104.25 & 20.6 & 2 & 1.5 & 11 \\
112.65 & 20.5 & 1 & 2.0 & 9 \\
149.70 & 25.1 & 2 & 2.0 & 8 \\
160.65 & 22.7 & 2 & 2.0 & 18 \\
232.50 & 40.8 & 3 & 4.0 & 12 \\
\hline
\end{tabular}
(a) Using whatever computer package is available, determine the best-fitting regression equation for these data.
(b) What is \(R^{2}\) for this equation? What does this number measure?
(c) If Rick's house has 1,800 square feet (\(=18.0\) hundreds of square feet), 1 story, 1.5 bathrooms, and is 6 years old, what sale price can Rick expect?
13-21 Allegheny Steel Corporation has been looking into the factors that influence how many millions of tons of steel it is able to sell each year. Management suspects that the following are major factors: the annual national inflation rate, the average price per ton by which imported
steel undercuts Allegheny's prices (in dollars), and the number of cars (in millions) that U.S. automakers are planning to produce in that year. Data for 7 years have been collected:
\begin{tabular}{ccccc}
\hline & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Millions of \\
Tons Sold
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Inflation \\
Rate
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{2}\) \\
Imported \\
Undercut
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{3}\) \\
Number of \\
Cars
\end{tabular} \\
\hline 1993 & 4.2 & 3.1 & 3.10 & 6.2 \\
1992 & 3.1 & 3.9 & 5.00 & 5.1 \\
1991 & 4.0 & 7.5 & 2.20 & 5.7 \\
1990 & 4.7 & 10.7 & 4.50 & 7.1 \\
1989 & 4.3 & 15.5 & 4.35 & 6.5 \\
1988 & 3.7 & 13.0 & 2.60 & 6.1 \\
1987 & 3.5 & 11.0 & 3.05 & 5.9 \\
\hline
\end{tabular}
(a) Using whatever computer package is available, determine the best-fitting regression equation for these data.
(b) What percentage of the total variation in the number of millions of tons of steel sold by Allegheny each year is explained by this equation?
(c) How many tons of steel should Allegheny expect to sell in a year in which the inflation rate is 7.1, American automakers are planning to produce 6.0 million cars, and the average imported price undercut per ton is \(\$ 3.50\) ?

\section*{Worked-Out Answer to Self-Check Exercise}

SC 13-3 From the computer output we get the following results:
(a) \(\hat{Y}=-1275+17.059 X_{1}+0.5406 X_{2}-0.1743 X_{3}\).
(b) \(R^{2}=87.2 \% ; 87.2 \%\) of the total variation in \(Y\) is explained by the model.
(c) \(\hat{Y}=-1275+17.059(169)+0.5406(10,212)-0.1743(26,925)=2,436\) rush returns.

\subsection*{13.4 MAKING INFERENCES ABOUT POPULATION PARAMETERS}

In Chapter 12, we noted that the sample regression line, \(\hat{Y}=a+b X\) (Equation 12-3), estimates the population regression line, \(Y=A+B X\) (Equation 12-13). The reason we could only estimate the population regression line rather than find it exactly was that the data points didn't fall exactly on the population regression line. Because of random disturbances, the data points satisfied \(Y=A+B X+e\) (Equation 12-13a) rather than \(Y=A+B X\).

Exactly the same sort of thing happens in multiple regression. Population regression plane Our estimated regression plane
\[
\begin{equation*}
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k} \tag{13-5}
\end{equation*}
\]
is an estimate of a true but unknown population regression plane of the form
\begin{tabular}{|ll|}
\hline Population Regression Equation & \\
\(Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k}\) & {\([13-7]\)} \\
\hline
\end{tabular}

Once again, the individual data points usually won't lie exactly on the population regression plane. Consider our IRS problem to see why this is so. Not all payments to informants will be equally effective. Some of the computer hours may be used for collecting and organizing data; others may be used for analyzing those data to seek errors and fraud. The success of the computer in discovering unpaid taxes may depend on how much time is devoted to each of these activities. For these and other reasons, some of the data points will points be above the regression plane and some will be below it. Instead of satisfying

Random disturbances moves
point off the regression plane
\[
\begin{equation*}
Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k} \tag{13-7}
\end{equation*}
\]
the individual data points will satisfy
\[
\begin{align*}
& \text { Population Regression Plane Plus Random Disturbance } \\
& \qquad Y=A+B_{1} X_{1}+B_{2} X_{2}+\ldots+B_{k} X_{k}+e \tag{13-7a}
\end{align*}
\]

The quantity \(e\) in Equation 13-7a is a random disturbance, which equals zero on the average. The standard deviation of the individual disturbances is \(\sigma_{e}\), and the standard error of estimate, \(s_{e}\), which we looked at in the last section, is an estimate of \(\sigma_{e}\).

Because our sample regression plane, \(\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+\cdots+b_{k} X_{k}\) (Equation 13-5), estimates the unknown population regression plane, \(Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k}\) (Equation 13-7), we should be able to use it to make inferences about the population regression plane. In this section, we shall make inferences about the slopes \(\left(B_{1}, B_{2}, \ldots, B_{k}\right)\) of the "true" regression equation (the one for the entire population) that are based on the slopes \(\left(b_{1} b_{2}, \ldots, b_{k}\right)\) of the regression equation estimated from the sample of data points.

\section*{Inferences about an Individual Slope \(B_{i}\)}

The regression plane is derived from a sample and not from the entire population. As a result, we cannot expect the true regression equation, \(Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k}\) (the one for the entire population), to be exactly the same as the equation estimated from the sample observations, \(\hat{Y}=a+b_{1} x_{1}+b_{2} X_{2}+\cdots+\)

Difference between true regression equation and one estimated from sample observations \(b_{k} X_{k}\). Even so, we can use the value of \(b_{i}\) one of the slopes we calculate from a sample, to test hypotheses about the value of \(B_{i}\), one of the slopes of the regression plane for the entire population.

The procedure for testing a hypothesis about \(B_{i}\) is similar to Testing a hypothesis about \(B_{i}\) procedures discussed in Chapters 8 and 9 on hypothesis testing. To understand this process, return to the problem that related unpaid taxes discovered to field-audit labor hours, computer hours, and rewards to informants. On page 676 we pointed out that \(b_{1}=0.597\). The first step is to find some value for \(B_{1}\) to compare with \(b_{1}=0.597\).

Suppose that over an extended past period of time, the slope of the relationship between \(Y\) and \(X_{1}\) was 0.400 . To test if this were still the case, we could define the hypotheses as
\[
\begin{aligned}
& \mathrm{H}_{0}: B_{1}=0.400 \leftarrow \text { Null hypothesis } \\
& \mathrm{H}_{1}: B_{1} \neq 0.400 \leftarrow \text { Alternative hypothesis }
\end{aligned}
\]

In effect, then, we are testing to learn whether current data indicate that \(B_{1}\) has changed from its historical value of 0.400 .

To find the test statistic for \(B_{1}\), it is necessary first to find the standard error of the regression coefficient. Here, the regression coefficient we are working with is \(b_{1}\), so the standard error of this coefficient is denoted \(s_{b_{1}}\).

It is too difficult to compute \(s_{b_{1}}\) by hand, but, fortunately, Minitab computes the standard errors of all the regression coefficients for us. For convenience, Figure 13-2 is repeated. The standard errors of the coefficients are given in the column of the output headed "Stdev."

From the output, we see that \(s_{b_{1}}\) is 0.0811 . (Similarly, if we want to test a hypothesis about \(B_{2}\), we see that the appropriate standard error to use is \(s_{b_{1}}=0.0841\).) Once we have found \(s_{b_{1}}\) on the output, we can use Equation 13-8 to standardize the slope of our fitted regression equation:

\section*{Standardized Regression Coefficient}
\[
\begin{equation*}
t=\frac{b_{i}-B_{i_{0}}}{S_{b_{i}}} \tag{13-8}
\end{equation*}
\]
where
- \(b_{i}=\) slope of fitted regression
- \(B_{i_{0}}=\) actual slope hypothesized for the population
- \(s_{b_{i}}=\) standard error of the regression coefficient

Why did we use \(t\) to denote the standardized statistic? Recall that in simple regression, we used \(a\) and \(b\) in Equation 12-7 to calculate \(s_{e}\), and that \(s_{e}\) estimated \(\sigma_{e}\), the standard deviation of the disturbances in the data (Equation 12-13a). Then we used \(s_{e}\) in Equation 12-14 to find \(s_{b}\), the standard error of the regression slope coefficient. We started out with \(n\) data points and used them to estimate the two coefficients, \(a\) and \(b\). Then we based our tests on the \(t\) distribution with \(n \mathbf{- 2}\) degrees of freedom.

Similarly, in multiple regression, we also start out with \(n\) data points but we use them to estimate \(\boldsymbol{k}+\mathbf{1}\) coefficients: the intercept, \(a\), and \(k\) slopes, \(b_{1}, b_{2}, \ldots, b_{k}\). These coefficients are then used in Equation 13-6 to calculate \(s_{e}\), which again estimates \(\sigma_{e}\), the standard deviation of the disturbances in the data (Equation 13-7a). Then \(s_{e}\) is used (in an equation that is beyond the scope of this book) to find \(s_{b_{1}}\).
\begin{tabular}{|lcccc|}
\hline Regression Analysis & \\
The regression equation & is \\
DISCOVER & \(=-45.8+0.597\) & AUDIT +1.18 & COMPUTER +0.405 & REWARDS \\
Predictor & Coef & Stdev & t-ratio & \(p\) \\
Constant & -45.796 & 4.878 & -9.39 & 0.000 \\
AUDIT & 0.59697 & 0.08112 & 7.36 & 0.000 \\
COMPUTER & 1.17684 & 0.08407 & 14.00 & 0.000 \\
REWARDS & 0.40511 & 0.04223 & 9.59 & 0.000 \\
S \(=0.2861\) & \(R-s q\) & \(98.3 \%\) & & \\
\hline
\end{tabular}

Because of this, we base our hypothesis tests on the \(t\) distribution with \(n-k-1(=n-(\boldsymbol{k}+\mathbf{1}))\) degrees of freedom.

In our example, the standardized value of the regression coefficient is
\[
\begin{align*}
t & =\frac{b_{1}-B_{1_{0}}}{S_{b_{1}}} \tag{13-8}\\
& =\frac{0.597-0.400}{0.081} \\
& =2.432 \leftarrow \text { Standardized regression coefficient }
\end{align*}
\]

Suppose we are interested in testing our hypothesis at the 10 Conducting the hypothesis test percent level of significance. Because we have 10 observations in our sample data, and three independent variables, we know that we have \(n-k-1\) or \(10-3-1=6\) degrees of freedom. We look in Appendix Table 2 under the 10 percent column and come down until we find the 6 degrees of freedom row. There, we see that the appropriate \(t\) value is 1.943 . Because we are concerned whether \(b_{1}\) (the slope of the sample regression plane) is significantly different from \(B_{1}\) (the hypothesized slope of the population regression plane), this is a two-tailed test, and the critical values are \(\pm 1.943\). The standardized regression coefficient is 2.432 , which is outside the acceptance region for our hypothesis test. Therefore, we reject the null hypothesis that \(B_{1}\) still equals 0.400 . In other words, there is enough difference between \(b_{1}\) and 0.400 for us to conclude that \(B_{1}\) has changed from its historical value. Because of this, we feel that each additional 100 hours of field-audit labor no longer increases unpaid taxes discovered by \(\$ 400,000\), as it did in the past.

In addition to hypothesis testing, we can also construct a con- Confidence interval for \(B_{i}\) fidence interval for any one of the values of \(B_{i}\). In the same way
that \(b_{i}\) is a point estimate of \(B_{i}\), such confidence intervals are interval estimates of \(B_{i}\). To illustrate the process of constructing a confidence interval, let's find a 95 percent confidence interval for \(B_{3}\) in our IRS problem. The relevant data are
\[
\left.\begin{array}{c}
b_{3}=0.405 \\
S_{b_{3}}=0.0422
\end{array}\right\} \text { from Figure 13-2 }
\]

With this information, we can calculate confidence intervals like this:
\[
\begin{aligned}
b_{3}+t\left(s_{b_{3}}\right) & =0.405+2.447(0.0422) \\
& =0.508 \leftarrow \text { Upper limit } \\
b_{3}-t\left(s_{b_{3}}\right) & =0.405-2.447(0.0422) \\
& =0.302 \leftarrow \text { Lower limit }
\end{aligned}
\]

We see that we can be 95 percent confident that each additional \(\$ 1,000\) paid to informants increases the unpaid taxes discovered by some amount between \(\$ 302,000\) and \(\$ 508,000\).

We will often be interested in questions of the form: Does \(Y\) Is an explanatory variable really depend on \(X_{i}\) ? For example, we could ask whether unpaid
is often phrased as, "Is \(X_{i}\) a significant explanatory variable for \(Y\) ?" A bit of thought should convince you that \(Y\) depends on \(X_{i}\) (that is, \(Y\) varies when \(X_{i}\) varies) if \(B_{i} \neq 0\), and it doesn't depend on \(X_{i}\) if \(B_{i}=0\).

We see that our question leads to hypotheses of the form:
\[
\begin{aligned}
& \mathrm{H}_{0}: B_{i}=0 \longleftarrow \text { Null hypothesis: } X_{i} \text { is not a significant explanatory variable } \\
& \mathrm{H}_{1}: B_{i} \neq 0 \longleftarrow \text { Alternative hypothesis: } X_{i} \text { is a significant explanatory variable }
\end{aligned}
\]

We can test these hypotheses using Equation 13-8 just as we did when we tested our hypotheses about whether \(B_{1}\) still equaled 0.400 . However, there is an easier way to do this, using the column on the output in Figure 13-2 headed "t-ratio." Look at Equation 13-8 again:
\[
\begin{equation*}
t=\frac{b_{i}-B_{i_{0}}}{S_{b_{i}}} \tag{13-8}
\end{equation*}
\]

Because our hypothesized value for \(B_{i}\) is 0 , the standardized value of the regression coefficient. which we shall denote by \(t_{o}\), becomes
\[
t_{0}=\frac{b_{i}}{S_{b_{i}}}
\]

The value of \(t_{0}\) is called the "observed" or "computed" \(t\) value. This is the number that appears in the column headed " \(t\)-ratio" in

Using computed \(t\) values from the Minitab output Figure 13-2. Let's denote by \(t_{c}\) the "critical" \(t\) value that we look up in Appendix Table 2. Then, because the test of whether \(X_{i}\) is a significant explanatory variable is a two-tailed test, we need only check whether \(-t_{c} \leq t_{o} \leq t_{c}\)

Test of Whether a Variable Is Significant
\[
\begin{equation*}
-t_{c} \leq t_{o} \leq t_{c} \tag{13-9}
\end{equation*}
\]
where
- \(t_{c}=\) appropriate \(t\) value (with \(n-k-1\) degrees of freedom) for the significance level of the test
- \(t_{o}=b_{i} / s_{b_{i}}=\) observed (or computed) \(t\) value obtained from computer output

If \(t_{o}\) falls between \(-t_{c}\) and \(t_{c}\), we accept \(\mathrm{H}_{0}\) and conclude \(X_{i}\) is not a significant explanatory variable. Otherwise, we reject \(\mathrm{H}_{0}\) and conclude that \(X_{i}\) is a significant explanatory variable.

Let's test, at the 0.01 significance level, whether computer hours is a significant explanatory variable for unpaid taxes discovered. From Appendix Table 2, with \(n-k-1=10-3-1=\) 6 degrees of freedom and \(\alpha=0.01\), we see that \(t_{c}=3.707\). From

Testing the significance of computer hours in the IRS problem Figure 13-2, we see that \(t_{0}=14.00\). Because \(t_{0}>t_{c}\), we conclude that computer hours is a significant explanatory variable. In fact, looking at the computed \(t\) values for the other two independent variables (field-audit labor hours \(t_{0}=7.36\) and rewards to informants, \(t_{0}=9.59\)), we see that each of them is also a significant explanatory variable.

We can also use the column headed " \(p\) " to test whether \(X_{i}\) is a significant explanatory variable. In fact, using that information, we don't even need to use Appendix Table 2. The entries in this column are prob values for the two-tailed test of the hypotheses:

FIGURE 13.3 USING " \(P\) " TO SEE WHETHER \(X_{i}\) • IS A SIGNIFICANT EXPLANATORY VARIABLE
\[
\begin{aligned}
& \mathrm{H}_{0}: B_{i}=0 \\
& \mathrm{H}_{\mathrm{r}}: B_{i} \neq 0
\end{aligned}
\]

Recall from the discussion in Chapter 9 that these prob values are the probabilities that each \(b_{i}\) would be as far (or farther) away from zero than the observed value obtained from our regression, if \(\mathrm{H}_{0}\) is true. As Figure 13-3 illustrates, we need only compare these prob values with \(\alpha\), the significance level of the test, to determine whether \(X_{i}\) is a significant explanatory variable for \(Y\).

Testing the significance of an explanatory variable is always a two-tailed test. The independent variable \(X_{i}\) is a significant explanatory variable if \(b_{i}\) is significantly different from zero, that is. if \(t_{0}\) is a large positive or a large negative number.

In the IRS example, let's repeat our tests at \(\alpha=0.01\). For each of the three independent variables, \(p\) is less than 0.01 , so we again conclude that each one is a significant explanatory variable.

\section*{Inferences about the Regression as a Whole (Using an F Test)}

Suppose you put a piece of graph paper over a dartboard and randomly tossed a bunch of darts at it. After you took out the darts, you would have something that looked very much like a scatter diagram. Suppose you then fit a simple regression line to this set of "observed data points" and calculated \(r^{2}\). Because the darts were randomly tossed, you would expect to get a low value of \(r^{2}\) because in this case, \(X\) really doesn't explain \(Y\). However, if you did this many times, occasionally you would observe a high value of \(r^{2}\), just by pure chance.

Given any simple (or multiple) regression, it's natural to ask whether the value of \(r^{2}\) (or \(R^{2}\)) really indicates that the independent variables explain \(Y\), or might have happened

Significance of the regression as a whole just by chance. This question is often phrased, "Is the regression as a whole significant?" In the last section, we looked at how to tell whether an individual \(X_{i}\) was a

FIGURE 13-4 TOTAL DEVIATION, EXPLAINED DEVIATION, AND UNEXPLAINED DEVIATION FOR ONE OBSERVED VALUE OF Y
significant explanatory variable; now we see how to tell whether all the \(X_{i}^{\prime}\) 's taken together significantly explain the variability observed in \(Y\). Our hypotheses are
\[
\begin{aligned}
& \mathrm{H}_{0}: B_{1}=B_{2}=\cdots=B_{k}=0 \leftarrow \text { Null hypothesis: } Y \text { doesn't depend on the } X_{i}^{\prime} \text { 's. } \\
& \mathrm{H}_{1}: \text { at least one } B_{i} \neq 0 \quad \leftarrow \text { Alternative hypothesis: } Y \text { depends on at least one of the } X_{i}^{\prime} \text { s. }
\end{aligned}
\]

When we discussed \(r^{2}\) in Chapter 12, we looked at the total variation in \(Y, \Sigma(Y-\bar{Y})^{2}\), the part of that variation that is explained by the regression \(\Sigma(\hat{Y}-\bar{Y})^{2}\), and the unexplained part of the variation, \(\Sigma(Y-\hat{Y})^{2}\). Figure 13-4 is a duplicate of Figure 12-15. It reviews the relationship between total deviation, explained deviation, and unexplained deviation for a single data point in a simple regression. Although we can not draw a similar picture for a multiple regression, we are doing the same thing conceptually.

In discussing the variation in \(Y\), then, we look at three different terms, each of which is a sum of squares. We denote these by

Analyzing the variation in the

\section*{Y values}

Sums of squares and their degrees of freedom

\section*{Three Different Sums of Squares}
\[
\begin{array}{ll}
\mathrm{SST}=\text { total sum of squares (i.e., the explained part) } & =\Sigma(Y-\bar{Y})^{2} \\
\mathrm{SSR}=\text { regression sum of squares (i.e., the explained part) } & =\Sigma(\hat{Y}-\bar{Y})^{2} \tag{13-10}\\
\mathrm{SSE}=\text { error sum of squares (i.e., the unexplained part) } & =\Sigma(Y-\hat{Y})^{2} \\
\hline
\end{array}
\]

These are related by the equation

\section*{Decomposing the Total Variation in \(\boldsymbol{Y}\)}
which says that the total variation in \(Y\) can be broken down into two parts, the explained part and the unexplained part.

Each of these sums of squares has an associated number of degrees of freedom. SST has \(n-1\) degrees of freedom (\(n\) observations, less 1 degree of freedom because the sample mean is
\(F\) test on the regression as a whole fixed). SSR has \(k\) degrees of freedom because there are \(k\) independent variables being used to explain \(Y\). Finally, SSE has \(n-k-1\) degrees of freedom because we used our \(n\) observations to estimate \(k+\) 1 constants, \(a, b_{1}, b_{2}, \ldots, b_{k}\). If the null hypothesis is true, the ratio below has an \(F\) distribution with \(k\) numerator degrees of freedom and \(n-k-1\) denominator degrees of freedom.
\begin{tabular}{c}
\(\boldsymbol{F}\) Ratio \\
\(F=\frac{\mathrm{SSR} / k}{\mathrm{SSE} /(n-k-1)}\) \\
{\([13-12]\)} \\
\hline
\end{tabular}

If the null hypothesis is false, then the \(F\) ratio tends to be larger than it is when the null hypothesis is true. So if the \(F\) ratio is too high (as determined by the significance level of the test and the appropriate value from Appendix Table 6), we reject \(\mathrm{H}_{0}\) and conclude that the regression as a whole is significant.

Figure 13-5 gives Minitab output for the IRS problem. This Analysis of variance for the part of the output includes the computed \(F\) ratio for the regression, and is sometimes called the analysis of variance (ANOVA)

\section*{regression} for the regression. You are probably wondering whether this has anything to do with the analysis of variance we discussed in Chapter 11. Yes, it does. Although we did not do so, it is possible to show that the analysis of variance in Chapter 11 also looks at the total variation of all of the observations about the grand mean and breaks it up into two parts: one part explained by the differences among the several groups (corresponding to what we called the between-column variance) and the other part unexplained by those differences (corresponding to what we called the withincolumn variance). This is precisely analogous to what we just did in Equation 13-11.

For the IRS problem, we see that \(\mathrm{SSR}=29.109\) (with \(k=3\) degrees of freedom), \(\mathrm{SSE}=0.491\) (with \(n-k-1=10-3-1=6\) degrees of freedom), and that
\[
F=\frac{29.109 / 3}{0.491 / 6}=\frac{9.703}{0.082}=118.33
\]

\section*{Testing the significance of the IRS regression}

The entries in the "MS" column are just the sums of squares divided by their degrees of freedom. For 3 numerator degrees of freedom and 6 denominator degrees of freedom, Appendix Table 6 tells us that
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Analysis of Variance} \\
\hline SOURCE & DF & SS & MS & F & p \\
\hline Regression & 3 & 29.1088 & 9.7029 & 118.52 & 0.000 \\
\hline Error & 6 & 0.4912 & 0.0819 & & \\
\hline Total & 9 & 29.6000 & & & \\
\hline
\end{tabular}
9.78 is the upper limit of the acceptance region for a significance level of \(\alpha=0.01\). Our calculated \(F\) value of 118.33 is far above 9.78 , so we see that the regression as a whole is highly significant. We can reach the same conclusion by noting that the output tells us that " \(p\) " is 0.000 . Because this prob value is less than our significance level of \(\alpha=0.01\). we conclude that the regression as a whole is significant. In this way, we can use the ANOVA \(p\) to do the test without having to use Appendix Table 6 to look up a critical value of \(F\). This is analogous to the way we used the \(p\) values in Figure 13-2 for testing the significance of individual explanatory variables.

\section*{Multicollinearity in Multiple Regression}

In multiple-regression analysis, the regression coefficients often become less reliable as the degree of correlation between the independent variables increases. If there is a high level of correlation between some of the independent variables, we have a problem that statisticians call multicollinearity.

Multicollinearity might occur if we wished to estimate a firm's sales revenue and we used both the number of salespeople employed and their total salaries. Because the values associated with these two independent variables are highly correlated, we need to use only one set of them to make our estimate. In fact, adding a second variable that is correlated with the first distorts the values of the regression coefficients. Nevertheless, we can often predict \(Y\) well, even when multicollinearity is present.

Let's look at an example in which multicollinearity is present An example of multicollinearity to see how it affects the regression. For the past 12 months, the manager of Pizza Shack has been running a series of advertisements in the local newspaper. The ads are scheduled and paid for in the month before they appear. Each of the ads contains a two-for-one coupon, which entitles the bearer to receive two Pizza Shack pizzas

TABLE 13-4 PIZZA SHACK SALES AND ADVERTISING DATA
\begin{tabular}{lccc}
\hline Month & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Number of Ads \\
Appearing
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{2}\) \\
Cost of Ads \\
Appearing (00s of dollars)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Total Pizza Sales \\
(000s of dollars)
\end{tabular} \\
\hline May & 12 & 13.9 & 43.6 \\
June & 11 & 12.0 & 38.0 \\
July & 9 & 9.3 & 30.1 \\
Aug. & 7 & 9.7 & 35.3 \\
Sept. & 12 & 12.3 & 46.4 \\
Oct. & 8 & 11.4 & 34.2 \\
Nov. & 6 & 9.3 & 30.2 \\
Dec. & 13 & 14.3 & 40.7 \\
Jan. & 8 & 10.2 & 38.5 \\
Feb. & 6 & 8.4 & 22.6 \\
March & 8 & 11.2 & 37.6 \\
April & 10 & 11.1 & 35.2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Regression Analysis} \\
\hline \multicolumn{6}{|l|}{The regression equation is} \\
\hline \multicolumn{6}{|l|}{SALES \(=16.9+2.08\) ADS} \\
\hline Predictor & Coef & Stdev & t-ratio & & \\
\hline Constant & 16.937 & 4.982 & 3.40 & & \\
\hline ADS & 2.0832 & 0.5271 & 3.95 & & \\
\hline \(\mathrm{s}=4.206\) & R - & \(=61\). & & & \\
\hline \multicolumn{6}{|l|}{Analysis of Variance} \\
\hline SOURCE & DF & SS & MS & F & p \\
\hline Regression & 1 & 276.31 & 276.31 & 15.62 & 0.003 \\
\hline Error & 10 & 176.88 & 17.69 & & \\
\hline Total & 11 & 453.19 & & & \\
\hline
\end{tabular}

\section*{FIGURE 13-6 MINITAB REGRESSION OF SALES ON NUMBER OF ADS}
while paying for only the more expensive of the two. The manager has collected the data in Table 13-4 and would like to use it to predict pizza sales.

In Figures 13-6 and 13-7, we have given Minitab outputs for Two simple regressions the regressions of total sales on number of ads and cost of ads, respectively.

For the regression on number of ads, we see that the observed \(t\) value is 3.95 . With 10 degrees of freedom and a significance level of \(\alpha=0.01\), the critical \(t\) value (from Appendix Table 2) is found to be 3.169. Because \(t_{0}>t_{c}\) (or, equivalently, because \(p\) is less than 0.01), we conclude that the number of ads is a highly significant explanatory variable for total sales. Note also that \(r^{2}-61.0\) percent, so that the number of ads explains about 61 percent of the variation in pizza sales.

\section*{Regression Analysis}

The regression equation is
SALES \(=4.17+2.87\) COST
\begin{tabular}{|c|c|c|c|c|c|}
\hline Predictor & Coef & Stdev & t-ratio & \multicolumn{2}{|l|}{p} \\
\hline Constant & 4.173 & 7.109 & 0.59 & \multicolumn{2}{|l|}{0.570} \\
\hline COST & 2.8725 & 0.6330 & 4.54 & \multicolumn{2}{|l|}{0.000} \\
\hline \(s=3.849\) & R - & \(=67.3 \%\) & & & \\
\hline \multicolumn{6}{|l|}{Analysis of Variance} \\
\hline SOURCE & DF & SS & MS & F & p \\
\hline Regression & 1 & 305.04 & 305.04 & 20.59 & 0.000 \\
\hline Error & 10 & 148.15 & 14.81 & & \\
\hline Total & 11 & 453.19 & & & \\
\hline
\end{tabular}

FIGURE 13-7 MINITAB REGRESSION OF SALES ON THE COST OF ADS

For the regression on the cost of ads, the observed \(t\) value is 4.54 , so that the cost of ads is even more significant as an explanatory variable for total sales than was the number of ads (for which the observed \(t\) value was only 3.95). In this regression, \(r^{2}=67.3\) percent, so about 67 percent of the variation in pizza sales is explained by the cost of ads.

Because both explanatory variables are highly significant by themselves, we try to use both of them in a multiple regression. The output is in Figure 13-8.

Using both explanatory variables
in a multiple regression

The multiple regression is highly significant as a whole, because the ANOVA \(p\) is 0.006 .
The multiple coefficient of determination is \(R^{2}=68.4\) percent, so the two variables together explain about 68 percent of the variation in total sales.

However, if we look at the \(p\) values for the individual variables in the multiple regression, we see that even at \(\alpha=0.1\),

\section*{Loss of individual significance} neither variable is a significant explanatory variable.

What has happened here? In the simple regression, each variable is highly significant, and in the multiple regression, they are collectively very significant, but individually not significant.

This apparent contradiction is explained once we notice that the number of ads is highly correlated with the cost of ads. In fact, the correlation between these two variables is \(r=0.8949\), so

Correlation between two explanatory variables we have a problem with multicollinearity in our data. You might wonder why these two variables are not perfectly correlated. This is because the cost of an ad varies slightly, depending on where it appears in the newspaper. For instance, in the Sunday paper, ads in the TV section cost more than ads in the news section, and the manager of Pizza Shack has placed Sunday ads in each of these sections on different occasions.

Because \(X_{1}\) and \(X_{2}\) are closely related to each other, in effect they each explain the same part of the variability in \(Y\). That's why we get \(r^{2}=61.0\) percent in the first simple regression, \(r^{2}=67.3\) percent in the second simple regression, but an \(R^{2}\) of only 68.4 percent in the multiple regression. Adding the number of ads as a second explanatory variable to the cost of ads explains only about 1 percent more of the variation in total sales.

At this point, it is fair to ask, "Which variable is really explaining the variation in total sales in the multiple regression?" The answer is that both are, but we cannot separate

Both variables explain the same thing
out their individual contributions because they are so highly correlated with each other. As a result of this, their coefficients in the multiple regression have high standard errors, relatively small computed \(t\) values, and relatively large prob \(>|t|\) values.

How does this multicollinearity affect us? We are still able to make relatively precise predictions when it is present: Note that for the multiple regression (output in Figure 13-8), the standard error of estimate, which determines the width of confidence intervals for predictions, is 3.989 . while for the simple regression with the cost of ads as the explanatory variable (output in Figure 13-7), we have \(s_{e}=3.849\). What we can't do is tell with much precision how sales will change if we increase the number of ads by one. The multiple regression says \(b_{1}=0.625\) (that is, each ad increases total pizza sales by about \$625), but the standard error of this coefficient is 1.12 (that is, about \$1,120).

Variance Inflation Factor (VIF) is a measure to help researcher in identifying the presence multi collinearity between the independent variables. We know that the variance of the OLS estimator for a

\section*{Regression Analysis}

FIGURE 13-8 MINITAB REGRESSION OF SALES ON THE NUMBER AND COST OF ADS
regression coefficient (say \(\beta_{i}\)) is given by
\[
\operatorname{Var}\left(\hat{\beta}_{i}\right)=\frac{\sigma^{2}}{S_{i i}\left(1-R_{i}^{2}\right)}
\]

Where \(S_{i i}=\sum_{j=1}^{n}\left(X_{i j}-\bar{X}_{i}\right)^{2}\) and \(R_{i}^{2}\) is the unadjusted \(R^{2}\) when we regress \(X_{i}\) against all the other explanatory variables in the model, that is, constant, \(X_{2}, X_{3}, \ldots, X_{i}-1, X_{i}+_{1}, \ldots ., X_{k}\). Suppose there is no linear relation between \(X_{i}\) and the other explanatory variables in the model. Then, \(R_{i}^{2}\) will be zero and the variance of \(\hat{\beta}_{i}\) will be \(\frac{\sigma^{2}}{S_{i i}}\). Dividing this into the above expression for \(\operatorname{Var}\left(\hat{\beta}_{i}\right)\), we obtain the variance inflation factor and tolerance as
\[
\operatorname{VIF}\left(\hat{\beta}_{i}\right)=\frac{1}{1-R_{i}^{2}} \quad \text { Tolerence }\left(\hat{\beta}_{i}\right)=\frac{1}{V I F}=1-R_{i}^{2}
\]

It is seen that the higher VIF or the lower the tolerance index, the higher the variance of \(\hat{\beta}_{i}\) and the greater the chance of finding \(\beta_{i}\) insignificant, which means that severe multi collinearity is present. Thus, these measures can be useful in identifying multi collinearity. We would thus get \(k-1\) values for VIF. If any of them is high, then multi collinearity is present. Unfortunately, however, there is no theoretical way to say what the threshold value should be to judge that VIF is "high." Some of the authors, as a thumb rule, use the high value of \(\operatorname{VIF}(>10)\), as the indicator that the given variable is highly collinear.

\section*{HINTS \& ASSUMPTIONS}

Hint: Making inferences about a multiple regression is conceptually just like what we did in Chapter 12 when we made inferences about a regression line, except here we're dealing with two or more independent variables. Warning: Multicollinearity is a problem you have to deal with in multiple regressions, and developing a common-sense understanding of it is necessary. Remember that you can still make fairly precise predictions when it's present. But remember that when it's present, you can't tell with much precision how much the dependent variable will change if you "jiggle" one of the independent variables. So our aim should be to minimize multicollinearity. Hint: The best multiple regression is one that explains the relationship among the data by accounting for the largest proportion of the variation in the dependent variable, with the fewest number of independent variables. Warning: Throwing in too many independent variables just because you have a computer is not a great idea.

\section*{Multiple Linear Regression Using SPSS}

Above data is used for regression analysis.
An automotive industry group keeps track of the sales for a variety of personal motor vehicles. In an effort to be able to identify over and underperforming models, you want to establish a relationship between vehicle sales and vehicle characteristics.

For linear regression go to Analyze \(>\) Regression \(>\) Linear \(>\) Select dependent and independent variables \(>\) Go to Statistics \(>\) Select Estimates, Confidence Intervals and Collinearity diagnostics > OK.

\section*{EXERCISES 13.4}

\section*{Self-Check Exercises}

SC 13-4 Edith Pratt is a busy executive in a nationwide trucking company. Edith is late for a meeting because she has been unable to locate the multiple-regression output that an associate produced for her. If the total regression was significant at the 0.05 level, then she wanted to use the computer output as evidence to support some of her ideas at the meeting. The subordinate, however, is sick today and Edith has been unable to locate his work. As a matter of fact, all the information she possesses concerning the multiple regression is a piece of scrap paper with the following on it:
\begin{tabular}{lr}
\hline \multicolumn{2}{c}{ Regression for E. Pratt } \\
\hline SSR & 872.4, with df \\
SSE & , with 17 df \\
SST & 1023.6, with 24 df \\
\hline
\end{tabular}

Because the scrap paper doesn't even have a complete set of numbers on it, Edith has concluded that it must be useless. You, however, should know better. Should Edith go directly to the meeting or continue looking for the computer output?
SC13-5 A New England-based commuter airline has taken a survey of its 15 terminals and has obtained the following data for the month of February, where

> SALES \(\quad\) = total revenue based on number of tickets sold (in thousands of dollars)
> PROMOT \(=\) amount spent on promoting the airline in the area (in thousands of dollars)
> \(\mathrm{COMP} \quad\) = number of competing airlines at that terminal
> FREE \(\quad=\) the percentage of passengers who flew free (for various reasons)
\begin{tabular}{cccc}
\hline Sales (\$) & Promot (\$) & Comp & Free \\
\hline 79.3 & 2.5 & 10 & 3 \\
200.1 & 5.5 & 8 & 6 \\
163.2 & 6.0 & 12 & 9 \\
200.1 & 7.9 & 7 & 16 \\
146.0 & 5.2 & 8 & 15 \\
177.7 & 7.6 & 12 & 9 \\
30.9 & 2.0 & 12 & 8 \\
291.9 & 9.0 & 5 & 10 \\
160.0 & 4.0 & 8 & 4 \\
339.4 & 9.6 & 5 & 16 \\
159.6 & 5.5 & 11 & 7 \\
86.3 & 3.0 & 12 & 6 \\
237.5 & 6.0 & 6 & 10 \\
107.2 & 5.0 & 10 & 4 \\
155.0 & 3.5 & 10 & 4 \\
\hline
\end{tabular}
(a) Use the following Minitab output to determine the best-fitting regression equation for the airline:
The regression equation is
SALES \(=172\)

Predictor
Constant
(b) Do the passengers who fly free cause sales to decrease significantly? State and test appropriate hypotheses. Use \(\alpha=0.05\).
(c) Does an increase in promotions by \(\$ 1,000\) change sales by \(\$ 28,000\), or is the change significantly different from \(\$ 28,000\) ? State and test appropriate hypotheses. Use \(\alpha=0.10\).
(d) Give a 90 percent confidence interval for the slope coefficient of COMP.

\section*{Applications}

13-22 Mark Lowtown publishes the Mosquito Junction Enquirer and is having difficulty predicting the amount of newsprint needed each day. He has randomly selected 27 days over the past year and recorded the following information:
\[
\begin{aligned}
& \text { POUNDS }=\text { pounds of newsprint for that day's newspaper } \\
& \text { CLASFIED }=\text { number of classified advertisements } \\
& \text { DISPLAY }=\text { number of display advertisements } \\
& \text { FULLPAGE }=\text { number of full-page advertisements }
\end{aligned}
\]

Using Minitab to regress POUNDS on the other three variables, Mark got the output that follows.
\begin{tabular}{lrrrr}
Predictor & Coef & Stdev & t-ratio & \(p\) \\
Constant & 1072.95 & 872.43 & 1.23 & 0.232 \\
CLASFIED & 0.251 & 0.126 & 1.99 & 0.060 \\
DISPLAY & 1.250 & 0.884 & 1.41 & 0.172 \\
FULLPAGE & 250.66 & 67.92 & 3.69 & 0.001
\end{tabular}
(a) Mark had always felt that each display advertisement used at least 3 pounds of newsprint. Does the regression give him significant reason to doubt this belief at the 5 percent level?
(b) Similarly, Mark had always felt that each classified advertisement used roughly half a pound of newsprint. Does he now have significant reason to doubt this belief at the 5 percent level?
(c) Mark sells full-page advertising space to the local merchants for \(\$ 30\) per page. Should he consider adjusting his rates if newsprint costs him \(9 \notin\) per pound? Assume other costs are negligible. State explicit hypotheses and an explicit conclusion. (Hint: Holding all else constant, each additional full-page ad uses 250.66 pounds of paper \(\times \$ 0.09\) per pound \(=\$ 22.56\) cost. Breakeven is at 333.333 pounds. Why? Thus, if the slope coefficient for FULLPAGE is significantly above 333.333, Mark is not making a profit and his rates should be changed.)
13-23 Refer to Exercise 13-18. At a significance level of 0.10 , which variables are significant explanatory variables for exam scores? (There were 12 students in the sample.)
13-24 Refer to Exercise 13-18. The following additional output was provided by Minitab when Bill ran the multiple regression:

Analysis of Variance
\begin{tabular}{lrrrrr}
SOURCE & DF & SS & MS & F & p \\
Regression & 4 & 3134.42 & 783.60 & & \\
Error & 7 & 951.25 & 135.89 & & \\
Total & 11 & 4085.67 & & &
\end{tabular}
(a) What is the observed value of \(F\) ?
(b) At a significance level of 0.05 , what is the appropriate critical value of \(F\) to use in determining whether the regression as a whole is significant?
(c) Based on your answers to (a) and (b), is the regression significant as a whole?

13-25 Refer to Exercise 13-19. At a significance level of 0.01 , is DISTANCE a significant explanatory variable for SALES?
13-26 Refer to Exercise 13-19. The following additional output was provided by Minitab when the multiple regression was run:
\begin{tabular}{lrrrrr}
Analysis of Variance \\
& & & & \\
SOURCE & DF & SS & MS & F & p \\
Regression & 4 & 2861495 & 715374 & 102.39 & 0.000 \\
Error & 18 & 125761 & 6896.7 & & \\
Total & 22 & 2987256 & & &
\end{tabular}

At the 0.05 level of significance, is the regression significant as a whole?
13-27 Henry Lander is director of production for the Alecos Corporation of Caracas, Venezuela. Henry has asked you to help him determine a formula for predicting absenteeism in a meatpacking facility. He hypothesizes that percentage absenteeism can be explained by average daily temperature. Data are gathered for several months, you run the simple regression, and you find that temperature explains 66 percent of the variation in absenteeism. But Henry is not convinced that this is a satisfactory predictor. He suggests that daily rainfall may also have something to do with absenteeism. So you gather data, run a regression of absenteeism on rainfall, and get an \(r^{2}\) of 0.59 . "Eureka!" you cry. "I've got it! With one predictor that explains 66 percent and another that explains 59 percent, all I have to do is run a multiple regression using both predictors, and I'll surely have an almost perfect predictor!" To your dismay, however, the multiple regression has an \(R^{2}\) of only 68 percent, which is just slightly better than the temperature variable alone. How can you account for this apparent discrepancy?
13-28 Juan Armenlegg, manager of Rocky's Diamond and Jewelry Store, is interested in developing a model to estimate consumer demand for his rather expensive merchandise. Because most customers buy diamonds and jewelry on credit, Juan is sure that two factors that must influence consumer demand are the current annual inflation rate and the current prime lending rate at the leading banks in the country. Explain some of the problems that Juan might encounter if he were to set up a regression model based on his two predictor variables.
13-29 A new game show, Check That Model, asks contestants to specify the minimum number of parameters they need to determine whether a multiple regression model is significant as a whole at \(\alpha=0.01\). You have won the bidding with 4 parameters. Using the information below, determine whether the regression is significant.
\[
\begin{aligned}
R^{2} & =0.7452 \\
\mathrm{SSE} & =125.4 \\
n & =18 \\
\text { Number of independent variables } & =3
\end{aligned}
\]

13-30 The Scottish Tourist Agency is interested in the number of tourists who enter the country weekly during the high season (\(Y\)). Data have been collected and are presented below:
```

Tourists $(Y)=$ Number of tourists who entered Scotland in a week (in thousands)
Rate $\left(X_{1}\right) \quad=$ Number of Scottish pounds purchased for $\$ 1$ U.S.
Price $\left(X_{2}\right) \quad=$ Number of Scottish pounds charged for round-trip bus fare from London to Edinburgh
Promot $\left(X_{3}\right)=$ Amount spent on promoting the country (in thousands of Scottish pounds)
Temp $\left(X_{4}\right) \quad=$ Mean temperature during the week in Edinburgh (in degrees Celsius)

```
\begin{tabular}{ccccc}
\hline Tourists \((\boldsymbol{Y})\) & Rate \(\left(\boldsymbol{X}_{\mathbf{1}}\right)\) & Price \(\left(\boldsymbol{X}_{\mathbf{2}}\right)\) & Promot \(\left(\boldsymbol{X}_{\mathbf{3}}\right)\) & Temp \(\left(\boldsymbol{X}_{4}\right)\) \\
\hline 6.9 & 0.61 & 40 & 8.7 & 15.4 \\
7.1 & 0.59 & 40 & 8.8 & 15.6 \\
6.8 & 0.63 & 40 & 8.5 & 15.4 \\
7.9 & 0.61 & 35 & 8.6 & 15.3 \\
7.6 & 0.6 & 35 & 9.4 & 15.8 \\
8.2 & 0.65 & 35 & 9.9 & 16.2 \\
8.0 & 0.58 & 35 & 9.8 & 16.4 \\
8.4 & 0.59 & 35 & 10.2 & 16.6 \\
9.7 & 0.61 & 30 & 11.4 & 17.4 \\
9.8 & 0.62 & 30 & 11.6 & 17.2 \\
7.2 & 0.57 & 40 & 8.4 & 17.6 \\
6.7 & 0.55 & 40 & 8.6 & 16.4 \\
\hline
\end{tabular}
(a) Using whatever computer package is available, determine the best-fitting regression equation for the tourist agency.
(b) Is the currency exchange rate a significant explanatory variable? State and test the appropriate hypotheses at a 0.10 significance level.
(c) Does an increase in promotions by one thousand pounds increase the number of tourists by more than 200? State and test appropriate hypotheses at a 0.05 significance level.
(d) Give a 95 percent confidence interval for the slope coefficient of Temp.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 13-4 Because \(\operatorname{SST}=\mathrm{SSR}+\mathrm{SSE}, \mathrm{SSE}=\mathrm{SST}-\mathrm{SSR}=1,023.6-872.4=151.2\).
Because \(d f \mathrm{SST}=d f \mathrm{SSR}+d f \mathrm{SSE}, d f \mathrm{SSR}=d f \mathrm{SST}-d f \mathrm{SSE}=24-17=7\).
Thus, \(F=\frac{S S R / k}{\operatorname{SSE} /(n-k-1)}=\frac{872.4 / 7}{151.2 / 17}=14.01\).
\(\mathrm{F}_{\text {CRIT }}=F(7,17, .05)=2.61\).
Because \(F_{\text {OBS }}>F_{\text {CRIT }}\), we conclude that the overall regression is significant as a whole; Edith should continue looking for the output so she can use it at the meeting.
SC 13-5 From the computer output, we get the following results:
(a) \(\widehat{S A L E S}=172.34+25.950 \mathrm{PROMOT}-13.238 \mathrm{COMP}-3.041 \mathrm{FREE}\)
(b) \(\mathrm{H}_{0}: B_{\text {FREE }}=0 \quad \mathrm{H}_{1}: B_{\text {FREE }}<0 \alpha=0.05\)

This is a one-tailed test, and the prob-value on the output is for the two-tailed alternative, \(\mathrm{H}_{1}: B_{\text {FREE }} \neq 0\). So for our test, the prob-value is \(0.221 / 2=0.111>\alpha=0.05\), so we cannot reject \(H_{0}\); sales do not decrease significantly as the number of passengers who fly free increases.
(c) \(H_{0}: B_{\text {PROMOT }}=28 \quad H_{1}: B_{\text {PROMOT }} \neq 28 \quad \alpha=0.10\)

The observed \(t\) value from the regression results is
\[
\frac{\left(b_{\text {РROMOT }}-28\right)}{s_{b_{\text {PRONOT }}}}=\frac{25.950-28}{4.877}=-0.420
\]

With 11 degrees of freedom and \(\alpha=0.10\) in both tails combined, the critical \(t\) values for the test are \(\pm 1.796\), so the observed value is within the acceptance region. We cannot reject \(H_{0}\); the change in SALES for a one-unit \((\$ 1,000)\) increase in PROMOT is not significantly different from 28, \((\$ 28,000)\).
(d) With 11 degrees of freedom, the \(t\) value for a 90 percent confidence interval is 1.796 , so that interval is
\[
\begin{aligned}
b_{\text {СОМР }} \pm 1.796 s_{\text {bСОМР }} & =-13.238 \pm 1.796(3.686) \\
& =-13.238 \pm 6.620=(-19.858,-6.618)
\end{aligned}
\]

The airline can be 90 percent confident that ticket revenue at an office decreases between approximately \(\$ 6,600\) and \(\$ 19,900\) with each additional competing airline.

\subsection*{13.5 MODELING TECHNIQUES}

Given a variable we want to explain and a group of potential

\section*{Looking at different models} explanatory variables, there may be several different regression —n equations we can look at, depending on which explanatory variables we include and how we include them. Each such regression equation is called a model. Modeling techniques are the various ways in which we can include the explanatory variables and check the appropriateness of our regression' models. There are many different modeling techniques, but we shall look at only two of the most commonly used devices.

\section*{Qualitative Data and Dummy Variables}

In all the regression examples we have looked at so far, the data have been numerical, or quantitative. But, occasionally, we will be faced with a variable that is categorical, or qualitative. In our chapteropening problem, the director of personnel wanted to see whether the base salary of a salesperson depended on the person's gender. Table 13-5 repeats the data of that problem.

For the moment, ignore the length of employment and use the technique developed in Chapter 9 for testing the difference between means of two populations, to see whether men earn

Reviewing a previous way to approach the problem

\section*{TABLE 13-5 DATA FOR GENDER-DISCRIMINATION PROBLEM}
\begin{tabular}{ccccc}
\hline \multicolumn{2}{c}{ Salesmen } & & \multicolumn{2}{c}{ Saleswomen } \\
\cline { 2 - 2 } \cline { 2 - 2 } \begin{tabular}{c}
Months \\
Employed
\end{tabular} & \begin{tabular}{c}
Base Salary \\
\((\$ \mathbf{1 , 0 0 0 s})\)
\end{tabular} & & \begin{tabular}{c}
Months \\
Employed
\end{tabular} & \begin{tabular}{c}
Base Salary \\
\((\mathbf{\$ 1 , 0 0 0 s})\)
\end{tabular} \\
\hline 6 & 7.5 & & 5 & 6.2 \\
10 & 8.6 & & 13 & 8.7 \\
12 & 9.1 & & 15 & 9.4 \\
18 & 10.3 & & 21 & 9.8 \\
30 & 13.0 & & & \\
\hline
\end{tabular}
more than women. Test this at \(\alpha=0.01\). If we let the men be population 1 and the women be population 2 , we are testing
\[
\begin{align*}
& \mathrm{H}_{0}: \mu_{1}=\mu_{2} \leftarrow \text { Null hypothesis: There is no gender discrimination in base salaries } \\
& \mathrm{H}_{1}: \mu_{1}>\mu_{2} \leftarrow \text { Alternative hypothesis: Women are discriminated against in base salary } \\
& \alpha=0.01 \leftarrow \text { Level of significance } \\
& \left.\qquad \begin{array}{rl}
n_{1} & =5 \quad n_{2}=4 \\
\bar{x}_{1} & =9.7 \quad \bar{x}_{1}=8.525 \\
s_{1}^{2} & =4.415 \quad s_{2}^{2}=2.609 \\
& =\frac{4(4.415)+3(2.609)}{5+4-2} \\
& =3.641 \\
s_{p}^{2} & =\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \\
\begin{array}{rl}
\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}} & =s_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\
& =1.28 \\
t & =\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-\left(\mu_{1}-\mu_{2}\right)_{H_{0}}}{\hat{\sigma}_{\bar{x}_{1}-\bar{x}_{2}}} \\
& =\frac{(9.7-8.525)-0}{1.28} \\
& =0.92
\end{array}
\end{array}\right\}=\begin{aligned}
\end{aligned} \\
& \tag{9-3}
\end{align*}
\]

With 7 degrees of freedom, the critical \(t\) value for an upper-tailed test with \(\alpha=0.01\) is 2.998 . Because the observed \(t\) value of 0.92 is less than 2.998 , we cannot reject \(H_{0}\).

Our analysis therefore concludes that there does not appear The old approach doesn't detect to be any sex discrimination in base salaries. But recall that we have ignored the length-of-employment data thus far in the any discrimination analysis.

Before we go any farther, look at a scatter diagram of the data. In Figure 13-9, the black points correspond to men and the col-

\section*{"Eyeballing" the data} ored circles correspond to women. The scatter diagram clearly shows that base salary increases with length of service; but if you try to "eyeball" the regression line, you'll note that the black points tend to be above it and the colored circles tend to be below it.

Figure 13-10 gives the output from a regression of base salary on months employed. From that output, we see that months employed is a very highly significant explanatory variable for base salary.

FIGURE 13-9 SCATTER DIAGRAM OF BASE SALARIES PLOTTED AGAINST MONTHS EMPLOYED

Also, \(r^{2}=92.6\) percent, indicating that months employed explains about 93 percent of the variation in base salary. Figure 13-11 contains part of the output that we have not seen before, a table of residuals. For each data point, the residual is just \(Y-\hat{Y}\), which we recognize as the error in the fit of the regression line at that point. In Figure 13-11, FITS1 are the fitted values and RESI1 are the residuals.

Perhaps the most important part of analyzing a regression "Squeezing the residuals" output is looking at the residuals. If the regression includes all the relevant explanatory factors, these residuals ought to
be random. Looking at this in another way, if the residuals show any non-random patterns, this indicates that there is something systematic going on that we have failed to take into account.
```

Regression Analysis
The regression equation is
SALARY = 5.81 + 0.233 MONTHS

Predictor	Coef	Stdev	t-ratio	p
Constant	5.8093	0.4038	14.39	0.000
MONTHS	0.23320	0.02492	9.36	0.000

s=0.5494 R - sq = 92.6%
Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	1	26.443	26.443	87.61	0.000
Error	7	2.113	0.302		
Total	8	28.556			

```
\begin{tabular}{|crrr|}
\hline ROW & SALARY & FITS1 & RESI1 \\
1 & 7.5 & 7.2085 & 0.291499 \\
2 & 8.6 & 8.1413 & 0.458684 \\
3 & 9.1 & 8.6077 & 0.492276 \\
4 & 10.3 & 10.0069 & 0.293054 \\
5 & 13.0 & 12.8054 & 0.194607 \\
6 & 6.2 & 6.9753 & -0.775297 \\
7 & 8.7 & 8.8409 & -0.140928 \\
8 & 9.4 & 9.3073 & 0.092664 \\
9 & 9.8 & 10.7066 & -0.906558 \\
\hline
\end{tabular}

\section*{FIGURE 13-11 MINITAB TABLE OF RESIDUALS}

So we look for patterns in the residuals; or to put it some-what more picturesquely, we "squeeze the residuals until they talk."

As we look at the residuals in Figure 13-11, we note that the first five residuals are positive. So for the salesmen, we have

\section*{Noticing a pattern in the} residuals \(Y-\hat{Y}>0\), or \(Y>\hat{Y}\) that is, the regression line falls below these five data points. Three of the last four residuals are negative. And thus for the saleswomen, we have \(Y-\hat{Y}<0\), or \(Y<\hat{Y}\), so the regression line lies above three of the four data points. This confirms the observation we made when we looked at the scatter diagram in Figure 13-9. This nonrandom pattern in the residuals suggests that gender is a factor in determining base salary.

How can we incorporate the salesperson's gender into the Using dummy variables regression model? We do this by using a device called a dummy variable (or an indicator variable). For the five points that represent salesmen, this variable is given the value 0 , and for the four points that represent saleswomen, it is given the value 1. The input data for our regression using dummy variables are given in Table 13-6.

To the data in Table 13-6, we fit a regression of the form
\[
\begin{equation*}
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2} \tag{13-5}
\end{equation*}
\]

Let's see what happens if we use this regression to predict the base salary of an individual with \(X_{1}\) months of service:
\[
\begin{array}{ll}
\text { Salesman: } & \hat{Y}=a+b_{1} X_{1}+b_{2}(0)=a+b_{1} X_{1} \\
\text { Saleswoman: } & \hat{Y}=a+b_{1} X_{1}+b_{2}(1)=a+b_{1} X_{1}+b_{2}
\end{array}
\]

For salesmen and saleswomen with the same length of employment, we predict a base salary difference of \(b_{2}\) thousands of dollars. Now, \(b_{2}\) is just our estimate of \(B_{2}\) in the population regression:
\[
Y=A+B_{1} X_{1}+B_{2} X_{2}
\]

Interpreting the coefficient of the dummy variable

If there really is discrimination against women, they should earn less than men with the same length of service. In other words, \(B_{2}\) should be negative. We can test this at the 0.01 level of significance.

\section*{TABLE 13-6 INPUT DATA FOR GENDER DISCRIMINATION REGRESSION}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \hline X_{1} \\
& \text { Months Employed }
\end{aligned}
\] & \[
\begin{gathered}
X 2 \\
\text { Gender }
\end{gathered}
\] & \[
\begin{gathered}
\hline Y \\
\text { Base Salary }(\$ 1,000 \mathrm{~s})
\end{gathered}
\] \\
\hline \multirow{5}{*}{Men} & 0 & 7.5 \\
\hline & 0 & 8.6 \\
\hline & 0 & 9.1 \\
\hline & 0 & 10.3 \\
\hline & 0 & 13.0 \\
\hline (5 & 1 & 6.2 \\
\hline Women 13 & 1 & 8.7 \\
\hline Wom 15 & 1 & 9.4 \\
\hline 21 & 1 & 9.8 \\
\hline
\end{tabular}
\(\mathrm{H}_{0}: B_{2}=0 \leftarrow\) Null hypothesis: There is no sex discrimination in base salaries \(\mathrm{H}_{1}: B_{2}<0 \leftarrow\) Alternative hypothesis: Women are discriminated against
\(\alpha=0.01 \leftarrow\) Level of significance
In order to test these hypotheses, we run a regression on the data in Table 13-6. The results of that regression are given in Figure 13-12.

Our hypothesis test is based on the \(t\) distribution with \(n-k-1=\) Concluding that discrimination \(9-2-1=6\) degrees of freedom. For this lower-tailed test, the criti- is present cal value from Appendix Table 2 is \(t_{c}=-3.143\). From Figure 13-12, we see that the standardized regression coefficient for sex in our test is \(t_{0}=-3.31\). Figure 13-13 illustrates the critical value, -3.143 , and the standardized coefficient. We see

\section*{Regression Analysis}
```

The regression equation is
SALARY = 6.25 + 0.227 MONTHS - 0.789 GENDER

Predictor	Coef	Stdev	t-ratio	p
Constant	6.2485	0.2915	21.44	0.000
MONTHS	0.22707	0.01612	14.09	0.000
GENDER	-0.7890	0.2384	-3.31	0.016
S = 0.3530	R - sq	$=97.4 \%$		

Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	2	27.808	13.904	111.56	0.000
Error	6	0.748	0.125		
Total	8	28.556			

```


FIGURE 13-13 LEFT-TAILED HYPOTHESIS TEST AT THE 0.01 SIGNIFICANCE LEVEL, SHOWING ACCEPTANCE REGION AND THE STANDARDIZED REGRESSION COEFFICIENT
that the observed \(b_{2}\) lies outside the acceptance region, so we reject the null hypothesis and conclude that the firm does discriminate against its saleswomen. We also note, in passing, that the computed \(t\) value for \(b_{1}\) in this regression is 14.09 , so including gender as an explanatory variable makes months employed even more significant an explanatory variable than it was before. Figure 13-14 gives us Minitab's output of the fitted values and residuals for this regression. Because this was the second regression we ran on these data, Minitab now calls these values FITS2 and
\begin{tabular}{|crrr|}
\hline ROW & SALARY & FITS2 & RESI2 \\
1 & 7.5 & 7.6109 & -0.110921 \\
2 & 8.6 & 8.5192 & 0.080784 \\
3 & 9.1 & 8.9734 & 0.126637 \\
4 & 10.3 & 10.3358 & -0.035807 \\
5 & 13.0 & 13.0607 & -0.060692 \\
6 & 6.2 & 6.5949 & -0.394873 \\
7 & 8.7 & 8.4115 & 0.288537 \\
8 & 9.4 & 8.8656 & 0.534389 \\
9 & 9.8 & 10.2281 & -0.428053 \\
\hline
\end{tabular}

FIGURE 13-14 MINITAB TABLE OF RESIDUALS RESI2. Note that the residuals for this regression don't seem to show any nonrandom pattern.

Now let's review how we handled the qualitative variable in Interpreting the coefficient of this problem. We set up a dummy variable, which we gave the value 0 for the men and the value 1 for the women. Then the the dummy variable coefficient of the dummy variable can be interpreted as the difference between a woman's base salary and the base salary for a man. Suppose we had set the dummy variable to 0 for women and 1 for men. Then its coefficient would be the difference between a man's base salary and the base salary for a woman. Can you guess what the regression would have been in this case? It shouldn't surprise you to learn that it would have been
\[
\hat{Y}=5.4595+0.22707 X_{1}+0.7890 X_{2}
\]

The choice of which category is given the value 0 and which the value 1 is totally arbitrary and affects only the sign, not the numerical value of the coefficient of the dummy variable.

Our example had only one qualitative variable (gender), and that variable had only two possible categories (male and female).

Extensions of dummy variable techniques Although we won't pursue the details here, dummy variable techniques can also be used in problems with several qualitative variables, and those variables can have more than two possible categories.

\section*{Transforming Variables and Fitting Curves}

A manufacturer of small electric motors uses an automatic milling machine to produce the slots in the shafts of the motors. A batch of shafts is run and then checked. All shafts in the batch that do not meet required dimensional tolerances are discarded. At the beginning of each new batch, the milling machine is readjusted, because its cutter head wears slightly during the production of the batch. The manufacturer is trying to pick an optimal batch size, but in order to do this, he must know how the size of a batch affects the number of defective shafts in the batch. Table 13-7 gives data for a sample of 30 batches, arranged by ascending size of batch.

Figure 13-15 is a scatter diagram for these data. Because there are two batches of size 250 with 34 defective shafts, two of the points in the

TABLE 13-7 NUMBER OF DEFECTIVE SHAFTS PER BATCH
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Batch \\
Size
\end{tabular} & \begin{tabular}{c}
Number \\
Defective
\end{tabular} & \begin{tabular}{c}
Batch \\
Size
\end{tabular} & \begin{tabular}{c}
Number \\
Defective
\end{tabular} \\
\hline 100 & 5 & 250 & 37 \\
125 & 10 & 250 & 41 \\
125 & 6 & 250 & 34 \\
125 & 7 & 275 & 49 \\
150 & 6 & 300 & 53 \\
150 & 7 & 300 & 54 \\
175 & 17 & 325 & 69 \\
175 & 15 & 350 & 82 \\
200 & 24 & 350 & 81 \\
200 & 21 & 350 & 84 \\
200 & 22 & 375 & 92 \\
225 & 26 & 375 & 96 \\
225 & 29 & 375 & 97 \\
225 & 25 & 400 & 109 \\
250 & 34 & 400 & 112 \\
\hline
\end{tabular} scatter diagram coincide (this is indicated by a colored data point in Figure 13-15).

We are going to run a regression of number of defective shafts on the batch size. The output from the regression is in Figures 13-16 and 13-17. What does this output tell us? First of all, we note that batch size

\section*{Regression Analysis}

The regression equation is
DEFECTS \(=-47.9+0.367\) BATCHSIZ
\begin{tabular}{lccrrr}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & -47.901 & 4.112 & -11.65 & 0.000 & \\
BATCHSIZ & 0.36713 & 0.01534 & 23.94 & 0.000 & \\
S \(=7.560\) & R - sq & \(=\) & \(95.3 \%\) & & \\
Analysis of & Variance & & & F & p \\
SOURCE & DF & SS & MS & 572.90 & 0.000 \\
Regression & 1 & 32744 & 32744 & & \\
Error & 28 & 1600 & 54 & & \\
Total & 29 & 34345 & & & \\
\hline
\end{tabular}

FIGURE 13-16 MINITAB OUTPUT FROM REGRESSION OF DEFECTS ON BATCH SIZE
\begin{tabular}{|c|c|c|c|}
\hline ROW & DEFECTS & FITS1 & RESI1 \\
\hline 1 & 5 & -11.1875 & 16.1875 \\
\hline 2 & 10 & -2.0093 & 12.0093 \\
\hline 3 & 6 & -2.0093 & 8.0093 \\
\hline 4 & 7 & -2.0093 & 9.0093 \\
\hline 5 & 6 & 7.1690 & -1.1690 \\
\hline 6 & 7 & 7.1690 & -0.1690 \\
\hline 7 & 17 & 16.3473 & 0.6527 \\
\hline 8 & 15 & 16.3473 & -1.3473 \\
\hline 9 & 24 & 25.5256 & -1.5256 \\
\hline 10 & 21 & 25.5256 & -4.5256 \\
\hline 11 & 22 & 25.5256 & -3.5256 \\
\hline 12 & 26 & 34.7039 & -8.7039 \\
\hline 13 & 29 & 34.7039 & -5.7039 \\
\hline 14 & 25 & 34.7039 & -9.7039 \\
\hline 15 & 34 & 43.8822 & -9.8822 \\
\hline 16 & 37 & 43.8822 & -6.8822 \\
\hline 17 & 41 & 43.8822 & -2.8822 \\
\hline 18 & 34 & 43.8822 & -9.8822 \\
\hline 19 & 49 & 53.0605 & -4.0605 \\
\hline 20 & 53 & 62.2387 & -9.2387 \\
\hline 21 & 54 & 62.2387 & -8.2387 \\
\hline 22 & 69 & 71.4170 & -2.4170 \\
\hline 23 & 82 & 80.5953 & 1.4047 \\
\hline 24 & 81 & 80.5953 & 0.4047 \\
\hline 25 & 84 & 80.5953 & 3.4047 \\
\hline 26 & 92 & 89.7736 & 2.2264 \\
\hline 27 & 96 & 89.7736 & 6.2264 \\
\hline 28 & 97 & 89.7736 & 7.2264 \\
\hline 29 & 109 & 98.9519 & 10.0481 \\
\hline 30 & 112 & 98.9519 & 13.0481 \\
\hline
\end{tabular}

FIGURE 13-18 FITTING A STRAIGHT LINE TO POINTS ON A CURVE
does a fantastic job of explaining the number of defective shafts: The computed \(t\) value is 23.94 and \(r^{2}=95.3\) percent. However, despite the incredibly high \(t\) value, and despite the fact that batch

Noticing a pattern in the residuals size explains 95 percent of the variation in number of defectives, the residuals in this regression are far from random. Notice how they start out as large positive values, become smaller, then go negative, then become more negative, and then turn around again, finishing up with large positive values.

What does this indicate? Look at Figure 13-18, where we have What the pattern suggests fitted a black regression line \((\hat{Y}=-7+7 X)\) to the eight points \((X\), \(Y)=(0,0),(1,1),(2,4),(3,9), \ldots,(7,49)\), all of which lie on the colored curve \(\left(Y=X^{2}\right)\). The figure also shows the residuals and their signs.

The pattern of residuals that we got in our motor-shaft problem is quite similar to the pattern seen in Figure 13-18. Maybe the shaft data are better approximated by a curve than a straight line. Look back at Figure 13-15. What do you think?

But we've fitted only straight lines before. How do we go about fitting a curve? It's simple; all we do is introduce another variable, \(X_{2}=(\text { batch size })^{2}\), and then run a multiple regression. The input data are in Table 13-8, and the results are in Figures 13-19 and 13-20.

Looking at Figure 13-19, we see that batch size and (batch size) \({ }^{2}\) are both significant explanatory variables; their \(t\) values are -3.82 and 15.67 , respectively. The multiple coefficient of

Fitting a curve to the data

The curve is much better than the line

\section*{712 \\ Statistics for Management}

TABLE 13-8 INPUT FOR FITTING A CURVE TO THE MOTOR-SHAFT DATA
\begin{tabular}{cccccc}
\hline \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Batch Size
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{2}\) \\
\((\) Batch Size)
\end{tabular} \\
\hline 100 & 10,000 & \begin{tabular}{c}
\(\boldsymbol{Y}\) Number \\
Defective
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{1}\) \\
Batch Size
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{2}\) \\
(Batch Size) \(^{2}\)
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) Number \\
Defective
\end{tabular} \\
125 & 15,625 & 10 & 250 & 62,500 & 37 \\
125 & 15,625 & 6 & 250 & 62,500 & 41 \\
125 & 15,625 & 7 & 250 & 62,500 & 34 \\
150 & 22,500 & 6 & 275 & 75,625 & 49 \\
150 & 22,500 & 7 & 300 & 90,000 & 53 \\
175 & 30,625 & 17 & 300 & 90,000 & 54 \\
175 & 30,625 & 15 & 325 & 105,625 & 69 \\
200 & 40,000 & 24 & 350 & 122,500 & 82 \\
200 & 40,000 & 21 & 350 & 122,500 & 81 \\
200 & 40,000 & 22 & 375 & 122,500 & 84 \\
225 & 50,625 & 26 & 375 & 140,625 & 92 \\
225 & 50,625 & 29 & 375 & 140,625 & 96 \\
225 & 50,625 & 25 & 400 & 160,000 & 97 \\
250 & 62,500 & 34 & 400 & 160,000 & 112 \\
\hline
\end{tabular}
determination is \(R^{2}=99.5\) percent, so together, our two variables explain 99.5 percent of the variation in the number of defective motor shafts. As a final comparison of our two regressions, notice that the standard error of estimate, which measures the dispersion of the sample points around the fitted model,
```

Regression Analysis
The regression equation is
DEFECTS = 6.90 - 0.120 BATCHSIZ + 0.000950 SIZESQ

Predictor	Coef	Stdev	t-ratio	p
Constant	6.898	3.737	1.85	0.076
BATCHSIZ	-0.12010	0.03148	-3.82	0.001
SIZESQ	0.00094954	0.00006059	15.67	0.000

s=2.423 R - sq = 99.5%
Analysis of Variance

SOURCE	DF	SS	MS	F	p
Regression	2	34186	17093	2911.35	0.000
Error	27	159	6		
Total	29	34345			

```
\begin{tabular}{|rrrr|}
\hline ROW & DEFECTS & FITS2 & RESI2 \\
1 & .5 & 4.383 & 0.61728 \\
2 & 10 & 6.721 & 3.27869 \\
3 & 6 & 6.721 & -0.72131 \\
4 & 7 & 6.721 & 0.27869 \\
5 & 6 & 10.247 & -4.24682 \\
6 & 7 & 10.247 & -3.24682 \\
7 & 17 & 14.959 & 2.04074 \\
8 & 15 & 14.959 & 0.04074 \\
9 & 24 & 20.859 & 3.14138 \\
10 & 21 & 20.859 & 0.14138 \\
11 & 22 & 20.859 & 1.14138 \\
12 & 26 & 27.945 & -1.94491 \\
13 & 29 & 27.945 & 1.05509 \\
14 & 25 & 27.945 & -2.94491 \\
15 & 34 & 36.218 & -2.21811 \\
16 & 37 & 36.218 & 0.78189 \\
17 & 41 & 36.218 & 4.78189 \\
18 & 34 & 36.218 & -2.21811 \\
19 & 49 & 45.678 & 3.32175 \\
20 & 53 & 56.325 & -3.32530 \\
21 & 54 & 56.325 & -2.32530 \\
22 & 69 & 68.159 & 0.84072 \\
23 & 82 & 81.180 & 0.81982 \\
24 & 81 & 81.180 & -0.18018 \\
25 & 84 & 81.180 & 2.81982 \\
26 & 92 & 95.388 & -3.38800 \\
27 & 96 & 95.388 & 0.61200 \\
28 & 97 & 95.388 & 1.61200 \\
29 & 112 & 110.783 & 1.21725 \\
30 & & 110.783 & -1.78275 \\
\hline & & &
\end{tabular}

FIGURE 13-20 MINITAB OUTPUT OF RESIDUALS
is 7.560 for the straight-line model, but only 2.423 for the curved model. The curved model is far superior to the straight-line model, even though the latter explained 95 percent of the variation! And remember, it was the pattern we observed in the residuals for the straight-line model that suggested to us that a curved model would be more appropriate. The residuals for the curved model, shown in Figure 13-20, do not exhibit any pattern.

In our curved model, we got our second variable, (batch
Transforming variables size \()^{2}\), by doing a mathematical transformation of our first vari-
able, batch size. Because we squared a variable, the resulting
curved model is known as a second-degree (or quadratic) regression model. There are many other ways in which we can transform variables to get new variables, and most computer regression packages have these transformations built into them. You do not have to compute the transformed variables by hand, as we did in Table 13-8. Computer packages have the capability to compute all sorts of transformations of one or more variables: sums, differences, products, quotients, roots, powers, logarithms, exponentials, trigonometric functions, and many more.

\section*{HINTS \& ASSUMPTIONS}

There are many regressions (or models) that can explain the behavior of a dependent variable using a bunch of independent variables. Our job is to include the right explanatory variables to find the most effective one. We found that we can even introduce qualitative independent variables using dummy variables, and that we can transform variables to fit curves to the data. Warning: Even though the regression output in both of these cases reflects the enormous power of your computer, you still need to rely on your common sense to see whether there are non-random patterns in the residuals. Without that, you cannot tell whether there is something systematic going on in the data that you did not take into account. Hint: The secret of using statistics to make good decisions never changes. It's always an effective combination of data, computers, and common sense.

\section*{EXERCISES 13.5}

\section*{Self-Check Exercises}

SC 13-6 Cindy's, a popular fast-food chain, has recently experienced a marked change in its sales as a result of a very successful advertising campaign. As a result, management is now looking for a new regression model for its sales. The following data have been collected in the 12 weeks since the advertising campaign began.
\begin{tabular}{cccc}
\hline Time & Sales (in thousands) & Time & Sales (in thousands) \\
\hline 1 & 4,618 & 7 & 19,746 \\
2 & 3,741 & 8 & 34,215 \\
3 & 5,836 & 9 & 50,306 \\
4 & 4,367 & 10 & 65,717 \\
5 & 5.118 & 11 & 86,434 \\
6 & 8,887 & 12 & 105,464 \\
\hline
\end{tabular}
(a) Use the following Minitab output to determine the best-fitting regression of SALES on TIME:

The regression equation is
\[
\text { SALES }=-26233+9093 \text { TIME }
\]
\begin{tabular}{lcccc}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & -26233 & 9551 & -2.75 & 0.021 \\
TIME & 9093 & 1298 & 7.01 & 0.000 \\
\(\mathrm{~s}=15518\) & \multicolumn{2}{c}{ R-sq \(=83.1 \%\)} & &
\end{tabular}
\begin{tabular}{crrrcrrr}
ROW & SALES & FITS1 & RESI1 & ROW & SALES & FITS1 & RESI1 \\
1 & 4618 & -17140 & 21758 & 7 & 19746 & 37417 & -17671 \\
2 & 3741 & -8047 & 11788 & 8 & 34215 & 46510 & -12295 \\
3 & 5836 & 1046 & 4790 & 9 & 50306 & 55603 & -5297 \\
4 & 4367 & 10139 & -5772 & 10 & 65717 & 64696 & 1021 \\
5 & 5118 & 19231 & -14113 & 11 & 86434 & 73789 & 12645 \\
6 & 8887 & 28324 & -19437 & 12 & 105464 & 82881 & 22583
\end{tabular}
(b) Are you satisfied with your model as a predictor of SALES? Explain.
(c) The following output uses TIME and TIMESQR (TIME squared) as explanatory variables. Is this quadratic model better fit to the data? Explain.

The regression equation is
\[
\text { SALES }=13981-8142 \text { TIME + } 1326 \text { TIMESQR }
\]
\begin{tabular}{lrrrc}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & 13981 & 2720 & 5.14 & 0.000 \\
TIME & -8141.5 & 961.9 & -8.46 & 0.000 \\
TIMESQR & 1325.72 & 72.03 & 18.41 & 0.000
\end{tabular}
\[
s=2631 \quad \text { R-sq }=99.6 \%
\]
\begin{tabular}{crrrcrrr}
ROW & SALES & FITS2 & RESI2 & ROW & SALES & FITS2 & RESI2 \\
1 & 4618 & 7165 & -2547 & 7 & 19746 & 21950 & -2204 \\
2 & 3741 & 3001 & 740 & 8 & 34215 & 33695 & 520 \\
3 & 5836 & 1488 & 4348 & 9 & 50306 & 48090 & 2216 \\
4 & 4367 & 2626 & 1741 & 10 & 65717 & 65138 & 579 \\
5 & 5118 & 6416 & -1298 & 11 & 86434 & 84836 & 1598 \\
6 & 8887 & 12858 & -3971 & 12 & 105464 & 107186 & -1722
\end{tabular}

SC 13-7 Below are some data on consumption expenditures, CONSUMP; disposable income, INCOME; and sex of the head of household, SEX, of 12 randomly chosen families. The variable GENDER has been coded:
\[
\text { GENDER }=\left\{\begin{array}{l}
1 \text { if } \text { SEX }=' M '(\text { male }) \\
0 \text { if SEX }=' \mathrm{~F} \text { '(female })
\end{array}\right.
\]
\begin{tabular}{cccc}
\hline Consump & Income (\$) & Sex & Gender \\
\hline 37,070 & 45,100 & M & 1 \\
22,700 & 28,070 & M & 1 \\
24,260 & 26,080 & F & 0 \\
30,420 & 35,000 & M & 1 \\
17,360 & 18,860 & F & 0 \\
33,520 & 41,270 & M & 1 \\
26,960 & 32,940 & M & 1 \\
19,360 & 21,440 & F & 0 \\
35,680 & 44,700 & M & 1 \\
22,360 & 24,400 & F & 0 \\
28,640 & 33,620 & F & 0 \\
39,720 & 46,000 & M & 1 \\
\hline
\end{tabular}
(a) Use the following Minitab output to determine the best-fitting regression to predict CONSUMP from INCOME and GENDER.

The regression equation is
CONSUMP \(=2036+0.818\) INCOME -1664 GENDER
\begin{tabular}{lrrrc}
Predictor & Coef & Stdev & t-ratio & p \\
Constant & 2036 & 1310 & 1.55 & 0.155 \\
INCOME & 0.81831 & 0.04940 & 16.56 & 0.000 \\
GENDER & -1664.2 & 916.9 & -1.82 & 0.103 \\
\(s=1015\) & R-sq \(=98.4 \%\) & & &
\end{tabular}
(b) If disposable income is held constant, is there a significant difference in consumption between households headed by a male versus those where the head of household is female? State explicit hypotheses, test them at the 0.10 level, and state an explicit conclusion.
(c) Give an approximate 95 percent confidence interval for consumption for a household with disposable income of \(\$ 40,000\) headed by a male.

\section*{Basic Concepts}

13-31 Describe three situations in everyday life in which dummy variables could be used in regression models.
13-32 A restaurant owner with restaurants in two cities believes that revenue can be predicted from traffic flow in front of the restaurant with a quadratic model.
(a) Describe a quadratic model to predict revenue from traffic flow. State the form of the regression equation.
(b) It has been suggested that the city the restaurant is in has an effect on revenue. Extend your model from part (a) by using a dummy variable to incorporate the suggestion. Again, state the form of the regression model.
13-33 Suppose you have a set of data points to which you have fitted a linear regression equation. Even though the \(R^{2}\) for the line is very high, you wonder whether it would be a good idea to fit a second-degree equation to the data. Describe how you would make your decision based on
(a) A scattergram of the data.
(b) A table of residuals from the linear regression.

13-34 A statistician collected a set of 20 pairs of data points. He called the independent variable \(X_{1}\) and the dependent variable \(Y\). He ran a linear regression of \(Y\) on \(X_{1}\), and he was dissatisfied with the results. Because of some nonrandom patterns he observed in the residuals, he decided to square the values of \(X_{1}\); he called these squared values \(X_{2}\). The statistician then ran a multiple regression of \(Y\) on both \(X_{1}\) and \(X_{2}\). The resulting equation was
\[
\hat{Y}=200.4+2.79 X_{1}-3.92 X_{2}
\]

The value of \(s_{b_{1}}\) was 3.245 and the value of \(s_{b_{2}}\) was 1.53 . At a 0.05 level of significance, determine whether
(a) The set of unsquared values of \(X_{1}\) is a significant explanatory variable for \(Y\).
(b) The set of squared values of \(X_{1}\) is a significant explanatory variable for \(Y\).

\section*{Applications}

13-35 Dr. Linda Frazer runs a medical clinic in Philadelphia. She collected data on age, reaction to penicillin, and systolic blood pressure for 30 patients. She established systolic blood pressure as the dependent variable, age as \(X_{1}\) (independent variable) and reaction to penicillin as \(X_{2}\) (independent variable). Letting 0 stand for a positive reaction to penicillin and 1 stand for a negative reaction, she ran a multiple regression on her desktop personal computer. The predicting equation was
\[
\hat{Y}=6.7+3.5 X_{1}+0.489 X_{2}
\]
(a) After the regression had already been run, Dr. Frazer discovered that she had meant to code a positive reaction as 1 and a negative reaction as 0 . Does she have to rerun the regression? If so, why? If not, give her the equation she would have gotten if the variable had been coded as she had originally intended.
(b) If \(s_{b_{2}}\) has a value of 0.09 , does this regression provide evidence at a significance level of 0.05 that the reaction to penicillin is a significant explanatory variable for systolic blood pressure?
13-36 Excelsior Notebook computers is reexamining its inventory control policy. They need to accurately predict the number of the EXC-11E computers that will be ordered by suppliers in the weeks to come. The data for the last 15 weeks are presented below
\begin{tabular}{cc}
\hline Time & Demand (in 1000's) \\
\hline 1 & 6.7 \\
2 & 10.2 \\
3 & 13.4 \\
4 & 15.6 \\
5 & 18.2 \\
6 & 22.6 \\
7 & 30.5 \\
8 & 31.4 \\
9 & 38.7 \\
10 & 41.6 \\
11 & 48.7 \\
12 & 51.4 \\
13 & 55.8 \\
14 & 61.5 \\
15 & 68.9 \\
\hline
\end{tabular}
(a) Using any available computer package, fit a linear model with TIME as the independent variable and DEMAND as the dependent variable.
(b) Fit a quadratic model for the data. Is this model better? Explain.

13-37 Below are some data from a local pizza parlor on gross sales (SALES), promotion dollars (PROMO), and type of promotion, including radio, newspaper, or flyers. Assume the pizza parlor used only one type of promotion in any given week. The variables Type1 and Type2 have been coded:

TYPE1 \(=1\) if radio was used, 0 otherwise
TYPE2 \(=1\) if flyers were used, 0 otherwise
(when both TYPE1 and TYPE2 are 0 , that week's promotion budget was spent on newspaper advertisements).
\begin{tabular}{cccc}
\hline SALES (in 100s) & PROMO (in 100s) & TYPE1 & TYPE2 \\
\hline 12.1 & 3.8 & 0 & 1 \\
19.1 & 6.4 & 0 & 1 \\
26.9 & 7.9 & 0 & 0 \\
24.8 & 8.7 & 1 & 0 \\
37.1 & 12.4 & 1 & 0 \\
39.4 & 15.9 & 0 & 1 \\
32.5 & 11.3 & 0 & 0 \\
28.9 & 9.4 & 0 & 0 \\
28.8 & 8.6 & 1 & 0 \\
34.7 & 12.7 & 0 & 1 \\
38.4 & 14.3 & 0 & 0 \\
26.3 & 6.7 & 1 & 0 \\
\hline
\end{tabular}
(a) Using any available computer package, fit a regression model to predict SALES from PROMO, TYPE1, and TYPE2.
(b) State the fitted regression function.
(c) If PROMO is held constant, is there a significant difference between radio and newspaper? State appropriate hypotheses and test at a 0.05 level of significance.
(d) If PROMO is held constant, is there a significant difference between flyers and newspaper? State appropriate hypotheses and test at a 0.05 level of significance.
(e) Compute a 90 percent confidence interval for SALES in a week when \(\$ 800\) is spent using radio advertisements as the only type of promotion.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 13-6 From the computer output, we get the following results:
(a) Predicted SALES \(=-26233+9093\) TIME.
(b) Even though \(R^{2}\) is relatively high (\(83.1 \%\)), this is not a good model because of the pattern in the residuals. They start out large and positive, get smaller, go large and negative, and then grow positive again. Clearly a quadratic model would be better.
(c) Predicted SALES \(=13981-8141.5\) TIME + 1325.72TIMESQR.

This model is distinctly better. \(R^{2}\) has increased to \(99.6 \%\), and there is no pattern in the residuals.
SC 13-7 From the computer output, we get the following results:
(a) Predicted CONSUMP \(=2036+0.818\) INCOME -1664 GENDER.
(b) \(\mathrm{H}_{0}: B_{\text {GENDER }}=0 \quad \mathrm{H}_{1}: B_{\text {GENDER }} \neq 0 \quad \alpha=0.10\)

Since the prob value for our test \((0.103)\) is greater than \(\alpha(0.10)\), we cannot reject \(\mathrm{H}_{0}\); the gender of the head of the household is not a significant factor in explaining consumption.
(c) Predicted CONSUMP \(=2036+0.818(40,000)-1664(1)=\$ 33,092\). With 9 degrees of freedom, the \(t\) value for an approximate 95 percent confidence interval for CONSUMP is 2.262 , so that interval is
\[
\hat{Y} \pm t s_{e}=33,092 \pm 2.262(1,015)=33,092 \pm 2,296=(\$ 30,796, \$ 35,388) .
\]

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 13: Multiple Regression and Modeling Lee was pleased to be able to report to Nancy Rainwater that the defects occurring in the keyboard cases were indeed related to the daily recorded low temperature for Loveland. And the warehouse supervisor confirmed the explanation.
"Sure, the components warehouse is heated," Skip Tremont reported. "But it's only a couple of gasfired industrial heaters near the ceiling. When the weather's just a little bit chilly they work well enough. But on these real cold winter nights, the heaters run all night, but the warehouse gets pretty cold."
"So we need more heaters?" Nancy queried.
"Not necessarily-the problem is that all the warm air stays up high and it gets pretty cold close to the floor. Then when people start coming in and out during the work shift, the air eventually gets stirred up and the lower level-where everything is stored-comes up to room temperature."
"So we might be able to cure the problem by installing a couple of ceiling fans," interjected Tyronza Wilson.
"Just what I was thinking," said Skip, jumping in his pickup truck and heading for the builders' supply store. "They're pretty cheap-I can buy a couple out of my maintenance budget."
"A great example of quality management!" said Lee. "See, Nancy, the people doing the job already know the answer-you just have to empower them to implement a solution."
"Well, let me take you to lunch and have you talk to someone who has a more complicated problem."
Over a plate of tamales, Lee Azko met Sherrel Wright, the advertising manager. Sherrel was a new hire who had been with the company for 6 months. "You've met Margot, who's in charge of marketing. She handles the big picture. My job is to focus on the advertising budget and to target our ads so they result in the highest increase in sales."
"So how do you decide how much of which media to buy?" asked Lee.
"To tell the truth, before I came, things weren't very scientific. Your uncle will tell you that when Loveland first started out, the number of ads depended on cash flow. When I came on board, I could see that the ad budget went up or down according to how much money we'd made in the previous quarter. This meant that if we'd had a weak quarter, the company cut back on the ad budget for the next quarter. Margot kept telling them that was the opposite of a good strategy - there are many times when
increasing your advertising will get you out of a sales slump. But I guess they were always in a panic about cash flow. Now it looks as if we're going to get substantial new funding and we have to become more scientific about our advertising plans."
"So how do you decide where to run the ads?" Lee was anxious to learn more about marketing in the real world.
"Well, your uncle says it's an art. He tended to run ads in the magazines he enjoyed reading. But he's the first to admit that he wouldn't be a typical Loveland customer, so he's been pretty receptive to my presentations about cost per thousand, target readership, and so on. The computer monthly magazines are our staple, but there's more of them coming out each month and I have to be choosy about where we spend our dollars. Some of our competitors have been buying four or five-page spreads. We've tried that in a couple of issues but it's hard to know whether they're paying off any more than a single-page advertisement. Sales volume tends to lag behind effective advertising, so it's difficult to measure the success of an individual ad."
"You've already tried monitoring call volume on the 800 numbers, I suppose," Lee commented.
"Well, no. That would be a good idea. Do we keep those statistics?"
"Even if we don't, the phone company can easily give you a daily summary. We'd have to see whether call volume or sales volume was the best indicator." Lee was on a roll.
"Hey, it's not that simple," said Gratia Delaguardia, the company's chief engineer, bringing over a plate of burritos and pulling up a chair. "Mind if I join you?"
"Go right ahead." Sherrel wasn't about to cut off one of the two partners in Loveland Computers.
"No offense to you touchy-feely advertising types, but I think that forces outside of Loveland determine our sales. If the economy is growing, we do well. If there's a recession, we do less well."
"Does that fit with the early years?" asked Lee. "Looks like you had some spectacular growth during tough times in the early 80 s."
"And what the competitors do is crucial," Gratia said, ignoring Lee's comment. "You can check that easily. Look at the back numbers of the computer magazines and see how many ad pages they bought 'against' us. And you can also tell their price positions relative to ours for equivalent machines. It's all printed right there in each ad."

Lee made a mental note that this was going to be a lot easier than in many industries, where competitors' prices may be hidden in long-term contracts.
"How do we factor in our newspaper ads?" Sherrel wondered aloud. It costs us a lot to advertise in the Wall Street Journal, but it's my hunch that gives us an immediate payoff."
"Let's put our heads together and come up with a plan for how we're going to sort this out," said Lee, signaling the waiter for more picante sauce.

Study Questions: What measure of "advertising success" would you investigate? What factors would you consider in an analysis? How would you handle factors that appear to be irrelevant? In addition to the review of the historical data, are there any "experiments" you would recommend?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 13}

Analysis of Variance for Regression The procedure for computing the \(F\) ratio used to test the significance of the regression as a whole. It is related to the analysis of variance discussed in Chapter 11.
Coefficient of Multiple Correlation, \(\boldsymbol{R}\) The positive square root of \(R^{2}\)
Coefficient of Multiple Determination, \(\boldsymbol{R}^{2}\) The fraction of the variation of the dependent variable that
is explained by the regression. \(R^{2}\) measures how well the multiple regression fits the data.
Computed \(\boldsymbol{F}\) Ratio A statistic used to test the significance of the regression as a whole.
Computed \(\boldsymbol{t}\) A statistic used for testing the significance of an individual explanatory variable.
Dummy Variable A variable taking the value 0 or 1, enabling us to include in a regression model qualitative factors such as sex, marital status, and education level.
Modeling Techniques Methods for deciding which variables to include in a regression model and the different ways in which they can be included.
Multicollinearity A statistical problem sometimes present in multiple-regression analysis in which the reliability of the regression coefficients is reduced, owing to a high level of correlation between the independent variables.
Multiple Regression A statistical process by which several variables are used to predict another variable. Standard Error of a Regression Coefficient A measure of our uncertainty about the exact value of a regression coefficient.
Transformations Mathematical manipulations for converting one variable into a different form so we can fit curves as well as lines by regression.

\section*{Equations Introduced in Chapter 13}

13-1

13-2
13-3
13-4

13-5
\[
\begin{equation*}
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2} \tag{p. 666}
\end{equation*}
\]

In multiple regression, this is the formula for the estimating equation that describes the relationship between three variables: \(Y, X_{1}\), and \(X_{2}\). Picture a two-variable multiple-regression equation as a plane, rather than a line.
\[
\begin{equation*}
\Sigma Y=n a+b_{1} \Sigma X_{1}+b_{2} \Sigma X_{2} \tag{p. 667}
\end{equation*}
\]
\[
\begin{equation*}
\Sigma X_{1} Y=a \Sigma X_{1}+b_{1} \Sigma X_{1}^{2}+b_{2} \Sigma X_{1} X_{2} \tag{p. 667}
\end{equation*}
\]
\[
\begin{equation*}
\Sigma X_{2} Y=a \Sigma X_{2}+b_{1} \Sigma X_{1} X_{2}+b_{2} \Sigma X_{2}^{2} \tag{p. 667}
\end{equation*}
\]

Solving these three equations determines the values of the numerical constants \(a, b_{1}\) and \(b_{2}\) and thus the best-fitting multiple-regression plane in a two-variable multiple regression.
\[
\begin{equation*}
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+\ldots+b_{k} X_{k} \tag{p. 675}
\end{equation*}
\]

This is the formula for the estimating equation describing the relationship between \(Y\) and the \(k\) independent variables, \(X_{1}, X_{2}, \ldots, X_{k}\). Equation 13-1 is the special case of this equation for \(k=2\).
\[
\begin{equation*}
s_{e}=\sqrt{\frac{\Sigma(Y-\hat{Y})^{2}}{n-k-1}} \tag{p. 677}
\end{equation*}
\]

To measure the variation around a multiple-regression equation when there are \(k\) independent variables, use this equation to find the standard error of estimate. The standard error, in this case, has \(n-k-1\) degrees of freedom, owing to the \(k+1\) numerical constants that must be calculated from the data \(\left(a, b_{1}, \ldots, b_{k}\right)\).
\[
\begin{equation*}
Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k} \tag{p. 684}
\end{equation*}
\]

This is the population regression equation for the multiple regression. Its \(Y\) intercept is \(A\) and it has \(k\) slope coefficients, one for each of the independent variables.
\[
\begin{equation*}
Y=A+B_{1} X_{1}+B_{2} X_{2}+\cdots+B_{k} X_{k}+e \tag{p. 685}
\end{equation*}
\]

Because all the individual points in a population do not lie on the population regression equation, the individual data points will satisfy this equation, where \(e\) is a random disturbance from the population regression equation. On the average, \(e\) equals zero because disturbances above the population regression equation are canceled out by disturbances below it.
\[
\begin{equation*}
t=\frac{b_{i}-B_{i_{0}}}{s_{b_{i}}} \tag{p. 686}
\end{equation*}
\]

Once we have found \(s_{b_{i}}\) on the computer output, we can use this equation to standardize the observed value of the regression coefficient. Then we test hypotheses about \(B_{i}\) by comparing this standardized value with the critical value(s) of \(t\), with \(n-k-1\) degrees of freedom, from Appendix Table 2.
\[
\begin{equation*}
-t_{c} \leq t_{0} \leq t_{c} \tag{p. 688}
\end{equation*}
\]

To test whether a given independent variable is significant, we use this formula to see whether \(t_{0}\), the observed \(t\) value (computer output), lies between plus and minus \(t_{c}\), the critical \(t\) value (taken from the \(t\) distribution with \(n-k-1\) degrees of freedom). The variable is significant when \(t_{0}\) is not in the indicated range. If your computer package gives you prob values, the variable is significant when this value is less than \(\alpha\), the significance level of the test.
\[
\left.\begin{array}{ll}
\begin{array}{l}
\mathrm{SST}= \\
\mathrm{SSR}=\underset{\text { total sum of squares }}{\text { regression sum of squares }} \\
\quad \text { (the explained part of SST) }
\end{array} & =\sum(Y-\bar{Y})^{2} \tag{p. 690}\\
\mathrm{SSE}=\underset{Y}{\text { error sum of squares }} & =\sum(\hat{Y})^{2} \\
\quad \text { (the unexplained part of SST) } & =\sum(Y-\hat{Y})^{2}
\end{array}\right\}
\]
\[
\begin{equation*}
\mathrm{SST}=\mathrm{SSR}+\mathrm{SSE} \tag{p. 690}
\end{equation*}
\]

These two equations enable us to break down the variability of the dependent variable into two parts (one explained by the regression and the other unexplained) so we can test for the significance of the regression as a whole.
\[
\begin{equation*}
F=\frac{\mathrm{SSR} / k}{\mathrm{SSE} /(n-k-1)} \tag{p. 691}
\end{equation*}
\]

This \(F\) ratio, which has \(k\) numerator degrees of freedom and \(n-k-1\) denominator degrees of freedom, is used to test the significance of the regression as a whole. If \(F\) is bigger than the critical value, then we conclude that the regression as a whole is significant. The same conclusion holds if the ANOVA prob value (from the computer output) is less than \(\alpha\), the significance level of the test.

\section*{Review and Application Exercises}

13-38 Homero Martinez is a judge in Barcelona, Spain. He has recently called you in as a statistical consultant to investigate what purports to be a significant finding. He claims that the number of days a case is in court can be used to estimate the amount of damages that should be awarded. He has gathered data from his court and from the courts of several of his fellow judges. For each of the numbers 1 to 9 , he has located a case that took that many days in court, and he has determined the amount (in millions of pesetas) of damages awarded in that case.

The following Minitab results were generated when damages awarded were regressed on days in court.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{DAMAGES \(=-0.406+0.518\) DAYS} \\
\hline Predictor & Coef & Stdev & t-ratio & p \\
\hline Constant -0 & -0.4063 & 0.2875 & -1.41 & 0.201 \\
\hline DAYS 0 & 0.51792 & 0.0511 & 10.14 & 0.000 \\
\hline \(\mathrm{s}=0.3957\) & \(\mathrm{R}-\mathrm{sq}=\) & 3.6\% & & \\
\hline \multicolumn{5}{|l|}{Analysis of Variance} \\
\hline SOURCE & DF & SS & MS & F \\
\hline Regression & 1 & 16.094 & 16.094 & 102.77 \\
\hline Error & 7 & 1.096 & 0.157 & \\
\hline Total & 8 & 17.191 & & \\
\hline Row & DAMAGES & FITS1 & RESI1 & \\
\hline 1 & 0.645 & 0.1117 & 0.53333 & \\
\hline 2 & 0.750 & 0.6296 & 0.12042 & \\
\hline 3 & 1.000 & 1.1475 & -0.14750 & \\
\hline 4 & 1.300 & 1.6654 & -0.36542 & \\
\hline 5 & 1.750 & 2.1833 & -0.43333 & \\
\hline 6 & 2.205 & 2.7013 & -0.49625 & \\
\hline 7 & 3.500 & 3.2192 & 0.28083 & \\
\hline 8 & 4.000 & 3.7371 & 0.26292 & \\
\hline 9 & 4.500 & 4.2550 & 0.24500 & \\
\hline
\end{tabular}

Of course, you are quite pleased with these results, because \(R^{2}\) is very high. But the judge is not convinced that you are right. He says, "This is the worst job I've ever seen! I don't care if this line does fit the data I gave you, I can tell by looking at the output that it won't work for other data. If you can't do any better, just let me know, and I'll hire a smart statistician!"
(a) Why is the judge dissatisfied with the results?
(b) Suggest a better model that will satisfy the judge.

13-39 Jon Grant, supervisor of the Carven Manufacturing Facility, is examining the relationship among an employee's score on an aptitude test, prior work experience, and success on the job. An employee's prior work experience is studied and weighted, yielding a rating between 2 and 12. The measure of on-the-job success is based on a point system involving total output and efficiency, with a maximum possible value of 50 . Grant sampled six first-year employees and obtained the following:
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{1}}\) \\
Aptitude Test Score
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{X}_{\mathbf{2}}\) \\
Prior Experience
\end{tabular} & \begin{tabular}{c}
\(\boldsymbol{Y}\) \\
Performance Evaluation
\end{tabular} \\
\hline 74 & 5 & 28 \\
87 & 11 & 33 \\
69 & 4 & 21 \\
93 & 9 & 40 \\
81 & 7 & 38 \\
97 & 10 & 46 \\
\hline
\end{tabular}
(a) Develop the estimating equation best describing these data.
(b) If an employee scored 83 on the aptitude test and had a prior work experience of 7 , what performance evaluation would be expected?
13-40 Successful selling is as much an art as a science, but many sales managers believe that personal attributes are important in predicting sales success. Design Alley is a fullservice interior design store that sells custom blinds, carpets and wall coverings. The store manager, Dee Dempsey, contracted with a sales-force selection company to conduct prehiring tests on four aptitudes. Dee has collected sales growth data for 25 of the salespeople who were hired, along with the scores from the four tests of aptitude: creativity, mechanical ability, abstract thinking, and mathematical calculation. Using a desktop computer, Dee generated the following Minitab output for the best-fitting multiple regression:

(a) Write the regression equation for sales growth in terms of the four factors tested.
(b) How much of the variation in sales growth is explained by the aptitude tests?
(c) At a significance level of 0.05 , which of the aptitude tests are significant explanatory variables for sales growth?
(d) Is the overall model significant as a whole?
(e) Jay is a new applicant with scores on the four tests as follows: CREAT \(=12, \mathrm{MECH}=\) \(14, \operatorname{ABST}=18\), and MATH \(=30\). What sales growth is predicted by the model for this candidate?
13-41 The Money Bank desires to open new checking accounts for customers who will write at least 30 checks per month. To assist in selecting new customers, the bank has studied the relationship between the number of checks written and the age and annual income of eight of their present customers. AGE was recorded to the nearest year, and annual INCOME was recorded in thousands of dollars. The data are as follows:
\begin{tabular}{ccc}
\hline Checks & Age & Income \\
\hline 29 & 37 & 16.2 \\
42 & 34 & 25.4 \\
\hline & & (Continued)
\end{tabular}
(Contd.)
\begin{tabular}{ccc}
\hline Checks & Age & Income \\
\hline 9 & 48 & 12.4 \\
56 & 38 & 25.0 \\
2 & 43 & 8.0 \\
10 & 25 & 18.3 \\
48 & 33 & 24.2 \\
4 & 45 & 7.9 \\
\hline
\end{tabular}
(a) Develop an estimating equation to use age and income to predict the number of checks written per month.
(b) How many checks per month would be expected from a 35-year-old with annual income of \(\$ 22,500\) ?
The proportion of disposable income that consumers spend on different product categories is not the same in all towns-for example, in college towns, sales of pizza are likely to be above average, while the sales of new cars may be below average. In Exercises 13-42 through 13-45, you will construct regressions to try to explain the variability of the EATING variable. (An important technical note: Some simple statistical packages have difficulty with large numbers when fitting regressions. If necessary, you can avoid problems by changing the units of the data from thousands of dollars to millions of dollars. For example, for Salem, Oregon, the EATING variable becomes \(\$ 216.666\) million instead of \(\$ 216,666\) thousand.)
13-42 Develop two simple regression models for EATING, using the population and the median effective buying income per household (EBI) as the independent variables. Which independent variable accounts for more of the variation in the observed sales?
13-43 Develop a multiple regression for EATING using both POP and EBI as the explanatory variables. What fraction of the variation in EATING is explained by this model? Is the regression significant as a whole at \(\alpha=0.05\) ?
13-44 Include SINGLE (the number of single-person households in the area) as a third explanatory variable. How much of the variation in EATING is explained now? Is this a significant improvement over the model developed in Exercise 13-43? (Is SINGLE a significant explanatory variable in this regression?)
13-45 Because POP was no longer significant in the model developed in Exercise 13-44, run a regression using only EBI and SINGLE as explanatory variables. Use this model to find an approximate 90 percent confidence interval for EATING in a metropolitan area with 20,000 single-person households and a median effective buying income of \(\$ 30,000\).
13-46 Dr. Harden Ricci is a veterinarian in Sacramento, California. Recently, he has been trying to develop a predicting equation for the amount of anesthesia (measured in milliliters) to be used in operations. He feels that the amount used will depend on the weight of the animal (in pounds), length of the operation (in hours), and whether the animal is a cat (coded 0) or a dog (coded 1). He used Minitab to run a regression on his data from 13 recent operations, and got these results:

(a) What is the predicting equation for amounts of anesthesia, as given by Minitab?
(b) Give an approximate 95 percent confidence interval for the amount of anesthesia to be used in a 90 -minute operation on a 25 -pound dog.
(c) At a significance level of 10 percent, is the amount of anesthesia needed significantly different for dogs and cats?
(d) At a significance level of 5 percent, is this regression significant as a whole?

13-47 David Ichikawa is a real estate agent who works with developers who build new houses. Although much of his job concerns marketing the finished houses, he also consults with builders on how much they should pay for each lot. In one residential neighborhood, he has collected the following information on closed sales for buildable lots: Recorded sales PRICE (in \(\$ 1,000 \mathrm{~s}\)), SIZE (linear feet of street frontage) and an indicator variable (0 or 1) for whether each lot has a VIEW. From the tax rolls, he can estimate the lot area from the square of an assessment made based on street frontage.
\begin{tabular}{cccc}
\hline PRICE & SIZE & AREA \(\left(=\right.\) SIZE \(^{2}\)) & VIEW \\
\hline 56.2 & 175 & 30625 & 1 \\
42.5 & 125 & 15625 & 1 \\
67.5 & 200 & 40000 & 1 \\
39.0 & 115 & 13225 & 1 \\
33.3 & 125 & 15625 & 0 \\
29.0 & 100 & 10000 & 0 \\
30.0 & 108 & 11664 & 0 \\
48.0 & 170 & 28900 & 0 \\
44.3 & 160 & 25600 & 0 \\
\hline
\end{tabular}
(a) Using MINITAB, develop the best-fitting regression line for these data.
(b) What fraction of the variation in PRICE is accounted for in this equation?
(c) Find a 90 percent confidence interval for the increase in market value attributable to having a VIEW.
(d) Was it helpful to use AREA (the square of SIZE) in the regression? Explain.

13-48 Camping-R-Us, a newcomer to the outdoor equipment field, plans to market a two-person, three-season tent for weekend campers. To set a fair price, they look at eight comparable tents currently on the market, in terms of weight and square footage. The data follow:
\begin{tabular}{lccc}
\hline & Weight (oz) & Sq Ft. & Price \\
\hline Kelty Nautilus & 94 & 37 & \(\$ 225\) \\
North Face Salamander & 90 & 36 & 240 \\
REI Mountain Hut & 112 & 35 & 225 \\
Sierra Designs Meteor Light & 92 & 40 & 220 \\
Eureka! Cirrus 3 & 93 & 48 & 167 \\
Sierra Designs Clip 3 & 98 & 40 & 212 \\
Eureka! Timberline Deluxe & 114 & 40 & 217 \\
Diamond Brand Free Spirit & 108 & 35 & 200 \\
\hline
\end{tabular}
(a) Calculate the least-squares equation to predict price from weight and square footage.
(b) If Camping-R-Us' tent weighs 100 ounces and has 46 square feet of space, how much should they charge?
13-49 The Carolina Athletic Association is interested in organizing the First Annual Tarheel Triathlon. To attract top competitors, they wish to establish cash incentives for the top finishers by setting times for both men and women overall winners. Because this course has never been run before, the CAA has chosen 10 races of varying lengths that they consider comparable in weather and course conditions.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Triathlon} & \multicolumn{3}{|c|}{Miles} & \multicolumn{2}{|l|}{Winning Times (Hr:Min:Sec)} \\
\hline & Swim & Bike & Run & Men & Women \\
\hline Bud Light Ironman & 2.4 & 112 & 26.2 & 8:09:15 & 9:00:56 \\
\hline World's Toughest & 2.0 & 100 & 18.6 & 8:25:09 & 9:49:04 \\
\hline Muncie Endurathon & 1.2 & 55.3 & 13.1 & 4:05:30 & 4:40:06 \\
\hline Texas Hill Country & 1.5 & 48 & 10.0 & 3:24:24 & 3:55:02 \\
\hline Leon's Q.E.M. & 0.93 & 24.8 & 6.2 & 1:54:32 & 2:07:10 \\
\hline Sacramento International & 0.93 & 24.8 & 6.2 & 1:48:16 & 2:00:45 \\
\hline Malibu & 0.50 & 18 & 5.0 & 1:19:25 & 1:30:19 \\
\hline Bud Light Endurance & 2.4 & 112 & 26.2 & 9:26:30 & 11:00:29 \\
\hline Wendy's & 0.5 & 20 & 4.0 & 1:14:59 & 1:23:09 \\
\hline Mammoth/Snowcreek & 0.6 & 25 & 6.2 & 1:56:07 & 2:11:49 \\
\hline
\end{tabular}
(a) Determine the regression equations to predict men's and women's winning times, in terms of the length of each individual race segment. (Convert the times to minutes for use in calculations.)
(b) Predict the winning times if the Tarheel Triathlon comprises a 1-mile swim, 50-mile bike ride, and a \(12.5-\) mile run.
(c) If the CAA wants to use the lower limit of an approximate 90 percent confidence interval for the incentive times for men and women, what would these times be?
13-50 Peoria, Illinois, is in the process of modifying its tax structure. Twelve cities of comparable size and economic structure were surveyed as to specific taxes and the associated total tax revenue.
(a) Use the following data to determine the least-squares equation relating revenue to the three tax rates.
\begin{tabular}{lclc}
\hline Property & \begin{tabular}{c}
Tax Rates \\
Sales
\end{tabular} & Gasoline & \begin{tabular}{c}
Tax Revenue \\
(\$ thousands)
\end{tabular} \\
\hline \(1.639 \%\) & \(2.021 \%\) & \(3.300 \not \subset /\) gal & \(\$ 28,867.5\) \\
1.686 & 1.972 & 3.300 & \(28,850.2\) \\
1.639 & 2.041 & 3.300 & \(29,011.5\) \\
1.639 & 2.363 & 0.131 & \(28,806.5\) \\
1.639 & 2.200 & 2.540 & \(28,821.7\) \\
1.639 & 2.201 & 1.560 & \(28,774.6\) \\
1.654 & 2.363 & 0.000 & \(28,803.2\) \\
2.643 & 1.000 & 3.300 & \(28,685.7\) \\
2.584 & 1.091 & 2.998 & \(28,671.8\) \\
2.048 & 1.752 & 1.826 & \(28,671.0\) \\
2.176 & 1.648 & 1.555 & \(28,627.4\) \\
1.925 & 1.991 & 0.757 & \(28,670.7\) \\
\hline
\end{tabular}
(b) Two proposals have been submitted for Peoria. Estimate total tax revenues if the tax rates are
\begin{tabular}{lcll}
\hline & Property & Sales & Gasoline \\
Proposal A & \(2.763 \%\) & \(1.000 \%\) & \(1.0 \nless / \mathrm{gal}\) \\
Proposal B & 1.639 & 2.021 & 3.3 \\
\hline
\end{tabular}

Determine which proposal the city should adopt.
13-51 The National Cranberry Cooperative, an organization formed and owned by growers of cranberries to process and market their berries, is trying to establish a relationship between average price per barrel received in any given year and the total number of barrels sold in the previous year (divided into fresh sales and berries sold for processing).
(a) Calculate the least-squares equation to predict price from these sales figures.
\begin{tabular}{ccc}
\hline \multicolumn{2}{c}{\begin{tabular}{c}
Sales \\
(in thousands of barrels)
\end{tabular}} & \begin{tabular}{c}
Following \\
Year's
\end{tabular} \\
\cline { 1 - 2 } Fresh & Process & Price \\
\hline 844 & 256 & 15.50 \\
965 & 335 & 17.15 \\
470 & 672 & 11.71 \\
\hline
\end{tabular}
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Sales \\
(in thousands of barrels)
\end{tabular} & \begin{tabular}{c}
Following \\
Year's
\end{tabular} \\
\cline { 1 - 2 } Fresh & Process & Price \\
\hline 320 & 460 & 9.79 \\
528 & 860 & 10.90 \\
340 & 761 & 15.88 \\
\hline
\end{tabular}
(b) Predict next year's price per barrel if this year's sales are 980 (fresh) and 360 (process).

13-52 Cellular phones were introduced in Europe in 1980, and since then, their growth in popularity has been phenomenal. The number of subscribers in subsequent years is contained in the following table.
\begin{tabular}{rrrrrr}
1981 & 3,510 & 1984 & 143,300 & 1987 & 877,850 \\
1982 & 34,520 & 1985 & 288,420 & 1988 & \(1,471,200\) \\
1983 & 80,180 & 1986 & 507,930 & 1989 & \(2,342,080\)
\end{tabular}

Using the number of years since the introduction of cellular phones as the independent variable (i.e., \(1981=1\), etc.), find the least-squares linear equation relating these two variables. Look at the residuals-do they have a noticeable pattern? Find the least-squares quadratic equation. Which appears to be a better fit?
13-53 While shopping for a new down sleeping bag, Fred Montana is curious about what features of a bag are most important in determining the bag's price. He picks six Gore-Tex sleeping bags and decides to run a linear regression analysis to find out.
\begin{tabular}{lccccc}
\hline & \begin{tabular}{c}
Down Fill \\
\((\mathbf{o z})\)
\end{tabular} & \begin{tabular}{c}
Total Weight \\
\((\mathbf{l b})\)
\end{tabular} & \begin{tabular}{c}
Loft \\
\((\mathbf{i n})\).
\end{tabular} & \begin{tabular}{c}
Temp. Rating \\
\(\left({ }^{\circ} \mathbf{F}\right)\)
\end{tabular} & \begin{tabular}{c}
Price \\
\((\$)\)
\end{tabular} \\
\hline Swallow & 14.0 & 2.00 & 5.5 & 20 & 255 \\
Snow Bunting & 18.0 & 2.25 & 6.5 & 10 & 285 \\
Puffin & 24.0 & 3.13 & 6.5 & 10 & 329 \\
Widgeon & 25.5 & 3.25 & 7.5 & 10 & 395 \\
Tern & 32.5 & 3.63 & 9.0 & -30 & 459 \\
Snow Goose & 41.0 & 4.25 & 10.0 & -40 & 509 \\
\hline
\end{tabular}
(a) Regress price on ounces of down fill, total weight, loft, and temperature rating. Using the prob values, determine which of these variables are significant at the \(\alpha=0.01\) level.
(b) What about the regression as a whole? Use the ANOVA prob value, again at the \(\alpha=0.01\) level, to determine whether the regression as a whole is significant.
(c) What problem might there be in using all these variables together? Do the answers to parts (a) and (b) seem to indicate this problem might be present?

\section*{Questions on Running Case: SURYA Bank Pvt. Ltd.}
1. Build a regression model to study the level of satisfaction of the customers with e-services provided by their banks on the basis of the importance of e-facilities on bank selection.
[Regress Q9 on Q7(a)-(m)]
2. Is there evidence of presence of multicollinearity in the data?
3. If there is multicollinearity problem, what remedial action, if any, would you take?

\section*{Flow Chart: Multiple Regression and Modeling}

\section*{Nonparametric Methods}

\section*{LEARNING OBJECTIVES}

After reading this chapter, you can understand:
- To test hypotheses when we cannot make any assumptions about the distribution from which we are sampling
- To know which distribution-free (nonparametric) tests are appropriate for different situations
- To use and interpret each of six standard nonparametric hypothesis tests
- To learn the advantages and disadvantages of nonparametric tests

\section*{CHAPTER CONTENTS}

14.1 Introduction to Nonparametric
 Statistics 734
14.2 The Sign Test for Paired Data 736
14.3 Rank Sum Tests: The Mann-Whitney \(U\) Test and the Kruskal-Wallis Test 744
14.4 The One-Sample Runs Test 758
14.5 Rank Correlation 767
14.6 The Kolmogorov-Smirnov Test 779
- Statistics at Work 786
- Terms Introduced in Chapter 14787
- Equations Introduced in Chapter 14788
- Review and Application Exercises 789
- Flow Chart: Nonparametric Methods 800

Although the effect of air pollution on health is a complex problem, an international organization has decided to make a preliminary investigation of average year-round quality of air and the incidence of pulmonary-related diseases. A preliminary study ranked 11 of the world's major cities from 1 (worst) to 11 (best) on these two variables.
\begin{tabular}{lrrrrrrrrrrr}
\hline & \multicolumn{10}{c}{ City } \\
& A & B & C & D & E & F & G & H & I & J & K \\
\hline Air-quality rank & 4 & 7 & 9 & 1 & 2 & 10 & 3 & 5 & 6 & 8 & 11 \\
Pulmonary-disease rank & 5 & 4 & 7 & 3 & 1 & 11 & 2 & 10 & 8 & 6 & 9 \\
\hline
\end{tabular}

The health organization's data are different from any we have seen so far in this book: They do not give us the variable used to determine these ranks. (We don't know whether the rank of pulmonary disease is a result of pneumonia, emphysema, or other illnesses per 100,000 population.) Nor do we know the values (whether City \(D\) has twice as much pollution as City K or 20 times as much). If we knew the variables and their values, we could use the regression techniques of Chapter 12.

Unfortunately, that is not the case; but even without any knowledge of variables or values, we can use the techniques in this chapter to help the health organization with its problem.

\subsection*{14.1 INTRODUCTION TO NONPARAMETRIC STATISTICS}

The majority of hypothesis tests discussed so far have made inferences about population parameters, such as the mean and the proportion. These parametric tests have used the parametric statistics of samples that came from the population being tested. To formulate these tests, we made restrictive assumptions about the populations from which we drew our samples. In each case in Chapters 8 and 9 , for example, we assumed that our samples either were large or came from normally distributed populations. But populations are not always normal. And even if a goodness-of-fit test (Chapter 11) indicates that a population is approximately normal, we cannot always be sure we're right because the test is not 100 percent reliable. Clearly, there are certain situations in which the use of the normal curve is not appropriate. For these cases, we need alternatives to the parametric statistics and the specific hypothesis tests we've been using so far.

Fortunately, in recent times statisticians have developed use-

\section*{Parametric statistics}

Shortcomings of parametric statistics
ful techniques that do not make restrictive assumptions about the

\section*{Nonparametric statistics} ful techniques that do not make restrictive assumptions about the shape of population distributions. These are known as distri-
bution-free or, more commonly, nonparametric tests. The hypotheses of a nonparametric test are concerned with something other than the value of a population parameter. A large number of these tests exist, but this chapter will examine only a few of the better known and more widely used ones:
1. The sign test for paired data, where positive or negative signs are substituted for quantitative values.
2. A rank sum test, often called the Mann-Whitney U test, which can be used to determine whether two independent samples have been drawn from the same population. It uses more information than the sign test.
3. Another rank sum test, the Kruskal-Wallis test, which generalizes the analysis of variance discussed in Chapter 11 to enable us to dispense with the assumption that the populations are normally distributed.
4. The one-sample runs test, a method for determining the randomness with which sampled items have been selected.
5. Rank correlation, a method for doing correlation analysis when the data are not available to use in numerical form, but when information is sufficient to rank the data first, second, third, and so forth.
6. The Kolmogorov-Smirnov test, another method for determining the goodness of fit between an observed sample and a theoretical probability distribution.

\section*{Advantages of Nonparametric Methods}

Nonparametric methods have a number of clear advantages over parametric methods:

\section*{Advantages of nonparametric methods}
1. They do not require us to make the assumption that a population is distributed in the shape of a normal curve or another specific shape.
2. Generally, they are easier to do and to understand. Most nonparametric tests do not demand the kind of laborious computations often required, for example, to calculate a standard deviation. A nonparametric test may ask us to replace numerical values with the order in which those values occur in a list, as has been done in Table 14-1. Obviously, dealing computationally with 1, 2, 3, 4, and 5 takes less effort than working with 13.33, 76.50, 101.79, 113.45, and 189.42.
3. Sometimes even formal ordering or ranking is not required. Often, all we can do is describe one outcome as "better" than another. When this is the case, or when our measurements are not as accurate as is necessary for parametric tests, we can use nonparametric methods.

\section*{Disadvantages of Nonparametric Methods}

Two disadvantages accompany the use of nonparametric tests:
1. They ignore a certain amount of information. We have demonstrated how the values \(1,2,3,4\), and 5 can replace the numbers \(13.33,76.50,101.79,113.45\), and 189.42 . Yet if we represent " 189.42 " by " 5 ," we lose information that is contained in the value of 189.42 . Notice that in our ordering of the values 13.33, \(76.50,101.79,113.45\), and 189.42 , the value 189.42 can become \(1,189.42\) and still be the fifth, or largest, value in the list. But if this list is a data set, we can learn more knowing that the highest value is \(1,189.42\) instead of 189.42 than we can by representing both of these numbers by the value 5 .
2. They are often not as efficient or "sharp" as parametric tests. The estimate of an interval at the 95 percent confidence level using a nonparametric test may be twice as large as the estimate using a parametric test such as those in Chapters 8 and 9 . When we use nonparametric tests, we make a trade-off: We lose sharpness in estimating intervals, but we gain the ability to use less information and to calculate faster.

TABLE 14-1 CONVERTING PARAMETRIC VALUES TO NONPARAMETRIC RANKS
\begin{tabular}{lccccc}
\hline Parametric value & 113.45 & 189.42 & 76.50 & 13.33 & 101.79 \\
Nonparametric value & 4 & 5 & 2 & 1 & 3 \\
\hline
\end{tabular}

\section*{EXERCISES 14.1}

\section*{Basic Concepts}

14-1 What is the difference between the kinds of questions answered by parametric tests and those answered by nonparametric tests?
14-2 The null hypothesis most often examined in nonparametric tests (choose one answer)
(a) Includes specification of a population's parameters.
(b) Is used to evaluate some general population aspect.
(c) Is very similar to that used in regression analysis.
(d) Simultaneously tests more than two population parameters.

14-3 What are the major advantages of nonparametric methods over parametric methods?
14-4 What are the primary shortcomings of nonparametric tests?
14-5 George Shoaf is an interviewer with a large insurance company. George works in the company's home office, and to make the best use of his time, the company requires the receptionist to schedule his interviews according to a precise schedule. There is no 5-minute period unaccounted for, including telephone calls. Unfortunately, the receptionist has been underestimating the amount of time interviews will take, and she has been scheduling too many prospective employees, resulting in long waits in the lobby. Although waiting periods may be short in the morning, as the day progresses and the interviewer gets further behind, the waits become longer. In assessing the problem, should the interviewer assume that the successive waiting times are normally distributed?

\section*{Applications}

14-6 International Communications Corporation is planning to change the benefits package offered to employees. The company is considering different combinations of profit-sharing, healthcare, and retirement benefits. Samples of a broad range of benefit combinations were described in a pamphlet and distributed among employees, whose preferences were then recorded. The results follow:
\begin{tabular}{llllllllllllllllllll}
\hline Rank & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\begin{tabular}{l}
Profit-sharing- \\
Health-Care-
\end{tabular} & & & & & & & & & & & & & & & & & & & \\
\hline \begin{tabular}{l}
Retirement
\end{tabular} \\
\begin{tabular}{l}
Combination
\end{tabular} & 15 & 5 & 14 & 4 & 6 & 16 & 7 & 8 & 13 & 3 & 17 & 18 & 12 & 2 & 9 & 1 & 11 & 19 & 10 \\
\begin{tabular}{l}
Number of \\
Preferences
\end{tabular} & 52 & 49 & 39 & 38 & 37 & 36 & 32 & 29 & 26 & 25 & 24 & 18 & 15 & 15 & 14 & 10 & 10 & 10 & 9 \\
\hline
\end{tabular}

Will the company sacrifice any real information by using the ranking test as its decision criterion? (Hint: You might graph the data.)

\subsection*{14.2 THE SIGN TEST FOR PAIRED DATA}

One of the easiest nonparametric tests to use is the sign test. Its
Use the sign test for paired data name comes from the fact that it is based on the direction (or signs for pluses or minuses) of a pair of observations, not on their numerical magnitude.

Consider the result of a test panel of 40 college juniors evaluating the effectiveness of two types of classes: large lectures by full professors and small sections by graduate assistants. Table 14-2 lists the responses to this request: "Indicate how you rate the effectiveness in transmitting knowledge of these two types of classes by giving them a number from 4 to 1 . A rating of 4 is excellent and 1 is poor." In this case, the sign test can help us determine whether students feel there is a difference between the effectiveness of the two types of classes.

We can begin, as we have in Table 14-2, by converting the evaluations of the two teaching methods into signs. Here a plus

\section*{Converting values to signs} sign means the student prefers large lectures, a minus sign indicates a preference for small sections, and a zero represents a tie (no preference). If we count the bottom row of Table 14-2, we get these results:
\begin{tabular}{ll}
Number of + signs & 19 \\
Number of - signs & 11 \\
Number of 0s & \(\underline{10}\) \\
Total sample size & \(\mathbf{4 0}\)
\end{tabular}

\section*{Stating the Hypotheses}

We are using the sign test to determine whether our panel can dis-
Finding the sample size cern a real difference between the two types of classes. Because we are testing perceived differences, we shall exclude tie evaluations (0s). We can see that we have 19 plus signs and 11 minus signs, for a total of 30 usable responses. If there is no difference between the two types of classes, \(p\) (the probability that the first score exceeds the second score) would be 0.5 , and we would expect to get about 15 plus signs and 15 minus signs. We would set up our hypotheses like this:
\[
\begin{aligned}
& \mathrm{H}_{0}: p=0.5 \leftarrow \text { Null hypothesis: There is no difference between the two types of classes } \\
& \mathrm{H}_{1}: p \neq 0.5 \leftarrow \text { Alternative hypothesis: There is a difference between the two types of classes }
\end{aligned}
\]

If you look carefully at the hypotheses, you will see that the situation is similar to the fair-coin toss we discussed in

\section*{Choosing the distribution} Chapter 4. If we tossed a fair coin 30 times, \(p\) would be 0.5 , and we would expect about 15 heads and 15 tails. In that case, we would use the binomial distribution as the appropriate sampling distribution. You may also remember that when \(n p\) and \(n q\) are each at least 5 . we can use the normal distribution to approximate the binomial. This is just the case with the results from our panel of college juniors. Thus, we can apply the normal distribution to our test of the two teaching methods.
\[
\begin{aligned}
& p_{\mathrm{H}_{0}}=0.5 \leftarrow \text { Hypothesized proportion of the population that prefers large lectures } \\
& q_{\mathrm{H}_{0}}=0.5 \leftarrow \text { Hypothesized proportion of the population Setting up the problem } \\
& \text { that prefers small sections (} q_{\mathrm{H}_{0}}=1-q_{\mathrm{H}_{0}} \text {) } \\
& n=30 \quad \leftarrow \text { Sample size } \\
& \bar{p}=0.633 \leftarrow \text { Proportion of successes in the sample (19/30) } \\
& \bar{q}=0.367 \leftarrow \text { Proportion of failures in the sample (11/30) }
\end{aligned}
\]

\section*{TABLE 14-2 EVALUATION BY 40 STUDENT OF TWO TYPES OF CLASSES}
\begin{tabular}{lrrrrrrrrrrrrrrrrr}
\hline Panel-member number & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
Score for large lectures (1) & 2 & 1 & 4 & 4 & 3 & 3 & 4 & 2 & 4 & 1 & 3 & 3 & 4 & 4 & 4 & 1 \\
Score for small sections (2) & 3 & 2 & 2 & 3 & 4 & 2 & 2 & 1 & 3 & 1 & 2 & 3 & 4 & 4 & 3 & 2 \\
Sign of score 1 minus score 2 & - & - & + & + & - & + & + & + & + & 0 & + & 0 & 0 & 0 & + & - \\
\hline
\end{tabular}

\section*{Testing a Hypothesis of No Difference}

Suppose the chancellor's office wants to test the hypothesis that Calculating the standard error there is no difference between student perception of the two types of classes at the 0.05 level of significance. We shall conduct this test using the methods we introduced in Chapter 8. The first step is to calculate the standard error of the proportion:
\[
\begin{align*}
\sigma_{\bar{p}} & =\sqrt{\frac{p q}{n}} \tag{7-4}\\
& =\sqrt{\frac{(0.5)(0.5)}{30}} \\
& =\sqrt{0.00833} \\
& =0.091 \leftarrow \text { Standard error of the proportion }
\end{align*}
\]

Because we want to know whether the true proportion is larger
Illustrating the test graphically or smaller than the hypothesized proportion, this is a two-tailed test. Figure 14-1 illustrates this hypothesis test graphically. The two colored regions represent the 0.05 level of significance.

Next we use Equation 6-2 to standardize the sample proportion, \(\bar{p}\), by subtracting \(p_{\mathrm{H}_{0}}\), the hypothesized proportion, and dividing by \(\sigma_{\bar{p}}\), the standard error of the proportion.

FIGURE 14-1 TWO-TAILED HYPOTHESIS TEST OF A PROPORTION AT THE 0.05 LEVEL OF SIGNIFICANCE
\begin{tabular}{rrrrrrrrrrrrrrrrrrrrrrrrrr}
\hline 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
1 & 2 & 2 & 4 & 4 & 4 & 4 & 3 & 3 & 2 & 3 & 4 & 3 & 4 & 3 & 1 & 4 & 3 & 2 & 2 & 2 & 1 & 3 & 3 \\
3 & 2 & 3 & 3 & 1 & 4 & 3 & 3 & 2 & 2 & 1 & 1 & 1 & 3 & 2 & 2 & 4 & 4 & 3 & 3 & 1 & 1 & 4 & 2 \\
- & 0 & - & + & + & 0 & + & 0 & + & 0 & + & + & + & + & + & - & 0 & - & - & - & + & 0 & - & + \\
\hline
\end{tabular}
\[
\begin{align*}
z & =\frac{\bar{p}-p_{\mathrm{H}_{0}}}{\sigma_{\bar{p}}} \tag{6-2}\\
& =\frac{0.633-0.5}{0.091} \\
& =1.462
\end{align*}
\]

Placing this standardized value, 1.462, on the \(z\) scale shows that the sample proportion falls well within the acceptance region

Interpreting the results as shown in Figure 14-2. Therefore, the chancellor should accept the null hypothesis that students perceive no difference between the two types of classes.

A sign test such as this is quite simple to do and applies to both one-tailed and two-tailed tests. It is usually based on the binomial distribution. Remember, however, that we were able to use the normal approximation to the binomial as our sampling distribution because \(n p\) and \(n q\) were both greater than 5. When these conditions are not met, we must use the binomial instead.

\section*{HINTS \& ASSUMPTIONS}

Nonparametric tests are very convenient when the real world presents distribution-free data on which a decision must be taken. Hint: Note that the sign test is just another application of the familiar normal approximation to the binomial, using + and - instead of "success" and "failure."

FIGURE 14-2 TWO-TAILED HYPOTHESIS TEST AT THE 0.05 LEVEL OF SIGNIFICANCE, ILLUSTRATING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE PROPORTION

\section*{EXERCISES 14.2}

\section*{Self-Check Exercises}

SC 14-1 The following data show employees' rates of defective work before and after a change in the wage incentive plan. Compare the following two sets of data to see whether the change lowered the defective units produced. Use the 0.10 level of significance.
\begin{tabular}{lrrrrrrrrrrrr}
\hline Before & 8 & 7 & 6 & 9 & 7 & 10 & 8 & 6 & 5 & 8 & 10 & 8 \\
After & 6 & 5 & 8 & 6 & 9 & 8 & 10 & 7 & 5 & 6 & 9 & 8 \\
\hline
\end{tabular}

SC 14-2 After collecting data on the amount of air pollution in Los Angeles, the Environmental Protection Agency decided to issue strict new rules to govern the amount of hydrocarbons in the air. For the next year, it took monthly measurements of this pollutant and compared them to the preceding year's measurements for corresponding months. Based on the following data, does the EPA have enough evidence to conclude with 95 percent confidence that the new rules were effective in lowering the amount of hydrocarbons in the air? To justify these laws for another year, it must conclude at \(\alpha=0.10\) that they are effective. Will these laws still be in effect next year?
\begin{tabular}{lcc}
\hline & Last Year* & This Year \\
\hline Jan. & 7.0 & 5.3 \\
Feb. & 6.0 & 6.1 \\
Mar. & 5.4 & 5.6 \\
April & 5.9 & 5.7 \\
May & 39 & 3.7 \\
June & 5.7 & 4.7 \\
July & 6.9 & 6.1 \\
Aug. & 7.6 & 7.2 \\
Sept. & 6.3 & 6.4 \\
Oct. & 5.8 & 5.7 \\
Nov. & 5.1 & 4.9 \\
Dec. & 5.9 & 5.8 \\
\hline
\end{tabular}
*Measured in parts per million.

\section*{Applications}

14-7 The following data show employees' satisfaction levels (as a percentage) before and after their company was bought by a larger firm. Did the buyout increase employee satisfaction? Use the 0.05 significance level.
\begin{tabular}{lllllllllll}
\hline Before & 98.4 & 96.6 & 82.4 & 96.3 & 75.4 & 82.6 & 81.6 & 91.4 & 90.4 & 92.4 \\
After & 82.4 & 95.4 & 94.2 & 97.3 & 77.5 & 82.5 & 81.6 & 84.5 & 89.4 & 90.6 \\
\hline
\end{tabular}

14-8 Use the sign test to see whether there is a difference between the number of days required to collect an account receivable before and after a new collection policy. Use the 0.05 significance level.
\begin{tabular}{llllllllllllllll}
\hline Before & 33 & 36 & 41 & 32 & 39 & 47 & 34 & 29 & 32 & 34 & 40 & 42 & 33 & 36 & 29 \\
After & 35 & 29 & 38 & 34 & 37 & 47 & 36 & 32 & 30 & 34 & 41 & 38 & 37 & 35 & 28 \\
\hline
\end{tabular}

14-9 A light-aircraft engine repair shop switched the payment method it used from hourly wage to hourly wage plus a bonus computed on the time required to disassemble, repair, and reassemble an engine. The following are data collected for 25 engines before the change and 25 after the change. At a 0.10 significance level, did the new plan increase productivity?
\begin{tabular}{cc}
\hline \multicolumn{2}{c}{ Hours Required } \\
\hline Before & After \\
\hline 29 & 32 \\
34 & 19 \\
32 & 22 \\
19 & 21 \\
31 & 20 \\
22 & 24 \\
28 & 25 \\
31 & 31 \\
32 & 18 \\
44 & 22 \\
41 & 24 \\
23 & 26 \\
34 & 41 \\
\hline
\end{tabular}
\begin{tabular}{cc}
\hline \multicolumn{2}{c}{ Hours Required } \\
\hline Before & After \\
\hline 25 & 34 \\
42 & 27 \\
20 & 26 \\
25 & 25 \\
33 & 31 \\
34 & 19 \\
20 & 22 \\
21 & 32 \\
22 & 31 \\
45 & 30 \\
43 & 29 \\
31 & 20 \\
\hline
\end{tabular}

14-10 Because of the severity of recent winters, there has been talk that the earth is slowly progressing toward another ice age. Some scientists hold different views, however, because the summers have brought extreme temperatures as well. One scientist proposed looking at the mean temperature for each month to see whether it was lower than in the previous year. Another meteorologist at the government weather service argued that perhaps they should look as well at temperatures in the spring and fall months of the last 2 years, so that their conclusions would be based on other than extreme temperatures. In this way, he said, they could detect whether there appeared to be a general warming or cooling trend or just extreme temperatures in the summer and winter months. So 15 dates in the spring and fall were randomly selected, and the temperatures in the last 2 years were noted for a particular location with generally moderate temperatures. Following are the dates and corresponding temperatures for 1994 and 1995.
(a) Is the meteorologist's reasoning as to the method of evaluation sound? Explain.
(b) Using a sign test, determine whether the meteorologist can conclude at \(\alpha=0.05\) that 1995 was cooler than 1994, based on these data.
\begin{tabular}{lcclcc}
\hline \multicolumn{6}{c}{ Temperature (Fahrenheit) } \\
\hline \multicolumn{1}{c}{ Date } & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \multicolumn{1}{c}{ Date } & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Mar. 29 & 58 & 57 & Oct. 12 & 54 & 48 \\
Apr. 4 & 45 & 70 & May 31 & 74 & 79 \\
Apr. 13 & 56 & 46 & Sept. 28 & 69 & 60 \\
May 22 & 75 & 67 & June 5 & 80 & 74 \\
Oct. 1 & 52 & 60 & June 17 & 82 & 79 \\
Mar. 23 & 49 & 47 & Oct. 5 & 59 & 72 \\
Nov. 12 & 48 & 45 & Nov. 28 & 50 & 50 \\
Sept. 30 & 67 & 71 & & & \\
\hline
\end{tabular}

14-11 With the concern over radiation exposure and its relationship to the incidence of cancer, city environmental specialists keep a close eye on the types of industry coming into the area and the degree to which they use radiation in their production. An index of exposure to radioactive contamination has been developed and is being used daily to determine whether the levels are increasing or are higher under certain atmospheric conditions.

Environmentalists claim that radioactive contamination has increased in the last year because of new industry in the city. City administrators, however, claim that new, more stringent regulations on industry in the area have made levels lower than last year, even with new industry using radiation. To test their claim, records for 11 randomly selected days of the year have been checked, and the index of exposure to radioactive contamination has been noted. The following results were obtained:
\begin{tabular}{llllllllllll}
\hline \multicolumn{11}{c}{ Index of Radiation Exposure } \\
\hline 1994 & 1.402 & 1.401 & 1.400 & 1.404 & 1.395 & 1.402 & 1.406 & 1.401 & 1.404 & 1.406 & 1.397 \\
1995 & 1.440 & 1.395 & 1.398 & 1.404 & 1.393 & 1.400 & 1.401 & 1.402 & 1.400 & 1.403 & 1.402 \\
\hline
\end{tabular}

Can the administrators conclude at \(\alpha=0.15\) that the levels of radioactive contamination have changed or, more specifically, that they have been reduced?
14-12 As part of the recent interest in population growth and the sizes of families, a population researcher examined a number of hypotheses concerning the family size that various people look upon as ideal. She suspected that variables of race, sex, age, and background might account for some of the different views. In one pilot sample, the researcher tested the hypothesis that women today think of an ideal family as being smaller than the ideal held by their mothers. She asked each of the participants in the pilot study to state the number of children she would choose to have or that she considered ideal. Responses were anonymous, to guard against the possibility that people would feel obligated to give a socially desirable answer. In addition, people of different backgrounds were included in the sample. The following are the responses of the mother-daughter pairs.
\begin{tabular}{lccccccccccccc}
\hline & \multicolumn{20}{c}{ Ideal Family Size } \\
\cline { 2 - 14 } Sample Pair & A & B & C & D & E & F & G & H & I & J & K & L & M \\
\hline Daughter & 3 & 4 & 2 & 1 & 5 & 4 & 2 & 2 & 3 & 3 & 1 & 4 & 2 \\
Mother & 4 & 4 & 4 & 3 & 5 & 3 & 3 & 5 & 3 & 2 & 2 & 3 & 1 \\
\hline
\end{tabular}
(a) Can the researcher conclude at \(\alpha=0.03\) that the mothers and daughters do not have essentially the same ideal of family size? Use the binomial distribution.
(b) Determine whether the researcher could conclude that the mothers do not have essentially the same family-size preferences as their daughters by using the normal approximation to the binomial.
(c) Assume that for each pair listed, there were 10 more pairs who responded in an identical manner. Calculate the range of the proportion for which the researcher would conclude that there is no difference in the mothers and daughters. Is your conclusion different?
(d) Explain any differences in conclusions obtained in parts (a), (b), and (c).

14-13 A nationwide used-car company has developed a new instructional video to educate salespeople. Twenty employees' average monthly car sales are presented below for time periods both before and after the video's creation. Does the company have enough evidence to conclude with 95 percent confidence that the video was effective in increasing the average number of cars sold? If we just consider the employees with low sales (less than an average of 12 cars per month before the video), did the video increase their selling performance?
\begin{tabular}{lrrrrrrrrrr}
\hline Before & 18.4 & 16.9 & 17.4 & 11.6 & 10.5 & 12.7 & 22.3 & 18.5 & 17.5 & 16.4 \\
After & 18.6 & 16.8 & 17.3 & 15.6 & 19.5 & 12.6 & 22.3 & 16.5 & 18.0 & 16.4 \\
Before & 15.9 & 18.6 & 23.5 & 18.7 & 9.4 & 16.3 & 18.5 & 17.4 & 11.3 & 8.4 \\
After & 17.4 & 18.6 & 23.5 & 18.9 & 15.6 & 15.4 & 17.6 & 17.4 & 16.5 & 13.4 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}

\section*{SC 14-1}
\begin{tabular}{lrrrrrrrrrrrr}
\hline Before & 8 & 7 & 6 & 9 & 7 & 10 & 8 & 6 & 5 & 8 & 10 & 8 \\
After & 6 & 5 & 8 & 6 & 9 & 8 & 10 & 7 & 5 & 6 & 9 & 8 \\
Sign & - & - & + & - & + & - & + & + & 0 & - & - & 0
\end{tabular}

12 responses: \(\mathbf{4 (+) , ~ 6 () , 2 (0) . ~}\)
For \(n=10, p=0.5\), the probability of 6 or more minuses is 0.3770 (Appendix Table 3). Because \(0.3770>0.10\), we cannot reject \(\mathrm{H}_{0}\). The wage incentive plan did not significantly lower the rates of defective work.

\section*{SC 14-2}
\begin{tabular}{lcccccccccccc}
\hline Before & 7.0 & 6.0 & 5.4 & 5.9 & 3.9 & 5.7 & 6.9 & 7.6 & 6.3 & 5.8 & 5.1 & 5.9 \\
After & 5.3 & 6.1 & 5.6 & 5.7 & 3.7 & 4.7 & 6.1 & 7.2 & 6.4 & 5.7 & 4.9 & 5.8 \\
Sign & - & + & + & - & - & - & - & - & + & - & - & -
\end{tabular}

12 responses: \(3(+), 9(-)\).
For \(n=12, p=0.5\), the probability of 9 or more minuses is 0.0729 (Appendix Table 3). Because \(0.10>0.0729>0.05\), they cannot be 95 percent confident that hydrocarbon levels have been lowered, but they will conclude at \(\alpha=0.10\) that the rules are effective. Hence, they will still be in effect next year.

\subsection*{14.3 RANK SUM TESTS: THE MANN-WHITNEY U TEST AND THE KRUSKAL-WALLIS TEST}

In Chapter 11, we showed how to use analysis of variance to test the hypothesis that several population means are equal. We assumed in such tests that the populations were normally distrib-

\author{
Use based on the number of populations involved
} uted with equal variances. Many times these assumptions cannot be met, and in such cases, we can use two nonparametric tests, neither of which depends on the normality assumptions. Both of these tests are called rank sum tests because the test depends on the ranks of the sample observations.

Rank sum tests are a whole family of tests. We shall concentrate on just two members of this family, the Mann-Whitney \(U\) test and the Kruskal-Wallis test. We'll use the Mann-Whitney test when only two populations are involved and the Kruskal-Wallis test when more than two populations are involved. Use of these tests will enable us to determine whether independent samples have been drawn from the same population (or from different populations having the same distribution). The use of ranking information rather than pluses and minuses is less wasteful of data than the sign test.

\section*{Solving a Problem Using the Mann-Whitney U Test}

Suppose that the board of regents of a large eastern state university wants to test the hypothesis that the mean SAT scores of students at two branches of the state university are equal. The board keeps statistics on all students at all branches of the system. A random sample of 15 students from each branch has produced the data shown in Table 14-3.

To apply the Mann-Whitney \(U\) test to this problem, we begin Ranking the items to be tested by ranking all the scores in order from lowest to highest, indicating beside each the symbol of the branch. Table 14-4 accomplishes this.

Next, let's learn the symbols used to conduct a Mann-Whitney \(U\) test in the context of this problem:
\(n_{1}=\) number of items in sample 1, that is, the number of students at Branch A
\(n_{2}=\) number of items in sample 2, that is, the number of students at Branch \(S\)
\(R_{1}=\) sum of the ranks of the items in sample 1: the sum from Symbols for expressing the Table 14-5 of the ranks of all the Branch A scores
\(R_{2}=\) sum of the ranks of the items in sample 2: the sum from problem

Table 14-5 of the ranks of all the Branch S scores
In this case, both \(n_{1}\) and \(n_{2}\) are equal to 15 , but it is not necessary for both samples to be of the same size. Now in Table 14-5, we can reproduce the data from Table 14-3, adding the ranks from Table 14-4.

TABLE 14-3 SAT SCORES FOR STUDENTS AT TWO STATE UNIVERSITY BRANCHES
\begin{tabular}{lrrrrrrrr}
\hline Branch A & 1,000 & 1,100 & 800 & 750 & 1,300 & 950 & 1,050 & 1,250 \\
Branch S & 920 & 1,120 & 830 & 1,360 & 650 & 725 & 890 & 1,600 \\
Branch A & 1,400 & 850 & 1,150 & 1,200 & 1,500 & 600 & 775 & \\
Branch S & 900 & 1,140 & 1,550 & 550 & 1,240 & 925 & 500 & \\
\hline
\end{tabular}

\section*{TABLE 14-4 SAT SCORES RANKED FROM LOWEST TO HIGHEST}
\begin{tabular}{cccccc}
\hline Rank & Score & Branch & Rank & Score & Branch \\
\hline 1 & 500 & S & 16 & 1,000 & A \\
2 & 550 & S & 17 & 1,050 & A \\
3 & 600 & A & 18 & 1,100 & A \\
4 & 650 & S & 19 & 1,120 & S \\
5 & 725 & S & 20 & 1,140 & S \\
6 & 750 & A & 21 & 1,150 & A \\
7 & 775 & A & 22 & 1,200 & A \\
8 & 800 & A & 23 & 1,240 & S \\
9 & 830 & S & 24 & 1,250 & A \\
10 & 850 & A & 25 & 1,300 & A \\
11 & 890 & S & 26 & 1,360 & S \\
12 & 900 & S & 27 & 1,400 & A \\
13 & 920 & S & 28 & 1,500 & A \\
14 & 925 & S & 29 & 1,550 & S \\
15 & 950 & A & 30 & 1,600 & S \\
\hline
\end{tabular}

Then we can total the ranks for each branch. As a result, we have all the values we need to solve this problem, because we know that
\[
\begin{aligned}
& n_{1}=15 \\
& n_{2}=15 \\
& R_{1}=247 \\
& R_{2}=218
\end{aligned}
\]

TABLE 14-5 RAW DATA AND RANK FOR SAT SCORES
\begin{tabular}{ccrc}
\hline Branch A & Rank & Branch S & Rank \\
\hline 1,000 & 16 & 920 & 13 \\
1,100 & 18 & 1,120 & 19 \\
800 & 8 & 830 & 9 \\
750 & 6 & 1,360 & 26 \\
1,300 & 25 & 650 & 4 \\
950 & 15 & 725 & 5 \\
1,050 & 17 & 890 & 11 \\
1,250 & 24 & 1,600 & 30 \\
1,400 & 27 & 900 & 12 \\
850 & 10 & 1,140 & 20 \\
1,150 & 21 & 1,550 & 29 \\
1,200 & 22 & 550 & 2 \\
1,500 & 28 & 1,240 & 23 \\
600 & 3 & 925 & 14 \\
775 & 7 & 500 & 1 \\
& \(\mathbf{2 4 7} \leftarrow\) Total ranks & & \(\mathbf{2 1 8} \leftarrow\) Total ranks \\
\hline
\end{tabular}

\section*{Calculating the U Statistic}

Using the values for \(n_{1}\) and \(n_{2}\) and the rank sums \(R_{1}\) and \(R_{2}\), we \(U\) statistic defined can determine the Ustatistic, a measure of the difference between the ranked observations of the two samples of SAT scores:
\(\boldsymbol{U}\) Statistic
\(U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}\)
\[
\begin{aligned}
& =(15)(15)+\frac{(15)(16)}{2}-247 \\
& =225+120-247 \\
& =98 \leftarrow U \text { statistic }
\end{aligned}
\]

If the null hypothesis that the \(n_{1}+n_{2}\) observations came from identical populations is true, then this \(U\) statistic has a sampling distribution with a mean of

\section*{Mean of the Sample Distribution of \(\boldsymbol{U}\)}
\[
\begin{equation*}
\mu_{u}=\frac{n_{1} n_{2}}{2} \tag{14-2}
\end{equation*}
\]
\[
\begin{aligned}
& =\frac{(15)(15)}{2} \\
& =112.5 \leftarrow \text { Mean of the } U \text { statistic }
\end{aligned}
\]
and a standard error of

\section*{Standard Error of the U Statistic}
\[
\begin{equation*}
\sigma_{u}=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}} \tag{14-3}
\end{equation*}
\]
\[
\begin{aligned}
& =\sqrt{\frac{(15)(15)(15+15+1)}{12}} \\
& =\sqrt{\frac{6,975}{12}} \\
& =\sqrt{581.25} \\
& =24.1 \leftarrow \text { Standard error of the } U \text { statistic }
\end{aligned}
\]

\section*{Testing the Hypotheses}

The sampling distribution of the \(U\) statistic can be approximated by the normal distribution when both \(n_{1}\) and \(n_{2}\) are larger than 10. Because our problem meets this condition, we can use the standard normal probability distribution table to make our test. The board of regents wishes to test at the 0.15 level of significance the hypothesis that these samples were drawn from identical populations.
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2} \leftarrow\) Null hypothesis: There is no difference between the two populations, so they have the same mean
\(\mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \leftarrow\) Alternative hypothesis: There is a difference between the two Stating the hypotheses
populations; in particular, they have different means
\(\alpha=0.15 \leftarrow\) Level of significance for testing these hypotheses
The board of regents wants to know whether the mean SAT score for students at either of the two schools is better or worse than the other. Therefore, this is a two-tailed hypothesis test.

Finding the limits of the acceptance region Figure 14-3 illustrates this test graphically. The two colored areas represent the 0.15 level of significance. Because we are using the normal distribution as our sampling distribution in this test, we can determine from Appendix Table 1 that the critical \(z\) value for an area of 0.425 is 1.44.

Next, we use Equation 6-2 to standardize the sample \(U\) statistic, by subtracting \(\mu_{U}\), its mean, and dividing by \(\sigma_{U}\), its standard error.
\[
\begin{align*}
z & =\frac{U-\mu_{u}}{\sigma_{u}} \tag{6-2}\\
& =\frac{98-112.5}{24.1} \\
& =-0.602
\end{align*}
\]

Figure 14-4 shows the standardized sample value of \(U\) and the critical values of \(z\) for the test. The board of regents should notice that the sample statistic does lie within the critical values for the test, and conclude that the distributions, and hence the mean SAT scores at the two schools, are the same.

FIGURE 14-3 TWO-TAILED HYPOTHESIS TEST AT THE 0.15 LEVEL OF SIGNIFICANCE

FIGURE 14-4 TWO-TAILED HYPOTHESIS TEST AT THE 0.15 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE U STATISTIC

\section*{Special Properties of the \(U\) Test}

The \(U\) statistic has a feature that enables users to save calculating time when the two samples under observation are of unequal size. We just computed the value of \(U\) using Equation 14-1:

Another way to compute the

\section*{U statistic}
\[
\begin{equation*}
U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} \tag{14-1}
\end{equation*}
\]

But just as easily, we could have computed the \(U\) statistic using the \(R_{2}\) value, like this:

\section*{Alternate Formula for the \(\boldsymbol{U}\) Statistic}
\[
\begin{equation*}
U=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} \tag{14-4}
\end{equation*}
\]

The answer would have been 127 (which is just as far above the mean of 112.5 as 98 is below it). In this problem, we would have spent the same amount of time calculating the value of the \(U\) statistic using either Equation 14-1 or Equation 14-4. In other cases, when the number of items is larger in one sample than in the other, choose the equation that will require less work. Regardless of whether you calculate \(U\) using Equation 14-1 or 14-4, you will come to the same conclusion. Notice that in this example, the answer 127 falls in the acceptance region just as 98 did.

What about ties that may happen when we rank the items for Handling ties in the data this test? For example, what if the two scores ranked 13 and 14 in Table 14-4 both had the value 920 ? In this case, we would find the average of their ranks \((13+14) / 2=13.5\), and assign the result to both of them. If there were a threeway tie among the scores ranked 13,14 , and 15 , we would average these ranks \((13+14+15) / 3=14\), and use that value for all three items.

\section*{Mann－Whitney U Test Using SPSS}

Data of Physicians randomly assigned female stroke patients to receive only physical therapy or physical therapy combined with emotional therapy will be used for it．Three months after the treat－ ments，the Mann－Whitney test is used to compare each group＇s ability to perform common activities of daily life．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \％ 3 \％adisav & ［DataSet2］－SPSS D & ta Editor & & & & & & & & & & & & & － & （5） 8 \\
\hline Eile Edit & View pata Ira & storm Analyz & Graphs & trities Add－0 & ，window & & & & & & & & & & & \\
\hline 回回 & 直あや & & ＊同直 & 边囲 & 80 & & & & & & & & & & & \\
\hline 6： & & & & & & & & & & & & & & & Visible： 14 of & 14 variables \\
\hline & id & group & travel & cooking & housekpg & var & \(v\) \\
\hline 1 & 1 & 1 & 1 & 1 & 2 & & & & & & & & & & & － \\
\hline 2 & 2 & 1 & 2 & 3 & 3 & & & & & & & & & & & \\
\hline 3 & 3 & 1 & 2 & 2 & 2 & & & & & & & & & & & \\
\hline 4 & 4 & 1 & 3 & 3 & 0 & & & & & & & & & & & \\
\hline 5 & 5 & 0 & 3 & 2 & 4 & & & & & & & & & & & \\
\hline 6 & 6 & 1 & 3 & 1 & 3 & & & & & & & & & & & \\
\hline 7 & 7 & 1 & 4 & 1 & 0 & & & & & & & & & & & \\
\hline 8 & 8 & 0 & 2 & 0 & 4 & & & & & & & & & & & \\
\hline 9 & 9 & 1 & 2 & 3 & 0 & & & & & & & & & & & \\
\hline 10 & 10 & 1 & 2 & 1 & 3 & & & & & & & & & & & \\
\hline 11 & 11 & 0 & 4 & 3 & 4 & & & & & & & & & & & \\
\hline 12 & 12 & 1 & 4 & 2 & 2 & & & & & & & & & & & \\
\hline 13 & 13 & 0 & 3 & 1 & 2 & & & & & & & & & & & \\
\hline 14 & 14 & 1 & 2 & 4 & 3 & & & & & & & & & & & \\
\hline 15 & 15 & 0 & 3 & 3 & 3 & & & & & & & & & & & \\
\hline 16 & 16 & 1 & 4 & 1 & 2 & & & & & & & & & & & \\
\hline 17 & 17 & 0 & 2 & 1 & 3 & & & & & & & & & & & \\
\hline 18 & 18 & 1 & 1 & 2 & 3 & & & & & & & & & & & \\
\hline 19 & 19 & 1 & 2 & 1 & 2 & & & & & & & & & & & \\
\hline 20 & 20 & 1 & 3 & 2 & 2 & & & & & & & & & & & \\
\hline 21 & 21 & 0 & 2 & 3 & 3 & & & & & & & & & & & \\
\hline 22 & 22 & 1 & 3 & 2 & 4 & & & & & & & & & & & \\
\hline 23 & 23 & 0 & 1 & 3 & 3 & & & & & & & & & & & \\
\hline 24 & 24 & 1 & 3 & 3 & 2 & & & & & & & & & & & \\
\hline 35 & 1.25 & 0 & 1 & 3 & 2 & & & & & & & & & & & ， \\
\hline & 11 & & & & & & & & & & & & & & & \(\cdots\) \\
\hline Data View & Variable View & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & SPSS P & is ready & & \\
\hline
\end{tabular}

For Mann－Whitney \(U\) test go to Analyze \(>\) Non parametric test \(>\) Two independent sample test \(>\) Define test variables \(>\) Define groups \(>\) Select Mann Whitney \(\mathbf{U}>\mathbf{O K}\) ．

\section*{Solving a Problem Using the Kruskal-Wallis Test}

As we noted earlier in this section, the Kruskal-Wallis test is an extension of the Mann-Whitney test to situations where more than two populations are involved. This test, too, depends on the ranks of the sample observations.

Testing for differences when more than two populations are involved

In Table 14-6, we have shown the scores of a sample of 20 student pilots on their Federal Aviation Agency written examination, arranged according to which method was used in their training: video cassette, audio cassette, or class room training.

The FAA is interested in evaluating the effectiveness of these three training methods. Specifically, it wants to test at the 0.10 level of significance the hypothesis that the mean written examination scores of student pilots trained by each of these three methods are equal. Because we have more than two populations involved, the Kruskal-Wallis test is appropriate in this instance. To apply the Kruskal-Wallis test to this problem, we begin in Table 14-7 by ranking all the scores in order, from lowest to highest, indicating beside each the symbol of the training method that was used. Ties are handled by averaging ranks, exactly as we did with the Mann-Whitney test.

\section*{Ranking the items to be tested}

TABLE 14-6 WRITTEN EXAMINATION SCORES FOR 20 STUDENT PILOTS TRAINED BY THREE DIFFERENT METHODS
\begin{tabular}{llllllllll}
\hline Video cassette & 74 & 88 & 82 & 93 & 55 & 70 & & & \\
Audio cassette & 78 & 80 & 65 & 57 & 89 & & & & \\
Classroom & 68 & 83 & 50 & 91 & 84 & 77 & 94 & 81 & 92 \\
\hline
\end{tabular}

TABLE 14-7 WRITTEN EXAMINATION SCORES RANKED FROM LOWEST TO HIGHEST
\begin{tabular}{cccccc}
\hline Rank & Score & Training Method & Rank & Score & Training Method \\
\hline 1 & 50 & C & 11 & 81 & C \\
2 & 55 & VC & 12 & 82 & VC \\
3 & 57 & AC & 13 & 83 & C \\
4 & 65 & AC & 14 & 84 & C \\
5 & 68 & C & 15 & 88 & VC \\
6 & 70 & VC & 16 & 89 & AC \\
7 & 74 & VC & 17 & 91 & C \\
8 & 77 & C & 18 & 92 & C \\
9 & 78 & AC & 19 & 93 & VC \\
10 & 80 & AC & 20 & 94 & C \\
\hline
\end{tabular}

Next, let's learn the symbols used in a Kruskal-Wallis test:
\(n_{j}=\) number of items in sample \(j\)
\(R_{j}=\) sum of the ranks of all items in sample \(j \quad\) Symbols used for a
\(k=\) number of samples
\(n=n_{1}+n_{2}+\cdots+n_{k}\), the total number of observations in all samples
Table 14-8 rearranges the data from Table 14-7 so that we can easily compute the sums the ranks for each training method. Kruskal-Wallis test Then we can use Equation 14-5 to compute the \(K\) statistic, a

Rearranging data to compute sums of ranks measure of the differences among the ranked observations in the three samples.
\begin{tabular}{|cc|}
\hline \(\boldsymbol{K}\) Statistic \\
\(K=\frac{12}{n(n+1)} \sum \frac{R_{j}^{2}}{n_{j}}-3(n+1)\) & {\([14-5]\)} \\
\hline
\end{tabular}

\section*{Computing the \(k\) statistic}

TABLE 14-8 DATA AND RANK ARRANGED BY TRAINING METHOD

\[
\begin{aligned}
& =\frac{12}{20(20+1)}\left[\frac{(61)^{2}}{6}+\frac{(42)^{2}}{5}+\frac{(107)^{2}}{9}\right]-3(20+1) \\
& =(0.02857)(620.2+352.8+1,272.1)-63 \\
& =1.143
\end{aligned}
\]

\section*{Testing the Hypotheses}

The sampling distribution of the \(K\) statistic can be approximated by a chi-square distribution when all the sample sizes are at least 5 . Because our problem meets this condition, we can use the chi-square distribution and Appendix Table 5 for this test. In a Kruskal-Wallis test, the appropriate number of degrees of freedom is \(k-1\), which in this problem is \((3-1)\) or 2 because we are dealing with three samples. The hypotheses can be stated as follows:
\(\mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3} \leftarrow\)\begin{tabular}{l}
Null hypothesis; There are no differences among Stating the hypotheses \\
the three populations, so they have the same mean
\end{tabular}
\(\mathrm{H}_{1}: \mu_{1}, \mu_{2}\) and \(\mu_{3} \leftarrow\) Alternative hypothesis: There are differences among the
are not all equal \(\quad\) three populations, in particular, they have different means
\[
\alpha=0.10 \leftarrow \text { Level of significance for testing these hypotheses }
\]

Figure 14-5 illustrates a chi-square distribution with 2 degrees of freedom. The colored area represents the 0.10 level of significance. Notice that the acceptance region for the null hypothesis (that there are no differences among the three populations) extends from zero to a chi-square value of 4.605. Obviously, the sample \(K\) value of 1.143 is within this acceptance region; therefore, the FAA should accept the null hypothesis and conclude that there are no differences in the results obtained by using the three training methods.

\section*{Interpreting the results}

\section*{Kruskal-Wallis Test Using SPSS}

Agricultural researchers are studying the effect of mulch color on the taste of crops. Strawberries grown in red, blue, and black mulch were rated by taste-testers on an ordinal scale of one to five (far below to far above average).

For Kruskal-Wallis test go to Analyze > Non parametric test \(>\mathbf{k}\) independent samples \(>\) Define test variable \(>\) Define grouping variable \(>\) Select kriuskal Wallis H tets \(>\) OK.

\section*{HINTS \& ASSUMPTIONS}

Rank sum tests such as the Mann-Whitney and the Kruskal-Wallis tests often produce ties in rankings. Hint: When you encounter ties, remember that each tied value gets an average rank. If the 10th and 11th items are tied, each of them gets a rank of 10.5 . In the case of ties of more than 2 items, they all still get the average rank (a tie in the 3rd, 4th, 5th, and 6th items means all four of them get a rank of \((3+4+5+6) / 4=4.5)\).

\section*{EXERCISES 14.3}

\section*{Self-Check Exercises}

SC 14-3 Melisa's Boutique has three mall locations. Melisa keeps a daily record for each location of the number of customers who actually make a purchase. A sample of those data follows. Using the Kruskal-Wallis test, can you say at the 0.05 level of significance that her stores have the same number of customers who buy?
\begin{tabular}{lrrrrrrrrrr}
\hline Eastowne Mail & 99 & 64 & 101 & 85 & 79 & 88 & 97 & 95 & 90 & 100 \\
Craborchard Mall & 83 & 102 & 125 & 61 & 91 & 96 & 94 & 89 & 93 & 75 \\
Fairforest Mall & 89 & 98 & 56 & 105 & 87 & 90 & 87 & 101 & 76 & 89 \\
\hline
\end{tabular}

SC 14-4 A large hospital hires most of its nurses from the two major universities in the area. Over the last year, they have been giving a test to the newly graduated nurses entering the hospital to determine which school, if either, seems to educate its nurses better. Based on the following scores (out of 100 possible points), help the personnel office of the hospital
determine whether the schools differ in quality. Use the Mann-Whitney \(U\) test with a 10 percent level of significance.
\begin{tabular}{llllllllllllll}
\hline \multicolumn{13}{c}{ Test Scores } \\
\hline School A & 97 & 69 & 73 & 84 & 76 & 92 & 90 & 88 & 84 & 87 & 93 & & \\
School B & 88 & 99 & 65 & 69 & 97 & 84 & 85 & 89 & 91 & 90 & 87 & 91 & 72 \\
\hline
\end{tabular}

\section*{Applications}

14-14 Test the hypothesis of no difference between the ages of male and female employees of a certain company using the Mann-Whitney \(U\) test for the sample data. Use the 0.10 level of significance.
\begin{tabular}{lllllllllll}
\hline Males & 31 & 25 & 38 & 33 & 42 & 40 & 44 & 26 & 43 & 35 \\
Females & 44 & 30 & 34 & 47 & 35 & 32 & 35 & 47 & 48 & 34 \\
\hline
\end{tabular}

14-15 The following table shows sample retail prices for three brands of shoes. Use the KruskalWallis test to determine whether there is any difference among the retail prices of the brands throughout the country. Use the 0.01 level of significance.
\begin{tabular}{llllllllllll}
\hline Brand A & \(\$ 89\) & 90 & 92 & 81 & 76 & 88 & 85 & 95 & 97 & 86 & 100 \\
Brand B & \(\$ 78\) & 93 & 81 & 87 & 89 & 71 & 90 & 96 & 82 & 85 & \\
Brand C & \(\$ 80\) & 88 & 86 & 85 & 79 & 80 & 84 & 85 & 90 & 92 & \\
\hline
\end{tabular}

14-16 A mail-order gift company has the following sample data on dollar sales, separated according to how the order was paid. Test the hypothesis that there is no difference in the dollar amount of orders paid for by cash, by check, or by credit card. Use the Kruskal-Wallis test with a 0.05 level of significance.
\begin{tabular}{lrrrrrll}
\hline Credit-card orders & 78 & 64 & 75 & 45 & 82 & 69 & 60 \\
Check orders & 110 & 70 & 53 & 51 & 61 & 68 & \\
Cash orders & 90 & 68 & 70 & 54 & 74 & 65 & 59 \\
\hline
\end{tabular}

14-17 The following data show annual hours missed due to illness for the 24 men and women at the Northern Packing Company, Inc. At the 0.10 level of significance, is there any difference attributable to gender? Use the Mann-Whitney \(U\) test.
\begin{tabular}{lllllllllllll}
\hline Men & 31 & 44 & 25 & 30 & 70 & 63 & 54 & 42 & 36 & 22 & 25 & 50 \\
Women & 38 & 34 & 33 & 47 & 58 & 83 & 18 & 36 & 41 & 37 & 24 & 48 \\
\hline
\end{tabular}

14-18 A manufacturer of toys changed the type of plastic molding machines it was using because a new one gave evidence of being more economical. As the Christmas season began, however, productivity seemed somewhat lower than last year. Because production records for the past years were readily available, the production manager decided to compare the monthly output for the 15 months when the old machines were used and the 11 months of production so far this year. Records show these output amounts with the old and new machines.
\begin{tabular}{rr|rr}
\hline \multicolumn{4}{c}{ Monthly Output in Units } \\
\hline \multicolumn{2}{c|}{ Old Machines } & \multicolumn{2}{c}{ New Machines } \\
\hline 992 & 966 & 965 & 956 \\
945 & 889 & 1,054 & 900 \\
938 & 972 & 912 & 938 \\
1,027 & 940 & 850 & \\
892 & 873 & 796 & \\
983 & 1,016 & 911 & \\
1,014 & 897 & 877 & \\
1,258 & & 902 & \\
\hline
\end{tabular}

Can the company conclude at a significance level of 0.10 that the change in machines has reduced output?
14-19 Hanks' Hot Dogs has four hot dog stands at Memorial Stadium. Hank knows how many hot dogs are sold at each stand during each football game, and he wants to determine whether the four stands are selling the same number. Using the Kruskal-Wallis test, can you say at the 0.10 significance level that the stands have the same number of hot dog sales?
\begin{tabular}{lccccccccc}
\hline Game & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) \\
\hline Visitors north & 755 & 698 & 725 & 895 & 886 & 794 & 694 & 827 & 814 \\
Visitors south & 782 & 724 & 754 & 825 & 815 & 826 & 752 & 784 & 789 \\
Home north & 714 & 758 & 684 & 816 & 856 & 884 & 774 & 812 & 734 \\
Home south & 776 & 824 & 654 & 779 & 898 & 687 & 716 & 889 & 917 \\
\hline
\end{tabular}

14-20 To increase sales during heavy shopping days, a chain of stores selling cheese in shopping malls gives away samples at the stores' entrances. The chain's management defines the heavy shopping days and randomly selects the days for sampling. From a sample of days that were considered heavy shopping days, the following data give one store's sales on days when cheese sampling was done and on days when it was not done.
\begin{tabular}{llllllllllllll}
\hline \multicolumn{10}{c}{ Sales (in hundreds) } \\
\hline Promotion days & 18 & 21 & 23 & 15 & 19 & 26 & 17 & 18 & 22 & 20 & 18 & 21 & 27 \\
Regular days & 22 & 17 & 15 & 23 & 25 & 20 & 26 & 24 & 16 & 17 & 23 & 21 & \\
\hline
\end{tabular}

Use the Mann-Whitney \(U\) test and a 5 percent level of significance to decide whether the storefront sampling produced greater Sales
14-21 A company is interested in knowing whether there is a difference in the output rate for men and women employees in the molding department. Judy Johnson, production manager, was asked to conduct a study in which male and female workers' output was measured for 1 week. Somehow, one of the office clerks misplaced a portion of the data, and Judy was able to locate only the following information from the records of the tests:
\[
\begin{aligned}
\sigma_{u} & =176.4275 \\
\mu_{u} & =1,624 \\
R_{1} & =3,255
\end{aligned}
\]

Judy also remembered that the sample size for men, \(n_{2}\), had been two units larger than \(n_{1}\).

Reconstruct a \(z\) value for the test and determine whether the weekly output can be assumed, at a 5 percent level of significance, to be the same for both men and women. Indicate also the values for \(n_{1}, n_{2}\), and \(R_{2}\).
14-22 A university that accepts students from both rural and urban high schools is interested in whether the different backgrounds lead to a difference in first-year GPA. Data are presented below for 13 randomly selected first-year students of rural background and 16 students of urban background. Use the Mann-Whitney \(U\) test with a 5 percent level of significance.
\begin{tabular}{lllllllllll}
\hline & \multicolumn{10}{c}{ GPA } \\
\hline Rural & 3.19 & 2.05 & 2.82 & 2.16 & 3.84 & 4.0 & 2.91 & 2.75 & 3.01 & 1.98 \\
& 2.58 & 2.76 & 2.94 & & & & & & & \\
Urban & 3.45 & 3.16 & 2.84 & 2.09 & 2.11 & 3.08 & 3.97 & 3.85 & 3.72 & 2.73 \\
& 2.81 & 2.64 & 1.57 & 1.87 & 2.54 & 2.62 & & & & \\
\hline
\end{tabular}

14-23 Twenty salespeople of Henley Paper Company have received sales training during the past year. Some were sent to a national program conducted by Salesmasters. The other received training at the company office conducted by the Henley sales manager. Percentages of selling quotas realized by both groups during last year are shown. Mr. Boyden Henley, president, believes that the backgrounds, sales aptitudes, and motivation of both groups are comparable. At the 0.10 level of significance, has either method of training been better? Use the MannWhitney \(U\) test.
\begin{tabular}{lllllrllrrr}
\hline \multicolumn{13}{c}{ Percentage of Quota Realized } \\
\hline Salesmasters & 90 & 95 & 105 & 110 & 100 & 75 & 80 & 90 & 105 & 120 \\
Company & 80 & 90 & 100 & 120 & 95 & 95 & 90 & 100 & 95 & 105 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}
\begin{tabular}{llrrrrrlllll}
SC 14-3 & Eastowne ranks & 99 & 64 & 101 & 85 & 79 & 88 & 97 & 95 & 90 & 100 \\
& & 24 & 3 & 26.5 & 8 & 6 & 11 & 22 & 20 & 15.5 & 25 \\
& Craborchard ranks & 83 & 102 & 125 & 61 & 91 & 96 & 94 & 89 & 93 & 75 \\
& 7 & 28 & 30 & 2 & 17 & 21 & 19 & 13 & 18 & 4 \\
\multirow{3}{*}{ Fairforest ranks } & 89 & 98 & 56 & 105 & 87 & 90 & 87 & 101 & 76 & 89 \\
& 13 & 23 & 1 & 29 & 9.5 & 15.5 & 9.5 & 26.5 & 5 & 13 \\
\hline
\end{tabular}
\[
\begin{aligned}
& n_{1}=10 \quad n_{2}=10 \quad n_{3}=10 \quad \alpha=0.05 \\
& R_{1}=161 \quad R_{2}=159 \quad R_{3}=145 \\
& \mathrm{H}_{0}: \mu_{1}=\mu_{2}=\mu_{3} \quad \mathrm{H}_{1}: \text { the } \mu \text { 's are not all the same } \\
& k=\frac{12}{n(n+1)} \sum \frac{R_{j}^{2}}{n_{j}}-3(n+1) \\
& \frac{1 R_{j}^{2}}{n n_{j}}=\frac{12}{30(31)}\left(\frac{(161)^{2}}{10}+\frac{(159)^{2}}{10}+\frac{(145)^{2}}{10}\right)-3(31)=0.196
\end{aligned}
\]

With \(3-1=2\) degrees of freedom and \(\alpha=0.05\), the upper limit of the acceptance region is \(x^{2}=5.991\), so we accept \(H_{0}\). The average numbers of buyers at the three stores are not significantly different.

SC 14-4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline School A & 97 & 69 & 73 & 84 & 76 & 92 & 90 & 88 & 84 & 87 & 93 & & \\
\hline ranks & 22.5 & 2.5 & 5 & 8 & 6 & 20 & 16.5 & 13.5 & 8 & 11.5 & 21 & & \\
\hline School B & 88 & 99 & 65 & 69 & 97 & 84 & 85 & 89 & 91 & 90 & 87 & 91 & 72 \\
\hline ranks & 13.5 & 24 & 1 & 2.5 & 22.5 & 8 & 10 & 15 & 18.5 & 16.5 & 11.5 & 18.5 & 4 \\
\hline & & & & \multicolumn{10}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{ll}
n_{1}=11 & n_{2}=13 \quad \alpha=0.10 \\
R_{1}=134.5 & R_{2}=165.5 \\
\mathrm{H}_{0}: \mu_{1}=\mu_{2} & \mathrm{H}_{1}: \mu_{1} \neq \mu_{2} \\
U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}=11(13)+\frac{11(12)}{2}-134.5=74.5
\end{array}
\]}} \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & \\
\hline & & & & \multicolumn{10}{|l|}{\[
\mu_{u}=\frac{n_{1} n_{2}}{2}=\frac{11(13)}{2}=71.5
\]} \\
\hline & & & & \multicolumn{10}{|l|}{\[
\sigma_{u}=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}}=\sqrt{\frac{11(13)(25)}{12}}=17.26
\]} \\
\hline
\end{tabular}

The critical values of \(z\) are \(\pm 1.645\). The standardized value of \(U\) is
\[
z=\frac{U-\mu_{u}}{\sigma_{u}}=\frac{74.5-71.5}{17.26}=0.174
\]

Because the standardized value of \(U\) lies within the critical values, we accept \(H_{0}\). There is no significant difference between the schools.

\subsection*{14.4 THE ONE-SAMPLE RUNS TEST}

So far, we have assumed that the samples in our problems were

\section*{Concept of randomness} randomly selected-that is, chosen without preference or bias. What if you were to notice recurrent patterns in a sample chosen by someone else? Suppose that applicants for advanced job training were to be selected without regard to gender from a large population. Using the notation \(\mathrm{W}=\) woman and \(\mathrm{M}=\) man, you find that the first group enters in this order:

W, W, W, W, M, M, M, M, W, W, W, W, M, M, M, M
By inspection, you would conclude that although the total number of applicants is equally divided between the sexes, the order is not random. A random process would rarely list two items in alternating groups of four. Suppose now that the applicants begin to arrive in this order:

> W, M, W, M

It is just as unreasonable to think that a random selection process would produce such an orderly pattern of men and women. In this case, too, the proportion of women to men is right, but you would be suspicious about the order in which they are arriving.

To allow us to test samples for the randomness of their order, statisticians have developed the theory of runs. A run is

\section*{The theory of runs} a sequence of identical occurrences preceded and followed by different occurrences or by none at all. If men and women enter as follows, the sequence will contain three runs:
\[
\underbrace{W,}_{1 \text { st }} \underbrace{M, M, M, M, M}_{\text {2nd }}, \underbrace{W}
\]

And this sequence contains six runs:
\[
\underbrace{\mathrm{W}, \mathrm{~W}, \mathrm{~W}}_{\text {1st }} \underbrace{\mathrm{M}, \mathrm{M}}_{\text {2nd }}, \underbrace{\mathrm{W},}_{3 \mathrm{rd}} \underbrace{\mathrm{M}, \mathrm{M}, \mathrm{M}, \mathrm{M}}_{\text {4th }} \underbrace{\mathrm{W}, \mathrm{~W}, \mathrm{~W}, \mathrm{~W}}_{\text {5th }} \underbrace{\mathrm{M}}_{\text {6th }}
\]

A test of runs would use the following symbols if it contained just two kinds of occurrences:
\[
\begin{aligned}
n_{1} & =\text { number of occurrences of type } 1 \quad \text { Symbols used for a runs test } \\
n_{2} & =\text { number of occurrences of type } 2 \\
r & =\text { number of runs }
\end{aligned}
\]

Let's apply these symbols to a different pattern for the arrival of applicants:
M, W, W, M, M, M, M, W, W, W, M, M, W, M, W, W, M
In this case, the values of \(n_{1}, n_{2}\), and \(r\) would be
\[
\begin{aligned}
n_{1} & =8 \leftarrow \text { Number of women } \\
n_{2} & =9 \leftarrow \text { Number of men } \\
r & =9 \leftarrow \text { Number of runs }
\end{aligned}
\]

\section*{A Problem Illustrating a One-Sample Runs Test}

A manufacturer of breakfast cereal uses a machine to insert randomly one of two types of toys in each box. The company wants randomness so that every child in the neighborhood does not get the same toy. Testers choose samples of 60 successive boxes to see whether the machine is properly mixing the two types of toys. Using the symbols \(A\) and \(B\) to represent the two types of toys, a tester reported that one such batch looked like this:

B, A, B, B, B, A, A, A, B, B, A, B, B, B, B, A, A, A, A, B, A, B, A, A, B, B, B, A, A, B, A, A, A, A, B, B, A, B, B, A, \(\mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}\)
The values in our test will be
\[
\begin{aligned}
n_{1} & =29 \leftarrow \text { Number of boxes containing toy A } \\
n_{2} & =31 \leftarrow \text { Number of boxes containing toy B } \\
r & =29 \leftarrow \text { Number of runs }
\end{aligned}
\]

\section*{The Sampling Distribution of the \(r\) Statistic}

The number of runs, or \(r\), is a statistic with its own special sampling distribution and its own test Obviously, runs may be of differing lengths, and various numbers of runs can occur in one sample. Statisticians can prove that too many or too few runs in a sample indicate that something other than chance was at work when the items were selected. A onesample runs test, then, is based on the idea that too few or too many runs show that the items were not chosen randomly.

To derive the mean of the sampling distribution of the \(r\) statistic, use the following formula:

\section*{Mean of the Sampling Distribution of the \(r\) Statistic}
\[
\begin{equation*}
\mu_{r}=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1 \tag{14-6}
\end{equation*}
\]

Applying this to the cereal company, the mean of the \(r\) statistic would be
\[
\begin{aligned}
\mu_{r} & =\frac{(2)(29)(31)}{29+31}+1 \\
& =\frac{1,798}{60}+1 \\
& =29.97+1 \\
& =30.97 \leftarrow \text { Mean of the } r \text { statistic }
\end{aligned}
\]

The standard error of the \(r\) statistic can be calculated with this formidable-looking formula:
\[
\begin{align*}
& \text { Standard Error of the } \boldsymbol{r} \text { Statistic } \\
& \sigma_{r}=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}} \tag{14-7}
\end{align*}
\]

For our problem, the standard error of the \(r\) statistic becomes
\[
\begin{aligned}
\sigma_{r} & =\sqrt{\frac{(2)(29)(31)(2 \times 29 \times 31-29-31)}{(29+31)^{2}(29+31-1)}} \\
& =\sqrt{\frac{(1,798)(1,738)}{(60)^{2}(59)}} \\
& =\sqrt{14.71} \\
& =3.84 \leftarrow \text { Standard error of the } r \text { statistic }
\end{aligned}
\]

\section*{Testing the Hypotheses}

In the one-sample runs test, the sampling distribution of \(r\) can be closely approximated by the normal distribution if either \(n_{1}\) or \(n_{2}\) is larger than 20 . Our cereal company has a sample of 60 boxes, so we can use the normal approximation. Management is interested in testing at the 0.20 level the hypothesis that the toys are randomly mixed, so the test becomes
\(\mathrm{H}_{0}:\left\{\begin{array}{lc}\text { In a one-sample runs } & \leftarrow \begin{array}{l}\text { Null hypothesis: The toys are } \\ \text { rest, a symbolic statement }\end{array} \\ \mathrm{H}_{1}: & \begin{array}{l}\text { randomly mixed }\end{array} \\ \begin{array}{l}\text { Alternative hypothesis: The }\end{array} \\ \text { not appropriate } & \text { toys are not randomly mixed }\end{array}\right.\)
\[
\begin{aligned}
\alpha=0.20 \leftarrow & \text { Level of significance for } \\
& \text { testing these hypotheses }
\end{aligned}
\]

Because too many or too few runs would indicate that the process by which the toys are inserted into the boxes is not random, a two-tailed test is appropriate. Figure 14-6 illustrates this test graphically.

Next we use Equation 6-2 to standardize the sample \(r\) statistic, 29, by subtracting \(\mu_{r}\), its mean, and dividing by \(\sigma_{r}\), its standard error.
\[
\begin{align*}
z & =\frac{r-\mu_{r}}{\sigma_{r}} \tag{6-2}\\
& =\frac{29-30.97}{3.84} \\
& =-0.513
\end{align*}
\]

FIGURE 14-6 TWO-TAILED HYPOTHESIS TEST AT THE 0.20 LEVEL OF SIGNIFICANCE

FIGURE 14-7 TWO-TAILED HYPOTHESIS TEST AT THE 0.20 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED OBSERVED NUMBER OF RUNS

Placing the standardized value on the \(z\) scale in Figure 14-7 shows that it falls well within the critical values for this test. Therefore, management should accept the null hypothesis and conclude from this test that toys are being inserted in boxes in random order.

\section*{One Sample Run Test Using SPSS}

For one sample run test we take example of an e-commerce firm enlisted beta tester to browse and then rate their new Web site. Ratings were recorded as soon as each tester finished browsing. The team is concerned that ratings may be related to the amount of time spent browsing.

For one sample run tetst go to Analyze \(>\) Nonparametric tests \(>\) Run \(>\) Define test variables \(>\) Define different cut points \(>\) OK.

\section*{HINTS \& ASSUMPTIONS}

Runs tests can be used effectively in quality control situations. You will recall from Chapter 10 that variation in quality is either systematic or random, and if it's systematic variation we can correct it. Thus, a runs test can detect the kinds of patterns in output quality that are associated with systematic variation. Hint: Almost all runs tests are two-tailed because the question to be answered is whether there are too many or too few runs. Remember also that runs tests use the \(r\) statistic whose distribution can be well described by a normal distribution as long as either \(n_{1}\) or \(n_{2}\) is larger than 20.

\section*{EXERCISES 14.4}

\section*{Self-Check Exercise}

SC 14-5 Professor Ike Newton is interested in determining whether his brightest students (those making the best grades) tend to turn in their tests earlier (because they can recall the material faster) or later (because they take longer to write down all they know) than the others in the class. For a particular physics test, he observes that the students make the following grades in order of turning their tests in:
\begin{tabular}{lllllllllll}
\hline Order & \multicolumn{10}{c}{ Grades } \\
\hline \(1-10\) & 94 & 70 & 85 & 89 & 92 & 98 & 63 & 88 & 74 & 85 \\
\(11-20\) & 69 & 90 & 57 & 86 & 79 & 72 & 80 & 93 & 66 & 74 \\
\(21-30\) & 50 & 55 & 47 & 59 & 68 & 63 & 89 & 51 & 90 & 88 \\
\hline
\end{tabular}
(a) If Professor Newton counts those making a grade of 90 and above as his brightest students, then at a 5 percent level of significance, can he conclude the brightest students turned their tests in randomly?
(b) If 60 and above is passing in Professor Newton's class, then did the students passing versus those not passing turn their tests in randomly? (Also use the 5 percent significance level.)

\section*{Basic Concepts}

14-24 Test for the randomness of the following sample using the 0.05 significance level:

> A, B, A, A, A, B, B, A, B, B, A, A, B, A, B, A, A, B, B, B, B, A, B, B,
> A, A, A, B, A, B, A, A, B, B, A, B, B, A, A, A, B, B, A, A, B, A, A, A

\section*{Applications}

14-25 A sequence of small glass sculptures was inspected for shipping damage. The sequence of acceptable and damaged pieces was as follows:
\[
\mathrm{D}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{~A}, \mathrm{~A}, \mathrm{D}, \mathrm{D}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}, \mathrm{~A}, \mathrm{D}, \mathrm{~A}, \mathrm{~A}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}, \mathrm{D}
\]

Test for the randomness of the damage to the shipment using the 0.05 significance level.

14-26 The News and Clarion kept a record of the gender of people who called the circulation office to complain about delivery problems with the Sunday paper. For a recent Sunday, these data were as follows:

\author{
M, F, F, F, M, M, F, M, F, F, F, F, M, M, M, F, M, F, M, F, F, F, F, M, M, M, M, M
}

Using the 0.05 level of significance, test this sequence for randomness. Is there anything about the nature of this problem that would cause you to believe that such a sequence would not be random?
14-27 Kerwin County Social Services Agency kept this record of the daily number of applicants for marriage counseling in the order in which they appeared at the agency office in 30 working days.
\[
\begin{gathered}
3,4,6,8,4,6,7,2,5,7,4,8,4,7,9,5,9,10 \\
5,7,4,9,8,9,11,6,7,5,9,12
\end{gathered}
\]

Test the randomness of this sequence by seeing whether the values above and below the mean occur in random order. Use the 0.10 level of significance. Can you think of any characteristic of the environment of this problem that would support the statistical finding you reached?
14-28 A restaurant owner has noticed over the years that older couples appear to eat earlier than young couples at his quiet, romantic restaurant. He suspects that perhaps it is because of children having to be left with babysitters and also because the older couples may retire earlier at night. One night, he decided to keep a record of couples' arrivals at the restaurant. He noted whether each couple was over or under 30 . His notes are reproduced below. (\(\mathrm{A}=30\) and older; \(\mathrm{B}=\) younger than 30 .)
\[
\begin{aligned}
& \text { (5:30 р.м.) A, A, A, A, A, A, B, A, A, A, A, A, A, B, B, } \\
& \text { B, A, B, B, B, B, B, B, A, B, B, B, A, B, B, B, (10 Р.м.) }
\end{aligned}
\]

At a 5 percent level of significance, was the restaurant owner correct in his thought that the age of his customers at different dining hours is less than random?
14-29 Kathy Phillips is in charge of production scheduling for a printing company. The company has six large presses, which frequently break down, and one of Kathy's biggest problems is meeting deadlines when there are unexpected breakdowns in presses. She suspects that the older presses break down earlier in the week than the new presses, because all presses are checked and repaired over the weekend. To test her hypothesis, Kathy recorded the number of all the presses as they broke down during the week. Presses numbered 1, 2, and 3 are the older ones.
\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Number of Press in Order of Breakdown } \\
& \hline 1,2,3,1,4,5,3,1,2,5,1,3,6,2,3,6,2,2,3, \\
& 6,4, \\
& 4,
\end{aligned} 1,3,4,5,5,1,4,5,2,3,5,6,4,3,2,5,4,34
\]} \\
\hline \\
\hline
\end{tabular}
(a) At a 5 percent level of significance, does Kathy have a valid hypothesis that the breakdowns of presses are not random?
(b) Is her hypothesis appropriate for the decision she wishes to make about rescheduling more work earlier in the week on the newer presses?

14-30 Martha Bowen, a department manager working in a large marketing-research firm, is in charge of all the research data analyses done in the firm. Accuracy and thoroughness are her responsibility. The department employs a number of research assistants to do some analyses and uses a computer to do other analyses. Typically, each week Martha randomly chooses completed analyses before they are reported and conducts tests to ensure that they have been done correctly and thoroughly. Martha's assistant, Kim Tadlock, randomly chooses 49 analyses per week from those completed and filed each day, and Martha does the reanalyses. Martha wanted to make certain that the selection process was a random one, so she could provide assurances that the computer analyses and those done by hand were both periodically checked. She arranged to have the research assistants place a special mark on the back of the records, so that they could be identified. Kim was unaware of the mark, so the randomness of the test would not be affected. Kim completed her sample with the following data:

\section*{Samples of Data Analyses for 1 Week \\ (1: by computer, 2 : by hand)}
\begin{tabular}{l}
\(1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1\), \\
\(1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1\) \\
\hline
\end{tabular}
(a) At a 1 percent significance level, can you conclude that the sample was random?
(b) If the sample were distributed as follows, would the sample be random?
\[
\begin{aligned}
& 1, \\
& 1,2,2,2,2
\end{aligned}
\]
(c) Because computer analyses are much faster than those done by hand, and because a number of the analyses can be done by computer, there are about three times as many computer analyses per week as hand analyses. Is there statistical evidence in part (a) to support the belief that somewhere in the sampling process there is something less than randomness occurring? If so, what is the evidence?
(d) Does the conclusion you reached in part (c) lead you to any new conclusions about the one-sample runs test, particularly in reference to your answer in part (a)?
14-31 Bank of America is curious about the grade level of people who use their ATM at the Student Union. Freshmen and sophomores are classified as type A, juniors and seniors as type B. Data are presented below for 45 people who used the ATM during one Friday afternoon. Test this sequence for randomness at the 0.05 significance level.

\section*{BBBAAABAAAAAABBBBABAAAABBAABBBBABBBBAAAAAABBB}

14-32 The First National Bank of Smithville recorded the gender of the first 40 customers who appeared last Tuesday with this notation:

\author{
M, F, M, M, M, M, F, F, M, M, M, F, M, M, M, M, M, F, F, M, \\ F, M, M, M, F, M, M, M, M, M, M, F, M, M, M, M, M, F, F, M
}

At the 0.05 level of significance, test the randomness of this sequence. Is there anything in banking or in the nature of this problem that would lead you to accept intuitively what you have found statistically?

\section*{Worked-Out Answer to Self-Check Exercise}

SC 14-5 (a) Let \(G\) denote those at or above 90, and \(L\) denote those below 90:
GLLLGGLLLLLGLLLLLGLLLLLLLLLLGL
\[
\begin{aligned}
n_{1} & =\# \text { of } G \prime s=6 \\
n_{2} & =\# \text { of } L \prime s=24
\end{aligned} \quad \begin{aligned}
& \alpha=10 \\
\mu & =\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1=\frac{2(6)(24)}{30}=10.6 \\
\sigma_{r} & =\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}}=\sqrt{\frac{2(6)(24)[2(6)(24)-6-24]}{(30)^{2}(29)}} \\
& =1.69
\end{aligned}
\]

The critical values of \(z\) are \(\pm 1.96\). The standardized value of \(r\) is
\[
z=\frac{r-\mu}{\sigma_{r}}=\frac{10-10.6}{1.69}=-0.355
\]
so we accept \(H_{0}\). The sequence is random.
(b) With \(P\) denoting passing (\(\geq 60\)) and \(F\) denoting failing (<60), we get

PPPPPPPPPPPPFPPPPPPPFFFFPPPFP
\[
\left.\begin{array}{ll}
n_{1}=\# \text { of } P \prime s=24 & r=7 \\
n_{2}=\# \text { of } F \prime s=6 & \alpha=0.05
\end{array}\right] \begin{aligned}
& \mu_{r}=\frac{2(24)(6)}{30}+1=10.6 \\
& \sigma_{r}=\sqrt{\frac{2(24)(6)[2(24)(6)-24-6]}{(30)^{2}(29)}}=1.69
\end{aligned}
\]

The critical values of \(z\) are \(\pm 1.96\). The standardized value of \(r\) is
\[
z=\frac{7-10.6}{1.69}=-2.13
\]
so we reject \(H_{0}\) because \(z<-1.96\). This sequence is not random.

\subsection*{14.5 RANK CORRELATION}

Chapters 12 and 13 introduced us. to the notion of correlation and to the correlation coefficient, a measure of the closeness of association between two variables. Often in correlation analysis,

Function of the rank-correlation coefficient
information is not available in the form of numerical values such as those we used in the problems of those chapters. But if we can assign rankings to the items in each of the two variables we are studying, a rank-correlation coefficient can be calculated. This is a measure of the correlation that exists between the two sets of ranks, a measure of the degree of association between the variables that we would not have been able to calculate otherwise.

A second reason for learning the method of rank correlation is to be able to simplify the process of computing a correlation coefficient from a very large set of data for each of two

Another advantage of using rank correlation variables. To prove how tedious this can be, try expanding one of the correlation problems in Chapter 12 by a factor of 10 and performing the necessary calculations. Instead of having to do these calculations, we can compute a measure of association that is based on the ranks of the observations, not the numerical values of the data. This measure is called the Spearman rank-correlation coefficient, in honor of the statistician who developed it in the early 1900s.

\section*{The Coefficient of Rank Correlation}

By working a couple of examples, we can learn how to calculate and interpret this measure of the association between two ranked

Listing the ranked variables variables. First, consider Table 14-9, which lists five people and compares the academic rank they achieved in college with the level they have attained in a certain company 10 years after graduation. The value of 5 represents the highest rank in the group; the rank of 1 , the lowest.

Using the information in Table 14-9, we can calculate a coefficient of rank correlation between success in college and company level achieved 10 years later. All we need is Equation 14-8 and a few computations.

Calculating the rank-correlation coefficient
\[
\begin{align*}
& \text { Coefficient of Rank Correlation } \\
& \qquad r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{14-8}
\end{align*}
\]
where
- \(r_{s}=\) coefficient of rank correlation (notice that the subscript \(s\), from Spearman, distinguishes this \(r\) from the one we calculated in Chapter 12)
- \(n=\) number of paired observations
- \(\sum=\) notation meaning "the sum of"
- \(d=\) difference between the ranks for each pair of observation

The computations are easily done in tabular form, as we show in Table 14-10. Therefore, we have all the information we need to find the rank-correlation

\section*{TABLE 14-9 COMPARISON OF THE RANKS} OF FIVE STUDENTS
\begin{tabular}{lcc}
\hline Student & College Rank & \begin{tabular}{c}
Company Rank \\
10 Years Later
\end{tabular} \\
\hline John & 4 & 4 \\
Margaret & 3 & 3 \\
Debbie & 1 & 1 \\
Steve & 2 & 2 \\
Lisa & 5 & 5 \\
\hline
\end{tabular}

TABLE 14-10 GENERATING INFORMATION TO COMPUTE THE RANK-CORRELATION COEFFICIENT
\begin{tabular}{lcccc}
\hline Student & \begin{tabular}{c}
College \\
Rank (1)
\end{tabular} & \begin{tabular}{c}
Company \\
Rank (2)
\end{tabular} & \begin{tabular}{c}
Difference Between \\
the Two Ranks \\
(1) \(-\mathbf{(2)}\)
\end{tabular} & \begin{tabular}{c}
Difference \\
Squared \\
{\([\mathbf{(1)}-\mathbf{(2)}]^{2}\)}
\end{tabular} \\
\hline John & 4 & 4 & 0 & 0 \\
Margaret & 3 & 3 & 0 & 0 \\
Debbie & 1 & 1 & 0 & 0 \\
Steve & 2 & 2 & 0 & 0 \\
Lisa & 5 & 5 & 0 & 0 \\
\begin{tabular}{l}
\(\sum \boldsymbol{d}^{2}=\mathbf{0} \leftarrow\)\begin{tabular}{l}
Sum of the Squared \\
differences
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
coefficient for this problem:
\[
\begin{align*}
r_{s} & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{14-8}\\
& =1-\frac{6(0)}{5(25-1)} \\
& =1-\frac{0}{120} \\
& =1 \leftarrow \text { Rank-correlation coefficient }
\end{align*}
\]

As we learned in Chapter 12, this correlation coefficient of 1 shows that there is a perfect association or perfect correlation between the two variables. This verifies what we saw in Table \(14-9\), the fact that the college and company ranks for each person were identical.

One more example should make us feel comfortable with the coefficient of rank correlation. Table 14-11 illustrates five more

Explaining values of the rankcorrelation coefficient

\section*{Computing another rank-} correlation coefficient

TABLE 14-11 GENERATING DATA TO COMPUTE THE RANK-CORRELATION COEFFICIENT
\begin{tabular}{lcccc}
\hline Student & \begin{tabular}{c}
College Rank \\
(1)
\end{tabular} & \begin{tabular}{c}
Company \\
Rank (2)
\end{tabular} & \begin{tabular}{c}
Difference Between \\
the Two Ranks \\
\((\mathbf{1)}-\mathbf{(2)}\)
\end{tabular} & \begin{tabular}{c}
Difference \\
Squared \\
{\([(\mathbf{1})-\mathbf{(2)}]^{\mathbf{2}}\)}
\end{tabular} \\
\hline Roy & 5 & 1 & 4 & 16 \\
David & 1 & 5 & -4 & 16 \\
Jay & 3 & 3 & 0 & 0 \\
Charlottee & 2 & 4 & -2 & 4 \\
Kathy & 4 & 2 & 2 & 4 \\
& & & \(\frac{\Sigma \boldsymbol{d}^{2}=\mathbf{4 0} \leftarrow\)\begin{tabular}{l}
\text { Sum of the Squared } \\
\text { differences }
\end{tabular}}{} \\
\hline
\end{tabular}
people, but this time the ranks in college and in a company 10 years later seem to be extreme opposites. We can compute the difference between the ranks for each pair of observations, find \(d^{2}\), and then take the sum of all the \(d^{2}\) s. Substituting these values into Equation 14-8, we find a rank correlation coefficient of -1 :
\[
\begin{align*}
r_{s} & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{14-8}\\
& =1-\frac{6(40)}{5(25-1)} \\
& =1-\frac{240}{120} \\
& =1-2 \\
& =-1 \leftarrow \text { Rank-correlation coefficient }
\end{align*}
\]

In Chapter 12, we learned that a correlation coefficient of -1 Interpreting the results represents perfect inverse correlation. And that is just what happened in our case: The people who did the best in college wound up 10 years later in the lowest ranks of an organization. Now let's apply these ideas.

\section*{Solving a Problem Using Rank Correlation}

Rank correlation is a useful technique for looking at the connection between air quality and the evidence of pulmonary-related diseases that we discussed in our chapter-opening problem. Table 14-12 reproduces the data found by the health organization studying the problem. In the same table, we also do some of the calculations needed to find \(r_{\mathrm{s}}\).

Using the data in Table 14-12 and Equation 14-8, we can find the rank-correlation coefficient for this problem:

Finding the rank-correlation coefficient
\[
\begin{align*}
r_{s} & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{14-8}\\
& =1-\frac{6(58)}{11(121-1)} \\
& =1-\frac{348}{1,320} \\
& =1-0.2636 \\
& =0.7364 \leftarrow \text { Rank-correlation coefficient }
\end{align*}
\]

A correlation coefficient of 0.736 suggests a substantial positive Interpreting the results association between average air quality and the occurrence of pulmonary disease, at least in the 11 cities sampled; that is, high levels of pollution go with high incidence of pulmonary disease.

How can we test this value of 0.736 ? We can apply the same methods we used to test hypotheses in Chapter 8 and 9. In performing such tests on \(r_{s}\), We are trying to avoid the error of concluding that

TABLE 14-12 RANKING OF ELEVEN CITIES
\begin{tabular}{|c|c|c|c|c|}
\hline City & \begin{tabular}{l}
Air Quality Rank \\
(1)
\end{tabular} & \begin{tabular}{l}
PulmonaryDisease Rank \\
(2)
\end{tabular} & \begin{tabular}{l}
Difference between the Two Ranks \\
(1) - (2)
\end{tabular} & Difference Squared
\[
[(1)-(2)]^{2}
\] \\
\hline A & 4 & 5 & -1 & 1 \\
\hline B & 7 & 4 & 3 & 9 \\
\hline C & 9 & 7 & 2 & 4 \\
\hline D & 1 & 3 & -2 & 4 \\
\hline E & 2 & 1 & 1 & 1 \\
\hline F & 10 & 11 & -1 & 1 \\
\hline G & 3 & 2 & 1 & 1 \\
\hline H & 5 & 10 & -5 & 25 \\
\hline I & 6 & 8 & -2 & 4 \\
\hline J & 8 & 6 & 2 & 4 \\
\hline K & 11 & 9 & 2 & 4 \\
\hline \multicolumn{4}{|c|}{\begin{tabular}{l}
Best rank \(=11\) \\
Worst rank \(=1\)
\end{tabular}} & \[
\overline{\Sigma \boldsymbol{d}^{2}=\mathbf{5 8}} \leftarrow \underset{\substack{\text { Sum of the squared } \\ \text { differences }}}{\text { der }}
\] \\
\hline
\end{tabular}
an association exists between two variables if, in fact, no such association exists in the population from which these two samples were drawn, that is, if the population rank-correlation coefficient, \(\rho_{s}\) (rho sub s), is really equal to zero.

For small values of \(\boldsymbol{n}\), (\(\boldsymbol{n}\) less than or equal to \(\mathbf{3 0}\)), the Testing hypotheses about rank distribution of \(r_{s}\) is not normal, and unlike other small sample statistics we have encountered, it is not appropriate to use the correlation \(\boldsymbol{t}\) distribution for testing hypotheses about the rank-correlation
coefficient. Instead, we use Appendix Table 7, Spearman's Rank Correlation Values, to determine the acceptance and rejection regions for such hypotheses. In our current problem, suppose that the health organization wants to test, at the 0.05 level of significance, the null hypothesis that there is zero correlation in the ranked data of all cities in the world. Our problem then becomes:
\[
\begin{aligned}
& H_{0}: \rho_{s}=0 \leftarrow \quad \begin{array}{l}
\text { Null hypothesis: There is no correlation in } \quad \text { Stating the hypotheses } \\
\text { the ranked data of the population }
\end{array} \\
& H_{1}: \rho_{s} \neq 0 \leftarrow \quad \begin{array}{l}
\text { Alternative hypothesis: There is a correla- } \\
\text { tion in the ranked data of the populations }
\end{array} \\
& \alpha=0.05 \leftarrow \quad \begin{array}{l}
\text { Level of significance for testing these hypotheses }
\end{array}
\end{aligned}
\]

A two-tailed test is appropriate, so we look at Appendix Table 7 in the row for \(n=11\) (the number of cities) and the column for a significance level of 0.05 . There we find that the critical values for \(\mathrm{r}_{s}\) are \(\pm 0.6091\), that is, the upper limit of the acceptance region is 0.6091 , and the lower limit of the acceptance region is -0.6091 .

Figure 14-8 shows the limits of the acceptance region and the rank-correlation coefficient we calculated from the air-quality sample. From this figure, we can see that the rank-correlation coefficient lies outside the acceptance region. Therefore, we would reject the null hypothesis of no correlation and conclude that there is an association between air-quality levels and the incidence of pulmonary disease in the world's cities.

FIGURE 14-8 TWO-TAILED HYPOTHESIS TEST, USING APPENDIX TABLE 7 AT THE 0.05 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND SAMPLE RANK-CORRELATION COEFFICIENT.

If the sample size is greater than 30 , we can no longer use Appendix Table 7. However, when \(n\) is greater than 30, the sampling distribution of \(r_{s}\) is approximately normal, with a mean of zero and a standard deviation of \(1 / \sqrt{n-1}\). Thus, the standard error of \(r_{s}\) is,

The appropriate distribution 'for values of \(n\) greater than 30

\section*{Standard Error of the Coefficient of Rank Correlation}
\[
\begin{equation*}
\sigma_{r_{s}}=\frac{1}{\sqrt{n-1}} \tag{14-9}
\end{equation*}
\]
and we can use Appendix Table 1 to find the appropriate \(z\) values
Example with n greater than 30 for testing hypotheses about the population rank correlation.

As an example of hypothesis testing of rank-correlation coefficients when \(n\) is greater than 30 , consider the case of a social scientist who tries to determine whether bright people tend to choose spouses who are also bright. He randomly chooses 32 couples and tests to see whether there is a significant rank correlation in the IQs of the couples. His data and computations are given in Table 14-13.

Using the data in Table 14-13 and Equation 14-8, we can find the rank-correlation coefficient for this problem:
\[
\begin{align*}
r_{s} & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{14-8}\\
& =1-\frac{6(1,043.5}{32(1,024-1)}
\end{align*}
\]
\[
\begin{aligned}
& =1-\frac{6,261}{32,736} \\
& =1-0.1913 \\
& =0.8087 \leftarrow \text { Rank-correlation coefficient }
\end{aligned}
\]

If the social scientist wishes to test his hypothesis at the 0.01 level of significance, his problem can be stated:

TABLE 14-13 COMPUTATION OF RANK CORRELATION OF HUSBANDS' AND WIVES' IQS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Couple \\
(1)
\end{tabular} & Husband's
IQ
(2) & Wife's IQ (3) & Husband's Rank (4) & Wife's Rank (5) & Difference between Ranks (4) - (5) & Difference Squared
\[
[(4)-(5)]^{2}
\] \\
\hline 1 & 95 & 95 & 8 & 4.5 & 3.5 & 12.25 \\
\hline 2 & 103 & 98 & 20 & 8.5 & 11.5 & 132.25 \\
\hline 3 & 111 & 110 & 26 & 23 & 3 & 9.00 \\
\hline 4 & 92 & 88 & 4 & 2 & 2 & 4.00 \\
\hline 5 & 150 & 106 & 32 & 18 & 14 & 196.00 \\
\hline 6 & 107 & 109 & 24 & 21.5 & 2.5 & 6.25 \\
\hline 7 & 90 & 96 & 3 & 6 & -3 & 9.00 \\
\hline 8 & 108 & 131 & 25 & 32 & -7 & 49.00 \\
\hline 9 & 100 & 112 & 17.5 & 25.5 & -8 & 64.00 \\
\hline 10 & 93 & 95 & 5.5 & 4.5 & 1 & 1.00 \\
\hline 11 & 119 & 112 & 29 & 25.5 & 3.5 & 12.25 \\
\hline 12 & 115 & 117 & 28 & 30 & -2 & 4.00 \\
\hline 13 & 87 & 94 & 1 & 3 & -2 & 4.00 \\
\hline 14 & 105 & 109 & 21 & 21.5 & -0.5 & 0.25 \\
\hline 15 & 135 & 114 & 31 & 27 & 4 & 16.00 \\
\hline 16 & 89 & 83 & 2 & 1 & 1 & 1.00 \\
\hline 17 & 99 & 105 & 14.5 & 16.5 & -2 & 4.00 \\
\hline 18 & 106 & 115 & 22.5 & 28 & -5.5 & 30.25 \\
\hline 19 & 126 & 116 & 30 & 29 & 1 & 1.00 \\
\hline 20 & 100 & 107 & 17.5 & 19 & -1.5 & 2.25 \\
\hline 21 & 93 & 111 & 5.5 & 24 & -18.5 & 342.25 \\
\hline 22 & 94 & 98 & 7 & 8.5 & -1.5 & 2.25 \\
\hline 23 & 100 & 105 & 17.5 & 16.5 & 1 & 1.00 \\
\hline 24 & 96 & 103 & 10 & 15 & -5 & 25.00 \\
\hline 25 & 99 & 101 & 14.5 & 13 & 1.5 & 2.25 \\
\hline 26 & 112 & 123 & 27 & 31 & -4 & 16.00 \\
\hline 27 & 106 & 108 & 22.5 & 20 & 2.5 & 6.25 \\
\hline 28 & 98 & 97 & 12.5 & 7 & 5.5 & 30.25 \\
\hline 29 & 96 & 100 & 10 & 11.5 & -1.5 & 2.25 \\
\hline 30 & 98 & 99 & 12.5 & 10 & 2.5 & 6.25 \\
\hline 31 & 100 & 100 & 17.5 & 11.5 & 6 & 36.00 \\
\hline 32 & 96 & 102 & 10 & 14 & -4 & 16.00 \\
\hline \multicolumn{7}{|r|}{Sum of the squared differences \(\rightarrow \overline{\Sigma d^{2}=1,043.50}\)} \\
\hline
\end{tabular}

FIGURE 14-9 UPPER-TAILED HYPOTHESIS TEST AT THE 0.01 LEVEL OF SIGNIFICANCE
\[
\begin{aligned}
& \left.\mathrm{H}_{0}: \sigma_{s}=0 \leftarrow \begin{array}{l}
\text { Null hypothesis: There is no rank correlation in the population; that is, husbands' intelligence and } \\
\\
\mathrm{H}_{1}: \sigma_{s}>0
\end{array}\right) \leftarrow \begin{array}{l}
\text { Altesernative hypothesis: The population rank correlation is positive; that is, bright people choose bright } \\
\text { spouses }
\end{array} \\
& \alpha=0.01 \leftarrow \text { Level of significance for testing these hypotheses }
\end{aligned}
\]

An upper-tailed test is appropriate. From Appendix Table 1, we find that the critical \(z\) value for the 0.01 level of significance is 2.33 . Figure 14-9 illustrates this hypothesis test graphically; we show there the colored region in the upper tail of the distribution that corresponds to the 0.01 level of significance.

To compute our test statistic, we first find the standard error of \(r_{s}\) :
\[
\begin{align*}
\sigma_{r_{s}} & =\frac{1}{\sqrt{n-1}} \tag{14-9}\\
& =\frac{1}{\sqrt{32-1}}=0.1796
\end{align*}
\]

Now we can use Equation 6-2 to standardize the rank correlation coefficient, \(r_{s}\), by subtracting 0, its hypothesized value, and dividing by \(\sigma_{r_{3}}\), its standard error.
\[
\begin{align*}
z & =\frac{r_{s}-0}{\sigma_{r_{s}}} \tag{6-2}\\
& =\frac{0.8087}{0.1796} \\
& =4.503
\end{align*}
\]

Figure 14-10 shows the limit of the acceptance region and the Interpreting the results standardized rank-correlation coefficient we calculated from the IQ data. In Figure 14-10, we can see that the rank-correlation coefficient lies far outside the acceptance region. Therefore, we would reject the null hypothesis of no correlation and conclude that bright people tend to choose bright spouses.

FIGURE 14-10 UPPER-TAILED HYPOTHESIS TEST AT THE 0.01 LEVEL OF SIGNIFICANCE, SHOWING THE ACCEPTANCE REGION AND THE STANDARDIZED SAMPLE RANK-CORRELATION COEFFICIENT

\section*{A Special Property of Rank Correlation}

Rank correlation has a useful advantage over the correlation method we discussed in Chapter 12. Suppose we have cases in

\section*{Advantage of rank correlation} which one or several very extreme observations exist in the original data. By the use of numerical values as was done in Chapter 12, the correlation coefficient may not be a good description of the association that exists between two variables. Yet extreme observations in a rank-correlation test will never produce a large rank difference.

Consider the following data array of two variables, \(x\) and \(y\) :
\begin{tabular}{rrrrrr}
\hline\(X\) & 10 & 13 & 16 & 19 & 25 \\
\(Y\) & 34 & 40 & 45 & 51 & 117 \\
\hline
\end{tabular}

Because of the large value of the fifth \(y\) term, we would get two significantly different answers for \(r\) using the conventional and the rank-correlation methods. In this case, the rank-correlation method would be less sensitive to the extreme value. We would assign a rank order of 5 to the numerical value of 117 and avoid the unduly large effect on the value of the correlation coefficient.

\section*{HINTS \& ASSUMPTIONS}

When there are extreme values in the original data, rank correlation can produce more useful results than the correlation method explained in Chapter 12 because extreme observations never produce a large difference in rank. Hint: Rank correlation is very useful when data are nonnormally distributed. Take the case of university fund-raising where you get a few "big hitter" gifts, lots and lots of gifts below \(\$ 100\), and a very broad range in between. Using the correlation techniques of Chapter 12 to investigate the relationship between number of appeal mailings and size of gift with this kind of distribution doesn't make sense because the million-dollar gifts would distort the findings. But using rank correlation in this instance works quite well.

\section*{EXERCISES 14.5}

\section*{Self-Check Exercise}

SC 14-6 The following are ratings of aggressiveness \((X)\) and amount of sales in the last year \((Y)\) for eight salespeople. Is there a significant rank correlation between the two measures? Use the 0.10 significance level.
\begin{tabular}{lllllllll}
\hline \(\boldsymbol{X}\) & 30 & 17 & 35 & 28 & 42 & 25 & 19 & 29 \\
\(\boldsymbol{Y}\) & 35 & 31 & 43 & 46 & 50 & 32 & 33 & 42 \\
\hline
\end{tabular}

\section*{Applications}

14-33 The following are years of experience \((X)\) and average customer satisfaction \((Y)\) for 10 service providers. Is there a significant rank correlation between the two measures? Use the 0.05 significance level.
\begin{tabular}{ccccccccccc}
\hline \(\boldsymbol{X}\) & 6.3 & 5.8 & 6.1 & 6.9 & 3.4 & 1.8 & 9.4 & 4.7 & 7.2 & 2.4 \\
\(\boldsymbol{Y}\) & 5.3 & 8.6 & 4.7 & 4.2 & 4.9 & 6.1 & 5.1 & 6.3 & 6.8 & 5.2 \\
\hline
\end{tabular}

14-34 A plant supervisor ranked a sample of eight workers on the number of hours of overtime worked and length of employment. Is the rank correlation between the two measures significant at the 0.01 level?
\begin{tabular}{lllllllll}
\hline Amount of over time & 5.0 & 8.0 & 2.0 & 4.0 & 3.0 & 7.0 & 1.0 & 6.0 \\
Years employed & 1.0 & 6.0 & 4.5 & 2.0 & 7.0 & 8.0 & 4.5 & 3.0 \\
\hline
\end{tabular}

14-35 Most people believe that managerial experience produces better interpersonal relationships between a manager and her employees. The Quail Corporation has the following data matching years of experience on the part of the manager with the number of grievances filed last year by the employees reporting to that manager. At the 0.05 level of significance, does the rank correlation between these two suggest that experience improves relationships?
\begin{tabular}{lrrrrrrrrrr}
\hline Years of experience & 7 & 18 & 17 & 4 & 21 & 27 & 20 & 14 & 15 & 10 \\
Number of grievances & 5 & 2 & 4 & 4 & 3 & 2 & 4 & 5 & 4 & 6 \\
\hline
\end{tabular}

14-36 The Occupational Safety and Health Administration (OSHA) was conducting a study of the relationship between expenditures for plant safety and the accident rate in the plants. OSHA had confined its studies to the synthetic chemical industry. To adjust for the size differential that existed among some of the plants, OSHA had converted its data into expenditures per production employee. The results follow:

\section*{Expenditure by Chemical Companies per Production Employee in Relation to Accidents per Year}
\begin{tabular}{lrrrrrrrcrrr}
\hline Company & A & B & C & D & E & F & G & H & I & J & K \\
Expenditure & \(\$ 60\) & \(\$ 37\) & \(\$ 30\) & \(\$ 20\) & \(\$ 24\) & \(\$ 42\) & \(\$ 39\) & \(\$ 54\) & \(\$ 48\) & \(\$ 58\) & \(\$ 26\) \\
Accidents & 2 & 7 & 6 & 9 & 7 & 4 & 8 & 2 & 4 & 3 & 8 \\
\hline
\end{tabular}

Is there a significant correlation between expenditures and accidents in the chemical-company plants? Use a rank correlation (with 1 representing highest expenditure and accident rate) to support your conclusion. Test at the 1 percent significance level.
14-37 Two business school professors were discussing how difficult, it is to predict the success of graduates based on grades alone. One professor thought that the number of years of experience MBAs had before returning for their degrees was probably a better predictor. Using the following data, at the 0.02 level of significance, which rank correlation is a better predictor of career success?
\begin{tabular}{lllllllllll}
\hline Years experience & 4 & 3 & 4 & 3 & 6 & 7 & 1 & 5 & 5 & 2 \\
Grade-point average & 3.4 & 3.2 & 3.5 & 3.0 & 2.9 & 3.4 & 2.5 & 3.9 & 3.6 & 3.0 \\
Success rank (10 = top) & 4 & 2 & 6 & 5 & 7 & 9 & 1 & 8 & 10 & 3 \\
\hline
\end{tabular}

14-38 The Carolina Lighting Company has two trained interviewers to recruit manager trainees for new sales outlets. Although each of the interviewers has a unique style, both are thought to be good preliminary judges of managerial potential. The personnel manager wondered how closely the interviewers would agree, so she had both of them independently evaluate 14 applicants. They ranked the applicants in terms of their degree of potential contribution to the company. The results follow. Use a rank correlation and a 1 percent significance level to determine whether there is a significant positive correlation between the two interviewers' rankings.
\begin{tabular}{lrrrrrrrrrrrrrr}
\hline Applicant & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
Interviewer 1 & 1 & 11 & 13 & 2 & 12 & 10 & 3 & 4 & 14 & 5 & 6 & 9 & 7 & 8 \\
Interviewer 2 & 4 & 12 & 11 & 2 & 14 & 10 & 1 & 3 & 13 & 8 & 6 & 7 & 9 & 5 \\
\hline
\end{tabular}

14-39 Nancy McKenzie, supervisor for a lithographic camera assembly process, feels that the longer a group of employees works together, the higher the daily output rate. She gathered the following data during the first 10 days that one group of employees worked together.
\begin{tabular}{lllllllllll}
\hline Day & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
Output rate & 4.0 & 7.0 & 5.0 & 6.0 & 8.0 & 2.0 & 3.0 & 0.5 & 9.0 & 6.0 \\
\hline
\end{tabular}

Can Nancy conclude at a 5 percent significance level that there is no correlation between the number of days worked together and the daily output?
14-40 An electronics firm, which recruits many engineers, wonders whether the cost of extensive recruiting efforts is worth it. If the firm could be confident (using a 1 percent significance level) that the population rank correlation between applicants' résumés scored by the personnel department and interview scores is positive, it would feel justified in discontinuing interviews and relying on résumé scores in hiring. The firm has drawn a sample of 35 engineer applicants in the last 2 years. On the basis of the sample shown, should the firm discontinue interviews and use résumé scores to hire?
\begin{tabular}{ccc|ccc}
\hline Individual & \begin{tabular}{c}
Interview \\
Score
\end{tabular} & \begin{tabular}{c}
Résumé \\
Score
\end{tabular} & Individual & \begin{tabular}{c}
Interview \\
Score
\end{tabular} & \begin{tabular}{c}
Résumé \\
Score
\end{tabular} \\
\hline 1 & 81 & 113 & 19 & 81 & 111 \\
2 & 88 & 88 & 20 & 84 & 121 \\
3 & 55 & 76 & 21 & 82 & 83 \\
4 & 83 & 129 & 22 & 90 & 79 \\
5 & 78 & 99 & 23 & 63 & 71 \\
6 & 93 & 142 & 24 & 78 & 108 \\
7 & 65 & 93 & 25 & 73 & 68 \\
8 & 87 & 136 & 26 & 79 & 121 \\
9 & 95 & 82 & 27 & 72 & 109 \\
10 & 76 & 91 & 28 & 95 & 121 \\
11 & 60 & 83 & 29 & 81 & 140 \\
12 & 85 & 96 & 30 & 87 & 132 \\
13 & 93 & 126 & 31 & 93 & 135 \\
14 & 66 & 108 & 32 & 85 & 143 \\
15 & 90 & 95 & 33 & 91 & 118 \\
16 & 69 & 65 & 34 & 94 & 147 \\
17 & 87 & 96 & 35 & 94 & 138 \\
18 & 68 & 101 & & & \\
\hline
\end{tabular}

14-41 The following are salary and age data for the \(10 \mathrm{Ph} . \mathrm{D}\). candidates graduating this year from the School of Accounting at Northwest University. At the 0.05 level of significance, does the rank correlation of age and salary suggest that older candidates get higher starting salaries?
\begin{tabular}{cc}
\hline Salary & Age \\
\hline\(\$ 67,000\) & 29 \\
60,000 & 25 \\
57,500 & 30 \\
59,500 & 35 \\
50,000 & 27 \\
55,000 & 31 \\
59,500 & 32 \\
63,000 & 38 \\
69,500 & 28 \\
72,000 & 34 \\
\hline
\end{tabular}

14-42 Dee Boone operates a repair facility for light-aircraft engines. He is interested in improving his estimates of repair time required and believes that the best predictor is the number of operating hours on the engine since its last major repair. Below are data on ten engines Dee worked on recently. At the 0.10 level of significance, does the rank correlation suggest a strong relationship?
\begin{tabular}{ccc}
\hline Engine & \begin{tabular}{c}
House Since Last \\
Major Repair
\end{tabular} & \begin{tabular}{c}
House Required \\
to Repair
\end{tabular} \\
\hline 1 & 1,000 & 40 \\
2 & 1,200 & 54 \\
3 & 900 & 41 \\
4 & 1,450 & 60 \\
5 & 2,000 & 65 \\
6 & 1,300 & 50 \\
7 & 1,650 & 42 \\
8 & 1,700 & 65 \\
9 & 500 & 43 \\
10 & 2,100 & 66 \\
\hline
\end{tabular}

\section*{Worked-Out Answer to Self-Check Exercise}

\section*{SC 14-6}
\begin{tabular}{lrrrrrrrr}
\hline \(\boldsymbol{X}(\) ranks \()\) & 6 & 1 & 7 & 4 & 8 & 3 & 2 & 5 \\
\(\boldsymbol{Y}(\) ranks \()\) & 4 & 1 & 6 & 7 & 8 & 2 & 3 & 5 \\
\(\boldsymbol{d}\) & 2 & 0 & 1 & -3 & 0 & 1 & -1 & 0 \\
\(\boldsymbol{d}^{2}\) & 4 & 0 & 1 & 9 & 0 & 1 & 1 & 0 \\
\hline\(\sum d^{2}=16\) & \(n=8\) & \(\alpha=0.10\) \\
\(H_{0}: \rho_{\mathrm{s}}\) & \(=0 \quad H_{1}: \rho_{\mathrm{s}} \neq 0\) \\
\(\quad r_{s}\) & \(=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6(16)}{8(63)}=0.8095\)
\end{tabular}

From Appendix Table 7, the critical values for \(r_{s}\) are \(\pm 0.6190\). Because \(0.8095>0.6190\), we reject \(\mathrm{H}_{0}\). The correlation is significant.

\subsection*{14.6 THE KOLMOGOROV-SMIRNOV TEST}

The Kolmogorov-Smirnov test, named for statisticians A. N. The K-S test and its advantages Kolmogorov and N. V. Smirnov, is a simple nonparametric method for testing whether there is a significant difference between an observed frequency distribution and a theoretical frequency distribution. The K-S test is therefore another measure of the goodness-of-fit of a theoretical frequency distribution, as was the chisquare test we studied in Chapter 11. However, the K-S test has several advantages over the \(\chi^{2}\) test: It is a more powerful test, and it is easier to use because it does not require that data be grouped in any way.

The K-S statistic, \(D_{n}\), is particularly useful for judging how close the observed frequency distribution is to the expected frequency distribution, because the probability distribution of \(D_{n}\) depends on the sample size \(n\) but is independent of the expected frequency distribution (\(D_{n}\) is a distribution-free statistic).

\section*{A Problem Illustrating the K-S Test}

Suppose that the Orange County Telephone Exchange has been keeping track of the number of "senders" (a type of automatic equipment used in telephone exchanges) that were in use at a given instant. Observations were made on 3,754 different occasions. For capital-investment planning purposes, the budget officer of this company thinks that the pattern of usage follows a Poisson distribution with a mean of 8.5 . If he wants to test his hypothesis at the 0.01 level of significance, he can use the K-S test.

We would set up our hypotheses like this:
\(\mathrm{H}_{0}\) : A Poisson distribution with \(\lambda=8.5\) is a good description of

\section*{Stating the hypotheses} the pattern of usage \(\leftarrow\) Null hypothesis
\(H_{1}\) : A Poisson distribution with \(\lambda=8.5\) is not a good description of the pattern of usage \(\leftarrow\) Alternative hypothesis
\(\alpha=0.01 \leftarrow\) Level of significance for testing these hypotheses
Next, we would list the data that we observed. Table 14-14 lists the observed frequencies and transforms them into observed rela-

Computing and comparing expected frequencies tive cumulative frequencies.

Now we can use the Poisson formula to compute the expected frequencies.
\[
\begin{equation*}
p(x)=\frac{\lambda^{x} \times e^{-\lambda}}{x!} \tag{5-4}
\end{equation*}
\]

By comparing these expected frequencies with our observed frequencies, we can examine the extent of the difference between them: the absolute deviation. Table 14-15 lists the observed relative cumulative frequencies \(F_{o}\), the expected relative cumulative frequencies \(F_{e}\), and the absolute deviations for \(x=0\) to 22 .

\section*{Calculating the K-S Statistic}

To compute the K-S statistic for this problem, you simply pick out \(D_{n}\), the maximum absolute deviation of \(F_{e}\) from \(F_{o}\).

\section*{Computing the K-S statistic}
\begin{tabular}{|cc|}
\hline K-S Statistic & \\
\hline\(D_{n}=\max \left|F_{e}-F_{o}\right|\) & {\([14-10]\)} \\
\hline
\end{tabular}

In this problem, \(d_{n}=0.2582\) at \(x=9\).
A K-S test must always be a one-tailed test. The critical values for \(D_{n}\) have been tabulated and can be found in Appendix

Computing the critical value Table 8. By looking in the row for \(n=3,754\) (the sample size) and the column for a significance level of 0.01 , we find that the

\section*{TABLE 14-14 OBSERVED AND RELATIVE CUMULATIVE FREQUENCIES}
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Number \\
Busy
\end{tabular} & \begin{tabular}{c}
Observed \\
Frequency
\end{tabular} & \begin{tabular}{c}
Observed \\
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c}
Observed Relative \\
Cumulative \\
Frequency
\end{tabular} \\
\hline 0 & 0 & 0 & 0.0000 \\
1 & 5 & 5 & 0.0013 \\
2 & 14 & 19 & 0.0051 \\
3 & 24 & 43 & 0.0115 \\
4 & 57 & 100 & 0.0266 \\
5 & 111 & 211 & 0.0562 \\
6 & 197 & 408 & 0.1087 \\
7 & 278 & 686 & 0.1827 \\
8 & 378 & 1,064 & 0.2834 \\
9 & 418 & 1,482 & 0.3948 \\
10 & 461 & 1,943 & 0.5176 \\
11 & 433 & 2,376 & 0.6329 \\
12 & 413 & 2,789 & 0.7429 \\
13 & 358 & 3,147 & 0.8383 \\
14 & 219 & 3,366 & 0.8966 \\
15 & 145 & 3,511 & 0.9353 \\
16 & 109 & 3,620 & 0.9643 \\
17 & 57 & 3,677 & 0.9795 \\
18 & 43 & 3,720 & 0.9909 \\
19 & 16 & 3,736 & 0.9952 \\
20 & 7 & 3,743 & 0.9971 \\
21 & 8 & 3,751 & 0.9992 \\
22 & 3 & 3,754 & 1.0000 \\
\hline & & & \\
\hline
\end{tabular}
critical value of \(D_{n}\) must be computed using the formula
\[
\frac{1.63}{\sqrt{n}}=\frac{1.63}{\sqrt{3,754}}=\frac{1.63}{61.27}=0.0266
\]

The next step is to compare the calculated value of \(D_{n}\) with the critical value of \(D_{n}\) from the table. If the table value for the

\section*{Our conclusion} chosen significance level is greater than the calculated value of \(D_{n}\), then we will accept the null hypothesis. Obviously, \(0.0266<0.2582\), so we reject \(\mathrm{H}_{0}\) and conclude that a Poisson distribution with a mean of 8.5 is not a good description of the pattern of sender usage at the Orange County Telephone Exchange.

TABLE 14-15 RELATIVE OBSERVED CUMULATIVE FREQUENCIES, EXPECTED RELATIVE CUMULATIVE FREQUENCIES, AND ABSOLUTE DEVIATIONS
\begin{tabular}{cccccc}
\hline Number & \begin{tabular}{c}
Observed \\
Busy
\end{tabular} & \begin{tabular}{c}
Frequency \\
Observed \\
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c}
Observed \\
Relative \\
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c}
Expected \\
Relative \\
Cumulative \\
Frequency
\end{tabular} & \begin{tabular}{c}
\(\left|\boldsymbol{F}_{\boldsymbol{e}}-\boldsymbol{F}_{\boldsymbol{o}}\right|\) \\
Absolute \\
Deviation
\end{tabular} \\
\hline 0 & 0 & 0 & 0.0000 & 0.0002 & 0.0002 \\
1 & 5 & 5 & 0.0013 & 0.0019 & 0.0006 \\
2 & 14 & 19 & 0.0051 & 0.0093 & 0.0042 \\
3 & 24 & 43 & 0.0115 & 0.0301 & 0.0186 \\
4 & 57 & 100 & 0.0266 & 0.0744 & 0.0478 \\
5 & 111 & 211 & 0.0562 & 0.1496 & 0.0934 \\
6 & 197 & 408 & 0.1087 & 0.2562 & 0.1475 \\
7 & 278 & 686 & 0.1827 & 0.3856 & 0.2029 \\
8 & 378 & 1,064 & 0.2834 & 0.5231 & 0.2397 \\
9 & 418 & 1,482 & 0.3948 & 0.6530 & 0.2582 \\
10 & 461 & 1,943 & 0.5176 & 0.7634 & 0.2458 \\
11 & 433 & 2,376 & 0.6329 & 0.8487 & 0.2158 \\
12 & 413 & 2,789 & 0.7429 & 0.9091 & 0.1662 \\
13 & 358 & 3,147 & 0.8383 & 0.9486 & 0.1103 \\
14 & 219 & 3,366 & 0.8966 & 0.9726 & 0.0760 \\
15 & 145 & 3,511 & 0.9353 & 0.9862 & 0.0509 \\
16 & 109 & 3,620 & 0.9643 & 0.9934 & 0.0291 \\
17 & 57 & 3,677 & 0.9795 & 0.9970 & 0.0175 \\
18 & 43 & 3,720 & 0.9909 & 0.9987 & 0.0078 \\
19 & 16 & 3,736 & 0.9952 & 0.9995 & 0.0043 \\
20 & 7 & 3,743 & 0.9971 & 0.9998 & 0.0027 \\
21 & 8 & 3,751 & 0.9992 & 0.9999 & 0.0007 \\
22 & 3 & 3,754 & 1.0000 & 1.0000 & 0.0000 \\
\hline
\end{tabular}

\section*{Kolmogrov-Smirnov Test Using SPSS}

For Kolmogrov-Smirnov test we will take data for an insurance analyst who wants to model the number of automobile accidents per driver. She has randomly sampled data on drivers in a certain region and uses the Kolmogorov-Smirnov test to confirm that the number of accidents follows a Poisson distribution.

For Kolmogrov-Smirnov go to Analyze > Nonparametric tests > One sample Kolmogrov Smirnov test \(>\) Select test variable \(>\) select test distribution \(>\) OK.

\section*{HINTS \& ASSUMPTIONS}

Think of the Kolmogorov-Smirnov test as another goodness-of-fit test, just like the chi-square test in Chapter 11, except that this time it's easier to use because we do not have to do all the arithmetic needed to calculate chi-square. The K-S test just finds the relative cumulative distributions for both observed frequencies and expected frequencies and then tests how far apart they are. If the distance is not significant, then the observed distribution is well described by the theoretical distribution. Hint: K-S tests are always one-tailed tests because we are always testing whether differences are greater than a specified level.

\section*{EXERCISES 14.6}

\section*{Self-Check Exercise}

SC 14-7 The following is an observed frequency distribution. Using a normal distribution with \(\mu=6.80\) and \(\sigma=1.24\) :
(a) Find the probability of falling into each class.
(b) From part (a), compute the expected frequency of each category.
(c) Calculate \(D_{n}\).
(d) At the 0.15 level of significance, does this distribution seem to be well described by the suggested normal distribution?
\begin{tabular}{lccccc}
\hline Value of the variable & \(\leq 4.009\) & \(4.010-5.869\) & \(5.870-7.729\) & \(7.730-9.589\) & \(>9.590\) \\
Observed frequency & 13 & 158 & 437 & 122 & 20 \\
\hline
\end{tabular}

\section*{Basic Concepts}

14-43 At the 0.05 level of significance, can we conclude that the following data come from a Poisson distribution with \(\lambda=3\) ?
\begin{tabular}{lrrrrrrl}
\hline Number of arrivals per day & 0 & 1 & 2 & 3 & 4 & 5 & 6 or more \\
Number of days & 6 & 18 & 30 & 24 & 11 & 2 & 9 \\
\hline
\end{tabular}

14-44 The following is an observed frequency distribution. Using a normal distribution with \(\mu=98.6\) and \(\sigma=3.78\)
(a) Find the probability of falling into each class.
(b) From part (a), compute the expected frequency of each category.
(c) Calculate \(D_{n}\).
(d) At the 0.10 significance level, does this distribution seem to be well described by the suggested normal distribution?
\begin{tabular}{lllllr}
\hline Value of the variable & \(<92.0\) & \(92.0-95.99\) & \(96.0-99.99\) & \(100-103.99\) & \(\geq 104\) \\
Observed frequency & 69 & 408 & 842 & 621 & 137 \\
\hline
\end{tabular}

14-45 The following is a table of observed frequencies, along with the frequencies to be expected under a normal distribution.
(a) Calculate the \(\mathrm{K}-\mathrm{S}\) statistic.
(b) Can we conclude that these data do in fact come from a normal distribution? Use the 0.10 level of significance.
\begin{tabular}{lccccc}
\hline & \multicolumn{5}{c}{ Test Score } \\
\cline { 2 - 6 } & \(\mathbf{5 1 - 6 0}\) & \(\mathbf{6 1 - 7 0}\) & \(\mathbf{7 1 - 8 0}\) & \(\mathbf{8 1 - 9 0}\) & \(\mathbf{9 1 - 1 0 0}\) \\
\hline Observed frequency & 30 & 100 & 440 & 500 & 130 \\
Expected frequency & 40 & 170 & 500 & 390 & 100 \\
\hline
\end{tabular}

\section*{Applications}

14-46 Kevin Morgan, national sales manager of an electronics firm, has collected the following salary statistics on his field salesforce earnings. He has both observed frequencies and frequencies expected if the distribution of salaries is normal. At the 0.10 level of significance, can Kevin conclude that the distribution of salesforce earnings is normal?
\begin{tabular}{lccccccc}
\hline & \multicolumn{7}{c}{ Earnings (in thousands) } \\
\cline { 2 - 8 } & \(\mathbf{2 5 - 3 0}\) & \(\mathbf{3 1 - 3 6}\) & \(\mathbf{3 7 - 4 2}\) & \(\mathbf{4 3 - 4 8}\) & \(\mathbf{4 9 - 5 4}\) & \(\mathbf{5 5 - 6 0}\) & \(\mathbf{6 1 - 6 6}\) \\
\hline Observed frequency & 9 & 22 & 25 & 30 & 21 & 12 & 6 \\
Expected frequency & 6 & 17 & 32 & 35 & 18 & 13 & 4 \\
\hline
\end{tabular}

14-47 Randall Nelson, salesman for the V-Star company, has seven accounts to visit per week. It is thought that the sales by Mr. Nelson may be described by the binomial distribution, with the probability of selling each account being 0.45 . Examining the observed frequency distribution of Mr. Nelson's number of sales per week, determine whether the distribution does in fact correspond to the suggested distribution. Use the 0.05 significance level.
\begin{tabular}{lccccccccc}
\hline Number of sales per week & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Frequency of the number of sales & 25 & 32 & 61 & 47 & 39 & 21 & 18 & 12 \\
\hline
\end{tabular}

14-48 Jackie Denn, an airline food-service administrator, has examined past records from 200 randomly selected cross-country flights to determine the frequency with which low-sodium meals were requested. The number of flights in which \(0,1,2,3\), or 4 or more low-sodium meals were requested was \(25,45,67,43\), and 20 , respectively. At the 0.05 level of significance, can she reasonably conclude that these requests follow a Poisson distribution with \(\lambda=1\) ?

\section*{Worked-Out Answer to Self-Check Exercise}

SC 14-7 (a) The probabilities of falling into the five classes are the indicated areas under the curve shown in p. 786:

(b) \(n=13+158+437+122+20=750\). Thus, the expected frequencies are \(0.0122(750)=\) \(9.15,0.2144(750)=160.80,0.5468(750)=410.1,160.80\), and 9.15 .
(c)
\begin{tabular}{rcccc}
\hline \(\boldsymbol{f}_{o}\) & cum. \(\boldsymbol{f}_{o}\) & \(\boldsymbol{F}_{o}\) & \(\boldsymbol{F}_{e}\) & \(\left|\boldsymbol{F}_{e}-\boldsymbol{F}_{o}\right|\) \\
\hline 13 & 13 & 0.0173 & 0.0122 & 0.0051 \\
158 & 171 & 0.2280 & 0.2266 & 0.0014 \\
437 & 608 & 0.8107 & 0.7734 & 0.0373 \\
122 & 730 & 0.9733 & 0.9878 & 0.0145 \\
20 & 750 & 1.0000 & 1.0000 & 0.0000 \\
\hline
\end{tabular}
(d)
\(D_{\text {table }}=\frac{1.14}{\sqrt{n}}=\frac{1.14}{\sqrt{750}}=0.0416 . D_{n}<D_{\text {table }}\), so accept \(\mathrm{H}_{0}\).
The data are well described by the suggested normal distribution.

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 14: Nonparametric Methods "I forgot to tell you," said Sherrel Wright, the advertising manager, as they headed back to the office, "Margot was looking for you-you better check in with her before you start on this advertising project."
"I need help!" Margot announced in a voice that could be heard in Cheyenne, Wyoming. "I spent a lot of money to get some data, and now that it's here, I don't know what we've got."
"Well I don't either," Lee joked, trying to lighten the mood. "Why don't you tell me what's going on."
"For some of the midrange models-basically PCs with fast chips and a reasonable amount of disk storage-we can make them look three different ways. The old AT style machines are the size of a small suitcase. People liked the big box because it had the image of a big, powerful machine. But in the last year or so, some of the very powerful workstations have been made in a pizza box format with a fairly narrow, flat box. So some companies have been offering the midrange in a low-profile format. It's really just the same innards in a smaller box that does not take up as much desk space. Finally, some competitors have offered a tower configuration. That's the old AT style tipped on its edge so it can sit on the floor. That eliminates any need for desk space."
"So which style did Loveland go with?" Lee asked.
"Frankly, we've been all over the place-during different marketing campaigns. Sometimes we've offered two of the three formats, but we' ve changed back and forth as we' ve tried to guess what customers want. You'd think that everyone would want thé machine on the floor, but it turns out the computer box is 'a useful place to put the monitor, and people who use a lot of floppies don't want to keep reaching under their desks to use the disk drive."
"Okay. So offer all three styles," Lee smiled at this simple-but-elegant solution.
"That just adds to our costs. If we run three styles, we lose the volume discounts that we can get by going with just one. And then we have to advertise three formats while I'm also launching new high-end products and keeping up with demand for our lowest-price machines. I'd like to be able to recommend the single best format to management."
"Well, I don't have a crystal ball," Lee began.
"I don't expect you to. I hired a market-research firm. They ran focus groups in Boulder, New Jersey, and Oregon. There were eight people in each group, and two groups at each site, so altogether I've got 48 response cards-and several hours of videotaped discussions that I'll save you from watching. As you'd expect, we asked the participants to rank the three formats in terms of the style they'd prefer if they were going to buy a personal computer. Then we asked them, if your first choice weren't available, which of the other two formats would you prefer. Tell me how we're going to make some sense out of this so I can make a recommendation to the product-planning group."

Study Questions: How should Lee organize the data and which statistical tests are appropriate? What should Loveland do if the analysis of data from this small group is inconclusive?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 14}

Kolmogorov-Smirnov Test A nonparametric test, which does not require that data be grouped in any way, for determining whether there is a significant difference between an observed frequency distribution and a theoretical frequency distribution.
Kruskal-Wallis Test A nonparametric method for testing whether three or more independent samples have been drawn from populations with the same distribution. It is a nonparametric version of ANOVA, which we studied in Chapter 11.

Mann-Whitney \(\boldsymbol{U}\) Test A nonparametric method used to determine whether two independent samples have been drawn from populations with the same distribution.
Nonparametric Tests Statistical techniques that do not make restrictive assumptions about the shape of a population distribution when performing a hypothesis test.
One-Sample Runs Test A nonparametric method for determining the randomness with which the items in a sample have been selected.

Rank Correlation A method for doing correlation analysis when the data are not available to use in numerical form, but when information is sufficient to rank the data.

Rank-Correlation Coefficient A measure of the degree of association between two variables that is based on the ranks of observations, not their numerical values.

Rank Sum Tests A family of nonparametric tests that the order information in a set of data.

Run A sequence of identical occurrences preceded and followed by different occurrences or by none at all.

Sign Test A test for the difference between paired observations where + and - signs are substituted for quantitative values.

Theory of Runs A theory developed to allow us to test samples for the randomness of their order.

\section*{Equations Introduced in Chapter 14}
\[
\begin{equation*}
U=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1} \tag{p. 746}
\end{equation*}
\]

To apply the Mann-Whitney \(U\) test, you need this formula to derive the \(U\) statistic, a measure of the difference between the ranked observations of the two variables. \(R_{1}\) is the sum of the ranks of observations of variable \(1 ; n_{1}\) and \(n_{2}\) are the numbers of items in samples 1 and 2 , respectively. Both samples need not be of the same size.
\[
\begin{equation*}
U=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} \tag{p. 748}
\end{equation*}
\]

This formula and Equation 14-1 can be used interchangeably to derive the \(U\) statistic in the Mann-Whitney \(U\) test. To save time, use this formula if the number of observations in sample 2 is significantly smaller than the number of observations in sample 1.
\[
\begin{equation*}
K=\frac{12}{n(n+1)} \sum \frac{R_{j}^{2}}{n_{j}}-3(n+1) \tag{p. 751}
\end{equation*}
\]

The formula computes the \(K\) statistic used in the Kruskal-Wallis test for different means among three or more populations. The appropriate sampling distribution for \(K\) is chi-square with \(k-1\) degrees of freedom, when each sample contains at least five observations.
\[
\begin{equation*}
\mu_{r}=\frac{2 n_{1} n_{2}}{n_{1}+n_{2}}+1 \tag{p. 760}
\end{equation*}
\]

When doing a one-sample runs test, use this formula to derive the mean of the sampling distribution of the \(r\) statistic. This \(r\) statistic is equal to the number of runs in the sample being tested.
\[
\begin{equation*}
\sigma_{r}=\sqrt{\frac{2 n_{1} n_{2}\left(2 n_{1} n_{2}-n_{1}-n_{2}\right)}{\left(n_{1}+n_{2}\right)^{2}\left(n_{1}+n_{2}-1\right)}} \tag{p. 760}
\end{equation*}
\]

This formula enables us to derive the standard error of the r statistic in a one-sample runs test.
\[
\begin{equation*}
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \tag{p. 768}
\end{equation*}
\]

The coefficient of rank correlation, \(r_{s}\), is a measure of the closeness of association between two ranked variables.
\[
\begin{equation*}
\sigma_{r_{s}}=\frac{1}{\sqrt{n-1}} \tag{p. 772}
\end{equation*}
\]

This formula enables us to calculate the standard error a hypothesis test on the coefficient of rank correlation.

14-10
\[
\begin{equation*}
D_{n}=\max \left|F_{e}-F_{o}\right| \tag{p. 780}
\end{equation*}
\]

If we compare this computed value to a critical value of \(D_{n}\) in the \(\mathrm{K}-\mathrm{S}\) table, we can test distributional goodness of fit.

\section*{Review and Application Exercises}

14-49 A college football coach has a theory that in athletics, success feeds on itself. In other words, he feels that winning a championship one year increases the team's motivation to win it the next year. He expressed his theory to a student of statistics, who asked him for the records of the team's wins and losses over the last several years. The coach gave him a list, specifying whether the team had won (W) or lost (L) the championship that year. The results of this tally are
W, W, W, W, W, W, L, W, W, W, W, W, L, W, W, W, W, L, L, W, W, W, W, W, W
(a) At a 10 percent significance level, is the occurrence of wins and losses a random one?
(b) Does your answer to part (a), combined with a sight inspection of the data, tell you anything about the one-sample runs test?
14-50 A small metropolitan airport recently opened a new runway, creating a new flight path over an upper-income residential area. Complaints of excessive noise had deluged the airport authority to the point that the two major airlines servicing the city had installed special engine baffles on the turbines of the jets to reduce noise and help ease the pressure on the authority. Both airlines wanted to see whether the baffles had helped to reduce the number of complaints that had been brought against the airport. If they had not, the baffles would be removed because they increased fuel consumption. Based on the following random samples of 13 days before the baffles were installed and another 13 days after installation, can it be said at the 0.02 level of significance that installing the baffles had reduced the number of complaints?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{14}{|c|}{Complaints Before and After Baffles Were Installed} \\
\hline Before & 27 & 15 & 20 & 24 & 13 & 18 & 30 & 46 & 15 & 29 & 17 & 21 & 18 \\
\hline After & 26 & 23 & 19 & 12 & 25 & 9 & 16 & 12 & 28 & 20 & 16 & 14 & 11 \\
\hline
\end{tabular}

14-51 The American Broadcasting System (ABS) has invested a sizable amount of money into a new program for television, High Times. High Times was ABS's entry into the situation-comedy market and featured the happy-go-lucky life in a college dormitory. Unfortunately, the program had not done as well as expected, and the sponsor was considering canceling. To beef up the ratings, ABS introduced co-ed dormitories into the series. The following are the results of telephone surveys before and after the change in the series. Surveys were conducted in several major metropolitan areas, so the results are a composite from the cities.
(a) Using a \(U\) test, can you infer at the 0.10 significance level that the change in the series format helped the ratings?
(b) Do the results of your test say anything about the effect of sex on TV program ratings?
\begin{tabular}{llllllllllllllllll}
\hline \multicolumn{10}{c}{ Share of Audience Before and After Change to Co-Ed Dormitories } \\
\hline Before & 22 & 18 & 19 & 20 & 31 & 22 & 25 & 19 & 22 & 24 & 18 & 16 & 14 & 28 & 23 & 15 & 16 \\
After & 25 & 28 & 18 & 30 & 33 & 25 & 29 & 32 & 19 & 16 & 30 & 33 & 17 & 25 & & & \\
\hline
\end{tabular}

14-52 Overall readiness evaluations for military units are conducted by staff officers, with a maximum score of 100 points. Transport command officers complain that they are rated lower than infantry command officers because most of the staff officers came up through the ranks of the infantry. At the 0.05 level of significance, test the hypothesis of no difference in ratings, based on the readiness evaluations at both units during 10 randomly chosen weeks.
\begin{tabular}{lcccccccccc}
\hline & \multicolumn{10}{c}{ Evaluation Score } \\
\cline { 2 - 11 } Infantry command & 72 & 80 & 86 & 90 & 95 & 92 & 88 & 96 & 91 & 82 \\
Transport command & 80 & 79 & 90 & 82 & 81 & 84 & 78 & 74 & 85 & 71 \\
\hline
\end{tabular}

14-53 The Ways and Means Committee of the U.S. House of Representatives was attempting to evaluate the results of a tax cut given to individuals during the preceding year. The intended purpose had been to stimulate the economy, the theory being that with a tax reduction, the consumer would spend the tax savings. The committee had employed an independent consumer-research group to select a sample of households and maintain records of consumer spending both before and after the legislation was put into effect. A portion of the data from the research group follows:
\begin{tabular}{ccc|ccc}
\hline \multicolumn{6}{c}{ Schedule of Consumer Spending } \\
\hline Household & \begin{tabular}{c}
Before \\
Legislation
\end{tabular} & \begin{tabular}{c}
After \\
Legislation
\end{tabular} & Household & \begin{tabular}{c}
Before \\
Legislation
\end{tabular} & \begin{tabular}{c}
After \\
Legislation
\end{tabular} \\
\hline 1 & \(\$ 3,578\) & \(\$ 4,296\) & 17 & \(\$ 11,597\) & \(\$ 12,093\) \\
2 & 10,856 & 9,000 & 18 & 9,612 & 9,675 \\
3 & 7,450 & 8,200 & 19 & 3,461 & 3,740 \\
4 & 9,200 & 9,200 & 20 & 4,500 & 4,500 \\
\hline
\end{tabular}
(Continued)
(Continued)
\begin{tabular}{ccc|crc}
\hline \multicolumn{6}{c}{ Schedule of Consumer Spending } \\
\hline Household & \begin{tabular}{c}
Before \\
Legislation
\end{tabular} & \begin{tabular}{c}
After \\
Legislation
\end{tabular} & Household & \begin{tabular}{c}
Before \\
Legislation
\end{tabular} & \begin{tabular}{c}
After \\
Legislation
\end{tabular} \\
\hline 5 & 8,760 & 8,840 & 21 & 8,341 & 8,500 \\
6 & 4,500 & 4,620 & 22 & 7,589 & 7,609 \\
7 & 15,000 & 14,500 & 23 & 25,750 & 24,321 \\
8 & 22,350 & 22,500 & 24 & 14,673 & 13,500 \\
9 & 7,346 & 7,250 & 25 & 5,003 & 6,072 \\
10 & 10,345 & 10,673 & 26 & 10,940 & 11,398 \\
11 & 5,298 & 5,349 & 27 & 8,000 & 9,007 \\
12 & 6,950 & 7,000 & 28 & 14,256 & 14,500 \\
13 & 34,782 & 33,892 & 29 & 4,322 & 4,258 \\
14 & 12,837 & 14,297 & 30 & 6,828 & 7,204 \\
15 & 7,926 & 8,437 & 31 & 7,549 & 7,678 \\
16 & 5,789 & 6,006 & 32 & 8,129 & 8,125 \\
\hline
\end{tabular}

At a significance level of 3 percent, determine whether the tax-reduction policy has achieved its desired goals.
14-54 Many entertainment companies have invested in theme parks with tie-ins to hit movies. Attendance depends on many factors, including the weather. Should the weather be considered a random event?
14-55 Two television weather forecasters got into a discussion one day about whether years with heavy rainfall tended to occur in spurts. One of them said he thought that there were patterns of annual rainfall amounts, and that several wet years were often followed by a number of drier-than-average years. The other forecaster was skeptical and said she thought that the amount of rainfall for consecutive years was fairly random. To investigate the question, they decided to look at the annual rainfall for several years back. They found the median amount and classified the rainfall as below (B) or above (A) the median annual rainfall. A summary of their results follows:
\(\mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{B}, \mathrm{A}, \mathrm{A}, \mathrm{A}, \mathrm{B}, \mathrm{A}, \mathrm{A}\),
A, A, A, B, B, B, A, B, B, B, A, B, A, A, A, B, A, A, A, B, A, B, B, A, B, B

If the forecasters test at a 5 percent significance level, will they conclude that the annual rainfall amounts do not occur in patterns?
14-56 Anne J. Montgomery, administrative director of executive education at Southern University, uses two kinds of promotional material to announce seminars: personal letters and brochures. She feels quite strongly that brochures are the more effective method. She has collected data on numbers of people attending each of the last 10 seminars promoted with each method. At the 0.15 level of significance, is her hunch right?
\begin{tabular}{lcccccccccc}
\hline & \multicolumn{11}{c}{ Number Attending } \\
\cline { 2 - 11 } Personal letter & 35 & 85 & 90 & 92 & 88 & 46 & 78 & 57 & 85 & 67 \\
Brochure & 42 & 74 & 82 & 87 & 45 & 73 & 89 & 75 & 60 & 94 \\
\hline
\end{tabular}

14-57 The National Association of Better Advertising for Children (NABAC), a consumer group for improving children's television, was conducting a study on the effect of Saturday morning advertising. Specifically, the group wanted to know whether a significant degree of purchasing was stimulated by advertising directed at children, and if there was a positive correlation between Saturday morning TV advertising time and product sales.

NABAC chose the children's breakfast-cereal market as a sample group. It selected products whose advertising message was aimed entirely at children. The results of the study follow. (The highest-selling cereal has sales rank 1.)
\begin{tabular}{lcc}
\hline \multicolumn{2}{c}{\begin{tabular}{c}
Comparison of TV Advertising Time and Product \\
Sales Advertising Time
\end{tabular}} \\
\hline Product & in Minutes & Sales Rank \\
\hline Captain Grumbles & 0.50 & 10 \\
Obnoxious Berries & 3.00 & 1 \\
Fruity Hoops & 1.25 & 9 \\
OO La Granola & 2.00 & 5 \\
Sweet Tweets & 3.50 & 2 \\
Chocolate Chumps & 1.00 & 11 \\
Sugar Spots & 4.00 & 3 \\
County Cavity & 2.50 & 8 \\
Crunchy Munchies & 1.75 & 6 \\
Karamel Kooks & 2.25 & 4 \\
Flakey Flakes & 1.50 & 7 \\
\hline
\end{tabular}

Can the group conclude that there is a positive rank correlation between the amount of Saturday morning advertising time and sales volume of break-fast cereals? Test at the 5 percent significance level.
14-58 American Motoring Magazine recently tested two brake-disk materials for stopping effectiveness. Data representing stopping distances for both kinds of materials follow. At the 0.05 level of significance, test the hypothesis that there is no difference in the effectiveness of the materials.
\begin{tabular}{lllllllllll}
\hline \multicolumn{10}{c}{ Stopping Distance (feet) } \\
\hline Graphite bonded & 110 & 120 & 130 & 110 & 100 & 105 & 110 & 130 & 145 & 125 \\
Sintered bronze & 100 & 110 & 135 & 105 & 105 & 100 & 100 & 115 & 135 & 120 \\
\hline
\end{tabular}

14-59 As part of a survey on restaurant quality, a local magazine asked area residents to rank two steak houses. On a scale of 1 to 10 , subjects were to rate characteristics such as food quality, atmosphere, service, and price. After data were collected, one of the restaurant owners proposed that various statistical tests be performed. He specifically mentioned that he would like to see a mean and standard deviation for the responses to each question about each restaurant, in order to see which one had scored better. Several of the magazine workers argued against his suggestions, noting that the quality of input data would not justify a detailed statistical analysis. They argued that what was important was the residents' rankings of the two restaurants. Evaluate the arguments presented by the restaurant owner and the magazine employees.

14-60 Senior business students interviewed by the Ohio Insurance Company were asked not to discuss their interviews with others in the school until the recruiter left. The recruiter, however, suspected that the later applicants knew more about what she was looking for. Were her suspicions correct? To find out, rank the interview scores received by subjects given in the table. Then test the significance of the rank correlation coefficient between the scores and interview number. Use the 0.02 significance level.
\begin{tabular}{cccccccc}
\hline \begin{tabular}{c}
Interview \\
Number
\end{tabular} & Score & \begin{tabular}{c}
Interview \\
Number
\end{tabular} & Score & \begin{tabular}{c}
Interview \\
Number
\end{tabular} & Score & \begin{tabular}{c}
Interview \\
Number
\end{tabular} & Score \\
\hline 1 & 63 & 6 & 57 & 11 & 77 & 16 & 70 \\
2 & 59 & 7 & 76 & 12 & 61 & 17 & 75 \\
3 & 50 & 8 & 81 & 13 & 53 & 18 & 90 \\
4 & 60 & 9 & 58 & 14 & 74 & 19 & 80 \\
5 & 66 & 10 & 65 & 15 & 82 & 20 & 89 \\
\hline
\end{tabular}

14-61 More than 3 years ago, the Occupational Safety and Health Administration (OSHA) required a number of safety measures to be implemented in the Northbridge Aluminum plant. Now OSHA would like to see whether the changes have resulted in fewer accidents in the plant. It has collected these data:
\begin{tabular}{ccccccccccccc}
\hline \multicolumn{18}{c}{ Accidents at the Northbridge Plant } \\
\hline & Jan. & Feb. & Mar. & Apr. & May & June & July & Aug. & Sept. & Oct. & Nov. & Dec. \\
\hline \(\mathbf{1 9 9 2}\) & 5 & 3 & 4 & 2 & 6 & 4 & 3 & 3 & 2 & 4 & 5 & 3 \\
\(\mathbf{1 9 9 3}\) & 4 & 4 & 3 & 3 & 3 & 4 & 0 & 5 & 4 & 2 & 0 & 1 \\
\(\mathbf{1 9 9 4}\) & 3 & 2 & 1 & 1 & 0 & 2 & 4 & 3 & 2 & 1 & 1 & 2 \\
\(\mathbf{1 9 9 5}\) & 2 & 1 & 0 & 0 & 1 & 2 & & & & & & \\
\hline
\end{tabular}
(a) Determine the median number of accidents per month. If the safety measures have been effective, we should find early months falling above the median and later months below the median. Accordingly, there will be a small number of runs above and below the median. Conduct a test at the 0.03 level of significance to see whether the accidents are randomly distributed.
(b) What can you conclude about the effectiveness of the safety measures?

14-62 A large countywide ambulance service calculates that for any given township it serves, during any given 6-hour shift, there is a 35 percent chance of receiving at least one call for assistance. The following is a random sampling of 90 days:
\begin{tabular}{lccccc}
\hline Number of shifts during which calls were received & 0 & 1 & 2 & 3 & 4 \\
Number of days & 5 & 35 & 30 & 13 & 7 \\
\hline
\end{tabular}

At the 0.05 level of significance, do these calls for assistance follow a binomial distribution?
14-63 Jim Bailey, owner of Crow's Nest Marina, believes that the number of hours a boat engine has been run in salt water and not the age of the boat is the best predictor of engine failure. His service manager has collected data from his repair records on failed engines. At the 0.05 level of significance, is Jim's hunch right?
\begin{tabular}{cccc}
\hline Engine & Hours in Salt Water & Age of Engine (years) & Cost of Repair (dollars) \\
\hline 1 & 300 & 4 & 625 \\
2 & 150 & 6 & 350 \\
3 & 200 & 3 & 390 \\
4 & 250 & 6 & 530 \\
5 & 100 & 4 & 200 \\
6 & 400 & 5 & 1,000 \\
7 & 275 & 6 & 550 \\
8 & 350 & 6 & 800 \\
9 & 325 & 3 & 700 \\
10 & 375 & 2 & 600 \\
\hline
\end{tabular}

14-64 SavEnergy, an international activist group concerned about the gross domination of Western areas in energy usage, has claimed that population size and energy consumption are negatively correlated. Their opponents claim no correlation is present. Using the following data, test the hypothesis that no rank correlation exists between population and energy consumption, versus SavEnergy's negative correlation claim. Use the 0.10 level of significance.
\begin{tabular}{lcc}
\hline & \begin{tabular}{c}
1989 Population \\
\((\mathbf{0 0 0 , 0 0 0}\) omitted)
\end{tabular} & \begin{tabular}{c}
Total Energy Consumption \\
\(\left(\mathbf{1 0}^{15}\right.\) joules)
\end{tabular} \\
\hline United States & 249 & 68 \\
Latin America & 438 & 16 \\
Africa & 646 & 11 \\
Europe & 499 & 65 \\
Soviet Union & 289 & 54 \\
India & 835 & 9 \\
China & 1,100 & 24 \\
\hline
\end{tabular}

14-65 Highway crashes killed more than 75,000 occupants of passenger cars during 1993-1996. Using that grim statistic as a starting point, researchers at the Insurance Institute for Highway Safety computed death rates for the 103 largest-selling vehicle series. Vehicles were categorized as station wagons \& vans, four-door cars, two-door cars, or sports \& specialty cars. Further stratification in each category labeled vehicles as large, midsize, or small. Looking at the rates (deaths per 10,000 registered vehicles) for four-door cars, the figures are as follows:
\begin{tabular}{lllllllllll}
\hline Large & 1.2 & 1.3 & 1.4 & 1.5 & 1.5 & 1.5 & 1.6 & 1.8 & & \\
Midsize & 1.1 & 1.2 & 1.2 & 1.2 & 1.3 & 1.3 & 1.3 & 1.3 & 1.4 & 1.4 \\
& 1.5 & 1.6 & 1.6 & 1.6 & 1.7 & 1.7 & 1.8 & 1.9 & 2.0 & 2.3 \\
& 2.3 & 2.4 & 2.5 & 2.6 & 2.9 & & & & & \\
Small & 1.1 & 1.5 & 1.6 & 1.7 & 1.8 & 2.0 & 2.0 & 2.0 & 2.3 & 2.5 \\
& 2.6 & 2.8 & 3.2 & 4.1 & & & & & & \\
\hline
\end{tabular}

Use the Kruskal-Wallis test to test whether the three population means are equal. Test at the 0.05 level of significance.

14-66 The year 1996 was particularly bad for injuries to professional baseball players. From the following data, does a sign test for paired data indicate that American League players suffered
significantly more injuries than their National League counterparts? Use a 0.05 level of significance.
\begin{tabular}{lrr|lcc}
\hline Injury Location & AL & NL & Injury Location & AL & NL \\
\hline Shoulder & 46 & 22 & Back & 10 & 7 \\
Neck & 3 & 0 & Wrist & 10 & 2 \\
Rib & 7 & 5 & Hip & 1 & 1 \\
Elbow & 21 & 19 & Hand & 6 & 4 \\
Finger & 7 & 5 & Ankle & 6 & 4 \\
Thigh & 17 & 14 & Foot & 1 & 4 \\
Groin & 7 & 3 & Toe & 0 & 1 \\
Knee & 16 & 18 & Other & 10 & 4 \\
\hline
\end{tabular}

14-67 Recent research about the kinds of weather patterns that may be correlated with sunspots, has focused on polar temperature (the average temperature in the stratosphere above the North Pole) during periods when certain equatorial winds are blowing. When these winds are from the west, the polar temperature appears to rise and fall with solar activity. When the winds are easterly, the temperature appears to do the opposite of what the sun is doing. From the data, calculate the coefficients of rank correlation between these variables and test, at the 0.05 level of significance, if the hypothesized relationships hold (i.e., positive correlation for westerly winds, negative correlation for easterly winds).
\begin{tabular}{ccc}
\hline \multicolumn{3}{c}{ Polar Temperature \(\left({ }^{\circ} \mathbf{F}\right)\)} \\
\hline Solar Activity & East Winds & West Winds \\
\hline 230 & -85 & -76 \\
160 & -97 & -86 \\
95 & -88 & -100 \\
75 & -85 & -110 \\
100 & -90 & -108 \\
165 & -96 & -85 \\
155 & -91 & -70 \\
120 & -76 & -100 \\
75 & -80 & -110 \\
65 & -86 & -112 \\
125 & -90 & -99 \\
195 & -104 & -91 \\
190 & -95 & -93 \\
125 & -99 & -99 \\
75 & -73 & -103 \\
\hline
\end{tabular}

14-68 The Model Town Highways has issued a notice in the beginning of February 2012 for the early redemption of some of its infra-bonds. There were a total of 10000 such bonds. The interest rate for the bonds was \(6.5 \%\) and scheduled to mature in 2015. The decision for the
redemption of the bonds is because of financial reasons. It was decided that the bonds to be selected for redemption should be free from any bias. The bonds selected for redemption were numbered as:
\begin{tabular}{rrrrrrrrrrrr}
2 & 10 & 15 & 19 & 35 & 78 & 175 & 549 & 989 & 1135 & 1367 & 1668 \\
1896 & 2235 & 2387 & 2885 & 2954 & 3098 & 3793 & 4367 & 4486 & 4809 & 5076 & 6687 \\
6906 & 6999 & 7056 & 7216 & 7389 & 7999 & 8006 & 8451 & 8601 & 8991 & 9005 & 9180 \\
9361 & 9571 & 9688 & 9799 & & & & & & & &
\end{tabular}
(a) Assuming that the infra-bonds were selected randomly for the purpose of redemption, how many you would expect to find with serial numbers between 1 and 2000; 2001 and 4000; 4001 and 6000,6001 and 8000 and finally 8001 and 10000 ?
(b) Is it reasonable to conclude that the infra-bonds called for redemption were selected randomly, using chi-square test of goodness of fit?
(c) Use Kolmogorov-Simirnov Test to examine the claim that the selection of the bonds is indeed random.
(d) Compare your results in parts (b) and (c) and give your comments.

14-69 Managers in service-operations businesses have to handle peak times, when many customers arrive at once. The manager of the information booth at a suburban mall collected the following data on arrivals per minute between 7:10 and 8:00 on Thursday, the mall's late shopping night:
\begin{tabular}{lrrrrrrrrrrr}
\hline Number of Arrivals & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
Frequency & 5 & 3 & 2 & 6 & 6 & 2 & 6 & 10 & 4 & 4 & 2 \\
\hline
\end{tabular}

Test whether a Poisson distribution with a mean of 6 adequately describes these data. Use the 0.05 level of significance.

14-70 The results of the Carolina Athletic Association's first 10K run showed the following order of male and female finishers:

> M M M M M M M M M M M M M W M M M M M M W M M M M M W M M M M M M M M M W M W M M M M W M M M M W M W M M M M M M W M M W M M M W W W M W M W W W M M M W M W W M W W W W M M W M M

14-71 Several groups were given a list of 30 activities and technological advances and were asked to rank them, considering the risk of dying as a consequence of each. The results are in the following table. Calculate the rank correlation coefficient of each group relative to the experts' ranking. Which group seemed to have the most accurate perception of the risks involved?
```

A = Experts
B = League of Women Voters
C $=$ College Students
D = Civic Club Members

```
\begin{tabular}{lcccc}
\hline Risk & A & B & C & D \\
\hline Motor vehicles & 1 & 2 & 5 & 3 \\
Smoking & 2 & 4 & 3 & 4 \\
Alcoholic beverages & 3 & 6 & 7 & 5 \\
Handguns & 4 & 3 & 2 & 1 \\
\hline
\end{tabular}
(contd.)
\begin{tabular}{lrrrr}
\hline Risk & A & B & C & D \\
\hline Surgery & 5 & 10 & 11 & 9 \\
Motorcycles & 6 & 5 & 6 & 2 \\
X-rays & 7 & 22 & 17 & 24 \\
Pesticides & 8 & 9 & 4 & 15 \\
Electric power (nonnuclear) & 9 & 18 & 19 & 19 \\
Swimming & 10 & 19 & 30 & 17 \\
Contraceptives & 11 & 20 & 9 & 22 \\
General (private) aviation & 12 & 7 & 15 & 11 \\
Large construction & 13 & 12 & 14 & 13 \\
Food preservatives & 14 & 25 & 12 & 28 \\
Bicycles & 15 & 16 & 24 & 14 \\
Commercial aviation & 16 & 17 & 16 & 18 \\
Police work & 17 & 8 & 8 & 7 \\
Fire fighting & 18 & 11 & 10 & 6 \\
Railroads & 19 & 24 & 23 & 20 \\
Nuclear power & 20 & 1 & 1 & 8 \\
Food coloring & 21 & 26 & 20 & 30 \\
Home appliances & 22 & 29 & 27 & 27 \\
Hunting & 23 & 13 & 18 & 10 \\
Prescription antibiotics & 24 & 28 & 21 & 26 \\
Vaccinations & 25 & 30 & 29 & 29 \\
Spray cans & 26 & 14 & 13 & 23 \\
High school \& college football & 27 & 23 & 26 & 21 \\
Power mowers & 28 & 27 & 28 & 25 \\
Mountain climbing & 29 & 15 & 22 & 12 \\
Skiing & 30 & 21 & 25 & 16 \\
\hline
\end{tabular}

14-72 In testing a new hayfever medication, researchers measured the incidence of adverse side effects of the drug by administering it to a large number of patients and evaluating them against a control group. The percentages of patients reporting 13 types of side effects were recorded. Using a sign test for paired data, can you determine whether, on the whole, either group experienced more adverse side effects? Use the 0.10 significance level.
\begin{tabular}{ccc}
\hline Side Effect & Drug & Control \\
\hline A & 9.0 & 18.1 \\
B & 6.3 & 3.8 \\
C & 2.9 & 5.8 \\
D & 1.4 & 1.0 \\
E & 0.9 & 0.6 \\
F & 0.9 & 0.2 \\
G & 0.6 & 0.0 \\
H & 4.6 & 2.7 \\
I & 2.3 & 3.5 \\
J & 0.9 & 0.5 \\
K & 0.5 & 0.5 \\
L & 0.0 & 0.2 \\
M & 1.0 & 1.4 \\
\hline
\end{tabular}

14-73 Commercial banks play an important role in the development of economies by effective and optimum mobilization of resources and their allocation. The banking sector in India has undergone a significant transformation in the past few years because of economic reforms. There is a mix of players in this sector (public sector banks, private banks and foreign banks). This competitive scenario has brought the dimension of customer satisfaction to the forefront. It has become very important for banks to retain their existing customer base besides enlarging the same. The Bhrigus Consultant, a marketing research agency, collects data related to customer satisfaction with the service aspects of the banks. The following table presents the rank of 10 commercial banks as per the customer satisfaction. Analyze the data at 10 percent level of significance and comment whether there is significant change in the satisfaction ranking of the banks?
\begin{tabular}{lcc}
\hline Name of the Bank & 2010 Rank & 2011 Rank \\
\hline Sun Bank & 2 & 4 \\
Lotus Bank & 5 & 5 \\
State Corporation Bank & 3 & 1 \\
Cooperative State Bank & 4 & 3 \\
IBLB Bank & 8 & 7 \\
DBCI Bank & 1 & 2 \\
Vikas bank & 6 & 8 \\
Unnati Bank & 7 & 6 \\
Corporate Bank & 10 & 9 \\
Excel Bank & 9 & 10 \\
\hline
\end{tabular}
1. Test whether the sample of respondents for this study were selected randomly on the basis of gender. (Runs test on Q15)
2. Test whether the sample of respondents for this study were selected randomly on the basis of marital status. (Runs test on Q16)
3. Test the normality of the variable "Level of satisfaction with e-services". (Kolmogorov-Smirnov test to Q9)
4. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across the gender. (Mann Whitney U Test to Q9)
5. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different educational groups. (KrusKal_Wallis Test to Q9)
6. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different professions. (KrusKal_Wallis Test to Q9)
7. Test the hypothesis that the level of satisfaction of the customers with regards to the e-services provided by their banks is same across different age groups. (KrusKal_Wallis Test to Q9)

\section*{Flow Chart: Nonparametric Methods}

This page is intentionally left blank

\section*{Time Series and Forecasting}

\section*{LEARNING OBJECTIVES}

After reading this chapter, you can understand:
- To learn why forecasting changes that take place over time are an important part of decision making
- To understand the four components of a time series
- To use regression-based techniques to estimate and forecast the trend in a time series
- To learn how to measure the cyclical component of a time series
- To compute seasonal indices and use them to deseasonalize a time series
- To be able to recognize irregular variation in a time series
- To deal simultaneously with all four components of a time series and to use time-series analysis for forecasting

\section*{CHAPTER CONTENTS}

\subsection*{15.1 Introduction \\ 804}
15.2 Variations in Time Series 804
15.3 Trend Analysis 806
15.4 Cyclical Variation 818
15.5 Seasonal Variation 824
15.6 Irregular Variation 833

\subsection*{15.7 A Problem Involving All Four Components of a Time Series 834}
15.8 Time-Series Analysis in Forecasting 844
- Statistics at Work 844
- Terms Introduced in Chapter 15846
- Equations Introduced in Chapter 15846
- Review and Application Exercises 847
- Flow Chart: Time Series 853

The management of a ski resort has these quarterly occupancy data over a 5-year period:
\begin{tabular}{ccccc}
\hline Year & 1st Qtr & 2nd Qtr & 3rd Qtr & 4th Qtr \\
\hline 1991 & 1,861 & 2,203 & 2,415 & 1,908 \\
1992 & 1,921 & 2,343 & 2,514 & 1,986 \\
1993 & 1,834 & 2,154 & 2,098 & 1,799 \\
1994 & 1,837 & 2,025 & 2,304 & 1,965 \\
1995 & 2,073 & 2,414 & 2,339 & 1,967 \\
\hline
\end{tabular}

To improve service, management must understand the seasonal pattern of demand for rooms. Using methods covered in this chapter, we shall help the hotel discern such a seasonal pattern, if it exists, and use it to forecast demand for rooms.

\subsection*{15.1 INTRODUCTION}

Forecasting, or predicting, is an essential tool in any decision-making process. Its uses vary from determining inventory requirements for a local shoe store to estimating the annual sales of video games. The quality of the forecasts management can make is strongly related to the information that can be extracted and used from past data. Time-series analysis is one quantitative method we use to determine patterns in data collected over time. Table 15-1 is an example of time-series data.

Time-series analysis is used to detect patterns of change in Use of time-series analysis statistical information over regular intervals of time. We project these patterns to arrive at an estimate for the future. Thus, time-series analysis helps us cope with uncertainty about the future.

\section*{EXERCISES 15.1}

\section*{Basic Concepts}

15-1 Of what value are forecasts in the decision-making process?
15-2 For what purpose do we apply time-series analysis to data collected over a period of time?
15-3 How can one benefit from determining past patterns?
15-4 How would errors in forecasts affect a city government?

\subsection*{15.2 VARIATIONS IN TIME SERIES}

We use the term time series to refer to any group of statistical information accumulated at regular intervals. There are four kinds of change, or variation, involved in time-series analysis:

Four kinds of variation in time-series
 \(\longrightarrow\)
1. Secular trend
2. Cyclical fluctuation

\section*{TABLE 15.1 TIME SERIES FOR THE NUMBER OF SHIPS LOADED AT MOREHEAD CITY, N.C.}
\begin{tabular}{lcccccccc}
\hline Year & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Number & 98 & 105 & 116 & 119 & 135 & 156 & 177 & 208 \\
\hline
\end{tabular}

\section*{3. Seasonal variation}

\section*{4. Irregular variation}

With the first type of change, secular trend, the value of the variable

\section*{Secular trend} tends to increase or decrease over a long period of time. The steady increase in the cost of living recorded by the Consumer Price Index is an example of secular trend. From year to individual year, the cost of living varies a great deal, but if we examine a long-term period, we see that the trend is toward a steady increase. Figure \(15-1\) (a) shows a secular trend in an increasing but fluctuating time series.

The second type of variation seen in a time series is cyclical fluc-

\section*{Cyclical fluctuation} tuation. The most common example of cyclical fluctuation is the business cycle. Over time, there are years when the business cycle hits a peak above the trend line. At other times, business activity is likely to slump, hitting a low point below the trend line. The time between hitting peaks or falling to low points is at least 1 year, and it can be as many as 15 or 20 years. Figure 15-1(b) illustrates a typical pattern of cyclical fluctuation above and below a secular trend line. Note that the cyclical movements do not follow any regular pattern but move in a somewhat un-predictable manner.

The third kind of change in time-series data is seasonal variation. As we might expect from the name, seasonal variation involves

\section*{Seasonal variation}
patterns of change within a year that tend to be repeated from year to year. For example, a physician can expect a substantial increase in the number of flu cases every winter and of poison ivy every summer. Because these are regular patterns, they are useful in forecasting the future. In Figure 15-1(c), we see a seasonal variation. Notice how it peaks in the fourth quarter of each year.

Irregular variation is the fourth type of change in time-series Irregular variation analysis. In many situations, the value of a variable may be com-
pletely unpredictable, changing in a random manner. Irregular variations describe such movements. The effects of the Middle East conflict in 1973, the Iranian situation in 1979-1981, the collapse of OPEC in 1986, and the Iraqi situation in 1990 on gasoline prices in the United States are examples of irregular variation. Figure 15-1(d) illustrates irregular variation.

Thus far, we have referred to a time series as exhibiting one or another of these four types of variation. In most instances, however, a time series will contain several of these components. Thus, we can describe the overall variation in a single time series in terms of these four different kinds of variation. In the following sections, we will examine the four components and the ways in which we measure each.

\section*{EXERCISES 15.2}

\section*{Basic Concepts}

15-5 Identify the four principal components of a time series and explain the kind of change, over time, to which each applies.
15-6 Which of the four components of a time series would we use to describe the effect of Christmas sales on a retail department store?
15-7 What is the advantage of decomposing a time series into its four components?
15-8 Which of the four components of a time series might the U.S. Department of Agriculture use to describe a 7 -year weather pattern?
15-9 How would a war be accounted for in a time series?
15-10 What component of a time series explains the general growth and decline of the steel industry over the last two centuries?
15-11 Using the four kinds of variation, describe the behavior of crude oil prices from 1970 to 1987.

FIGURE 15-1 TIME-SERIES VARIATIONS

\subsection*{15.3 TREND ANALYSIS}

Of the four components of a time series, secular trend represents the long-term direction of the series. One way to describe the trend component is to fit a line visually to a set of points on a graph. Any

Two methods of fitting a trend line given graph, however, is subject to slightly different interpretations by different individuals. We can also fit a trend line by the method of least squares, which we examined in Chapter 12. In our discussion, we will concentrate on the method of least squares because visually fitting a line to a time series is not a completely dependable process.

\section*{Reasons for Studying Trends}

There are three reasons for why it is useful to study secular trends:
1. The study of secular trends allows us to describe a historical pattern. There are many instances when we can use a past trend to evaluate the success of a previous policy. For example, a university may evaluate the effectiveness of a recruiting program by examining its past enrollment trends.
2. Studying secular trends permits us to project past patterns, or trends, into the future. Knowledge of the past can tell us a great deal about the future. Examining the growth rate of the world's population, for example, can help us estimate the population for some future time.
3. In many situations, studying the secular trend of a time series allows us to eliminate the trend component from the series. This makes it easier for us to study the other three components of the time series. If we want to determine the seasonal variation in ski sales, for example, eliminating the trend component gives us a more accurate idea of the seasonal component.

Trends can be linear or curvilinear. Before we examine the linear, or straight-line, method of describing trends, we should remember that some relationships do not take that form. The increase of

Trend lines take different forms pollutants in the environment follows an upward sloping curve similar to that in Figure 15-2(a). Another common example of a curvilinear relationship is the life cycle of a new business product, illustrated in Figure 15-2(b). When a new product is introduced, its sales volume is low (I). As the product gains recognition and success, unit sales grow at an increasingly rapid rate (II). After the product is firmly established, its unit sales grow at a stable rate (III). Finally, as the product reaches the end of its life cycle, unit sales begin to decrease (IV).

\section*{Fitting the Linear Trend by the Least-Squares Method}

Besides trends that can be described by a curved line, there are others that are described by a straight line. These are called linear trends. Before developing the equation for a linear trend, we need to review the general equation for estimating a straight line (Equation 12-3):
\[
\begin{equation*}
\text { Equation for estimating a straight line } \rightarrow \hat{Y}=a+b X \tag{12-3}
\end{equation*}
\]

FIGURE 15-2 CURVILINEAR TREND RELATIONSHIPS
where
- \(\hat{Y}=\) estimated value of the dependent variable
- \(X=\) independent variable (time in trend analysis)
- \(a=Y\)-intercept (the value of \(Y\) when \(X=0\))
- \(b=\) slope of the trend line

We can describe the general trend of many time series using a straight line. But we are faced with the problem of finding the best-

Finding the best-fitting trend line fitting line. As we did in Chapter 12, we can use the least-squares method to calculate the best-fitting line, or equation. There we saw that the best-fitting line was determined by Equations 12-4 and 12-5, which are now renumbered as Equations 15-1 and 15-2.
\begin{tabular}{|cc|}
\hline Slope of the Best-Fitting Regression Line \\
\(b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}}\) & {\([15-1]\)} \\
\hline\(Y\)-Intercept of the Best-Fitting Regression Line \\
\hline\(a=\bar{Y}-b \bar{X}\) & {\([15-2]\)} \\
\hline
\end{tabular}
where
- \(Y=\) values of the dependent variable
- \(\mathrm{X}=\) values of the independent variable
- \(\bar{Y}=\) mean of the values of the dependent variable
- \(\bar{X}=\) mean of the values of the independent variable
- \(n=\) number of data points in the time series
- \(a=Y\)-intercept
- \(b=\) slope

With Equations \(15-1\) and \(15-2\), we can establish the best-fitting line to describe time-series data. However, the regularity of time-series data allows us to simplify the calculations in Equations 15-1 and 15-2 through the process we shall now describe.

\section*{Translating, or Coding, Time}

Normally, we measure the independent variable time in terms such as weeks, months, and years. Fortunately, we can convert these traditional measures of time to a form that simplifies the computation.

Coding the time variable to simplify computation

In Chapter 3, we called this process coding. To use coding here, we find the mean time and then subtract that value from each of the sample times. Suppose our time series consists of only three points, 1992, 1993, and 1994. If we had to place these numbers in Equations 15-1 and 15-2, we would find the resultant calculations tedious. Instead, we can transform the values 1992, 1993, and 1994 into corresponding values of \(-1,0\), and 1 , where 0 represents the mean (1993), -1 represents the first year (1992-1993 = - \()\), and 1 represents the last year \((1994-1993=1)\). Treating odd and even numbers

We need to consider two cases when we are coding time values. of elements The first is a time series with an odd number of elements, as in the

\section*{TABLE 15-2 TRANSLATING, OR CODING. TIME VALUES}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{(a) When there is an odd number of elements in the time series} & \multicolumn{4}{|c|}{(b) When there is an even number of elements in the time series} \\
\hline \(X\) (1) & \begin{tabular}{l}
\[
X-\bar{X}
\] \\
(2)
\end{tabular} & Translated, or Coded, Time (3) & \[
\begin{gathered}
X \\
(\mathbf{1}) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\[
X-\bar{X}
\] \\
(2)
\end{tabular} & \begin{tabular}{l}
\[
(X-\bar{X}) \times 2
\] \\
(3)
\end{tabular} & \begin{tabular}{l}
Translated, of Coded, Time \\
(4)
\end{tabular} \\
\hline 1989 & 1989-1992 = & -3 & 1990 & 1990-1992 \(1 / 2=\) & \(-21 / 2 \times 2=\) & -5 \\
\hline 1990 & 1990-1992 = & -2 & 1991 & 1991-1992 1 12 \(=\) & \(-11 / 2 \times 2=\) & -3 \\
\hline 1991 & 1991-1992 = & -1 & 1992 & 1992-1992 \(1 / 2=\) & \(-1 / 2 \times 2=\) & -1 \\
\hline 1992 & 1992-1992 = & \(0 \nless\) & 1993 & 1993-1992 1 12 \(=\) & \(1 / 2 \times 2=\) & 14 \\
\hline 1993 & 1993-1992 = & 1 & 1994 & 1994-1992 \(1 / 2=\) & \(11 / 2 \times 2=\) & 3 \\
\hline 1994 & 1994-1992 = & 2 & 1995 & 1995-1992 1 1/2 \(=\) & \(21 / 2 \times 2=\) & 5 \\
\hline 1995 & 1995-1992= & 3 & & & & \\
\hline \(\Sigma X=13,944\) & \(\bar{x}\) (the m & ean year) \(=0\) & \(\Sigma X=\) & ,955 & \(\bar{x}\) (the & ean year) \(=0\) \\
\hline \(\bar{X}=\underline{\sum X}\) & & & & & & \\
\hline \(n\) & & & & & & \\
\hline = 13,944 & & & & ,955 & & \\
\hline - 7 & & & & 921/ & & \\
\hline \(=1992\) & & & & \(921 / 2\) & & \\
\hline
\end{tabular}
previous example. The second is a series with an even number of elements. Consider Table 15-2. In part (a), on the left, we have an odd number of years. Thus, the process is the same as the one we just described, using the years 1992, 1993, and 1994. In part (b), on the right, we have an even number of elements. In cases like this, when we find the mean and subtract it from each element, the fraction \(1 / 2\) becomes part of the answer. To simplify the coding process and to remove the \(1 / 2\), we multiply each time element by 2 . We will denote the "coded," or translated, time with a lowercase \(x\).

We have two reasons for this translation of time. First, it eliminates Why use coding? the need to square numbers as large as 1992, 1993, 1994, and so on. This method also sets the mean year, \(\bar{x}\), equal to zero and allows us to simplify Equations 15-1 and 15-2.

Now we can return to our calculations of the slope (Equation 15-1) and the \(Y\)-intercept (Equation 15-2) to determine the best-fitting line. Because we are using the coded variable \(x\), we replace \(X\) and

Simplifying the calculation of \(a\) and \(b\) \(\bar{X}\) by \(x\) and \(\bar{x}\) in Equations 15-1 and 15-2. Then, because the mean of our coded time variable \(\bar{x}\) is zero, we can substitute 0 for \(\bar{x}\) in Equations 15-1 and 15-2, as follows:
\[
\begin{align*}
b & =\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \tag{15-1}\\
& =\frac{\sum x Y-n \bar{x} \bar{Y}}{\sum x^{2}-n \bar{x}^{2}} \leftarrow\left\{\begin{array}{l}
\bar{x} \text { the coded variable, substituted for } \bar{X} \\
\text { and } \bar{x} \text { substituted for } \bar{X}
\end{array}\right. \\
& =\frac{\sum x Y-n 0 \bar{Y}}{\sum x^{2}-n 0^{2}} \leftarrow \bar{x} \text { replaced by } 0
\end{align*}
\]

\section*{Slope of the Trend Line for Coded Time Values}
\[
\begin{equation*}
b=\frac{\sum x Y}{\sum x^{2}} \tag{15-3}
\end{equation*}
\]

Equation 15-2 changes as follows:
\[
\begin{align*}
a & =\bar{Y}-b \bar{X} \tag{15-2}\\
& =\bar{Y}-b \bar{x} \leftarrow \bar{x} \text { substituted for } \bar{x} \\
& =\bar{Y}-b 0 \leftarrow \bar{x} \text { replaced by } 0
\end{align*}
\]

\section*{Intercept of the Trend Line for Coded Time Values}
\[
\begin{equation*}
a=\bar{Y} \tag{15-4}
\end{equation*}
\]

Equations 15-3 and 15-4 represent a substantial improvement over Equations 15-1 and 15-2.

\section*{A Problem Using the Least-Squares Method in a Time Series (Even Number of Elements)}

Consider the data in Table 15-1, illustrating the number of ships Using the least-squares loaded at Morehead City between 1988 and 1995. In this problem, method we want to find the equation that will describe the secular trend of loadings. To calculate the necessary values for Equations 15-3 and 15-4, let us look at Table 15-3.

TABLE 15.3 INTERMEDIATE CALCULATIONS FOR COMPUTING THE TREND
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
X \\
(1)
\end{tabular} & \begin{tabular}{l}
\[
\boldsymbol{Y}^{\dagger}
\] \\
(2)
\end{tabular} & \begin{tabular}{l}
\[
X-\bar{X}
\] \\
(3)
\end{tabular} & \[
\begin{gathered}
x \\
(3) \times 2 \\
2
\end{gathered}
\] & \[
\begin{gathered}
x Y \\
(4) \times(2)
\end{gathered}
\] & \[
\begin{gathered}
x^{2} \\
(4)^{2}
\end{gathered}
\] \\
\hline 1988 & 98 & \(1988-19911 / 2^{*}=-31 / 2\) & \(-31 / 2 \times 2=-7\) & -686 & 49 \\
\hline 1989 & 105 & \(1989-1991 \frac{1}{2}=-21 / 2\) & \(-21 / 2 \times 2=-5\) & -525 & 25 \\
\hline 1990 & 116 & \(1990-19911 / 2=-11 / 2\) & \(-11 / 2 \times 2=-3\) & -348 & 9 \\
\hline 1991 & 119 & \(1991-19911 / 2=-1 / 2\) & \(-1 / 2 \times 2=-1\) & -119 & 1 \\
\hline 1992 & 135 & \(1992-1991 \frac{1}{2}=1 / 2\) & \(1 / 2 \times 2=1\) & 135 & 1 \\
\hline 1993 & 156 & \(1993-19911 / 2=11 / 2\) & \(11 / 2 \times 2=3\) & 468 & 9 \\
\hline 1994 & 177 & \(1994-1991 \frac{1}{2}=21 / 2\) & \(21 / 2 \times 2=5\) & 885 & 25 \\
\hline 1995 & 208 & \(1995-19911 / 2=31 / 2\) & \(31 / 2 \times 2=7\) & 1,456 & 49 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{r}
\Sigma \boldsymbol{X}=\mathbf{1 5 , 9 3 2} \xrightarrow{\Sigma \boldsymbol{Y}=\mathbf{1 , 1 1 4}} \begin{array}{r}
\bar{X}=\frac{\sum X}{n}=\frac{15,932}{8}=1,9911 / 2 \\
\bar{Y}=\frac{\sum Y}{n}=\frac{1,114}{8}=139.25
\end{array},
\end{array}
\]}} & & \multirow[t]{2}{*}{\(\Sigma x Y=1,266\)} & \multirow[t]{2}{*}{\(\Sigma x^{2}=168\)} \\
\hline & & & & & \\
\hline
\end{tabular}

With these values, we can now substitute into Equations 15-3 and 15-4 to find the slope and the \(Y\)-intercept for the line describing the trend in ship loadings:
\[
\begin{align*}
b & =\frac{\sum x Y}{\sum x^{2}} \tag{15-3}\\
& =\frac{1,266}{168} \\
& =7.536
\end{align*}
\]

Finding the slope and Y-intercept
and
\[
\begin{align*}
a & =\bar{Y} \tag{15-4}\\
& =139.25
\end{align*}
\]

Thus, the general linear equation describing the secular trend in ship loadings is
\[
\begin{align*}
\hat{Y} & =a+b x \tag{12-3}\\
& =139.25+7.536 x
\end{align*}
\]
where
- \(\hat{Y}=\) estimated annual number of ships loaded
- \(x=\) coded time value representing the number of half-year intervals (a minus sign indicates half-year intervals before \(1991 \frac{1}{1} 2\); a plus sign indicates half-year intervals after 1991 ½)

\section*{Projecting with the Trend Equation}

Once we have developed the trend equation, we can project it to forecast the variable in question. In the problem of finding the secular trend in ship loadings, for instance, we determined that the appropriate secular trend equation was
\[
\hat{Y}=139.25+7.536 x
\]

Now, suppose we want to estimate ship loadings for 1996. First, Using our trend line to predict we must convert 1996 to the value of the coded time (in half-year intervals).
\[
\begin{aligned}
x & =1996-19911 / 2 \\
& =4.5 \text { years } \\
& =9 \text { half-year intervals }
\end{aligned}
\]

Substituting this value into the equation for the secular trend, we get \(=139.25+67.82\)
\[
\begin{aligned}
\hat{Y} & =139.25+67.82 \\
& =139.25+67.82 \\
& =207 \text { ships loaded }
\end{aligned}
\]

Therefore, we have estimated 207 ships will be loaded in 1996. If the number of elements in our time series had been odd, not even, our procedure would have been the same except that we would have dealt with 1-year intervals, not half-year intervals.

\section*{Use of a Second-Degree Trend in a Time Series}

So far, we have described the method of fitting a straight line to a time series. But many time series are best described by curves, not

Handling time series that are described by curves straight lines. In these instances, the linear trend model does not adequately describe the change in the variable as time changes. To overcome this problem, we often use a parabolic curve, which is described mathematically by a second-degree equation. Such a curve is illustrated in Figure 15-3. The general form for an estimated second-degree equation is

\section*{General Form for. Fitted Second-Degree Curve}
\[
\begin{equation*}
\hat{Y}=a+b x+c x^{2} \tag{15-5}
\end{equation*}
\]
where
- \(\hat{Y}=\) estimate of the dependent variable
- \(a, b\), and \(c=\) numerical constants
- \(x=\) coded values of the time variable.

Again we use the least-squares method to determine the Finding the values for \(a, b\), second-degree equation to describe the best fit. The derivation of the and c second-degree equation is beyond the scope of this text. However, we can determine the value of the numerical constants (\(a, b\), and \(c\)) from the following three equations:

\section*{Least-Squares Coefficients for a Second-Degree Trend}
\[
\longrightarrow\left\{\begin{array}{l}
\sum Y=a n+c \sum x^{2} \tag{15-6}\\
\sum x^{2} Y=a \sum x^{2}+c \sum x^{4} \\
b=\frac{\sum x Y}{\sum x^{2}}
\end{array}\right.
\]

TABLE 15-4 ANNUAL SALES OF ELECTRIC QUARTZ WATCHES
\begin{tabular}{cccccc}
\hline \(\boldsymbol{X}\) (year) & 1991 & 1992 & 1993 & 1994 & 1995 \\
\(\boldsymbol{Y}\) (unit sales in millions) & 13 & 24 & 39 & 65 & 106 \\
\hline
\end{tabular}

When we find the values of \(a, b\), and \(c\) by solving Equations 15-6, 15-7, and 15-3 simultaneously, we substitute these values into the second-degree equation, Equation 15-5.

As in describing a linear relationship, we transform the independent variable, time (\(X\)), into a coded form \((x)\) to simplify the calculation. We'll now work through a problem in which we fit a parabolic trend to a time series.

\section*{A Problem Involving a Parabolic Trend (Odd Number of Elements in the Time Series)}

In recent years, the sale of electric quartz watches has increased at a significant rate. Table 15-4 contains sales information that will help us determine the parabolic trend describing watch sales.

We organize the necessary calculations in Table 15-5. The first

\section*{Coding the time variable} step in this process is to translate the independent variable \(X\) into a coded time variable \(x\). Note that the coded variable \(x\) is listed in 1-year intervals because there is an odd number of elements in our time series. Thus, it is not necessary to multiply the variable by 2 .

Substituting the values from Table 15-5 into Equations 15-6, Calculating a, b, and c by \(15-7\), and \(15-3\), we get
\[
\begin{align*}
247 & =5 a+10 c \\
565 & =10 \mathrm{a}+34 \mathrm{c} \tag{15-7}\\
b & =\frac{227}{10} \tag{15-3}
\end{align*}
\]

\section*{substitution}

From (3), we see that
\[
b=22.7
\]

We can find \(a\) and \(c\) by solving equations (1) and (2) simultaneously. When we do this, we find that \(a\) is 39.3 and \(c\) is 5.07.

TABLE 15-5 INTERMEDIATE CALCULATIONS FOR COMPUTING THE TREND
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline (1) & \[
\begin{gathered}
\hline X \\
(2)
\end{gathered}
\] & \begin{tabular}{l}
\[
X-\bar{X}=x
\] \\
(3)
\end{tabular} & \[
\begin{gathered}
x^{2} \\
(3)^{2}
\end{gathered}
\] & \[
\begin{gathered}
x^{4} \\
(3)^{4}
\end{gathered}
\] & \[
\begin{gathered}
x Y \\
(3) \times(1)
\end{gathered}
\] & \[
\begin{gathered}
x^{2} Y \\
(3)^{2} \times(1)
\end{gathered}
\] \\
\hline 13 & 1991 & \(1991-1993=-2\) & 4 & 16 & -26 & 52 \\
\hline 24 & 1992 & \(1992-1993=-1\) & 1 & 1 & -24 & 24 \\
\hline 39 & 1993 & \(1993-1993=0\) & 0 & 0 & 0 & 0 \\
\hline 65 & 1994 & \(1994-1993=1\) & 1 & 1 & 65 & 65 \\
\hline 106 & 1995 & 1995-1993-2 & 4 & 16 & 212 & 424 \\
\hline \(\Sigma \boldsymbol{Y}=247\) & \(\Sigma X=9,965\) & & \(\Sigma x^{2}=10\) & \(\Sigma x^{4}=34\) & \(\Sigma x Y=227\) & \(\Sigma x^{2} Y=565\) \\
\hline \[
\bar{X}=\frac{\sum X}{n}=
\] & \[
\frac{9,965}{5}=1993
\] & & & & & \\
\hline
\end{tabular}

\section*{FIGURE 15-4 PARABOLIC TREND FITTED TO DATA IN TABLE 15-4}

This gives us the appropriate values of \(a, b\), and \(c\) to describe the time series presented in Table 15-4 by the following equation
\[
\begin{align*}
\hat{Y} & =a+b x+c x^{2} \tag{15-5}\\
& =39.3+22.7 x+5.07 x^{2}
\end{align*}
\]

Let's graph the watch data to see how well the parabola we just Does our curve fit the data? derived fits the time series. We've done this in Figure 15-4.

\section*{Forecasts Based on a Second-Degree Equation}

Suppose we want to forecast watch sales for 2000. To make a Making the forecast prediction, we must first translate 2000 into a coded variable \(x\) by subtracting the mean year, 1993.
\[
\begin{aligned}
X-\bar{X} & =X \\
2000-1993 & =7
\end{aligned}
\]

This coded value \((x=7)\) is then substituted into the second-degree equation describing watch sales:
\[
\begin{aligned}
\hat{Y} & =39.3+22.7 x+5.07 x^{2} \\
& =39.3+22.7(7)+5.07(7)^{2} \\
& =39.3+158.9+248.4 \\
& =446.6
\end{aligned}
\]

We conclude, based on the past secular trend, that watch sales should be approximately 446,600,000 units by 2000. This extraordinarily large forecast suggests, however, that we must be more careful in forecasting with a parabolic trend than we are when using a linear trend. The slope of the seconddegree equation in Figure 15-4 is continually increasing. Therefore, the parabolic trend may become a poor estimator as we attempt to predict further into the future. In using the second-degree-equation method, we must also take into consideration factors that may be slowing or reversing the growth rate of the variable.

In our watch example, we can assume that during the time period under consideration, the product is at a very rapid growth stage in

Being careful in interpreting the forcast
mature stage, sales will probably decelerate and no longer be predicted accurately by our parabolic curve. When we calculate predictions for the future, we need to consider the possibility that the trend line may change. Such a situation could cause considerable error. It is therefore necessary to exercise particular care when using a second-degree equation as a forecasting tool.

\section*{HINTS \& ASSUMPTIONS}

Warning: "No tree grows to the sky." that's a Wall Street proverb meaning that no stock price rises forever. It's also true here for forecasts made with second-degree equations. Extrapolating the growth rate of a startup company (which starts with zero sales so a dollar of sales is automatically an infinite growth rate) is risky. Early growth rates seldom continue.

\section*{EXERCISES 15.3}

\section*{Self-Check Exercises}

SC 15-1 Robin Zill and Stewart Griffiths own a small company that manufactures portable massage tables in Hillsborough, North Carolina. Since they started the company, the number of tables they have sold is represented by this time series:
\begin{tabular}{lcccccccccc}
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
Tables sold & 42 & 50 & 61 & 75 & 92 & 111 & 120 & 127 & 140 & 138 \\
\hline
\end{tabular}
(a) Find the linear equation that describes the trend in the number of tables sold by Robin and Stewart.
(b) Estimate their sales of tables in 1998.

SC 15-2 The number of faculty-owned personal computers at the University of Ohio increased dramatically between 1990 and 1995:
\begin{tabular}{lcccccc}
\hline Year & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Number of PCs & 50 & 110 & 350 & 1,020 & 1,950 & 3,710 \\
\hline
\end{tabular}
(a) Develop a linear estimating equation that best describes these data.
(b) Develop a second-degree estimating equation that best describes these data.
(c) Estimate the number of PCs that will be in use at the university in 1999 , using both equations.
(d) If there are 8,000 faculty members at the university, which equation is the better predictor? Why?

\section*{Applications}

15-12 Jeff Richardson invested his life savings and began a part-time carpet-cleaning business in 1986. Since 1986, Jeff's reputation has spread and business has increased. The average numbers of homes he has cleaned per month each year are:
\begin{tabular}{lccccccccccc}
\hline Year & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
Homes cleaned & 6.4 & 11.3 & 14.7 & 18.4 & 19.6 & 25.7 & 32.5 & 48.7 & 55.4 & 75.7 & 94.3 \\
\hline
\end{tabular}
(a) Find the linear equation that describes the trend in these data.
(b) Estimate the number of homes cleaned per month in 1997,1998, and 1999.

15-13 The owner of Progressive Builders is examining the number of solar homes started in the region in each of the last 7 months:
\begin{tabular}{lccccccc}
\hline Month & June & July & Aug. & Sept. & Oct. & Nov. & Dec. \\
Number of homes & 16 & 17 & 25 & 28 & 32 & 43 & 50 \\
\hline
\end{tabular}
(a) Plot these data.
(b) Develop the linear estimating equation that best describes these data, and plot the line on the graph from part (a) (let \(x\) units equal 1 month).
(c) Develop the second-degree estimating equation that best describes these data and plot this curve on the graph from part (a).
(d) Estimate March sales using both curves you have plotted.

15-14 Richard Jackson developed an ergonomically superior computer mouse in 1989, and sales have been increasing ever since. Data are presented below in terms of thousands of mice sold per year.
\begin{tabular}{lcccccccc}
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
Number sold & 82.4 & 125.7 & 276.9 & 342.5 & 543.6 & 691.5 & 782.4 & 889.5 \\
\hline
\end{tabular}
(a) Develop a linear estimating equation that best describes these data.
(b) Develop a second-degree estimating equation that best describes these data.
(c) Estimate the number of mice that will be sold in 1998, using both equations.
(d) If we assume the rate of increase in mouse sales will decrease soon based on supply and demand, which model would be a better predictor for your answer in part (c)?
15-15 Mike Godfrey, the auditor of a state public school system, has reviewed the inventory records to determine whether the current inventory holdings of textbooks are typical. The following inventory amounts are from the previous 5 years:
\begin{tabular}{lccccc}
\hline Year & 1991 & 1992 & 1993 & 1994 & 1995 \\
Inventory \((\times \mathbf{\$ 1 , 0 0 0})\) & \(\$ 4,620\) & \(\$ 4,910\) & \(\$ 5,490\) & \(\$ 5,730\) & \(\$ 5,990\) \\
\hline
\end{tabular}
(a) Find the linear equation that describes the trend in the inventory holdings.
(b) Estimate for him the value of the inventory for the year 1996.

15-16 The following table describes first-class postal rates from 1968 to 1996:
\begin{tabular}{lcccccccccccccccc}
\hline Year & 1968 & 1970 & 1972 & 1974 & 1976 & 1978 & 1980 & 1982 & 1984 & 1986 & 1988 & 1990 & 1992 & 1994 & 1996 \\
Rate (c) & 5 & 5 & 8 & 8 & 10 & 13 & 15 & 18 & 20 & 22 & 25 & 25 & 29 & 29 & 32 \\
\hline
\end{tabular}
(a) Develop the linear estimating equation that best describes these data.
(b) Develop the second-degree estimating equation that best describes these data.
(c) Is there anything in the economic or political environment that would suggest that one or the other of these two equations is likely to be the better predictor of postal rates?
15-17 Environtech Engineering, a company that specializes in the construction of antipollution filtration devices, has recorded the following sales record over the last 9 years:
\begin{tabular}{lccccccccc}
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Sales \((\times \mathbf{\$ 1 0 0 , 0 0 0})\) & 13 & 15 & 19 & 21 & 27 & 35 & 47 & 49 & 57 \\
\hline
\end{tabular}
(a) Plot these data.
(b) Develop the linear estimating equation that best describes these data, and plot this line on the graph from part (a).
(c) Develop the second-degree estimating equation that best describes these data, and plot this curve on the graph from part (a).
(d) Does the market to the best of your knowledge favor (b) or (c) as the more accurate estimating method?
15-18 Here are data describing the air pollution rate (in ppm of particles in the air) in a western city:
\begin{tabular}{lcccc}
\hline Year & 1980 & 1985 & 1990 & 1995 \\
Pollution rate & 220 & 350 & 800 & 2,450 \\
\hline
\end{tabular}
(a) Would a linear or a second-degree estimating equation provide the better prediction of future pollution in that city?
(b) Considering the economic, social, and political environment, would you change your answer to part (a)?
(c) Describe how political and social action could change the effectiveness of either of the estimating equations in part (a).
15-19 The State Department of Motor Vehicles is studying the number of traffic fatalities in the state resulting from drunk driving for each of the last 9 years.
\begin{tabular}{lccccccccc}
\hline Year & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Deaths & 175 & 190 & 185 & 195 & 180 & 200 & 185 & 190 & 205 \\
\hline \hline
\end{tabular}
(a) Find the linear equation that describes the trend in the number of traffic fatalities in the state resulting from drunk driving.
(b) Estimate the number of traffic fatalities resulting from drunk driving that the state can expect in 1996.

\section*{Worked-Out Answers to Self-Check Exercises}

SC 15-1
(a) \begin{tabular}{lrrrr}
\hline Year & \(\boldsymbol{x}\) & \(\boldsymbol{Y}\) & \(\boldsymbol{x} \boldsymbol{Y}\) & \(\boldsymbol{x}^{\mathbf{2}}\) \\
\hline 1987 & -9 & 42 & -378 & 81 \\
1988 & -7 & 50 & -350 & 49 \\
1989 & -5 & 61 & -305 & 25 \\
1990 & -3 & 75 & -225 & 9 \\
1991 & -1 & 92 & -92 & 1 \\
1992 & 1 & 111 & 111 & 1 \\
1993 & 3 & 120 & 360 & 9 \\
1994 & 5 & 127 & 635 & 25 \\
1995 & 7 & 140 & 980 & 49 \\
1996 & 9 & \(\frac{138}{\mathbf{9 5 6}}\) & \(\frac{1242}{\mathbf{1 , 9 7 8}}\) & \(\frac{81}{\mathbf{3 3 0}}\) \\
\hline
\end{tabular}

SC 15-2
\begin{tabular}{rrrrrrr}
\hline Year & \(\boldsymbol{x}\) & \multicolumn{1}{c}{\(\boldsymbol{Y}\)} & \(\boldsymbol{x} \boldsymbol{Y}\) & \(\boldsymbol{x}^{\mathbf{2}}\) & \multicolumn{1}{c}{\(\boldsymbol{x}^{\mathbf{2}} \boldsymbol{Y}\)} & \multicolumn{1}{c}{\(\boldsymbol{x}^{4}\)} \\
\hline 1990 & -5 & 50 & -250 & 25 & 1,250 & 625 \\
1991 & -3 & 110 & -330 & 9 & 990 & 81 \\
1992 & -1 & 350 & -350 & 1 & 350 & 1 \\
1993 & 1 & 1,020 & 1,020 & 1 & 1,020 & 1 \\
1994 & 3 & 1,950 & 5,850 & 9 & 17,550 & 81 \\
1995 & \(\mathbf{5}\) & \(\underline{3,710}\) & \(\underline{18,550}\) & \(\underline{\mathbf{2 5}}\) & \(\underline{92,750}\) & \(\frac{625}{\mathbf{7 , 1 9 0}}\) \\
& \(\mathbf{2 4 , 4 9 0}\) & \(\mathbf{7 0}\) & \(\mathbf{1 1 3 , 9 1 0}\) & \(\mathbf{1 , 4 1 4}\) \\
\hline
\end{tabular}
(a) \(a=\bar{Y}=\frac{7,190}{6}=1,198.3333 \quad b=\frac{\sum x Y}{\sum x^{2}}=\frac{24,490}{70}=349.8571\)
\(\hat{Y}=1,198.3333+349.8571 x\) (where \(1992.5=0\) and \(x\) units \(=0.5\) year)
(b) Equations 15.6 and 15.7 become
\[
\begin{array}{rlrl}
\Sigma Y & =n a+c \Sigma x^{2} & 7,190 & =6 a+70 c \\
\Sigma x^{2} Y & =a \Sigma x^{2}+c \Sigma x^{4} & 113,910 & =70 a+1,414 c
\end{array}
\]

Solving these simultaneously, we get
\[
\begin{aligned}
& a=611.8750, c=50.2679 \\
& \hat{Y}=611.8750+349.8571 x+50.2679 x^{2}
\end{aligned}
\]
(c) Linear forecast: \(\hat{Y}=1,198.3333+349.8571(13)=5,746 \mathrm{PCs}\)

Second-degree equation forecast: \(\hat{Y}=611.8750+349.8571(13)+50.2679(169)\)
\[
=13,655 \mathrm{PCs}
\]
(d) Neither is very good. The linear trend missed the acceleration in the rate of faculty PC acquisition. The second-degree trend assumed the acceleration would continue, ignoring the fact that there are only 8,000 faculty members.

\subsection*{15.4 CYCLICAL VARIATION}

Cyclical variation is the component of a time series that tends to oscillate above and below the secular trend line for-periods longer

Cyclical variation defined than 1 year. The procedure used to identify cyclical variation is the residual method.

\section*{Residual Method}

When we look at a time series consisting of annual data, only the secular-trend, cyclical, and irregular components are considered. (This is true because seasonal variation makes a complete, regular cycle within each year and thus does not affect one year any more than another.) Because we can describe secular trend using a trend line, we can isolate the remaining cyclical and irregular components from the trend. We will assume that the cyclical component explains most of the variation left unexplained by the trend component. (Many real-life time series do not satisfy this assumption. Methods such as Fourier analysis and spectral analysis can analyze the cyclical component for such time series. However, these are beyond the scope of this book.)

If we use a time series composed of annual data, we can find the fraction of the trend by dividing the actual value \((Y)\) by the corresponding trend value \((\hat{Y})\) for each value in the time series. We then multiply the result of this calculation by 100. This gives us the measure of cyclical variation as a percent of

Expressing cyclical variation as a percent of trend trend. We express this process in Equation 15-8:
\begin{tabular}{|cc|}
\hline Percent of Trend & \\
\hline\(\frac{Y}{\hat{Y}} \times 100\) & {\([15-8]\)} \\
\hline
\end{tabular}
where
- \(Y=\) actual time-series value
- \(\hat{Y}=\) estimated trend value from the same point in the time series

Now let's apply this procedure.
Afarmers' marketing cooperative wants to measure the variations in its members' wheat harvest over an 8 -year period. Table 15-6

\section*{Measuring variation}
shows the volume harvested in each of the 8 years. Column \(Y\) contains the values of the linear trend for each time period. The trend line has been generated using the methods illustrated in Section 3 of this chapter. Note that when we graph the actual \((Y)\) and the trend \((\hat{Y})\) values for the 8 years in Figure 15-5, the actual values move above and below the trend line.

Now we can determine the percent of trend for each of the years Interpreting cyclical variations in the sample (column 4 in Table 15-7). From this column, we can see the variation in actual harvests around the estimated trend (98.7 to 102.5). We can attribute these cyclical variations to factors such as rainfall and temperature. However, because these factors are relatively unpredictable, we cannot forecast any specific patterns of variation using the method of residuals.

The relative cyclical residual is another measure of cyclical Expressing cyclical variations in variation. In this method, the percentage deviation from the trend terms of relative cyclical residual is found for each value. Equation \(15-9\) presents the mathematical formula for determining the relative cyclical residuals. As with percent of trend, this measure is also a percentage.

TABLE 15.6 GRAIN RECEIVED BY FARMERS' COOPERATIVE OVER 8 YEARS
\begin{tabular}{lcc}
\hline \(\boldsymbol{X}\) Year & \begin{tabular}{c}
\(\boldsymbol{Y}\) Actual \\
Bushels \((\times \mathbf{1 0 , 0 0 0})\)
\end{tabular} & \begin{tabular}{c}
\(\hat{\boldsymbol{Y}}\) Estimated \\
Bushels \((\times \mathbf{1 0 , 0 0 0})\)
\end{tabular} \\
\hline 1988 & 7.5 & 7.6 \\
1989 & 7.8 & 7.8 \\
1990 & 8.2 & 8.0 \\
1991 & 8.2 & 8.2 \\
1992 & 8.4 & 8.4 \\
1993 & 8.5 & 8.6 \\
1994 & 8.7 & 8.8 \\
1995 & 9.1 & 9.0 \\
\hline
\end{tabular}

FIGURE 15-5 CYCLICAL FLUCTUATIONS AROUND THE TREND LINE

\section*{Relative Cyclical Residual}
\[
\begin{equation*}
\frac{Y-\hat{Y}}{\hat{Y}} \times 100 \tag{15-9}
\end{equation*}
\]
where
- \(Y=\) actual time-series value
- \(\hat{Y}=\) estimated trend value from the same point in the time series

Table 15-8 shows the calculation of the relative cyclical residual for the farmers' cooperative problem. Note that the easy way to compute the relative cyclical residual (column 5) is to subtract 100 from the percent of trend (column 4).

TABLE 15.7 CALCULATION OF PERCENT OF TREND
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
X \\
\text { Year }
\end{gathered}
\]
(1) & \begin{tabular}{l}
\(\boldsymbol{Y}\) Actual Bushels \((\times \mathbf{1 0 , 0 0 0)}\) \\
(2)
\end{tabular} & \begin{tabular}{l}
\(\hat{Y}\) Estimated Bushels \((\times \mathbf{1 0 , 0 0 0})\) \\
(3)
\end{tabular} & \begin{tabular}{l}
\[
\frac{Y}{\hat{Y}} \times \mathbf{1 0 0}
\] \\
Percent of Trend
\[
(4)=\frac{(2)}{(3)} \times 100
\]
\end{tabular} \\
\hline 1988 & 7.5 & 7.6 & 98.7 \\
\hline 1989 & 7.8 & 7.8 & 100.0 \\
\hline 1990 & 8.2 & 8.0 & 102.5 \\
\hline 1991 & 8.2 & 8.2 & 100.0 \\
\hline 1992 & 8.4 & 8.4 & 100.0 \\
\hline 1993 & 8.5 & 8.6 & 98.8 \\
\hline 1994 & 8.7 & 8.8 & 98.9 \\
\hline 1995 & 9.1 & 9.0 & 101.1 \\
\hline
\end{tabular}

TABLE 15-8 CALCULATION OF RELATIVE CYCLICAL RESIDUALS
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\underset{\text { Year }}{X}
\]
(1) & \begin{tabular}{l}
Y Actual Bushels (\(\times 10,000\)) \\
(2)
\end{tabular} & \(\hat{Y}\) Estimated Bushels \((\times \mathbf{1 0 , 0 0 0})\) (3) & \begin{tabular}{l}
\[
\frac{Y}{\hat{Y}} \times 100
\] \\
Percent of Trend
\[
(4)=\frac{(2)}{(3)} \times 100
\]
\end{tabular} & \begin{tabular}{l}
\[
\frac{Y-\hat{Y}}{\hat{Y}} \times 100
\] \\
Relative Cyclical Residual
\[
(5)=(4)-100
\]
\end{tabular} \\
\hline 1988 & 7.5 & 7.6 & 98.7 & -1.3 \\
\hline 1989 & 7.8 & 7.8 & 100.0 & 0.0 \\
\hline 1990 & 8.2 & 8.0 & 102.5 & 2.5 \\
\hline 1991 & 8.2 & 8.2 & 100.0 & 0.0 \\
\hline 1992 & 8.4 & 8.4 & 100.0 & 0.0 \\
\hline 1993 & 8.5 & 8.6 & 98.8 & -1.2 \\
\hline 1994 & 8.7 & 8.8 & 98.9 & -1.1 \\
\hline 1995 & 9.1 & 9.0 & 101.1 & 1.1 \\
\hline
\end{tabular}

These two measures of cyclical variation, percent of trend and relative cyclical residual, are percentages of the trend. For example, in 1993, the percent of trend indicated that the actual harvest was 98.8 percent of the expected harvest for that year. For the same year, the relative cyclical residual indicated that the actual harvest was 1.2 percent short of the expected harvest (a relative cyclical residual of -1.2).

We often graph cyclical variation as the percent of trend. Figure

Comparing the two measures of cyclical variation

Graphing cyclical variation 15-6 illustrates how this process eliminates the trend line and isolates

the cyclical component of the time series. It must be emphasized that the procedures discussed in this section can be used only for describing past cyclical variations and not for predicting future cyclical variations. Predicting cyclical variation requires the use of techniques which are beyond the scope of this book.

\section*{HINTS \& ASSUMPTIONS}

Remember that cyclical variation is the component of a time series that oscillates above and below the trend line for periods longer than a year. Warning: Seasonal variation makes a complete cycle within each year and does not affect one year any more than another. Cyclical variation is measured by two methods. The first method expresses the variation as a percentage of the trend, hence its name percent of trend. The second method (the relative cyclical residual) calculates the variation as a percent deviation from the trend.

\section*{EXERCISES 15.4}

\section*{Self-Check Exercise}

SC 15-3 The Western Natural Gas Company has supplied 18, 20, 21, 25, and 26 billion cubic feet of gas, respectively, for the years 1991 to 1995.
(a) Find the linear estimating equation that best describes these data.
(b) Calculate the percent of trend for these data.
(c) Calculate the relative cyclical residual for these data.
(d) In which years does the largest fluctuation from trend occur, and is it the same for both methods?

\section*{Applications}

15-20 Microprocessing, a computer firm specializing in software engineering, has compiled the following revenue records for the years 1989 to 1995
\begin{tabular}{lccccccc}
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Revenue \((\times \mathbf{\$ 1 0 0 , 0 0 0})\) & 1.1 & 1.5 & 1.9 & 2.1 & 2.4 & 2.9 & 3.5 \\
\hline
\end{tabular}

The second-degree equation that best describes the secular trend for these data is
\[
\hat{Y}=2.119+0.375 x+0.020 x^{2}, \text { where } 1992=0, \text { and } x \text { units }=1 \text { year }
\]
(a) Calculate the percent of trend for these data.
(b) Calculate the relative cyclical residual for these data.
(c) Plot the percent of trend from part (a).
(d) In which year does the largest fluctuation from trend occur, and is it the same for both methods?
15-21 The Bulls Eye department store has been expanding market share during the past 7 years, posting the following gross sales in millions of dollars:
\begin{tabular}{llllllll}
\hline Year & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 & 1996 \\
Sales & 14.8 & 20.7 & 24.6 & 32.9 & 37.8 & 47.6 & 51.7 \\
\hline
\end{tabular}
(a) Find the linear estimating equation that best describes the data.
(b) Calculate the percent of trend for these data.
(c) Calculate the relative cyclical residual for these data.
(d) In which years does the largest fluctuation from trend occur, and is it the same for both methods?
15-22 Joe Honeg, the sales manager responsible for the appliance division of a large consumerproducts company, has collected the following data regarding unit sales for his division during the last 5 years:
\begin{tabular}{lccccc}
\hline Year & 1991 & 1992 & 1993 & 1994 & 1995 \\
Units \((\times \mathbf{1 0 , 0 0 0})\) & 32 & 46 & 50 & 66 & 68 \\
\hline \hline
\end{tabular}

The equation describing the secular trend for appliance sales is
\[
\hat{Y}=52.4+9.2 x, \text { where } 1993=0, \text { and } x \text { units }=1 \text { year }
\]
(a) Calculate the percent of trend for these data.
(b) Calculate the relative cyclical residual for these data.
(c) Plot the percent of trend from part (a).
(d) In which year does the largest fluctuation from trend occur, and is it the same for both methods?
15-23 Suppose you are the capital budgeting officer of a small corporation whose financing requirements over the last few years have been
\begin{tabular}{lccccccc}
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Millions of dollars required & 2.2 & 2.1 & 2.4 & 2.6 & 2.7 & 2.9 & 2.8 \\
\hline \hline
\end{tabular}

The trend equation that best describes these data is
\[
\hat{Y}=2.53+0.13 x \text {, where } 1992=0, \text { and } x \text { units }=1 \text { year }
\]
(a) Calculate the percent of trend for these data.
(b) Calculate the relative cyclical residual for these data.
(c) In which year does the largest fluctuation from trend occur, and is it the same for both methods?
(d) As the capital budgeting officer, what would this fluctuation mean for you and the activities you perform?
15-24 Parallel Breakfast Foods has data on the number of boxes of cereal it has sold in each of the last 7 years.
\begin{tabular}{llllllll}
\hline Year & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Boxes \((\times \mathbf{1 0 , 0 0 0})\) & 21.0 & 19.4 & 22.6 & 28.2 & 30.4 & 24.0 & 25.0 \\
\hline
\end{tabular}
(a) Find the linear estimating equation that best describes these data.
(b) Calculate the percent of trend for these data.
(c) Calculate the relative cyclical residual for these data.
(d) In which year does the biggest fluctuation from the trend occur under each measure of cyclical variation? Is this year the same for both measures? Explain.
15-25 Wombat Airlines, an Australian company, has gathered data on the number of passengers who have flown on its planes during each of the last 5 years.
\begin{tabular}{lccccc}
\hline Year & 1991 & 1992 & 1993 & 1994 & 1995 \\
Passengers (in tens of thousands) & 3.5 & 4.2 & 3.9 & 3.8 & 3.6 \\
\hline
\end{tabular}
(a) Find the linear estimating equation that best describes these data.
(b) Calculate the percent of trend for these data.
(c) Calculate the relative cyclical residual for these data.
(d) Based on the data and your previous calculations, give a one-sentence summary of the position in which Wombat Airlines finds itself.

\section*{Worked-Out Answer to Self-Check Exercise}
\begin{tabular}{cccccccc}
SC 15-3 \\
\cline { 2 - 8 } & & \(\boldsymbol{x}\) & \(\boldsymbol{Y}\) & \(\boldsymbol{x} \boldsymbol{Y}\) & \(\boldsymbol{x}^{\mathbf{2}}\) & \(\hat{\boldsymbol{Y}}\) & \(\frac{\boldsymbol{Y}}{\hat{\boldsymbol{Y}}} \times \mathbf{1 0 0}\)
\end{tabular}\(\frac{\underline{\boldsymbol{Y}-\hat{\boldsymbol{Y}}}}{\hat{\boldsymbol{Y}}} \times \mathbf{1 0 0}\)
(a) \(a=\bar{Y}=\frac{110}{5}=22 \quad b=\frac{\sum x Y}{\sum x^{2}}=\frac{21}{10}=2.1\)
\[
\hat{Y}=22+2.1 x(\text { where } 1993=0 \text { and } x \text { units }=1 \text { year })
\]
(b) See the next-to-the-last column above for percent of trend.
(c) See the last column above for relative cyclical residual.
(d) Largest fluctuation (by both methods) was in 1993.

\subsection*{15.5 SEASONAL VARIATION}

Besides secular trend and cyclical variation, a time series also Seasonal variation defined includes seasonal variation. Seasonal variation is defined as repetitive and predictable movement around the trend line in one year or less. In order to detect seasonal variation, time intervals must be measured in small units, such as days, weeks, months, or quarters.

We have three main reasons for studying seasonal variation:
1. We can establish the pattern of past changes. This gives us a way to compare two time intervals that would otherwise be too dissimilar. If a flight training school wants to know if a slump

Three reasons for studying seasonal variation in business during December is normal, it can examine the seasonal pattern in previous years and find the information it needs.
2. It is useful to project past patterns into the future. In the case of long-range decisions, seculartrend analysis may be adequate. But for short-run decisions, the ability to predict seasonal fluctuations is often essential. Consider a wholesale food chain that wants to maintain a minimum adequate stock
of all items. The ability to predict short-range patterns, such as the demand for turkeys at Thanksgiving, candy at Christmas, or peaches in the summer, is useful to the management of the chain.
3. Once we have established the seasonal pattern that exists, we can eliminate its effects from the time series. This adjustment allows us to calculate the cyclical variation that takes place each year. When we eliminate the effect of seasonal variation from a time series, we have deseasonalized the time series.

\section*{Ratio-to-Moving-Average Method}

In order to measure seasonal variation, we typically use the ratio-to-moving-average method. This technique provides an index that describes the degree of seasonal variation. The index is based on a

\section*{Using the ratio-to-movingaverage method of measuring seasonal variation} mean of 100 , with the degree of seasonality measured by variations away from the base. For example, if we examine the seasonality of canoe rentals at a summer resort, we might find that the spring-quarter index is 142 . The value 142 indicates that 142 percent of the average quarterly rental occur in the spring. If management recorded 2,000 canoe rentals for all of last year, then the average quarterly rental would be \(2,000 / 4=500\). Because the spring-quarter index is 142 , we estimate the number of spring rentals as follows:

Average quarterly rental \(\longrightarrow 500 \times \frac{142}{100}=710 \longleftarrow\) Seasonalized spring quarter rental
Our chapter-opening example can illustrate the ratio-to-movingaverage method. The resort hotel wanted to establish the seasonal

An example of the ratio-to-moving-average method pattern of room demand by its clientele. Hotel management wants
- to improve customer service and is considering several plans to employ personnel during peak periods to achieve this goal. Table 15-9 contains the quarterly occupancy, that is, the average number of guests during each quarter of the last 5 years.

We will refer to Table 15-9 to demonstrate the six steps required to compute a seasonal index.
1. The first step in computing a seasonal index is to calculate the 4-quarter moving total for the time series. To do this, we total the values for the quarters during the first year, 1991, in

Step 1: Calculate the 4-quarter moving total

TABLE 15-9 TIME SERIES FOR HOTEL OCCUPANCY
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Number of Guests per Quarter } \\
\cline { 2 - 5 } Year & \(\mathbf{I}\) & II & III & IV \\
\hline 1991 & 1,861 & 2,203 & 2,415 & 1,908 \\
1992 & 1,921 & 2,343 & 2,514 & 1,986 \\
1993 & 1,834 & 2,154 & 2,098 & 1,799 \\
1994 & 1,837 & 2,025 & 2,304 & 1,965 \\
1995 & 2,073 & 2,414 & 2,339 & 1,967 \\
\hline
\end{tabular}

Table 15-9:1,861 \(+2,203+2,415+1,908=8,387\). A moving total is associated with the middle data point in the set of values from which it was calculated. Because our first total of 8,387 was calculated from four data points, we place it opposite the midpoint of those quarters, so it falls in column 4 of Table 15-10, between the rows for the 1991-II and 1991-III quarters.

We find the next moving total by dropping the 1991-1 value, 1,861, and adding the 1992-1 value, 1,921 . By dropping the first value and adding the fifth, we keep four quarters in the total. The four values added now are \(2,203+2,415+1,908+1,921=8,447\). This total is entered in Table 15-10 directly below the first quarterly total of 8,387 . We continue the process of "sliding" the 4 -quarter total over the time series until we have included the last value in the series. In this example, it is the 1,967 rooms in the fourth quarter of 1995, the last number in column 3 of Table 15-10. The last entry in the moving total column is 8,793 . It is between the rows for the \(1995-\mathrm{II}\) and \(1995-\mathrm{III}\) quarters because it was calculated from the data for the 4 quarters of 1995.
2. In the second step, we compute the 4 -quarter moving average by dividing each of the \(\mathbf{4}\)-quarter totals by 4 . In Table 15-10, we divided the values in column 4 by 4 , to arrive at the values for column 5 .
3. In the third step, we center the 4-quarter moving average. The moving averages in column 5 all fall halfway between the

Step 2: Compute the 4-quarter moving average

Step 3: Center the 4-quarter moving average quarters. We would like to have moving averages associated with each quarter. In order to center our moving averages, we associate with each quarter the average of the two 4 -quarter moving averages falling just above and just below it. For the 1991-III quarter, the resulting 4 -quarter centered moving average is \(2,104.25\), that is, \((2,096.75+\) \(2,111.75) / 2\). The other entries in column 6 are calculated the same way. Figure 15-7 illustrates how

FIGURE 15-7 USING A MOVING AVERAGE TO SMOOTH THE ORIGINAL TIME SERIES
the moving average has smoothed the peaks and troughs of the original time series. The seasonal and irregular components have been smoothed, and the resulting dotted colored line represents the cyclical and trend components of the series.

Suppose we were working with the admissions data for a Sometimes step 3 can be skipped hospital emergency room, and we wanted to compute daily indices. In steps 1 and 2, we would compute 7 -day moving totals and moving averages, and the moving averages would already be centered (because the middle of a 7 -day period is the fourth of those 7 days). In this case, step 3 is unnecessary. Whenever the number of periods for which we want indices is odd (7 days in a week, three shifts in a day), we can skip step 3. However, when the number of periods is even (4 quarters, 12 months, 24 hours), then we must use step 3 to center the moving averages we get with step 2 .
4. Next, we calculate the percentage of the actual value to the moving-average value for each quarter in the time series having a 4-quarter moving-average entry. This step allows us to recover the seasonal component for the quarters. We determine this percentage by dividing each of the actual quarter values in column 3 of Table 15-10 by the corresponding 4-quarter centered moving-average values

TABLE 15-10 CALCULATING THE 4-QUARTER CENTERED MOVING AVERAGE
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
(1)
\end{tabular} & \begin{tabular}{l}
Quarter \\
(2)
\end{tabular} & \begin{tabular}{l}
Occupancy \\
(3)
\end{tabular} & Step 1: 4-Quarter Moving Total (4) & Step 2: 4-Quarter Moving Total Average
\[
(5)=(4) \div 4
\] & Stem 3: 4-Quarter Centered Moving Average (6) & \begin{tabular}{l}
Step 4: \\
Percentage of Actual to Moving Average Values
\[
\text { (7) }=\frac{(3)}{(6)} \times 100
\]
\end{tabular} \\
\hline \multirow[t]{4}{*}{1991} & I & 1,861 & & & & \\
\hline & II & 2,203 & & & & \\
\hline & III & 2,415 & 8,387 & 2,096.75 & 2,104.250 & 114.8 \\
\hline & IV & 1,908 & 8,447 & 2,111.75 & 2,129.250 & 89.6 \\
\hline \multirow[t]{4}{*}{1992} & I & 1,921 & 8,587 & 2,146.75 & 2,159.125 & 89.0 \\
\hline & II & 2,343 & 8,686 & 2,171.50 & 2,181.250 & 107.4 \\
\hline & III & 2,514 & 8,764 & 2,191.00 & 2,180.125 & 115.3 \\
\hline & IV & 1,986 & 8,677 & 2,169.25 & 2,145.625 & 92.6 \\
\hline \multirow[t]{4}{*}{1993} & I & 1,834 & 8,488 & 2,122.00 & 2,070.000 & 88.6 \\
\hline & II & 2,154 & 8,072 & 2,018.00 & 1,994.625 & 108.0 \\
\hline & III & 2,098 & 7,885 & 1,971.25 & 1,971.625 & 106.4 \\
\hline & IV & 1,799 & 7,888 & 1,972.00 & 1,955.875 & 92.0 \\
\hline \multirow[t]{4}{*}{1994} & I & 1,837 & 7,759 & 1,939.75 & 1,965.500 & 93.5 \\
\hline & II & 2,025 & 7,965 & 1,991.25 & 2,012.000 & 100.6 \\
\hline & III & 2,304 & 8,131 & 2,032.75 & 2,062.250 & 111.7 \\
\hline & IV & 1,965 & 8,367 & 2,091.75 & 2,140.375 & 91.8 \\
\hline \multirow[t]{4}{*}{1995} & I & 2,073 & 8,756 & 2,189.00 & 2,193.375 & 94.5 \\
\hline & II & 2,414 & 8,791 & 2,197.75 & 2,198.000 & 109.8 \\
\hline & III & 2,339 & 8,793 & 2,198.25 & & \\
\hline & IV & 1,967 & & & & \\
\hline
\end{tabular}
in column 6 and then multiplying the result by 100. For example, we find the percentage for 1991-III as follows:
\[
\begin{aligned}
\frac{\text { Actual }}{\text { Moving average }} \times 100 & =\frac{2,415}{2,104.250} \times 100 \\
& =114.8
\end{aligned}
\]
5. To collect all the percentage of actual to moving-average
values in column 7 of Table 5: Collect answers from step 4
15-10, arrange them by quarter.
and calculate the modified mean Then calculate the modified mean for each quarter. The modified mean is calculated by discarding the highest and lowest values for each quarter and averaging the remaining values. In Table 15-11, we present the fifth step and show the process for finding the modified mean.

The seasonal values we recovered for the quarters in Reducing extreme cyclical and column 7 of Table 15-10 still contain the cyclical and irregular irregular variations components of variation in the time series. By eliminating the highest and lowest values from each quarter, we reduce the extreme cyclical and irregular variations. When we average the remaining values, we further smooth the cyclical and irregular components. Cyclical and irregular variations tend to be removed by this process, so the modified mean is an

TABLE 15-11 DEMONSTRATION OF STEP 5 IN COMPUTING A SEASONAL INDEX*
\begin{tabular}{|c|c|c|c|c|}
\hline Year & Quarter 1 & Quarter II & Quarter III & Quarter IV \\
\hline 1991 & - & - & 114.8 & 89.6 \\
\hline 1992 & 89.0 & 107.4 & 115.3 & 92.6 \\
\hline 1993 & 88.6 & 108.0 & 106.4 & 92.0 \\
\hline 1994 & 93.5 & 100.6 & 111.7 & 91.8 \\
\hline \multirow[t]{8}{*}{1995} & 94.5 & 109.8 & - & - \\
\hline & 182.5 & 215.4 & 226.5 & 183.8 \\
\hline & & \multicolumn{3}{|l|}{Modified mean:} \\
\hline & & \multicolumn{2}{|r|}{Quarter I: \(\frac{182.5}{2}=91.25\)} & \\
\hline & & \multicolumn{2}{|r|}{Quarter II: \(\frac{215.4}{2}=107.70\)} & \\
\hline & & \multicolumn{2}{|l|}{Quarter III: \(\frac{226.5}{2}=113.25\)} & \\
\hline & & \multicolumn{2}{|l|}{Quarter IV: \(\frac{183.8}{2}=91.90\)} & \\
\hline & & \multicolumn{2}{|r|}{Total of indices \(=404.1\)} & \\
\hline
\end{tabular}

\footnotetext{
*Eliminated values are indicated by a colored slash.
}

TABLE 15-12 DEMONSTRATION OF STEP 6
\begin{tabular}{cccccc}
\hline Quarter & Unadjusted Indices & \(\times\) & Adjusting Constant & \(=\) & Seasonal Index \\
\hline I & 91.25 & \(\times\) & 0.9899 & \(=\) & 90.3 \\
II & 107.70 & \(\times\) & 0.9899 & & 106.6 \\
III & 113.25 & \(\times\) & 0.9899 & & 112.1 \\
IV & 91.90 & \(\times\) & 0.9899 & \(=\) & 91.0 \\
& & & Total of seasonal indices & \(=\) & \(\overline{400.0}\) \\
& & & Mean of seasonal indices & \(=\frac{400}{4}\) \\
& & & & \(=100 . .0\) \\
\hline
\end{tabular}
index of the seasonality component. (Some statisticians prefer to use the median value instead of computing the modified mean to achieve the same outcome.)
6. The final step, demonstrated in Table 15-12, adjusts the Step 6: Adjust the modified mean modified mean slightly. Notice that the four indices in
Table 15-11 total 404.1. However, the base for an index is 100 . Thus, the four quarterly indices should total 400 , and their mean should be 100 . To correct for this error, we multiply each of the quarterly indices in Table 15-11 by an adjusting constant. This number is found by dividing the desired sum of the indices (400) by the actual sum (404.1). In this case, the result is 0.9899 . Table \(15-12\) shows that multiplying the indices by the adjusting constant brings the quarterly indices to a total of 400. (Sometimes even after this adjustment, the mean of the seasonal indices is not exactly 100 because of accumulated rounding errors. In this case, however, it is exactly 100 .)

\section*{Uses of the Seasonal Index}

The ratio-to-moving-average method just explained allows us to Deseasonalizing a time series identify seasonal variation in a time series. The seasonal indices are used to remove the effects of seasonality from a time series. This is called deseasonalizing a time series. Before we can identify either the trend or cyclical components of a time series, we must eliminate seasonal variation. To deseasonalize a time series, we divide each of the actual values in the series by the appropriate seasonal index (expressed as a fraction of 100). To demonstrate, we shall deseasonalize the value of the first four quarters in Table 15-9. In Table 15-13, we show the deseasonalizing process using the values for the seasonal indices from Table 15-12. Once the seasonal effect has been eliminated, the deseasonalized values that remain reflect only the trend, cyclical, and irregular components of the time series.

Once we have removed the seasonal variation, we can compute a Using seasonality in forecasts deseasonalized trend line, which we can then project into the future.
Suppose the hotel management in our example estimates from a deseasonalized trend line that the deseasonalized average occupancy for the fourth quarter of the next year will be 2,121 . When this prediction has been obtained, management must then take the seasonality into account. To do this, it multiplies the deseasonalized predicted average occupancy of 2,121 by the fourth-quarter seasonal index

TABLE 15-13 DEMONSTRATION OF DESEASONALIZING DATA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
(1)
\end{tabular} & \begin{tabular}{l}
Quarter \\
(2)
\end{tabular} & Actual Occupancy (3) & & \(\left(\frac{\text { Seasonal Index }}{\substack{100}}\right)\) & & Deseasonalized Occupancy
\[
(5)=(3) \div(4)
\] \\
\hline 1991 & I & 1,861 & \(\div\) & \(\left(\frac{90.3}{100}\right)\) & \(=\) & 2,061 \\
\hline 1991 & II & 2,203 & \(\div\) & \(\left(\frac{106.6}{100}\right)\) & \(=\) & 2,067 \\
\hline 1991 & III & 2,415 & \(\div\) & \(\left(\frac{112.1}{100}\right)\) & = & 2,154 \\
\hline 1991 & IV & 1,908 & \(\div\) & \(\left(\frac{91.0}{100}\right)\) & \(=\) & 2,097 \\
\hline
\end{tabular}
(expressed as a fraction of 100) to obtain a seasonalized estimate of 1,930 rooms for the fourth-quarter average occupancy. Here are the calculations:

\section*{HINTS \& ASSUMPTIONS}

Using seasonal indices to adjust quarterly and monthly data helps us detect the underlying secular trend. Warning: Most reported figures fail to tell us how much seasonal adjustment was used, and in some management decisions this missing information is valuable. For example, if a state motor vehicle department reports last month's new vehicle registrations were 25,000 at a seasonally adjusted rate, how would a distributor of an after-market automobile product such as custom floor mats predict demand for next month without knowing the actual number of new cars? Often, for internal company planning purposes, it is helpful to know both adjusted and unadjusted figures.

\section*{EXERCISES 15.5}

\section*{Self-Check Exercise}

SC 15-4 Using the following percentages of actual to moving average describing the quarterly amount of cash in circulation at the Village Bank in Carrboro, N.C. over a 4 -year period, calculate the seasonal index for each quarter.
\begin{tabular}{lcccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1992 & 87 & 106 & 86 & 125 \\
1993 & 85 & 110 & 83 & 127 \\
1994 & 84 & 105 & 87 & 128 \\
1995 & 88 & 104 & 88 & 124 \\
\hline
\end{tabular}

\section*{Applications}

15-26 The owner of The Pleasure-Glide Boat Company has compiled the following quarterly figures regarding the company's level of accounts receivable over the last 5 years (\(\times \$ 1,000\)):
\begin{tabular}{lcccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1991 & 102 & 120 & 90 & 78 \\
1992 & 110 & 126 & 95 & 83 \\
1993 & 111 & 128 & 97 & 86 \\
1994 & 115 & 135 & 103 & 91 \\
1995 & 122 & 144 & 110 & 98 \\
\hline
\end{tabular}
(a) Calculate a 4-quarter centered moving average.
(b) Find the percentage of actual to moving average for each period.
(c) Determine the modified seasonal indices and the seasonal indices.

15-27 Marie Wiggs, personnel director for a pharmaceutical company, recorded these percentage absentee rates for each quarter over a 4 -year period:
\begin{tabular}{lcccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1992 & 5.6 & 6.8 & 6.3 & 5.2 \\
1993 & 5.7 & 6.7 & 6.4 & 5.4 \\
1994 & 5.3 & 6.6 & 6.1 & 5.1 \\
1995 & 5.4 & 6.9 & 6.2 & 5.3 \\
\hline
\end{tabular}
(a) Construct a 4-quarter centered moving average and plot it on a graph along with the original data.
(b) What can you conclude about absenteeism from part (a)?

15-28 Using the following percentages of actual to moving average describing the seasonal sales of sporting goods over a 5 -year period, calculate the seasonal index for each season.
\begin{tabular}{lcccc}
\hline Year & Baseball & Football & Basketball & Hockey \\
\hline 1992 & 96 & 128 & 116 & 77 \\
1993 & 92 & 131 & 125 & 69 \\
1994 & 84 & 113 & 117 & 84 \\
1995 & 97 & 118 & 126 & 89 \\
1996 & 91 & 121 & 124 & 81 \\
\hline
\end{tabular}

15-29 A large manufacturer of automobile springs has determined the following percentages of actual to moving average describing the firm's quarterly cash needs for the last ,6 years:
\begin{tabular}{ccccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1990 & 108 & 128 & 94 & 70 \\
1991 & 112 & 132 & 88 & 68 \\
1992 & 109 & 134 & 84 & 73 \\
1993 & 110 & 131 & 90 & 69 \\
1994 & 108 & 135 & 89 & 68 \\
1995 & 106 & 129 & 93 & 72 \\
\hline
\end{tabular}

Calculate the seasonal index for each quarter. Comment on how it compares to the indices you calculated for Exercise 15-26.
15-30 A university's dean of admissions has compiled the following quarterly enrollment figures for the previous 5 years (\(\times 100\)):
\begin{tabular}{lcccc}
\hline & Fall & Winter & Spring & Summer \\
\hline 1991 & 220 & 203 & 193 & 84 \\
1992 & 235 & 208 & 206 & 76 \\
1993 & 236 & 206 & 209 & 73 \\
1994 & 241 & 215 & 206 & 92 \\
1995 & 239 & 221 & 213 & 115 \\
\hline
\end{tabular}
(a) Calculate a 4-quarter centered moving average.
(b) Find the percentage of actual to moving average for each period.
(c) Determine the modified seasonal indices and the seasonal indices.

15-31 The Ski and Putt Resort, a combination of ski slopes and golf courses, has just recently tabulated its data on the number of customers (in thousands) it has had during each season of the last 5 years. Calculate the seasonal index for each quarter. If 15 people are employed in the summer, what should winter employment be, assuming both sports have equal labor requirements?
\begin{tabular}{lcccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1991 & 200 & 300 & 125 & 325 \\
1992 & 175 & 250 & 150 & 375 \\
1993 & 225 & 300 & 200 & 450 \\
1994 & 200 & 350 & 225 & 375 \\
1995 & 175 & 300 & 200 & 350 \\
\hline
\end{tabular}

15-32 David Curl Builders has collected quarterly data on the number of homes it has started during the last 5 years.
\begin{tabular}{lcccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1991 & 8 & 10 & 7 & 5 \\
1992 & 9 & 10 & 7 & 6 \\
1993 & 10 & 11 & 7 & 6 \\
1994 & 10 & 12 & 8 & 7 \\
1995 & 11 & 13 & 9 & 8 \\
\hline
\end{tabular}
(a) Calculate the seasonal index for each quarter.
(b) If David's working capital needs are related directly to the number of starts, by how much should his working capital need decrease between summer and winter?

\section*{Worked-Out Answer to Self-Check Exercise}
\begin{tabular}{cccccc}
SC 15-4 & Year & Spring & Summer & Fall & Winter \\
\cline { 2 - 6 } 1992 & 87 & 106 & 86 & 125 \\
1993 & 85 & 110 & 83 & 127 \\
1994 & 84 & 105 & 87 & 128 \\
1995 & 88 & 104 & 88 & 124 \\
& & & & \\
& Modified sum & 172 & 211 & 173 & 252 \\
Modified mean & 86 & 105.5 & 86.5 & 126 \\
Seasonal index & 85.15 & 104.46 & 85.64 & 124.75
\end{tabular}

The sum of the modified means was 404 , so the adjusting factor was \(400 / 404=0.9901\). The seasonal indices were obtained by multiplying the modified means by this factor.

\subsection*{15.6 IRREGULAR VARIATION}

The final component of a time series is irregular variation. After we have eliminated trend, cyclical, and seasonal variations from a time

Difficulty of dealing with irregular variation series, we still have an unpredictable factor left. Typically, irregular variation occurs over short intervals and follows a random pattern.

Because of the unpredictability of irregular variation, we do not attempt to explain it mathematically. However, we can often isolate its causes. New York City's financial crisis of 1975, for example, was an irregular factor that severely depressed the municipal bond market. In 1984, the unusually cold temperatures in late December in the southern states were an irregular factor that significantly increased electricity and fuel oil consumption. The Persian Gulf War in 1991 was another irregular factor; it significantly increased airline and ship travel for a number of months as troops and supplies were moved. Not all causes of irregular variation can be identified so easily, however. One factor that allows managers to cope with irregular variation is that over time, these random movements tend to counteract each other.

\section*{HINTS \& ASSUMPTIONS}

Warning: Irregular variation is very important but is not explainable mathematically. It's what is "left over" after we eliminate trend, cyclical, and seasonal variation from a time series. In most cases, irregular variation is difficult if not impossible to predict and we never attempt to "fit a line" to account for irregular variation. Hint: Often you will find irregular variation acknowledged with a footnote or a comment on a graph. Examples of this would be "Market closed for Labor Day Holiday" or "Spring break fell in March instead of April last year."

\section*{EXERCISES 15.6}

\section*{Basic Concepts}

15-33 Why don't we project irregular variations into the future?
15-34 Which of the following illustrate irregular variations?
(a) An extended drought leading to higher food prices.
(b) The effect of snow on ski slope business.
(c) A one-time federal tax rebate provision for the purchase of new houses.
(d) The collapse of crude oil prices in early 1986.
(e) The energy use reduction after the 1973 oil embargo.

15-35 Make a list of five irregular variations in time series that you deal with as a part of your daily routine.
15-36 What allows management to cope with irregular variation in time series?

\subsection*{15.7 A PROBLEM INVOLVING ALL FOUR COMPONENTS OF A TIME SERIES}

For a problem that involves all four components of a time series, we turn to a firm that specializes in producing recreational equipment. To forecast future sales based on an analysis of its past pattern of sales, the firm has collected the information in Table 15-14. Our procedure for describing this time series will consist of three stages:
1. Deseasonalizing the time series
2. Developing the trend line
3. Finding the cyclical variation around the trend line

Because the data are available on a quarterly basis, we must Step 1: Computing seasonal indices first deseasonalize the time series. The steps to do this are shown in Tables 15-15 and 15-16. These steps are the same as those originally introduced in Section 15-5.

In Table 15-15, we have tabulated the first four steps in computing the seasonal index. In Table 15-16, we complete the proces

Once we have computed the quarterly seasonal indices, we can Finding the deseasonalized values find the deseasonalized values of the time series by dividing the actual sales (in Table 15-14) by the seasonal indices. Table 15-17 (on page 837) shows the calculation of the deseasonalized time-series values.

TABLE 15-14 QUARTERLY SALES
\begin{tabular}{ccccc}
\hline & \multicolumn{4}{c}{ Sales per Quarter \((\times \mathbf{\$ 1 0 , 0 0 0})\)} \\
\cline { 2 - 5 } Year & I & II & III & IV \\
\hline 1991 & 16 & 21 & 9 & 18 \\
1992 & 15 & 20 & 10 & 18 \\
1993 & 17 & 24 & 13 & 22 \\
1994 & 17 & 25 & 11 & 21 \\
1995 & 18 & 26 & 14 & 25 \\
\hline
\end{tabular}

TABLE 15-15 CALCULATION OF THE FIRST FOUR STEPS TO COMPUTE THE SEASONAL INDEX
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
(1)
\end{tabular} & \begin{tabular}{l}
Quarter \\
(2)
\end{tabular} & \begin{tabular}{l}
Actual Sales \\
(3)
\end{tabular} & Step 1: 4-Quarter Moving Total (4) & Step 2: 4-Quarter Moving Average
\[
(5)=\frac{(4)}{4}
\] & Step 3: 4-Quarter Centered Moving Average (6) & \begin{tabular}{l}
Step 4: \\
Percentage of Actual to Moving Average
\[
(7)=\frac{(3)}{(6)} \times 100
\]
\end{tabular} \\
\hline \multirow[t]{4}{*}{1991} & I & 16 & & & & \\
\hline & II & 21 & & & & \\
\hline & III & 9 & 64 & 16.00 & 15.875 & 56.7 \\
\hline & IV & 18 & 63 & 15.75 & 15.625 & 115.2 \\
\hline \multirow[t]{4}{*}{1992} & I & 15 & 62 & 15.50 & 15.625 & 96.0 \\
\hline & II & 20 & 63 & 15.75 & 15.750 & 127.0 \\
\hline & III & 10 & 63 & 15.75 & 16.000 & 62.5 \\
\hline & IV & 18 & 65 & 16.25 & 16.750 & 107.5 \\
\hline \multirow[t]{4}{*}{1993} & I & 17 & 69 & 17.25 & 17.625 & 96.5 \\
\hline & II & 24 & 72 & 18.00 & 18.500 & 129.7 \\
\hline & III & 13 & 76 & 19.00 & 19.000 & 68.4 \\
\hline & IV & 22 & 76 & 19.00 & 19.125 & 115.0 \\
\hline \multirow[t]{4}{*}{1994} & I & 17 & 77 & 19.25 & 19.000 & 89.5 \\
\hline & II & 25 & 75 & 18.75 & 18.625 & 134.2 \\
\hline & III & 11 & 74 & 18.50 & 18.625 & 59.1 \\
\hline & IV & 21 & 75 & 18.75 & 18.875 & 111.3 \\
\hline \multirow[t]{4}{*}{1995} & I & 18 & 76 & 19.00 & & \\
\hline & II & 26 & 79 & 19.75 & 19.375 & 92.9 \\
\hline & III & 14 & 83 & 20.75 & 20.250 & 128.4 \\
\hline & IV & 25 & & & & \\
\hline
\end{tabular}

The second step in describing the components of the time series is to develop the trend line. We accomplish this by applying the least-squares method to the Step 2: Developing the trend line deseasonalized time series (after we have translated the time variusing the least-squares method able). Table \(15-18\) presents the calculations to identify the trend component (see page 838).

With the values from Table 15-18, we can now find the equation for the trend. From Equations 15-3 and 15-4, we find the slope and \(Y\)-intercept for the trend line as follows:
\[
\begin{align*}
b & =\frac{\sum x y}{\sum x^{2}} \tag{15-3}\\
& =\frac{420.3}{2,660} \\
& =0.16 \\
a & =\bar{Y} \tag{15-4}\\
& =18.0
\end{align*}
\]

TABLE 15-16 STEPS 5 AND 6 IN COMPUTING THE SEASONAL INDEX
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Year} & \multicolumn{4}{|c|}{Step 5*} \\
\hline & I & II & III & IV \\
\hline 1991 & - & - & 56.7 & 115.2 \\
\hline 1992 & 96.0 & 127.0 & 62.5 & 107.5 \\
\hline 1993 & 96.5 & 129.7 & 68.4 & 115.0 \\
\hline 1994 & 89.5 & 134.2 & 59.1 & 111.3 \\
\hline \multirow[t]{6}{*}{1995} & 92.9 & 128.4 & - & - \\
\hline & Modified sum \(=188.9\) & 258.1 & 121.6 & 226.3 \\
\hline & \multicolumn{4}{|c|}{Modified mean: Quarter I: \(\frac{188.9}{2}=94.45\)} \\
\hline & \multicolumn{4}{|c|}{II: \(\frac{258.1}{2}=129.05\)} \\
\hline & \multicolumn{4}{|c|}{III: \(\frac{121.6}{2}=60.80\)} \\
\hline & \multicolumn{4}{|c|}{IV: \(\frac{226.3}{2}=\frac{113.15}{397.45}\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & Step \(6{ }^{\dagger}\) & & \\
\hline & & & \[
\text { justing factor }=\frac{400}{397.45}=
\] & & \\
\hline Quarter & Indices & \(\times\) & Adjusting Factor & \(=\) & Seasonal Indices \\
\hline I & 94.45 & \(\times\) & 1.0064 & = & 95.1 \\
\hline II & 129.05 & \(\times\) & 1.0064 & = & 129.9 \\
\hline III & 60.80 & \(\times\) & 1.0064 & = & 61.2 \\
\hline IV & 113.15 & \(\times\) & 1.0064 & = & 113.9 \\
\hline & & & Sum of seasonal indices & = & 400.1 \\
\hline
\end{tabular}
*Arrange percentages-from column 7. Table 15-15, by quarter and find the modified mean.
\({ }^{\dagger}\) Correcting the indices in step 5.

The appropriate trend line is described using the straight-line equation (Equation 12-3), with \(X\) replaced by \(x\) :
\[
\begin{align*}
\hat{Y} & =a+b x \tag{12-3}\\
& =18+0.16 x
\end{align*}
\]

We have now identified the seasonal and trend components of
Step 3: Finding the cyclical variation the time series. Next, we find the cyclical variation around the trend line. This component is identified by measuring deseasonalized variation around the trend line. In this problem, we will calculate cyclical variation in Table 15-19, using the residual method (see page 839).

TABLE 15-17 CALCULATION OF DESEASONALIZED TIME-SERIES VALUES
\begin{tabular}{ccccc}
\hline \begin{tabular}{c}
Year \\
(1)
\end{tabular} & \begin{tabular}{c}
Quarter \\
(2)
\end{tabular} & \begin{tabular}{c}
Actual Sales \\
\(\mathbf{(3)}\)
\end{tabular} & \begin{tabular}{c}
Seasonal Index
\end{tabular} & \begin{tabular}{c}
\(\mathbf{1 0 0}\) \\
\(\mathbf{(4)}\)
\end{tabular} \\
\hline 1991 & I & 16 & 0.951 & \begin{tabular}{c}
Deseasonalized Sales \\
(5) \(=(\mathbf{3}) \div(\mathbf{4})\)
\end{tabular} \\
& II & 21 & 1.299 & 16.8 \\
& III & 9 & 0.612 & 16.2 \\
& IV & 18 & 1.139 & 14.7 \\
1992 & I & 15 & 0.951 & 15.8 \\
& II & 20 & 1.299 & 15.8 \\
& III & 10 & 0.612 & 15.4 \\
& IV & 18 & 1.139 & 16.3 \\
1993 & I & 17 & 0.951 & 15.8 \\
& II & 24 & 1.299 & 17.9 \\
& III & 13 & 0.612 & 18.5 \\
& IV & 22 & 1.139 & 21.2 \\
& I & 17 & 0.951 & 19.3 \\
& II & 25 & 1.299 & 17.9 \\
& III & 11 & 0.612 & 19.2 \\
& IV & 21 & 1.139 & 18.0 \\
& I & 18 & 0.951 & 18.4 \\
& II & 26 & 1.299 & 18.9 \\
& III & 14 & 0.612 & 20.0 \\
& IV & 25 & 1.139 & 22.9 \\
\hline
\end{tabular}

If we assume that irregular variation is generally short-term and relatively insignificant, we have completely described the time series in this problem using the trend, cyclical, and seasonal components. Figure 15-8 (on page 840) illustrates the original time series, its moving average (containing both the trend and cyclical components), and the trend line.

Now, suppose that the management of the recreation company we have been using as an example wants to estimate the sales volume for the third quarter of 1996 . What should management do?

It has to determine the deseasonalized value for sales in the third quarter of 1996 by using the trend equation, \(\hat{Y}-18+0.16 x\). This requires it to code the time, 1996-III. That quarter (1996-III) is three quarters past 1995-IV, which, we see in Table 15-18, has a coded time value of 19 . Adding 2 for each quarter, management finds \(x=19+2(3)=25\). Substituting this value \((x=25)\) into the trend equation produces the following result:
\[
\begin{aligned}
\hat{Y} & =a+b x \\
& =18+0.16(25) \\
& =18+4 \\
& =22
\end{aligned}
\]

Step 1: Determining the deseasonalized value for sales for the period desired

Predictions using a time series
\(\square\)

\section*{Assumptions about irregular variation}

TABLE 15-18 IDENTIFYING THE TREND COMPONENT

*We assign the mean of 0 to the middle of the data (1993-II \(1 / 2\)) and then measure the translated time variable, \(x\), by \(1 / 2\) quarters because we have an even number of periods.

Thus, the deseasonalized sales estimate for \(1996-\mathrm{III}\) is \(\$ 220,000\). This point is shown on the trend line in Figure 15-8.
4. Now management must seasonalize this estimate by Step 2: Seasonalizing the initial estimate multiplying it by the third-quarter seasonal index, expressed as a fraction of 100 :

Seasonal index for quarter III from step 6 of Table 15-16

Trend estimate from Equation \(12-3 \longrightarrow 22 \times \frac{61.2}{100}=13.5 \longleftarrow \longleftrightarrow\) Seasonalized estimate

TABLE 15-19 IDENTIFYING THE CYCLICAL VARIATION
\begin{tabular}{|c|c|c|c|c|}
\hline Year (1) & \begin{tabular}{l}
Quarter \\
(2)
\end{tabular} & \begin{tabular}{l}
Y \\
Deseasonalized Sales (Column 5, Table 15-17) (3)
\end{tabular} & \begin{tabular}{l}
\[
\boldsymbol{a}+\boldsymbol{b} \boldsymbol{x}=\hat{Y}^{*}
\] \\
(4)
\end{tabular} & \begin{tabular}{l}
\[
\frac{Y}{\hat{Y}} \times \mathbf{1 0 0}
\] \\
Percent of Trend
\[
(15)=\frac{(3)}{(4)} \times 100
\]
\end{tabular} \\
\hline \multirow[t]{4}{*}{1991} & I & 16.8 & \(18+0.16(-19)=14.96\) & 112.3 \\
\hline & II & 16.2 & \(18+0.16(-17)=15.28\) & 106.0 \\
\hline & III & 14.7 & \(18+0.16(-15)=15.60\) & 94.2 \\
\hline & IV & 15.8 & \(18+0.16(-13)=15.92\) & 99.2 \\
\hline \multirow[t]{4}{*}{1992} & I & 15.8 & \(18+0.16(-11)=16.24\) & 97.3 \\
\hline & II & 15.4 & \(18+0.16(-9)=16.56\) & 93.0 \\
\hline & III & 16.3 & \(18+0.16(-7)=16.88\) & 96.6 \\
\hline & IV & 15.8 & \(18+0.16(-5)=17.20\) & 91.9 \\
\hline \multirow[t]{4}{*}{1993} & I & 17.9 & \(18+0.16(-3)=17.52\) & 102.2 \\
\hline & II & 18.5 & \(18+0.16(-1)=17.84\) & 103.7 \\
\hline & III & 21.2 & \(18+0.16(1)=18.16\) & 116.7 \\
\hline & IV & 19.3 & \(18+0.16(3)=18.48\) & 104.4 \\
\hline \multirow[t]{4}{*}{1994} & I & 17.9 & \(18+0.16(5)=18.80\) & 95.2 \\
\hline & II & 19.2 & \(18+0.16(7)=19.12\) & 100.4 \\
\hline & III & 18.0 & \(18+0.16(9)=19.44\) & 92.6 \\
\hline & IV & 18.4 & \(18+0.16(11)=19.76\) & 93.1 \\
\hline \multirow[t]{4}{*}{1995} & I & 18.9 & \(18+0.16(13)=20.08\) & 94.1 \\
\hline & II & 20.0 & \(18+0.16(15)=20.40\) & 98.0 \\
\hline & III & 22.9 & \(18+0.16(17)=20.72\) & 110.5 \\
\hline & IV & 21.9 & \(18+0.16(19)=21.04\) & 104.1 \\
\hline
\end{tabular}
*The appropriate value for \(x\) in this equation is obtained from column 5 of Table 15-18.

On the basis of this analysis, the firm estimates that sales for Caution in using the forecast 1996-III will be \(\$ 135,000\). We must stress, however, that this value is only an estimate and does not take into account the cyclical and irregular components. As we noted earlier, the irregular variation cannot be predicted mathematically. Also, remember that our earlier treatment of cyclical variation was descriptive of past behavior and not predictive of future behavior.

\section*{HINTS \& ASSUMPTIONS}

A complete analysis of a time series tries to account for secular trend, cyclical variation, and seasonal variation. What's left is irregular variation. Warning: Even the best analysis of a time series describes past behavior, and may not be predictive of future behavior. Hint: The correct way to proceed in analyzing all of the components of a time series is to first deseasonalize the time series, then find the trend line, then calculate the cyclical variation around that trend line, and then identify irregular variation from what is left.

FIGURE 15-8 TIME SERIES, TREND LINE, AND 4-QUARTER CENTERED MOVING AVERAGE FOR QUARTERLY SALES DATA IN TABLE 15-14

\section*{EXERCISES 15.7}

\section*{Self-Check Exercise}

SC 15-5 A state commission designed to monitor energy consumption assembled the following seasonal data regarding natural gas consumption, in millions of cubic feet:
\begin{tabular}{lcccc}
\hline & Winter & Spring & Summer & Fall \\
\hline 1992 & 293 & 246 & 231 & 282 \\
1993 & 301 & 252 & 227 & 291 \\
1994 & 304 & 259 & 239 & 296 \\
1995 & 306 & 265 & 240 & 300 \\
\hline
\end{tabular}
(a) Determine the seasonal indices and deseasonalize these data (using a 4-quarter centered moving average).
(b) Calculate the least-squares line that best describes these data.
(c) Identify the cyclical variation in these data by the relative cyclical residual method.
(d) Plot the original data, the deseasonalized data, and the trend.

\section*{Applications}

15-37 An environmental agency has been watching New York air quality over a 5-year period and has assembled the following seasonal data regarding amount of contaminants (in parts per million) in the air:
\begin{tabular}{lcccc}
\hline Year & Winter & Spring & Summer & Fall \\
\hline 1992 & 452 & 385 & 330 & 385 \\
1993 & 474 & 397 & 356 & 399 \\
1994 & 494 & 409 & 375 & 415 \\
1995 & 506 & 429 & 398 & 437 \\
1996 & 527 & 454 & 421 & 482 \\
\hline
\end{tabular}
(a) Determine the seasonal indices and deseasonalize these data (using a 4-quarter centered moving average).
(b) Calculate the least-squares line that best describes these data.
(c) Identify the cyclic variation in these data by the relative cyclical residual method.
(d) Plot the original data, the deseasonalized data, and the trend.

15-38 The following data describe the marketing performance of a regional beer producer:
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Sales by Quarter \((\times \mathbf{\$ 1 0 0 , 0 0 0})\)} \\
\cline { 2 - 5 } Year & I & II & III & IV \\
\hline 1991 & 19 & 24 & 38 & 25 \\
1992 & 21 & 28 & 44 & 23 \\
1993 & 23 & 31 & 41 & 23 \\
1994 & 24 & 35 & 48 & 21 \\
\hline
\end{tabular}
(a) Calculate the seasonal indices for these data. (Use a 4-quarter centered moving average.)
(b) Deseasonalize these data using the indices from part (a).

15-39 For Exercise 15-38:
(a) Find the least-squares line that best describes the trend in deseasonalized beer sales.
(b) Identify the cyclical component in this time series by computing the percent of trend.

\section*{Worked-Out Answer to Self-Check Exercise}

SC 15-5 (a)

The sum of the modified means was 400.77 , so the adjusting factor was \(400 / 400.77=0.99808\). The seasonal indices were obtained by multiplying the modified means by this factor.
(b, c)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Year & Quarter & \[
\begin{gathered}
\text { Deseasonalize } \\
\text { Usage }(Y)
\end{gathered}
\] & \(x\) & \(x Y\) & \(x^{2}\) & \[
\begin{gathered}
\text { Deseasonalized } \\
\text { trend } \hat{Y}= \\
270.7161 \\
+0.6301 x
\end{gathered}
\] & \begin{tabular}{l}
Relative \\
Cyclical \\
Residual
\[
\frac{Y-\hat{Y}}{\hat{Y}} \times 100
\]
\end{tabular} \\
\hline \multirow[t]{4}{*}{1992} & Winter & 262.4037 & -15 & -3936.0555 & 225 & 261.2646 & 0.44 \\
\hline & Spring & 260.6208 & -13 & -3383.0704 & 169 & 262.5248 & -0.73 \\
\hline & Summer & 266.0677 & -11 & -2926.7447 & 121 & 263.7850 & 0.87 \\
\hline & Fall & 263.2316 & -9 & -2369.0844 & 81 & 265.0452 & -0.68 \\
\hline \multirow[t]{2}{*}{1993} & Winter & 269.5683 & -7 & -1886.9781 & 49 & 266.3054 & 1.23 \\
\hline & Spring & 266.9774 & -5 & -1334.8870 & 25 & 267.5656 & -0.22 \\
\hline
\end{tabular}
(Contd.)

\[
\begin{gathered}
a=\bar{Y}=\frac{4,331.4571}{16}=270.7161 \quad b=\frac{\sum x Y}{\sum x^{2}}=\frac{856.9239}{1,360}=0.6301 \\
\hat{Y}=270.7161+0.6301 x \text { (where 1993-IV } 1 / 2=0 \text { and } x \text { units }=1 / 2 \text { quarter) }
\end{gathered}
\]
(d)

\subsection*{15.8 TIME-SERIES ANALYSIS IN FORECASTING}

In this chapter, we have examined all four components of a time series. We have described the process of projecting past trend and seasonal variation into the future, while taking into consideration the inherent inaccuracies of this analysis. In addition, we noted that although the irregular and cyclical components do affect the future, they are erratic and difficult to use in forecasting.

We must realize that the mechanical approach of time-series Recognizing limitations of timeanalysis is subject to considerable error and change. It is necessary series analysis for management to combine these simple procedures with knowledge of other factors in order to develop workable forecasts. Analysts are constantly revising, updating, and discarding their forecasts. If we wish to cope successfully with the future, we must do the same.

When using the procedures described in this chapter, we should pay particular attention to two problems:
1. In forecasting, we project past trend and seasonal variation into the future. We must ask, "How regular and lasting were the past trends? What are the chances that these patterns are changing?"
2. How accurate are the historical data we use in time series analysis? If a company has changed from a FIFO (first-in, first-out) to a LIFO (last-in, first-out) inventory accounting system in a period during the time under consideration, the data (such as quarterly profits) before and after the change are not comparable and not very useful for forecasting.

\section*{HINTS \& ASSUMPTIONS}

Warning: Smart managers realize that accounting for most of the variation in a time series of past data does not mean that this same pattern will continue in the future. Hint: These same smart managers combine the predictions available from time series with intuitive answers to broad what-if questions concern the future business environment (sociological, economic, political) and whether it will change significantly from the environment that existed when the time-series data were gathered.

\section*{EXERCISES 15.8}

15-40 List four errors that can affect forecasting with a time series.
15-41 When using a time series to predict the future, what assurances do we need about the historical data on which our forecasts are based?
15-42 What problems would you see developing if we used past college enrollments to predict future college enrollments?
15-43 How would forecasts using time-series analysis handle things such as
(a) Changes in the federal tax laws?
(b) Changes in accounting systems?

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 15: Time Series Lee Azko was resting on well-earned laurels. The complicated regression analysis for the results of advertising expenditures had given Sherrel Wright new confidence in making the
argument for better planning. Even Walter Azko began to accept that some of the firm's success wasn't hit or miss-there really were some rules to this game.
"I never could see the value of running five-or six-page spreads," Uncle Walter said as he rounded the corner of Lee's "office"-a cubicle that was furnished with little except one of the largest and fastest of Loveland's latest personal computers. "Thanks for showing I was right. And you're even making me a believer in that expensive newspaper advertising, too."
"Did Margot say anything about those focus groups?" Lee fished for another compliment.
"We're going to deal with that next week-too early to say. But don't get too comfortable. 1 have a whole new project for you-go and see Gratia."

Gratia Delaguardia was clearly sharing a joke. The laughter was audible down the corridor- Gratia rated a "real" office, with a door. Lee found Gratia looking at a graph with yet another player on Loveland's team.
"Lee, come on in and meet Roberto Palomar. Bert runs the phone bank-you know, our order department. We were just talking about you."
"Hence the laughter?" Lee was nervous.
"No, no. Take a look at this. Bert's been trying to estimate the number of phone reps we need to have available to take orders. We need to plan for hiring...."
"And to install enough incoming 800 lines," added Roberto, whom everyone called Bert.
"We plotted out the quarterly data," continued Gratia, "and, as an engineer, let me tell you I can recognize a nonlinear trend when I see one." Gratia pointed to a curve that looked like the path of the space shuttle going into orbit. "Of course, we aren't complaining about our growth. It's good to be on a winning team."
"But if we continue this trend," said Bert, sliding a ruler into place on the graph, "within 10 years, we'll have to employ the whole population of Loveland just to staff our phone banks." With that, Gratia and Bert again dissolved with laughter. "Lee, look at these numbers and say it isn't so."
"Well, there's no doubt there's a very strong underlying trend," Lee observed, noting the obvious. "Is there any seasonality-you know, differences from month to month?"
"Good question," Bert replied. "These quarterly totals tend to mask some of the monthly ups and downs. For example, August is always a bust because people are away on vacation. But December is a very heavy month. We're not really in the Christmas gift business, although some home users apparently do ask Santa for a new Loveland Computer. The main effect comes from small businesses that want to book equipment expenditures before the end of the year for tax purposes."
"And I don't suppose the call volume is evenly spaced over the week," Lee ventured.
"Ah, rainy days and Mondays!" Bert answered. "We have a rule of thumb that we do twice as much business on Mondays as on Tuesdays. So we try to avoid training sessions or staff meetings on Mondays. Sometimes the supervisory staff will pitch in-whatever it takes. If we miss a call, a potential customer may buy from one of our competitors.
"But now we're at the point where I really should plan a little better for the number of staff to have available. If I schedule too many people, it's a waste of money and the reps get bored. They'd rather be at home."
"Well I think I can help," Lee offered. "Let me tell you what I'll need."
Study Questions: What data will Lee want to examine? What analysis will be performed? How will Bert make use of the information that Lee develops?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 15}

Coding A method of converting traditional measures of time to a form that simplifies computation (often called translating).
Cyclical Fluctuation A type of variation in a time series, in which the value of the variable fluctuates above and below a secular trend line.
Deseasonalization A statistical process used to remove the effects of seasonality from a time series.
Irregular Variation A condition in a time series in which the value of a variable is completely unpredictable.
Modified Mean A statistical method used in time-series analysis. Discards the highest and lowest values when computing a mean.
Ratio-to-Moving-Average Method A statistical method used to measure seasonal variation. Uses an index describing the degree of that variation.
Relative Cyclical Residual A measure of cyclical variation, it uses the percentage deviation from the trend for each value in the series.

Residual Method A method of describing the cyclical component of a time series. It assumes that most of the variation in the series not explained by the secular trend is cyclical variation.
Seasonal Variation Patterns of change in a time series within a year; patterns that tend to be repeated from year to year.

Second-Degree Equation A mathematical form used to describe a parabolic curve that may be used in time-series trend analysis.
Secular Trend A type of variation in a time series, the value of the variable tending to increase or decrease over a long period of time.
Time Series Information accumulated at regular intervals and the statistical methods used to determine patterns in such data.

\section*{Equations Introduced in Chapter 15}

15-1
\[
\begin{equation*}
b=\frac{\sum X Y-n \bar{X} \bar{Y}}{\sum X^{2}-n \bar{X}^{2}} \tag{p. 808}
\end{equation*}
\]

This formula, originally introduced in Chapter 12 as Equation 12-4, enables us to calculate the slope of the best-fitting regression line for any two-variable set of data points. The symbols \(\bar{X}\) and \(\bar{Y}\) represent the means of the values of the independent variable and dependent variable respectively; \(n\) represents the number of data points with which we are fitting the line.
\[
a=\bar{Y}-b X
\]
\[
\text { p. } 808
\]

We met this formula as Equation 12-5. It enables us to compute the \(Y\)-intercept of the bestfitting regression line for any two-variable set of data points.
\[
\begin{equation*}
b=\frac{\sum x Y}{\sum x^{2}} \tag{p. 810}
\end{equation*}
\]

When the individual years (X) are changed to coded time values \((x)\) by subtracting the mean \((x=X-\bar{X})\), Equation 15-1 for the slope of the trend line is simplified and becomes Equation 15-3.
\[
a=\bar{Y}
\]
p. 810

In a similar fashion, using coded time values also allows us to simplify Equation 15-2 for the intercept of the trend line.
\[
\begin{equation*}
\hat{Y}=a+b x+c x^{2} \tag{p. 812}
\end{equation*}
\]

Sometimes we wish to fit a trend with a parabolic (or second-degree) curve instead of a straight line \((\hat{Y}=a+b x)\). The general form for a fitted second-degree curve is obtained by including the second-degree term \(\left(c x^{2}\right)\) in the equation for \(\hat{Y}\)
\[
\begin{align*}
\sum Y & =a n+c \sum x^{2} & \text { p. } 812 \\
\sum x^{2} Y & =a \sum x^{2}+c \sum x^{4} & \text { p. } 812
\end{align*}
\]

In order to find the least-squares second-degree fitted curve, we must solve Equations 15-6 and 15-7 simultaneously for the values of \(a\) and c. The value for \(b\) is obtained from Equation 15-3.
\[
\begin{equation*}
\text { Percent of trend }=\frac{Y}{\hat{Y}} \times 100 \tag{p. 819}
\end{equation*}
\]

We can measure cyclical variation as a percent of trend by dividing the actual value \((Y)\) by the trend value \((\hat{Y})\) and then multiplying by 100 .
\[
\begin{equation*}
\text { Relative cyclical residual }=\frac{Y-\hat{Y}}{\hat{Y}} \times 100 \tag{p. 820}
\end{equation*}
\]

Another measure of cyclical variation is the relative cyclical residual, obtained by dividing the deviation from the trend \((Y-\hat{Y})\) by the trend value, and multiplying the result by 100 . The relative cyclical residual can easily be obtained by subtracting 100 from the percent of trend.

\section*{Review and Application Exercises}

15-44 The number of people admitted to Valley Nursing Home per quarter is given in the following table:
\begin{tabular}{ccccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1992 & 29 & 30 & 41 & 43 \\
1993 & 27 & 34 & 45 & 48 \\
1994 & 33 & 36 & 46 & 51 \\
1995 & 34 & 40 & 47 & 53 \\
\hline
\end{tabular}
(a) Calculate the seasonal indices for these data (use a 4-quarter centered moving average).
(b) Deseasonalize these data using the indices from part (a).
(c) Find the least-squares line that best describes the trend of the deseasonalized figures.

15-45 Wheeler Airline, a regional carrier, has estimated the number of passengers to be 595,000 (deseasonalized) for the month of December. How many passengers should the company anticipate if the December seasonal index is 128 ?

15-46 An EPA research group has measured the level of mercury contamination in the ocean at a certain point off the East Coast. The following percentages of mercury were found in the water:
\begin{tabular}{ccccccccccccc}
\hline & Jan. & Feb. & Mar. & Apr & May & June & July & Aug. & Sept. & Oct. & Nov. & Dec. \\
\hline 1993 & 0.3 & 0.7 & 0.8 & 0.8 & 0.7 & 0.7 & 0.6 & 0.6 & 0.4 & 0.7 & 0.2 & 0.5 \\
1994 & 0.4 & 0.9 & 0.7 & 0.9 & 0.5 & 0.8 & 0.7 & 0.7 & 0.4 & 0.6 & 0.3 & 0.4 \\
1995 & 0.2 & 0.6 & 0.6 & 0.9 & 0.7 & 0.7 & 0.8 & 0.8 & 0.5 & 0.6 & 0.3 & 0.5 \\
\hline
\end{tabular}

Construct a 4-month centered moving average, and plot it on a graph along with the original data.
15-47 A production manager for a Canadian paper mill has accumulated the following information describing the millions of pounds processed quarterly:
\begin{tabular}{ccccc}
\hline & Winter & Spring & Summer & Fall \\
\hline 1992 & 3.1 & 5.1 & 5.6 & 3.6 \\
1993 & 3.3 & 5.1 & 5.8 & 3.7 \\
1994 & 3.4 & 5.3 & 6.0 & 3.8 \\
1995 & 3.7 & 5.4 & 6.1 & 3.9 \\
\hline
\end{tabular}
(a) Calculate the seasonal indices for these data (percentage of actual to centered moving average).
(b) Deseasonalize these data, using the seasonal indices from part (a).
(c) Find the least-squares line that best describes these data.
(d) Estimate the number of pounds that will be processed during the spring of 1996.

15-48 Describe some of the difficulties in using a linear estimating equation to describe these data:
(a) Gasoline mileage achieved by U.S. automobiles.
(b) Fatalities in commercial aviation.
(c) The grain exports of a single country.
(d) The price of gasoline.

15-49 Magna International is a large Canadian manufacturer of automotive components such as molded door panels. Magna's 1992 annual report listed the company's revenues for the previous ten years (in millions of Canadian dollars):
\begin{tabular}{lcccccccccc}
\hline Year & 1983 & 1984 & 1985 & 1986 & 1987 & 1988 & 1989 & 1990 & 1991 & 1992 \\
Revenue & 302.5 & 493.6 & 690.4 & \(1,027.8\) & \(1,152.5\) & \(1,458.6\) & \(1,923.7\) & \(1,927.2\) & \(2,017.2\) & \(2,358.8\) \\
\hline
\end{tabular}
(a) Find the least-squares trend line for these data.
(b) Plot the annual data and the trend line on the same graph. Do the variations from the trend appear random or cyclical?
(c) Use a computer-based regression package to find the best-fitting parabolic trend for these data. Is \(c\), the coefficient of \(x^{2}\), significantly different from zero? Which of the two trend models would you recommend using to forecast Magna's 1993 revenues? Explain.
(d) Forecast Magna's 1993 revenues.

15-50 Comment on the difficulties you would have using a second-degree estimating equation to predict the future behavior of the process that generated these data:
(a) Sales of personal computers in the United States.
(b) Use of video games in the United States.
(c) Premiums for medical malpractice insurance.
(d) The number of MBAs graduated from U.S. universities.

15-51 The following table shows the number of franchisees of Beauty Bar, Inc., operating at the end of each year:
\begin{tabular}{lcccccc}
\hline Year & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Number of franchisees & 596 & 688 & 740 & 812 & 857 & 935 \\
\hline
\end{tabular}
(a) Find the linear equation that best describes these data.
(b) Estimate the number of operations manuals (one to a franchisee) that must be printed for 1997.
15-52 An assistant undersecretary in the U.S. Commerce Department has the following data describing the value of grain exported during the last 16 quarters (in billions of dollars):
\begin{tabular}{ccccc}
\hline & I & II & III & IV \\
\hline 1992 & 1 & 3 & 6 & 4 \\
1993 & 2 & 2 & 7 & 5 \\
1994 & 2 & 4 & 8 & 5 \\
1995 & 1 & 3 & 8 & 6 \\
\hline
\end{tabular}
(a) Determine the seasonal indices and deseasonalize these data (using a 4-quarter centered moving average).
(b) Calculate the least-squares line that best describes these data.
(c) Identify the cyclical variation in these data by the relative cyclical residual method.
(d) Plot the original data, the deseasonalized data, and the trend.

15-53 Richie Bell's College Bicycle Shop has determined from a previous trend analysis that spring sales should be 165 bicycles (deseasonalized). If the spring seasonal index is 143, how many bicycles should the shop sell this spring?
15-54 With the U.S. Interstate Highway program nearly finished, of what use are old data to the manufacturers of heavy earth-moving equipment as they attempt to forecast sales? What new data would you suggest they use in their forecasting?
15-55 Automobile manufacturing is often cited as an example of a cyclical industry (one subject to changes in demand according to an underlying business cycle). Consider automobile production worldwide (in millions of units) and in the former U.S.S.R. (in hundreds of thousands of units) from 1970 through 1990:
\begin{tabular}{ccc|ccc}
\hline Year & World & U.S.S.R. & Year & World & U.S.S.R. \\
\hline 1970 & 22.5 & 3.4 & 1981 & 27.5 & 13.2 \\
1971 & 26.4 & 5.3 & 1982 & 26.6 & 13.1 \\
1972 & 27.9 & 7.3 & 1983 & 30.0 & 13.2 \\
1973 & 30.0 & 9.2 & 1984 & 30.5 & 13.3 \\
1974 & 25.9 & 11.2 & 1985 & 32.3 & 13.3 \\
1975 & 25.0 & 12.0 & 1986 & 32.9 & 13.3 \\
\hline \multicolumn{5}{c}{} & (Continued)
\end{tabular}
(Contd.)
\begin{tabular}{ccc|ccc}
\hline Year & World & U.S.S.R. & Year & World & U.S.S.R. \\
\hline 1976 & 28.8 & 12.4 & 1987 & 33.0 & 13.3 \\
1977 & 30.5 & 12.8 & 1988 & 34.3 & 12.6 \\
1978 & 31.2 & 13.1 & 1989 & 35.6 & 12.2 \\
1979 & 30.8 & 13.1 & 1990 & 35.8 & 12.6 \\
1980 & 28.6 & 13.3 & & & \\
\hline
\end{tabular}
(a) Find the least-squares trend line for the worldwide data.
(b) Plot the worldwide data and the trend line on the same graph. Do the variations from the trend appear random or cyclical?
(c) Plot the residuals as a percent of trend. Approximately how long is the business cycle shown by these data?
(d) Consider the output of automobiles in the former U.S.S.R. Discuss its similarities and differences with the patterns you found in parts (a), (b), and (c).
15-56 R. B. Fitch Builders has completed these numbers of homes in the 8 years it has been in business:
\begin{tabular}{lcccccccc}
\hline Year & 1988 & 1989 & 1990 & 1991 & 1992 & 1993 & 1994 & 1995 \\
Completions & 12 & 11 & 19 & 17 & 19 & 18 & 20 & 23 \\
\hline
\end{tabular}
(a) Develop a linear estimating equation to describe the trend of completions.
(b) How many completions should R. B. plan on for 1999?
(c) Along with the answer to part (b), what advice would you give R. B. about using this forecasting technique?
15-57 As part of an investigation being done by a federal agency into the psychology of criminal activity, a survey of the number of homicides and assaults over the course of a year produced the following results:
\begin{tabular}{lcccc}
\hline Season & Spring & Summer & Fall & Winter \\
Number of homicides and assults & 31,000 & 52,000 & 39,000 & 29,000 \\
\hline
\end{tabular}
(a) If the corresponding seasonal indices are \(84,134,103\), and 79 , respectively, what are the deseasonalized values for each season?
(b) What is the meaning of the seasonal index of 79 for the winter season?

15-58 A state's quarterly deseasonalized unemployment percentage figures for years 1991-1995 are as follows:
\begin{tabular}{ccccc}
\hline & I & II & III & IV \\
\hline 1991 & 7.3 & 7.2 & 7.3 & 8.1 \\
1992 & 8.7 & 9.2 & 9.8 & 10.5 \\
1993 & 10.2 & 9.9 & 9.2 & 8.3 \\
1994 & 7.6 & 7.4 & 7.5 & 7.6 \\
1995 & 7.4 & 7.0 & 6.8 & 6.5 \\
\hline
\end{tabular}
(a) Find the linear equation that describes this unemployment trend.
(b) Calculate the percent of trend for these data.
(c) Plot the cyclical variation in the unemployment rates from the percent of trend.

15-59 The number of confirmed AIDS cases reported at a local health clinic during the 5 years from 1988 to 1992 were \(2,4,7,13\), and 21 , respectively.
(a) Develop the linear regression line for these data.
(b) Find the least-squares second-degree curve for these data.
(c) Construct a table of each year's actual cases, the linear estimates from the regression in part (a), and the second-degree values from the curve in part (b).
(d) Which regression appears to be the better estimator?

15-60 RJ's Grocers has added broiled whole chickens to its line of takeout food for busy professionals who don't have time to cook at home. The number of precooked chickens sold in the first 7 weeks are as follows:
\begin{tabular}{lccccccc}
\hline Week & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
Sales & 41 & 52 & 79 & 76 & 72 & 59 & 41 \\
\hline
\end{tabular}
(a) Find the linear regression line that best fits these data.
(b) Estimate the expected number of sales for week 8.
(c) Based on the estimate in part (b) and the available data, does the regression accurately describe the sales trend for this item?
15-61 The College Town busing system has collected the following count of passengers per season during 1994 and 1995. The deseasonalized data (in thousands of passengers) are
\begin{tabular}{ccccc}
\hline & Spring & Summer & Fall & Winter \\
\hline 1994 & 593 & 545 & 610 & 575 \\
1995 & 640 & 560 & 600 & 555 \\
\hline
\end{tabular}
(a) If the seasonal indices used to deseasonalize these data were \(110,73,113\), and 104 , respectively, find the actual passenger counts (in thousands) for these eight seasons.
(b) Which season in 1995 saw the fewest passengers? The most?
(c) If the linear estimating equation for these deseasonalized data is \(\hat{Y}=584.75-0.45 x\) (with \(x\) measured in \(1 / 2\) quarters, and \(x=0\) between the winter 1994 and spring 1995 quarters), what is the expected number of actual riders (in thousands) for the fall 1996 season?
15-62 Ferris Wheeler, director of the Whirly World amusement park, has provided the following attendance data (in thousands of admissions) for the park's open seasons:
\begin{tabular}{cccc}
\hline & Spring & Summer & Fall \\
\hline 1992 & 750 & 1,150 & 680 \\
1993 & 780 & 1,100 & 580 \\
1994 & 800 & 1,225 & 610 \\
1995 & 640 & 1,050 & 600 \\
\hline
\end{tabular}
(a) Calculate the seasonal indices for these data using a 3-period moving average.
(b) Deseasonalize these data using the seasonal indices from part (a).

15-63 A restaurant manager wishes to improve customer service and employee scheduling based on the daily levels of customers in the past 4 weeks. The numbers of customers served in the restaurant during that period were
\begin{tabular}{lcccccccc}
\hline & & Mon & Tue & Wed & Thu & Fri & Sat & Sun \\
\hline \multirow{3}{*}{ Week } & 1 & 345 & 310 & 385 & 416 & 597 & 706 & 653 \\
& 2 & 418 & 333 & 400 & 515 & 664 & 761 & 702 \\
& 3 & 393 & 387 & 311 & 535 & 625 & 711 & 598 \\
& 4 & 406 & 412 & 377 & 444 & 650 & 803 & 822 \\
\hline
\end{tabular}

Determine the seasonal (daily) indices for these data. (Use a 7-day moving average.)
15-64 Suppose television sales by a small appliance chain for the years 1991-1995 were as follows:
\begin{tabular}{lccccc}
\hline Year & 1991 & 1992 & 1993 & 1994 & 1995 \\
Sales & 230 & 250 & 265 & 300 & 310 \\
\hline
\end{tabular}
(a) Develop the second-degree estimating equation for these data.
(b) What do the magnitudes of the coefficients \(a, b\), and \(c\) tell you about the choice of a second-degree equation for these data?
15-65 The Zapit Company has recorded the following numbers (in hundreds of thousands) of total sales of its line of microwave ovens over the last 5 years:
\begin{tabular}{lccccc}
\hline Year & 1991 & 1992 & 1993 & 1994 & 1995 \\
Sales & 3.5 & 3.8 & 4.0 & 3.7 & 3.9 \\
\hline
\end{tabular}

The equation describing the trend for these sales volumes is
\[
\hat{Y}=3.78+0.07 x \text {, where } 1993=0 \text {, and } x \text { units }=1 \text { year }
\]
(a) Which year had the largest percent of trend?
(b) Which year was closest to the trend line?

\section*{Flow Chart: Time Series}

This page is intentionally left blank

\section*{Index Numbers}

\section*{LEARNING OBJECTIVES}

\section*{After reading this chapter, you can understand:}
- To understand that index numbers describe how much economic variables have changed over time
- To become familiar with the three principal types of indices: price indices, quantity indices, and value indices
- To understand and avoid problems resulting from the incorrect use of index numbers
- To learn how to calculate various kinds of index numbers

\section*{CHAPTER CONTENTS}

\subsection*{16.1 Defining an Index Number \\ 856}

\subsection*{16.2 Unweighted Aggregates Index \\ 860}
16.3 Weighted Aggregates Index 865
16.4 Average of Relatives Methods 874
16.5 Quantity and Value Indices 881
16.6 Issues in Constructing and Using Index Numbers 886
- Statistics at Work 887
- Terms Introduced in Chapter 16888
- Equations Introduced in Chapter 16888
- Review and Application Exercises 890
- Flow Chart: Index Numbers 896

Precision Metal Products manufactures high-quality fabrications for use in the production of machinery for heavy industry. The company's three principal materials are coal, iron ore, and nickel ore. Management has the following data showing prices of these materials in 1975 and 1995 and quantity data for 1988, a year when purchasing patterns were characteristic of the entire 20-year period.
\begin{tabular}{lccc}
\hline & Qty. Used & Price/Ton & Price/Ton \\
\cline { 2 - 4 } Raw Material & \(\mathbf{1 9 8 8}(\mathbf{0 0 0}\) tons \()\) & \(\mathbf{1 9 7 5}\) & \(\mathbf{1 9 9 5}\) \\
\hline Coal & 158 & \(\$ 7.56\) & \(\$ 19.50\) \\
Iron ore & 12 & 9.20 & 21.40 \\
Nickel ore & 5 & 12.30 & 36.10 \\
\hline
\end{tabular}

Management would like help in constructing some measure of the change in material prices in the 20-year period. Using the methods in this chapter, we can supply it with such a figure to use in its planning.

\subsection*{16.1 DEFINING AN INDEX NUMBER}

At some time, everyone faces the question of how much something has Why use an index number? changed over a period of time. We may want to know how much the price of groceries has increased so we can adjust our budgets accordingly. A factory manager may wish to compare this month's per-unit production cost with that of the past 6 months. Or a medical research team may wish to compare the number of flu cases reported this year with the number reported in previous years. In each of these situations, the degree of change must be determined and defined. Typically, we use index numbers to measure such differences.

An index number measures how much a variable changes over time. What is an index number? We calculate an index number by finding the ratio of the current value to a base value. Then we multiply the resulting number by 100 to express the index as a percentage. This final value is the percentage relative. Note that the index number for the base point in time is always 100 .

The secretary of state of North Carolina has data indicating the num- Computing a simple index ber of new businesses incorporated. The data she collects show that 9,300 were started in \(1980,6,500\) in \(1985,9,600\) in 1990, and 10,100 in 1995. If 1980 is the base year, she can calculate the index numbers reflecting volume changes using the process presented in Table 16-1.

Using these calculations, the secretary of state finds that incorporations in 1985 had an index of 70 relative to 1980 . Another way to state this is to say that the number of incorporations in 1985 was 70 percent of the number of incorporations in 1980.

\section*{Types of Index Numbers}

There are three principal types of indices: the price index, the quantity
Price index index, and the value index. A price index is the one most frequently
menter used. It compares levels of prices from one period to another. The familiar Consumer Price Index (CPI), tabulated by the Bureau of Labor Statistics, measures overall price changes of a variety of consumer goods and services and is used to define the cost of living.

A quantity index measures how much the number or quantity of a Quantity index variable changes over time. Our example using incorporations determined a quantity index relating the numbers in 1985, 1990, and 1995 to that in 1980.

TABLE 16-1 CALCULATION OF INDEX NUMBERS (BASE YEAR = 1980)
\begin{tabular}{cccc}
\hline \begin{tabular}{c}
Year \\
\(\mathbf{(1)}\)
\end{tabular} & \begin{tabular}{c}
Number of New \\
Incorporations (000) \\
\((\mathbf{2})\)
\end{tabular} & \begin{tabular}{c}
Ratio \\
\((\mathbf{3})=(\mathbf{2}) \div \mathbf{9 . 3}\)
\end{tabular} & \begin{tabular}{c}
Index or \\
Percentage Ralative \\
\((\mathbf{4})=(\mathbf{3}) \times \mathbf{1 0 0}\)
\end{tabular} \\
\hline 1980 & 9.3 & \(\frac{9.3}{9.3}=1.00\) & \(1.00 \times 100=100\) \\
1985 & 6.5 & \(\frac{6.5}{9.3}=0.70\) & \(0.70 \times 100=70\) \\
1990 & 9.6 & \(\frac{9.6}{9.3}=1.03\) & \(1.03 \times 100=103\) \\
1995 & 10.1 & \(\frac{10.1}{9.3}=1.09\) & \(1.09 \times 100=109\) \\
\hline
\end{tabular}

The last type of index, the value index, measures changes in total Value index monetary worth. That is, it measures changes in the dollar value of a variable. In effect, the value index combines price and quantity changes to present a more informative index. In our example, we determined only a quantity index. However, we could have included the dollar effect by computing the total incorporated value for the years under consideration. Table 16-2 presents the corresponding value indices for 1985, 1990, and 1995. From this computation, we can say that the value index of incorporations in 1995 was 160 . Or we can say that the incorporated value of 1995 increased 60 percent relative to the incorporated value of 1980.

Usually, an index measures change in a variable over a period of time, such as in a time series. However, it can also be used to measure differences in a given variable in different locations. This is done by simultaneously collecting data in different locations and then comparing the data. The

TABLE 16-2 COMPUTING A VALUE INDEX (BASE YEAR = 1980)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Year \\
(1)
\end{tabular} & \begin{tabular}{l}
Incorporated Value (millions) \\
(2)
\end{tabular} & Ratio
\[
(3)=(2) \div 18.4
\] & Index or Percentage Relative
\[
(4)=(3) \times 100
\] \\
\hline 1980 & \$18.4 & \(\frac{18.4}{18.4}=1.00\) & \(1.00 \times 100=100\) \\
\hline 1985 & 14.6 & \[
\frac{14.6}{18.4}=0.79
\] & \(0.79 \times 100=79\) \\
\hline 1990 & 26.2 & \[
\frac{26.2}{18.4}=1.42
\] & \(1.42 \times 100=142\) \\
\hline 1995 & 29.4 & \[
\frac{29.4}{18.4}=1.60
\] & \(1.60 \times 100=160\) \\
\hline
\end{tabular}
comparative cost-of-living index, for example, shows that in terms of the cost of goods and services, it is cheaper to live in Austin, Texas, than in New York City.

A single index may reflect a composite, or group, of changing Composite index numbers variables. The Consumer Price Index measures the general price level for specific goods and services in the economy. It combines the individual prices of the goods and services to form a composite price index number.

\section*{Uses of Index Numbers}

Index numbers can be used in several ways. It is most common to use them by themselves, as an end result. Index numbers such as the Consumer Price Index are often cited in news reports as general indicators of the nation's economic condition.

Management uses index numbers as part of an intermediate com- One use of the Consumer putation to understand other information better. In the chapter on time series, seasonal indices were used to modify and improve estimates of Price Index the future. The use of the Consumer Price Index to determine the real buying power of money is another example of how index numbers help increase knowledge of other factors. Table 16-3 shows the weekly salary paid to a secretary over a period of years, the corresponding Consumer Price Index values, and computation of the secretary's real salary. The secretary's dollar salary increased substantially, but the actual buying power of her income increased less rapidly. This can be attributed to the simultaneous rise in the cost-of-living index from 100 to 200.

\section*{Problems Related to Index Numbers}

Several things can distort index numbers. The four most common causes of distortion are:
1. Sometimes there is difficulty in finding suitable data to compute Limited data an index. Suppose the sales manager of Colonial Aircraft is winterested in computing an index describing seasonal variation in the sale of the company's small planes. If sales are reported only on an annual basis, he would be unable to determine the seasonal sales pattern.
2. Incomparability of indices occurs when attempts are made to Incomparability compare one index with another after there has been a basic change in what is being measured. If Citizens for Reasonable Transportation compare price indices

\section*{TABLE 16-3 COMPUTATION OF REAL WAGES}
\begin{tabular}{ccccc}
\hline Year (1) & \begin{tabular}{c}
Weekly \\
Salary Paid (2)
\end{tabular} & \begin{tabular}{c}
Consumer \\
Price Index (3)
\end{tabular} & \((\mathbf{4})=\frac{\mathbf{(2)} \times \mathbf{1 0 0}}{\mathbf{(3)}}\) & Real or Adjusted Salary \\
\hline 1977 & \(\$ 114.75\) & 100 & \(114.75 \times \frac{100}{100}=\) & \(\$ 114.75\) \\
1982 & 145.50 & 123 & \(145.50 \times \frac{100}{123}=\) & \(\$ 118.29\) \\
1992 & 472.98 & 200 & \(472.98 \times \frac{100}{200}=\) & \(\$ 236.49\) \\
\hline
\end{tabular}
of automobiles from 1979 to 1989, they find that prices have increased substantially. However, this comparison does not take into consideration technological advances in the quality of automobiles achieved over the time period in consideration.
3. Inappropriate weighting of factors can also distort an index. In Inappropriate weighting developing a composite index, such as the Consumer Price Index, we must consider changes in some variables to be more important than changes in others. The effect on the economy of a 50-cent-per-gallon increase in the price of gasoline cannot be counterbalanced by a 50 -cent decrease in the price of cars. It must be realized that the 50 -cent-per-gallon increase in gas cost has a much greater effect on consumers. Thus, greater weight has to be assigned to the increased gas price than to the decrease in the cost of cars.
4. Distortion of index numbers also occurs when selection of an Use of an improper base improper base occurs. Sometimes a firm selects a base that automatically leads to a result that is in its own interest and proves its initial assumption. If Consumers Against Oil Waste wants to portray oil companies in a bad light, it might measure this year's profits with a recession year as its base for oil profits. This would produce an index that shows oil profits have increased substantially. On the other hand, if Consumers for Unlimited Oil Use wishes to show that this year's profits are minimal, it might select a year with high profits for its base year. Using high profit as a base would probably result in an index indicating a small increase, or maybe even a decline, in oil profits this year. Therefore, we must always consider how and why the base period was selected before we accept a claim based on the result of, comparing index numbers.

\section*{Sources of Index Numbers}

When managers apply index numbers to everyday problems, they use many sources to obtain the necessary information. The source depends

Sources of data for index numbers on their information requirements. A firm can use monthly sales reports to determine its seasonal sales pattern. In dealing with broad areas of national economy and the general level of business activity, publications such as the Federal Reserve Bulletin, Moody's, Monthly Labor Review, and the Consumer Price Index provide a wealth of data. Many federal and state publications are listed in the U.S. Department of Commerce pamphlet Measuring Markets. Almost all government agencies distribute data about their activities, from which index numbers can be computed. Many financial newspapers and magazines provide information from which index numbers can be computed. When you read these sources, you will find that many of them use index numbers themselves

\section*{EXERCISES 16.1}

\section*{Basic Concepts}

16-1 What is the index for a base year?
16-2 Explain the differences among the three principal types of indices: price, quantity, and value.
16-3 What does the Consumer Price Index measure? Is this based on a single variable or a composite of variables?
16-4 What are two basic ways of using index numbers?
16-5 What does an index number measure?
16-6 How is a percentage relative (index) found?

\subsection*{16.2 UNWEIGHTED AGGREGATES INDEX}

The simplest form of a composite index is an unweighted aggregates index. Unweighted means that all the values considered in calculating the index are of equal importance. Aggregate means that we add, or sum, all the values. The principal advantage of an unweighted aggregates index is its simplicity.

An unweighted aggregates index is calculated by adding all the elements in the composite for the given time period and then dividing this result by the sum of the same elements during the base period.

Computing an unweighted
aggregates index Equation 16-1 presents the mathematical formula for computing an unweighted aggregates quantity index.
\[
\begin{align*}
& \text { Unweighted Aggregates Quantity Index } \\
& \qquad \frac{\sum Q_{i}}{\sum Q_{0}} \times 100 \tag{16-1}
\end{align*}
\]
where
- \(Q_{i}=\) quantity of each element in the composite for the year in which we want the index
- \(Q_{0}=\) quantity of each element in the composite for the base year

A word of explanation about the use of the subscript \(i\) to indicate the year for which we want to compute the index: Suppose we have quantity data for 1990 (the base year), 1991, and 1992, and we want to compute unweighted aggregates quantity indices for 1991 and 1992. if we use the subscripts 0,1 , and 2 to denote 1990, 1991, and 1992, then the index for 1991 is
\[
\frac{\Sigma Q_{1}}{\Sigma Q_{0}} \times 100
\]
and the index for 1992 is
\[
\frac{\Sigma Q_{2}}{\Sigma Q_{0}} \times 100
\]

Both of these are captured by the use of the generic subscript \(i\) in the numerator of Equation 16-1. We shall use \(i\) in the same fashion in the formulas defining all of the index numbers we discuss in this chapter. For sake of brevity, we shall use current year to indicate the year in which we want the index.

Note that we can substitute either prices or values for quantities in Equation 16-1 to find the general equation for a price index or a value index. Because the ratio is multiplied by 100, the resulting index is technically a percentage. However, it is customary to refer only to the value and to omit the percent sign when discussing index numbers.

The example in Table 16-4 demonstrates how we compute an unweighted index. In this case, we want to measure changes in general price levels on the basis of changes in prices of a few items. The 1990

Computing an unweighted Index prices are the base values to which we compare the 1995 prices.

From these calculations, we determine that the price index describing the change in these items from 1990 to 1995 is 145 . If the elements in

\section*{Interpreting the index} this composite are representative of the general price level, we can say that prices rose 45 percent from

TABLE 16-4 COMPUTATION OF AN UNWEIGHTED INDEX

1990 to 1995. However, we cannot expect a sample of four items to reflect accurate price changes for all goods and services. Thus, this calculation provides us with only a very rough estimate.

Suppose we now add the change in price of hand-held electronic calculators from 1990 to 1995 to our composite (Table 16-5). Again, 1990 is the base period against which we compare the 1995 prices.

TABLE 16.5 COMPUTATION OF AN UNWEIGHTED INDEX

Intuitively we know that the previous index of 145 is a more accurate estimate of general price behavior than 92 because more prices rose than fell between 1990 and 1995. Thus, we see the major

Limitations of an unweighted index
disadvantage of an unweighted index. It does not attach greater importance, or weight, to the price change of a high-use item than it does to a low-volume item. (A family may purchase 50 dozen eggs a year, but it would be unusual for a family to own more than one or two calculators.) A substantial price change for slow-moving items can completely distort an index. For this reason, it is not common to use a simple unweighted index in important analyses.

The deficiencies of an unweighted index suggest that we use a weighted index. There are two ways to calculate more sophisticated indices. Each of these will be discussed in detail in the following sections.

\section*{HINTS \& ASSUMPTIONS}

Warning: An unweighted index can be distorted, and lose its value from changes in a few items in the index that do not fairly represent the situation being studied. Hint: Social Security payments have been "indexed" to the Consumer Price Index, which includes average mortgage costs as a measure of housing costs. But most Social Security recipients are not in the market for a new mortgage. With the exception of those who have an adjustable-rate mortgage, their mortgage payments are fixed and thus their costs are not affected by inflation. Warning: The major disadvantage of an unweighted index is that it does not attach greater importance to price changes in a high-use item than it does to a low-use item. Hint: Before you decide which index is appropriate, look carefully at the product/service components of that index to see whether their usage has been constant.

\section*{EXERCISES 16.2}

\section*{Self-Check Exercise}

SC 16-1 The VP of sales for Xenon Computer Corporation is examining the commission rate employed for the last 3 years. Below are the commission earnings of the company's top five sales personnel.
\begin{tabular}{lrrr}
\hline & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Guy Howell & \(\$ 48,500\) & \(\$ 55,100\) & \(\$ 63,800\) \\
Skip Ford & 41,900 & 46,200 & 60,150 \\
Nelson Price & 38,750 & 43,500 & 46,700 \\
Nina Williams & 36,300 & 45,400 & 39,900 \\
Ken Johnson & 33,850 & 38,300 & 50,200 \\
\hline
\end{tabular}

Using 1993 as the base period, express the commission earnings in 1994 and 1995 in terms of an unweighted aggregates index.

\section*{Applications}

16-7 In an effort to get a measure of economic hardship, the IMF (International Monetary Fund) collected data on the price behavior of five major products imported by a group of lessdeveloped countries. Using 1992 as the base period, express the 1995 prices in terms of an unweighted aggregates index.
\begin{tabular}{lccccc}
\hline Product & A & B & C & D & E \\
\hline 1992 price & \(\$ 127\) & \(\$ 532\) & \(\$ 2,290\) & \(\$ 60\) & \(\$ 221\) \\
1995 price & \(\$ 152\) & \(\$ 651\) & \(\$ 2,314\) & \(\$ 76\) & \(\$ 286\) \\
\hline
\end{tabular}

16-8 For purposes of bidding on U.S. contracts, the management of a large overseas manufacturing facility are compiling data on wage levels. The following data concern base pay for the different classes of labor in the facility over a 4 -year period.
\begin{tabular}{lrrrr}
\hline & \multicolumn{4}{c}{ Wages per Hour } \\
\cline { 2 - 5 } & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 2 - 5 } Class A & \(\$ 8.48\) & \(\$ 9.32\) & \(\$ 10.34\) & \(\$ 11.16\) \\
Class B & 6.90 & 7.52 & 8.19 & 8.76 \\
Class C & 4.50 & 4.99 & 5.48 & 5.86 \\
Class D & 3.10 & 3.47 & 3.85 & 4.11 \\
\hline
\end{tabular}

Using 1992 as the base period, calculate the unweighted aggregates wage index for 1993,1994, and 1995.
16-9 A study of college costs has collected data for the amount of tuition a fulltime undergraduate paid during the last 4 years at four schools:
\begin{tabular}{lrrrr}
\hline & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\hline Eastem U. & \(\$ 3,142\) & \(\$ 3,564\) & \(\$ 4,109\) & \(\$ 4,372\) \\
State U. & 2,816 & 3,474 & 3,682 & 4,019 \\
Western U. & 3,582 & 3,987 & 4,406 & 4,819 \\
Central U. & 4,014 & 4,197 & 4,384 & 4,671 \\
\hline
\end{tabular}

Using 1993 as a base period, express tuition charges in 1994, 1995, and 1996 in terms of an unweighted aggregates index.
16-10 Bill Ivey, the administrator of a small rural hospital, has compiled the information shown regarding food purchased for, the hospital kitchen. For the commodities listed, the corresponding price indicates the average price for that year. Using 1994 as the base period, express the prices in 1993 and 1995 in terms of an unweighted aggregates index.
\begin{tabular}{lrrr}
\hline Commodity & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Dairy products & \(\$ 2.34\) & \(\$ 2.38\) & \(\$ 2.60\) \\
Meat products & 3.19 & 3.41 & 3.36 \\
Vegetable products & 0.85 & 0.89 & 0.94 \\
Fruit products & 1.11 & 1.19 & 1.18 \\
\hline
\end{tabular}

16-11 A chemical processing plant used five materials in the manufacture of an industrial cleaning agent. The following data indicate the final inventory levels for these materials for the years 1993 and 1995.
\begin{tabular}{lccccc}
\hline Material & A & B & C & D & E \\
\hline Inventory (tons) 1993 & 86 & 395 & 1,308 & 430 & 113 \\
Inventory (tons) 1995 & 95 & 380 & 1,466 & 469 & 108 \\
\hline
\end{tabular}

Using 1993 as the base period, express the 1995 inventory levels in terms of an unweighted aggregates index.
16-12 John Dykstra, a management trainee in a bank, has collected, information on the bank's transactions for the years 1994 and 1995:
\begin{tabular}{llllll}
\hline & \multicolumn{2}{c}{ Withdrawals } & & \multicolumn{2}{c}{ Deposits } \\
& Savings & Checking & & Savings & Checking \\
\hline Number of transactions 1994 & 169,000 & \(21,843,000\) & & 293,000 & \(2,684,000\) \\
Number of transactions 1995 & 158,000 & \(23,241,000\) & & 303,000 & \(3,361,000\) \\
\hline
\end{tabular}

Using 1994 as the base period, express the number of banking transactions in 1995 in terms of an unweighted aggregates index.
16-13 The Bookster Publishing Company began its business of publishing college textbooks in 1993. It is interested in determining how its sales have changed compared to its first year. A summary of the company's records shows how many new books it published in each year in the following areas:
\begin{tabular}{lccc}
\hline & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Biology & 48 & 53 & 50 \\
Mathematics & 32 & 37 & 35 \\
History & 19 & 15 & 22 \\
English & 16 & 20 & 21 \\
Sociology & 24 & 18 & 26 \\
Physics & 10 & 26 & 32 \\
Chemistry & 27 & 26 & 30 \\
Philosophy & 11 & 8 & 15 \\
\hline
\end{tabular}

Using 1993 as the base year, calculate the unweighted aggregates quantity index for 1994 and 1995. Interpret the results for the publishing company.

\section*{Worked-Out Answer to Self-Check Exercise}
\begin{tabular}{|c|c|c|c|c|}
\hline SC 16-1 & & \[
\begin{gathered}
1993 \\
Q_{0} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1994 \\
Q_{1} \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
1995 \\
Q_{2} \\
\hline
\end{gathered}
\] \\
\hline & Howell & 48,500 & 55,100 & 63,800 \\
\hline & Ford & 41,900 & 46,200 & 60,150 \\
\hline & Price & 38,750 & 43,500 & 46,700 \\
\hline & Williams & 36,300 & 45,400 & 39,900 \\
\hline & Johnson & 33,850 & 38,300 & 50,200 \\
\hline & & 199,300 & 228,500 & 260,750 \\
\hline & & 19,930,000 & 22,850,000 & 26,075,000 \\
\hline & & 99,300 & 199,300 & 199,300 \\
\hline & Index \(=\frac{\Sigma Q_{i}}{\Sigma Q_{0}} \times 100\) : & \(=100.0\) & \(=114.7\) & \(=130.8\) \\
\hline
\end{tabular}

\subsection*{16.3 WEIGHTED AGGREGATES INDEX}

As we have said, often we have to attach greater importance to changes in some variables than to other when we compute an index. This weighting allows us to include more information than just the change

\section*{Advantages of weighting} in an index in price over time. It also lets us improve the accuracy of the general price level estimate based on our sample. The problem is to decide how much weight to attach to each of the variables in the sample.

The general formula for computing a weighted aggregates price Computing a weighted index is

\section*{Weighted Aggregates Price Index}
\[
\begin{equation*}
\frac{\sum P_{i} Q}{\sum P_{0} Q} \times 100 \tag{16-2}
\end{equation*}
\]
where
- \(P_{\mathrm{i}}=\) price of each element in the composite in the current year
- \(P_{0}=\) price of each element in the composite in the base year
- \(Q=\) quantity weighting factor chosen

Consider the sample in Table 16-6. Each of the elements in the composite is taken from Table 16-5 and is weighted according to the volume of sales. The process of weighted aggregates confirms our earlier intuitive impression from page 913 that the general price level had risen (index =129).

Typically, management uses the quantity of an item consumed as the measure of its importance in computing a weighted aggregates index. This leads to an important question in applying the process: Which quantities are used?

In general, there are three ways to weight an index. The first involves using quantities consumed during the base period in computing each index number. This is called the Laspeyres method, after the statistician

Three ways to weight an index

TABLE 16-6 COMPUTATION OF A WEIGHTED AGGREGATES INDEX

who developed it. The second uses quantities consumed during the period in question for each index. This is the Paasche method, in honor of the person who devised it. The third way is called the fixedweight aggregates method. With this method, one period is chosen, and its quantities are used to find all indices. (Note that if the chosen period is the base period, the fixed-weight aggregates method is the same as the Laspeyres method.)

\section*{Laspeyres Method}

The Laspeyres method, which uses quantities consumed during the The Laspeyres method base period, is the method most commonly used because it requires quantity measures for only one period. Because each index number depends on the same base price and quantity, management can compare the index of one period directly with the index of another. Suppose a steel manufacturer's price index is 103 in 1992 and 125 in 1995, using 1990 base prices and quantities. The company concludes that the general price level has increased 22 percent from 1992 to 1995. To calculate the Laspeyres index, the company first multiplies the Computing a Laspeyres index current-period price by the base-period quantity for each element in the
composite, and then it sums each of the resulting values. Next it multiplies the base-period price by the base-period quantity for each element, and again it sums the resulting values. By dividing the first sum by the second and multiplying the result by 100, management can convert this value to a percentage relative. Equation 16-3 presents the formula used to determine the Laspeyres index.
\[
\begin{align*}
& \text { Laspeyres Price Index } \\
& \qquad \frac{\sum P_{i} Q_{0}}{\sum P_{0} Q_{0}} \times 100 \tag{16-3}
\end{align*}
\]

\section*{TABLE 16-7 CALCULATION OF A LASPEYRES INDEX}

where
- \(P_{i}=\) prices in the current year
- \(P_{0}=\) prices in the base year
- \(Q_{0}=\) quantities sold in the base year

Let's work an example to demonstrate how the Laspeyres method is used. Suppose we want to determine changes in price level between 1991 and 1995. Table 16-7 contains the pertinent data for 1991 and 1995.

If we have selected a representative sample of goods, we can conclude that the general price index for 1995 is 121 based on the 1991 index of 100. Alternatively, we can say that prices have increased by 21 percent.

Example using the Laspeyres
method

Drawing conclusions from the calculated index Notice that we have used the average quantity consumed in 1991 rather than the total quantity consumed. Actually, it does not matter which is used, as long as we apply the same quantity measure throughout the problem. Typically, we select the quantity measure that is easiest to find.

One advantage of the Laspeyres method is the comparability of one index with another. If we had the 1992 prices for the previous example, we would be able to find a value for the 1992 general price index. This

Advantages of the Laspeyres
method index could be compared directly with the 1995 index. Using the same base-period quantity allows us to make a direct comparison.

Another advantage is that many commonly used quantity measures are not tabulated every year. A firm might be interested in some variable whose quantity measure is computed once every 10 years. The Laspeyres method uses only one quantity measure, that of the base year, so the firm does not need yearly tabulations to measure quantities consumed.

The primary disadvantage of the Laspeyres method is that it does not take into consideration changes in consumption patterns. Items purchased in large quantities just a few years ago may be relatively

Disadvantage of the Laspeyres method
unimportant today. Suppose the base quantity of an item differs greatly from the quantity for the period in question. Then the change in that item's price indicates very little about the change in the general price level.

\section*{Paasche Method}

The second way to compute a weighted aggregates price index is the Paasche method. Finding a Paasche index is similar to finding a Laspeyres index. The difference is that the weights used in the Paasche method are the quantity measures for the current period rather than for the base period.

The Paasche index is calculated by multiplying the current-period price by the current-period quantity for each item in the composite and

Difference between Paasche and Laspeyres methods

\section*{Computing a Paasche index} summing these products. Then the baseperiod price is multiplied by the current-period quantity for each item, and the results are summed. The first sum is divided by the second sum, and the resulting value is multiplied by 100 to convert the value into a percentage relative. Equation 16-4 defines the method for calculating a Paasche index.
\begin{tabular}{|ll|}
\hline & Paasche Price Index \\
\hline & \(\frac{\sum P_{i} Q_{i}}{\sum P_{0} Q_{i}} \times 100\) \\
\hline
\end{tabular}
where
- \(P_{\mathrm{i}}=\) current-period prices
- \(P_{0}=\) base-period prices
- \(Q_{\mathrm{i}}=\) current-period quantities

With this equation, we can rework the problem in Table 16-7. Notice that we have discarded the quantities consumed in 1991. They have been replaced by the quantities consumed in 1995. Table 16-8 presents the information necessary for this modified problem.

TABLE 16-8 CALCULATION OF A PAASCHE INDEX
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Elements in the Composite \\
(1)
\end{tabular} & \[
\begin{gathered}
P_{1} \\
\text { Current Price } \\
1995 \text { (2) }
\end{gathered}
\] & \[
\begin{gathered}
P_{0} \\
\text { Base Price } \\
1995(3)
\end{gathered}
\] & \[
\begin{gathered}
Q_{1} \\
\text { Average Quantity } \\
\text { Consumed in } 1995 \\
\text { by a Family (4) }
\end{gathered}
\] & \[
\begin{gathered}
P_{1} Q_{1} \\
(5)=(2) \times(4) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
P_{0} Q_{1} \\
(6)=(3) \times(4)
\end{gathered}
\] \\
\hline Bread (1 loaf) & \$1.19 & \$0.91 & 200 loaves & \$238 & \$182 \\
\hline Potatoes (1 lb) & 0.99 & 0.79 & 100 lb & 99 & 79 \\
\hline \multirow[t]{4}{*}{Chicken (3-lb fryer)} & 4.50 & 3.92 & 300 chickens & 1,350 & 1,176 \\
\hline & & \multicolumn{3}{|r|}{\[
\begin{aligned}
\text { Paasche price index } & =\frac{\Sigma P_{1} Q_{1}=\mathbf{1 , 6 8 7}}{\Sigma P_{0} Q_{i}} \times 100 \\
& =\frac{1,687}{1,437} \times \stackrel{4}{\longleftarrow}
\end{aligned}
\]} & \multirow[t]{3}{*}{\(\underbrace{1,437}\)} \\
\hline & & & \(=1.17\) & \(\times 100\) & \\
\hline & & & \(=117\) & & \\
\hline
\end{tabular}

In this analysis, we find that the price index for 1995 is 117 . As you see from Table 16-7, the price index calculated by the Laspeyres method is 121 . The difference between these indices reflects the change in consumption patterns of the three variables in the composite.

The Paasche method is particularly helpful because it combines the effects of changes in price and consumption patterns. Thus, it is a better indicator of general changes in the economy than the Laspeyres method. In our examples, the Paasche index shows a trend toward

Interpreting the difference between the two methods

Advantage of the Paasche method less-expensive goods and services because it indicates a price level increase of 17 percent instead of the 21 percent increase calculated using the Laspeyres method.

One of the principal disadvantages of the Paasche method is the need to tabulate quantity measures for each period examined. Often, quantity information for each period is either expensive to gather or unavailable.

Disadvantages of the Paasche method It would be hard, for example, to find reliable sources of data to determine quantity measures of 100 food products consumed in different countries for each of several years.

Each value for a Paasche price index is the result of both price and quantity changes from the base period. Because the quantity measures used for one index period are usually different from the quantity measures for another index period, it is impossible to attribute the difference between the two indices to price changes only. Thus, it is difficult to compare indices from different periods as calculated by the Paasche method.

\section*{Fixed-Weight Aggregates Method}

The third technique used to assign weights to elements in a composite is the fixed-weight aggregates method. It is similar to both the Laspeyres and Paasche methods. However, instead of using base-period

\section*{Fixed-weight aggregates} index or current-period weights (quantities), it uses weights from a representative period. The representative weights are referred to as fixed weights. The fixed weights and the base prices do not have to come from the same period.

We calculate a fixed-weight aggregates price index by multiplying the current-period prices by the fixed weights and summing the results. Then we multiply the base-period prices by the fixed weights and sum

\section*{Computing a fixed-weight aggregates index} them. Finally, we divide the first sum by the second and multiply by 100 to convert the ratio to a percentage relative. The formula used to calculate a fixed-weight aggregates price index is presented in Equation 16-5.

Fixed-Weight Aggregates Price Index
\[
\begin{equation*}
\frac{\sum P_{i} Q_{2}}{\sum P_{0} Q_{2}} \times 100 \tag{16-5}
\end{equation*}
\]
where
- \(P_{\mathrm{i}}=\) current-period prices
- \(P_{0}=\) base-period prices
- \(Q_{2}=\) fixed weights

We can demonstrate the process used to calculate a fixed-weight aggregates price index by solving our chapter-opening example. Recall that management wants to determine the price-level changes of raw

Example of a fixed-weight aggregates index

TABLE 16-9 COMPUTATION OF A FIXED-WEIGHT AGGREGATES INDEX
\begin{tabular}{|c|c|c|c|c|c|}
\hline Raw Materials (1) & \begin{tabular}{l}
\(Q_{2}\) Quantity \\
Consumed 1988 (thousands of tons) \\
(2)
\end{tabular} & \begin{tabular}{l}
\[
\begin{gathered}
P_{0} \\
\text { Average Price } \\
1975 \\
\text { (\$ per ton) }
\end{gathered}
\] \\
(3)
\end{tabular} & \[
\begin{gathered}
P_{1} \\
\text { Average Price } \\
1995 \\
(\$ \text { per ton }) \\
\text { (4) }
\end{gathered}
\] & \begin{tabular}{l}
\[
P_{0} Q_{2}
\] \\
Weighted \\
Aggregate 1975
\[
(5)=(3) \times(2)
\]
\end{tabular} & Weighted Aggregate
\[
1995
\]
\[
(6)=(4) \times(2)
\] \\
\hline Coal & 158 & \$7.56 & \$19.50 & \$1,194.48 & \$3,081.00 \\
\hline Iron & 12 & 9.20 & 21.40 & 110.40 & 256.80 \\
\hline \multirow[t]{2}{*}{Nickel ore} & \multirow[t]{2}{*}{\begin{tabular}{l}
5 \\
Fixed-w
\end{tabular}} & 12.30 & 36.10 & 61.50 & 180.50 \\
\hline & & aggregates p & \[
\begin{aligned}
\text { e index } & =\frac{\sum P_{i}}{\sum P_{0}} \\
& =\frac{3,51}{1,36} \\
& =2.57 \\
& =257
\end{aligned}
\] & \[
\begin{aligned}
& Q_{2}=1,366.38 \\
& 2 \times 100 \\
& \frac{30}{38} \times 100 \\
& 100
\end{aligned}
\] & \[
[16-5]
\] \\
\hline
\end{tabular}
materials consumed by the company between 1975 and 1995. It has accumulated the information in Table 16-9. From examination of past purchasing records, management has decided that the quantities purchased in 1988 were characteristic of the purchasing patterns during the 20-year period. The 1975 price level is the base price in this analysis. Calculation of the fixed-weight aggregates index is shown in Table 16-9. The company management concludes from this analysis that the general price level has increased 157 percent over the 20 -year period.

The primary advantage of a fixed-weight aggregates price index Advantage of a fixedis the flexibility in selecting the base price and the fixed weight (quantity). In many cases, the period that a company wishes to use weight aggregates index as the base-price level may have an uncharacteristic consumption level. Therefore, by being able to select a different period for the fixed weight, the company can improve the accuracy of the index. This index also allows a company to change the price base without changing the fixed weight. This is useful because quantity measures are often expensive or impossible to obtain for certain periods.

\section*{HINTS \& ASSUMPTIONS}

The three methods covered in this section all produce a weighted aggregates index by using the quantities consumed as a basis for the weighting. Hint: The only real difference among them is the period each uses to select these quantities. The Laspeyres method uses quantities from the base period. The Paasche method uses quantities from the period in question. The fixed-weight aggregates method uses quantities from a chosen period. Hint: If the chosen period in the fixed-weight aggregates method is the base period, this method becomes the Laspeyres method. Warning: Choosing the period to use for weighting requires careful observation and common sense. The decision maker is looking for a period that has characteristic consumption, which means a period that most nearly reflects the reality of the situation. There is no mathematical formula that will give you the right answer to this.

\section*{EXERCISES 16.3}

\section*{Self-Check Exercises}

SC 16-2 Bill Simpson, owner of a California vineyard, has collected the following information describing the prices and quantities of harvested crops for the years 1992-1995.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type of Grape} & \multicolumn{4}{|c|}{Price (per ton)} & \multicolumn{4}{|c|}{Quantity Harvested (tons)} \\
\hline & 1992 & 1993 & 1994 & 1995 & 1992 & 1993 & 1994 & 1995 \\
\hline Ruby Cabernet & \$108 & \$109 & \$113 & \$111 & 1,280 & 1,150 & 1,330 & 1,360 \\
\hline Barbera & 93 & 96 & 96 & 101 & 830 & 860 & 850 & 890 \\
\hline Chenin Blanc & 97 & 99 & 106 & 107 & 1,640 & 1,760 & 1,630 & 1,660 \\
\hline
\end{tabular}

Construct a Laspeyres index for each of these 4 years using 1992 as the base period.
SC 16-3 Use the data from Exercise SC 16-2 to calculate a fixed-weight index for each year using 1992 prices as the base and the 1995 quantities as the fixed weight.
SC 16-4 Use the data from Exercise SC 16-2 to calculate a Paasche index for each year using 1993 as the base period.

\section*{Applications}

16-14 Eastern Digital has developed a substantial market share in the PC computer industry. The prices and number of units sold for their top four computer products from 1993 to 1996 were:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{4}{|c|}{Selling Price (\$)} & \multicolumn{4}{|c|}{Number Sold (thousands)} \\
\hline & 1993 & 1994 & 1995 & 1996 & 1993 & 1994 & 1995 & 1996 \\
\hline ED 107 & 1,894 & 1,906 & 1,938 & 1,957 & 84.6 & 86.9 & 98.4 & 107.5 \\
\hline ED Electra & 2,506 & 2,560 & 2,609 & 2,680 & 38.4 & 42.5 & 55.6 & 67.5 \\
\hline ED Optima & 1,403 & 1,440 & 1,462 & 1,499 & 87.4 & 99.4 & 109.7 & 134.6 \\
\hline ED 821 & 1,639 & 1,650 & 1,674 & 1,694 & 75.8 & 78.9 & 82.4 & 86.4 \\
\hline
\end{tabular}

Construct a Laspeyres index for each of these 4 years using 1993 as the base period.
16-15 Use the data from Exercise 16-14 to calculate a fixed-weight index for each year using 1993 prices as the base and the 1996 quantities as the fixed weights.
16-16 Use the data from Exercise 16-14 to calculate a Paasche index for each year using 1994 as the base period.
16-17 Julie Pristash, the marketing manager of Mod-Stereo, a manufacturer of blank cassette tapes, has compiled the following information regarding unit sales for 1993-1995. Using the average quantities sold from 1993 to 1995 as the fixed weights, calculate the fixed weight index for each of the years 1993 to 1995 based on 1993.
\begin{tabular}{crrrc}
\hline \begin{tabular}{c}
Length of Tape \\
(minutes)
\end{tabular} & \multicolumn{3}{c}{ Retail Price } & Average Quantity \((\times \mathbf{1 0 0 , 0 0 0})\) \\
\cline { 2 - 5 } \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 3 - 1 9 9 5}\) \\
\hline 30 & \(\$ 2.20\) & \(\$ 2.60\) & \(\$ 2.85\) & 32 \\
60 & 2.60 & 2.90 & 3.15 & 119 \\
90 & 3.10 & 3.20 & 3.25 & 75 \\
120 & 3.30 & 3.35 & 3.40 & 16 \\
\hline
\end{tabular}

16-18 Gray P. Saeurs owns the corner fruitstand in a small town. After hearing many complaints that his prices constantly change during the summer, he has decided to see whether this is true. Based on the following data, help Mr. Saeurs calculate the appropriate weighted aggregate price indices for each month. Use June as the base period. Is your result a Laspeyres index or a Paasche index?
\begin{tabular}{lrrrcc}
\hline & \multicolumn{3}{c}{ Price per Pound } & & No of Pounds Sold \\
\cline { 2 - 3 } Fruit & June & July & Aug. & & June \\
\hline Apples & \(\$ 0.59\) & \(\$ 0.64\) & \(\$ 0.69\) & & 150 \\
Oranges & 0.75 & 0.65 & 0.70 & & 200 \\
Peaches & 0.87 & 0.90 & 0.85 & & 125 \\
Watermelons & 1.00 & 1.10 & 0.95 & & 350 \\
Cantaloupes & 0.95 & 0.89 & 0.90 & & 150 \\
\hline
\end{tabular}

16-19 Charles Widget is in charge of keeping in stock certain items that his company needs in repairing its machines. Since he started this job 3 years ago, he has been observing the changes in the prices for the items he keeps in stock. He arranged the data in the following table in order to calculate a fixed-weight aggregates price index. Perform the calculations Mr. Widget would do using 1993 as the base year.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Item} & \multicolumn{3}{|c|}{Price per Item} & \multirow[t]{2}{*}{Average No Used During 3-Year Period} \\
\hline & 1993 & 1994 & 1995 & \\
\hline W-gadget & \$1.25 & \$1.50 & \$2.00 & 900 \\
\hline X-gadget & 6.50 & 7.00 & 6.25 & 50 \\
\hline Y-gadget & 5.25 & 5.90 & 6.40 & 175 \\
\hline Z-gadget & 0.50 & 0.80 & 1.00 & 200 \\
\hline
\end{tabular}

\section*{Worked-Out Answers to Self-Check Exercises}
\begin{tabular}{cccccc}
SC 16-2 & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 2 - 6 } & Type of Grape & \(\boldsymbol{Q}_{\mathbf{0}}\) & \(\boldsymbol{P}_{\mathbf{0}}\) & \(\boldsymbol{P}_{\mathbf{1}}\) & \(\boldsymbol{P}_{\mathbf{2}}\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\text { Laspeyres Index }=\frac{\Sigma P_{i} Q_{0}}{\Sigma P_{0} Q_{0}} \times 100 \text { : }
\]} & \[
\frac{37,451,000}{374,510}
\] & \[
\frac{38,15 t}{374}
\] & & \[
\frac{39,816,000}{374,510}
\] & \[
\frac{40,139,000}{374,510}
\] \\
\hline & \(=100.0\) & & & \(=106.3\) & \(=107.2\) \\
\hline SC 16-3 & 1995 & 1992 & 1993 & 1994 & 1995 \\
\hline Type of Grape & \(Q_{3}\) & \(P_{0}\) & \(P_{1}\) & \(\mathrm{P}_{2}\) & \(P_{3}\) \\
\hline Ruby Cabernet & 1,360 & 108 & 109 & 113 & 111 \\
\hline Barbera & 890 & 93 & 96 & 96 & 101 \\
\hline Chenin Blanc & 1,660 & 97 & 99 & 106 & 107 \\
\hline & & 1992 & 1993 & 1994 & 1995 \\
\hline & & \(P_{0} Q_{3}\) & \(P_{1} Q_{3}\) & \(P_{2} Q_{3}\) & \(P_{3} Q_{3}\) \\
\hline & & 146,880 & 148,240 & 153,680 & 150,960 \\
\hline & & 82,770 & 85,440 & - 85,440 & 89,890 \\
\hline & & 161,020 & 164,340 & - 175,960 & 177,620 \\
\hline & & 390,670 & 398,020 &) 415,080 & 418,470 \\
\hline
\end{tabular}

Fixed-Weight Index \(=\frac{\sum P_{i} Q_{3}}{\sum P_{0} Q_{3}} \times 100: \frac{39,067,000}{390,670} \quad \frac{39,802,000}{390,670} \quad \frac{41,508,000}{390,670} \quad \frac{41,847,000}{390,670}\)
\[
\begin{array}{lll}
=100.0 & =101.9 & =106.2 \quad=107.1
\end{array}
\]

\section*{SC 16-4}
\begin{tabular}{lcccccccc}
\hline & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
Type of Grape & \(\boldsymbol{P}_{\mathbf{1}}\) & \(\boldsymbol{P}_{\mathbf{0}}\) & \multicolumn{1}{c}{\(\boldsymbol{P}_{\mathbf{2}}\)} & \(\boldsymbol{P}_{\mathbf{3}}\) & \(\boldsymbol{Q}_{\mathbf{1}}\) & \(\boldsymbol{Q}_{\mathbf{0}}\) & \multicolumn{1}{c}{\(\boldsymbol{Q}_{\mathbf{2}}\)} & \multicolumn{1}{c}{\(\boldsymbol{Q}_{\mathbf{3}}\)} \\
\hline Ruby Cabernet & 108 & 109 & 113 & 111 & 1,280 & 1,150 & 1,330 & 1,360 \\
Barbera & 93 & 96 & 96 & 101 & 830 & 860 & 850 & 890 \\
Chenin Blanc & 97 & 99 & 106 & 107 & 1,640 & 1,760 & 1,630 & 1,660 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{1992} & \multicolumn{2}{|c|}{1994} & \multicolumn{2}{|c|}{1995} \\
\hline \(P_{1} Q_{1}\) & \(P_{0} Q_{1}\) & \(\boldsymbol{P}_{2} \boldsymbol{Q}_{2}\) & \(P_{0} \boldsymbol{Q}_{2}\) & \(P_{3} Q_{3}\) & \(\boldsymbol{P}_{0} \boldsymbol{Q}_{3}\) \\
\hline 138,240 & 139,520 & 150,290 & 144,970 & 150,960 & 148,240 \\
\hline 77,190 & 79,680 & 81,600 & 81,600 & 89,890 & 85,440 \\
\hline 159,080 & 162,360 & 172,780 & 161,370 & 177,620 & 164,340 \\
\hline 374,510 & 381,560 & 404,670 & 387,940 & 418,470 & 398,020 \\
\hline
\end{tabular}
\[
\begin{array}{cccc}
\text { Paasche Index }=\frac{\Sigma P_{i} Q_{i}}{\Sigma P_{0} Q_{i}} \times 100: & \begin{array}{ccc}
\frac{37,451,000}{381,560} & & \frac{40,467,000}{387,940} \\
=98.2
\end{array} & =104.3 & \frac{41,847,000}{398,020} \\
& =105.1
\end{array}
\]

\subsection*{16.4 AVERAGE OF RELATIVES METHODS}

\section*{Unweighted Average of Relatives Method}

As an alternative to the aggregates methods, we can use the average of relatives method to construct an index. Once again, we will use a price index to introduce the process.

Actually, we used a form of the average of relatives method in calculating the simple index in Table 16-1 on page 857. In that one-product example, we calculated the percentage relative by dividing the number of incorporations in the current year, \(Q_{1}\), by the number in the base year, \(Q_{0}\), and multiplying the result by 100 .

With more than one product (or activity), we first find the ratio of the current price to the base price for each product and multiply each ratio by 100 . We then add the resulting percentage relatives and divide by

Computing an unweighted average of relatives index the number of products. (Notice that the aggregates methods discussed in Section 16-3 differ from this method. They sum all the prices before finding the ratio.) Equation 16-6 presents the general form for the unweighted average of relatives method.

Unweighted Average of Relatives Price Index
\[
\begin{equation*}
\frac{\sum\left(\frac{P_{i}}{P_{0}} \times 100\right)}{n} \tag{16-6}
\end{equation*}
\]
where
- \(P_{\mathrm{i}}=\) current-period prices
- \(P_{0}=\) base-period prices
- \(n=\) number of elements (or products) in the composite

In Table 16-10, we rework the problem in Table 16-4 on page 861 using the unweighted average of relatives method rather than the unweighted aggregates method.

Based on this analysis, the general price-level index for 1995 is 138. In Table 16-4, the unweighted aggregates index for the same problem is 145 . Obviously, there is a difference between these two indices. With

Comparing the unweighted aggregates index and the unweighted average of relatives index the unweighted average of relatives method, we compute the average of the ratios of the prices for each product. With the unweighted aggregates method, we compute the ratio of the sums of the prices of each product. Notice that this is not the same as assigning some items more weight than others. Rather, the average of relatives method converts each element to a relative scale where each element is represented as a percentage rather than an amount. Because of this, each of the elements in the composite is measured against a base of 100 .

\section*{Weighted Average of Relatives Method}

Most problems management has to deal with require weighting by importance. Thus, it is more common to use the weighted average of relatives method than the unweighted method. When we

TABLE 16-10 COMPUTATION OF AN UNWEIGHTED AVERAGE OF RELATIVES INDEX
\begin{tabular}{|c|c|c|c|c|}
\hline Product (1) & \[
\begin{gathered}
P_{0} \\
1990 \text { Prices } \\
\text { (2) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
P_{1} \\
1995 \text { Prices } \\
\text { (3) } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Ratio } \times 100 \\
& (4)=\frac{(3)}{(2)} \times 100
\end{aligned}
\] & \\
\hline Milk (1 gal) & \$1.92 & \$3.40 & \[
\frac{3.40}{1.92} \times 100=1.77 \times 100=177
\] & \\
\hline Eggs (1 doz) & 0.81 & 1.00 & \[
\frac{1.00}{0.81} \times 100=1.23 \times 100=123
\] & \\
\hline Hamburger (1 lb) & 1.49 & 2.00 & \[
\frac{2.00}{1.49} \times 100=1.34 \times 100=134
\] & \\
\hline Gasoline (1 gal) & 1.00 & 1.17 & \[
\frac{1.17}{1.00} \times 100=1.17 \times 100=117
\] & \\
\hline & \multicolumn{4}{|r|}{\[
\begin{align*}
& \sum\left(\frac{\boldsymbol{P}_{1}}{\boldsymbol{P}_{\mathbf{0}}} \times \mathbf{1 0 0}\right)=551 \\
& \text { Unweighted average of relatives index } \left.=\frac{\sum\left(\frac{\boldsymbol{P}_{1}}{\boldsymbol{P}_{\mathbf{0}}} \times \mathbf{1 0 0}\right)}{n}\right) \tag{16.6}
\end{align*}
\]} \\
\hline & \multicolumn{4}{|c|}{\(=138\)} \\
\hline
\end{tabular}
computed a weighted aggregates price index in Section 16-3, we used the quantity consumed to weight the elements in the composite. To assign weights using the weighted average of relatives, we use the value of each element in the composite. (The value is the total dollar volume obtained by multiplying price by quantity.)

With the weighted average of relatives method, there are several ways to determine weighted value. As in the Laspeyres method, we can use the base value found by multiplying the base

Different ways to determine
weights quantity by the base price. Using the base value will produce exactly the same result as calculating the index using the Laspeyres method. Because the result is the same, the decision to use the Laspeyres method or the weighted average of relatives method often depends on the availability of data. If value data are more readily available, the weighted average of relatives method is used. We use the Laspeyres method when quantity data are more readily obtained.

Equation \(16-7\) is used to compute a weighted average of relatives price index. This is a general equation into which we can substitute values from the base period, the current period, or any

Computing a weighted average of relatives index fixed period.

\section*{Weighted Average of Relatives Price Index \\ \[
\begin{equation*}
\frac{\sum\left[\left(\frac{P_{i}}{P_{0}} \times 100\right)\left(P_{n} Q_{n}\right)\right]}{\sum P_{n} Q_{n}} \tag{16-7}
\end{equation*}
\]}
where
- \(P_{n} Q_{n}=\) value
- \(P_{0}=\) prices in the base period
- \(P_{i}=\) prices in the current period
- \(P_{n}\) and \(Q_{n}=\) quantities and prices that determine values we use for weights. In particular, \(n=0\) for the base period, \(n=i\) for the current period, and \(n=2\) for a fixed period that is not a base or current period.

If we wish to compute a weighted average of relatives index using base values, \(P_{0} Q_{0}\), the equation would be

\section*{Weighted Average of Relatives Price Index with Base Year Values as Weights}
\[
\begin{equation*}
\frac{\sum\left[\left(\frac{P_{i}}{P_{0}} \times 100\right)\left(P_{0} Q_{0}\right)\right]}{\sum P_{0} Q_{0}} \tag{16-8}
\end{equation*}
\]

Equation 16-8 is equivalent to the Laspeyres method for any given problem.

In addition to the specific cases of the general form of the weighted average of relatives method, we can use values determined by multiplying the price from one period by the quantity from a different period. Usually, however, we find Equations 16-7 and 16-8 adequate.

Here is an example. The information in Table 16-11 comes from Table 16-7 on page 867. We have base quantities and base prices, so we will use Equation 16-8. The price index of 122 differs slightly from the 121 calculated in Table 16-7 using the Laspeyres method, but only because of intermediate rounding.

As was the case for weighted aggregates, when we use base values, \(P_{0} Q_{0}\), or fixed values, \(P_{2} Q_{2}\), for weighted averages, we can readily compare the price level of one period with that of another. However, when we use current values, \(P_{1} Q_{1}\), in computing a weighted average of relatives price index, we cannot directly compare values from different periods because both the prices and the quantities may have changed. Thus, we usually use either base values or fixed values when computing a weighted average of relatives index.

TABLE 16-11 COMPUTING A WEIGHTED AVERAGE OF RELATIVES INDEX
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Elements in the Composite (1)} & \multicolumn{2}{|r|}{Price} & \multirow[b]{2}{*}{\begin{tabular}{c}
Quantity \\
\hline 1991 \\
\(Q_{0}\) \\
\((4)\)
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{c}
Percentage \\
Price Relative
\end{tabular}
\(\frac{P_{1}}{P_{0}} \times 100\)
(5) \(=\frac{(3)}{(2)} \times 100\)} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \frac{\text { Base Value }}{P_{0} Q_{0}} \\
& (6)=(2) \times(4)
\end{aligned}
\]} & \multirow[b]{2}{*}{Weighted
Percentage Relative
\[
(7)=(5) \times(6)
\]} \\
\hline & \[
\begin{gathered}
\hline 1991 \\
P_{0} \\
(2)
\end{gathered}
\] & \[
\begin{gathered}
1995 \\
P_{1} \\
(3)
\end{gathered}
\] & & & & \\
\hline Bread (1 loaf) & \$0.91 & \$1.19 & 200 loaves & \[
\frac{1.19}{0.91} \times 100=131
\] & 182 & 23,842 \\
\hline Potatoes (1 lb) & 0.79 & 0.99 & 300 lb & \[
\frac{0.99}{0.79} \times 100=125
\] & 237 & 29,625 \\
\hline Chicken (3-lb fryer) & 3.92 & 4.50 & 100 fryers & \(\frac{4.50}{3.92} \times 100=115\) & \[
\begin{array}{r}
\frac{392}{21} \\
\mathbf{O}_{0} Q_{0}=811
\end{array}
\] & \[
45,080
\] \\
\hline & & Weighted & average of & & \begin{tabular}{l}
\[
\left(\frac{P_{1}}{P_{0}} \times 100\right)\left(P_{0}\right.
\]
\[
\frac{\left(\frac{P_{i}}{P_{0}} \times 100\right)\left(P_{0},\right.}{\sum P_{0} Q_{0}}
\] \\
547 \\
1
\end{tabular} & \[
\begin{aligned}
& \left.\left.2_{0}\right)\right]=98,547 \\
& \\
& \left.0_{0}\right) \\
& \\
& {[16-8]}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{HINTS \& ASSUMPTIONS}

Hint: The average of relatives methods described in this section differ from those in the last section because they use the total dollar volume consumed as a basis for the weighting instead of just the quantities consumed. That's why each of them involves a price \(\times\) quantity calculation. These kinds of indices are used by gasoline refineries and coffee blenders that must use different amounts of raw materials to produce a blended product that is pretty much the same month after month.

\section*{EXERCISES 16.4}

\section*{Self-Check Exercise}

SC 16-5 As a part of the evaluation of a possible acquisition, a New York City conglomerate has collected this sales information:
\begin{tabular}{lrrr}
\hline & \multicolumn{2}{c}{\(\begin{array}{c}\text { Average Annual } \\
\text { Price }\end{array}\)} &
\end{tabular} \(\left.\begin{array}{c}\text { Total Dollar Value } \\
\text { (Thousands) }\end{array}\right]\)
(a) Calculate the unweighted average of relatives price index using 1993 as the base period.
(b) Calculate the weighted average of relatives price index using the dollar value for each product in 1993 as the appropriate set of weights and 1995 as the base year.

\section*{Applications}

16-20 F. C. Linley, owner of the San Mateo Seals, collected information regarding the ticket prices and volume for his franchise over the last 4 years.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{4}{|c|}{Average Annual Price} & \multicolumn{4}{|c|}{Tickets Sold (\(\times 10,000\))} \\
\hline & 1992 & 1993 & 1994 & 1995 & 1992 & 1993 & 1994 & 1995 \\
\hline Box seats & \$6.50 & \$7.25 & \$7.50 & \$8.10 & 26 & 27 & 31 & 28 \\
\hline General admission & 3.50 & 3.85 & 4.30 & 4.35 & 71 & 80 & 89 & 90 \\
\hline
\end{tabular}

Calculate a weighted average of relatives price index for each of the years 1992 through 1995 using 1993 as the base year and for weighting.
16-21 The following table contains information from the raw-material purchase records of a tire manufacturer for the years 1993-1995.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Material} & \multicolumn{3}{|l|}{Average Annual Purchase Price/Ton} & Value of Purchase (thousands) \\
\hline & 1993 & 1994 & 1995 & 1995 \\
\hline Butadiene & \$ 17 & \$ 15 & \$ 11 & \$ 50 \\
\hline Styrene & 85 & 89 & 95 & 210 \\
\hline Rayon cord & 348 & 358 & 331 & 1,640 \\
\hline Carbon black & 62 & 58 & 67 & 630 \\
\hline Sodium pyrophosphate & 49 & 56 & 67 & 90 \\
\hline
\end{tabular}

Calculate a weighted average of relatives price index for each of those 3 years using 1995 for weighting and for the base year.
16-22 A Tennessee public interest group has surveyed the labor cost of automobile repairs in three major Tennessee cities (Knoxville, Memphis, and Nashville). With the following information, construct an unweighted average of relatives price index using the 1991 prices as a base.
\begin{tabular}{lllccc}
\hline Type of Repair & & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 1 - 1 } Replacement of water pump & & \(\$ 35\) & \(\$ 37\) & \(\$ 41\) \\
Replacement of engine valves (6 cyl.) & & 189 & 205 & 216 \\
Wheel balancing & & 26 & 29 & 30 \\
Tune-up (minor) & & 16 & 16 & 18 \\
\hline
\end{tabular}

16-23 Garret Cage, the president of a local bank, is interested in the average levels of total savings and checking accounts for each of the last 3 years. He sampled days from each of these years; using the levels on those days, he determined the following yearly averages:
\begin{tabular}{lrrr}
\hline & \multicolumn{1}{c}{\(\mathbf{1 9 9 3}\)} & \multicolumn{1}{c}{\(\mathbf{1 9 9 4}\)} & \multicolumn{1}{c}{\(\mathbf{1 9 9 5}\)} \\
\hline Saving accounts & \(\$ 1,845,000\) & \(\$ 2,320,000\) & \(\$ 2,089,000\) \\
Checking accounts & 385,000 & 447,000 & 491,000 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives index for each year using 1993 as the base period.
16-24 InfoTech has researched the unit price and total value of memory chips imported into the United States in 1994 and 1996
\begin{tabular}{lccc}
\hline & \multicolumn{2}{c}{ Price } & \\
\begin{tabular}{c}
Total Dollar Value \\
(Thousands)
\end{tabular} \\
\cline { 2 - 3 } \cline { 5 - 5 } Product & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 6}\) & \\
\hline 1-megabyte chips & \(\$ 42\) & \(\$ 65\) & \\
4-megabyte chips & \(\$ 180\) & \(\$ 247\) & \\
\hline 16-megabyte chips & \(\$ 447\) & \(\$ 612\) & \\
\hline
\end{tabular}
(a) Calculate the unweighted average of relatives price index for 1996 using 1994 as the base period.
(b) Calculate the weighted average of relatives price index for 1996 using the dollar value for each product in 1994 as the appropriate set of weights and 1994 as the base year.
16-25 A survey of transatlantic passenger rates for roundtrip flights from New York to various European cities produced these results:
\begin{tabular}{lcrrrrrc}
\hline & \multicolumn{5}{c}{ Average Annual Passenger Rates } & & \begin{tabular}{c}
Passengers \\
\((\times \mathbf{1 , 0 0 0})\)
\end{tabular} \\
\cline { 2 - 5 } \cline { 5 - 6 } Destination & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & & \(\mathbf{1 9 9 5}\) \\
\hline Paris & \(\$ 690\) & \(\$ 714\) & \(\$ 732\) & \(\$ 777\) & \(\$ 783\) & & 2,835 \\
London & 648 & 654 & 675 & 696 & 744 & & 5,175 \\
Munich & 702 & 723 & 753 & 768 & 798 & & 2,505 \\
Rome & 840 & 867 & 903 & 939 & 975 & & 2,145 \\
\hline
\end{tabular}

Calculate the weighted average of relatives index for each of the years 1991 through 1994 using 1995 as the base year and for weighting.
16-26 In a study of group health insurance policies commissioned by the Rhode Island Medical Care Association, the following sample of average individual rates was collected. Using 1994 as the base period, calculate an unweighted average of relatives price index for each year.
\begin{tabular}{lrrrr}
\hline Insurance Group & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Physicians & \(\$ 54\) & \(\$ 65\) & \(\$ 86\) & \(\$ 103\) \\
Students & 39 & 41 & 55 & 76 \\
Government employees & 48 & 61 & 76 & 93 \\
Teachers & 46 & 58 & 75 & 96 \\
\hline
\end{tabular}

16-27 A new motel chain hopes to place its first motel in Boomingville, but before it makes a commitment to start construction, it wants to check the room prices charged nightly by the other motels and hotels. After sending an employee to investigate the prices, the motel chain received data in the following form:
\begin{tabular}{lcccc}
\hline & \multicolumn{3}{c}{ Price per Room per Night } & \\
\cline { 2 - 4 } Hotel & \begin{tabular}{c}
No. Rooms \\
Rented
\end{tabular} \\
\cline { 2 - 4 } & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \\
\hline Happy Hotel & \(\$ 35\) & \(\$ 37\) & \(\$ 42\) & \\
Room Service Rooms & 25 & 26 & 28 & 1,250 \\
Executive Motel & 45 & 45 & 51 & 950 \\
Country Inn & 37 & 38 & 44 & 1,000 \\
Family Fun Motel & 26 & 30 & 31 & 600 \\
\hline
\end{tabular}

Help the company determine the relative prices using 1993 as the base year and using an unweighted average of relatives index.
16-28 The Quick-Stop Gas Station has been selling road maps to its customers for the past 3 years. The maps that are sold are of the nearest city, the county the gas station is in, the state it is in, and the entire United States. From the following table, calculate the weighted average of relatives price indices for 1994 and 1995 using 1993 as the base year.
\begin{tabular}{lrrcc}
\hline & & & & \(\frac{\text { Quantity Sold }}{}\) \\
Maps & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 3}\) \\
\hline City & \(\$ 0.75\) & \(\$ 0.90\) & \(\$ 1.10\) & 1,000 \\
County & 0.75 & 0.90 & 1.00 & 400 \\
State & 1.00 & 1.50 & 1.50 & 1,000 \\
United States & 2.50 & 2.75 & 2.75 & 220 \\
\hline
\end{tabular}

\section*{Worked-Out Answer to Self-Check Exercise}

\section*{SC 16-5}
\begin{tabular}{lccccc}
\hline Product & \(\frac{\mathbf{1 9 9 3}}{\boldsymbol{P}_{\mathbf{0}}}\) & \(\frac{\mathbf{1 9 9 5}}{\boldsymbol{P}_{\mathbf{1}}}\) & \(\frac{\boldsymbol{P}_{\mathbf{1}}}{\boldsymbol{P}_{\mathbf{0}}}\) & \(\boldsymbol{P}_{\mathbf{0}} \boldsymbol{Q}_{\mathbf{0}}\) & \(\left(\frac{\boldsymbol{P}_{\mathbf{1}}}{\boldsymbol{P}_{\mathbf{0}}}\right)\left(\boldsymbol{P}_{\mathbf{0}} \boldsymbol{Q}_{\mathbf{0}}\right)\) \\
\hline Calculators & \(\$ 27\) & \(\$ 20\) & 0.7407 & 150 & 111.11 \\
Radios & 30 & 42 & 1.4000 & 900 & \(1,260.00\) \\
TVs & 157 & 145 & \(\underline{0.9236}\) & \(\underline{1,370}\) & \(\underline{\mathbf{2 , 4 2 0}}\) \\
\hline \(\mathbf{\mathbf { 3 . 6 6 4 3 }}\) & & \\
\hline
\end{tabular}
(a) Index \(=\frac{\sum\left(\frac{P_{i}}{P_{0}} \times 100\right)}{n}=\frac{306.43}{3}=102.1\)
(b) Index \(=\frac{\sum\left(\frac{P_{i}}{P_{0}} \times 100\right)\left(P_{0} Q_{0}\right)}{\sum P_{0} Q_{0}}=\frac{263,644}{2,420}=108.9\)

\subsection*{16.5 QUANTITY AND VALUE INDICES}

\section*{Quantity Indices}

Our discussion of index numbers up to now has concentrated on

\section*{Using a quantity index} price indices so that it would be easier to understand the general concepts. However, we can also use index numbers to describe quantity and value changes. Of these two, we use quantity indices more often. The Federal Reserve Board calculates quarterly indices in its monthly publication The Index of Industrial Production (IIP). The IIP measures the quantity of production in the areas of manufacturing, mining, and utilities. It is computed using a weighted average of relatives quantity index in which the fixed weights (prices) and the base quantities are measured from 1977.

In times of inflation, a quantity index provides a more reliable measure of actual output of raw materials and finished goods than a corresponding value index does. Similarly, agricultural production is

Advantages of a quantity index best measured using a quantity index because it eliminates misleading effects due to fluctuating prices. We often use a quantity index to measure commodities that are subject to considerable price variation.

Any of the methods discussed in previous sections of this chapter to determine price indices can be used to calculate quantity indices. When we computed price indices, we used quantities or values as weights. Now that we want to compute quantity indices, we use prices or values as weights. Let's consider the construction of a weighted average of relatives quantity index.

The general process for computing a weighted average of relatives quantity index is the same as that used to compute a price index. Equation 16-9 describes the formula for this type of quantity index. In this equation, value is determined by multiplying quantity by price.

Computing a weighted average of relatives
quantity index The value associated with each quantity is used to weight the elements in the composite.

Weighted Average of Relatives Quantity Index
\[
\begin{equation*}
\frac{\sum\left[\left(\frac{Q_{i}}{Q_{0}} \times 100\right)\left(Q_{n} P_{n}\right)\right]}{\sum Q_{n} P_{n}} \tag{16-9}
\end{equation*}
\]
where
- \(Q_{i}=\) quantities for the current period
- \(Q_{0}=\) quantities for the base period
- \(P_{n}\) and \(Q_{n}=\) quantities and prices that determine values we use for weights. In particular, \(n=0\) for the base period, \(n=1\) for the current period, and \(n=2\) for a fixed period that is not a base or current period.

Consider the problem in Table 16-12. We use Equation 16-9 to compute a weighted average of relatives quantity index. The value \(Q_{n} P_{n}\) is determined from the base period and is therefore symbolized \(Q_{0} P_{0}\).

TABLE 16-12 COMPUTATION OF A WEIGHTED AVERAGE OF RELATIVES QUANTITY INDEX

\section*{Value Indices}

A value index measures general changes in the total value of some A disadvantage of a value variable. Because value is determined both by price and quantity, a value index actually measures the combined effects of price and quantity changes. The principal disadvantage of a value index is that it does not distinguish between the effects of these two components.

Nevertheless, a value index is useful in measuring overall changes. Medical insurance companies, for example, often cite the sharp increase in the value of payments awarded in medical malpractice suits as the primary reason for discontinuing malpractice insurance. In this situation, value involves both a greater number of payments and larger cash amounts awarded.

\section*{HINTS \& ASSUMPTIONS}

A quantity index is often used in production decisions because it avoids the effects of inflation and price fluctuations due to market dynamics. Hint: Think about your pizza delivery service, whose total dollar revenue may decrease during periods of high use of discount coupons. Because the company expects the quantity of pizzas to increase as a result of discounting, a quantity index is more useful in making decisions about reordering cheese, toppings, and dough and scheduling delivery people.

\section*{EXERCISES 16.5}

\section*{Self-Check Exercise}

SC 16-6 William Olsen, owner of a real estate office, has collected the following sales information for each of the firm's sales personnel
\begin{tabular}{lcccc}
\hline & \multicolumn{4}{c}{ Value of Sales \((\times \$ \mathbf{1 , 0 0 0})\)} \\
\cline { 2 - 5 } Salesperson & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Thompson & 490 & 560 & 530 & 590 \\
Alfred & 630 & 590 & 540 & 680 \\
Jackson & 760 & 790 & 810 & 840 \\
Blockard & 230 & 250 & 240 & 360 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives value index for each year using 1992 as the base period.

\section*{Basic Concepts}

16-29 Explain the principal disadvantage in using value indices.
16-30 What is the major difference between a weighted aggregates index and a weighted average of relatives index?

\section*{Applications}

16-31 The financial VP of the American division of Banshee Camera Company is examining the company's cash and credit sales over the last 5 years.
\begin{tabular}{lccccc}
\hline & \multicolumn{5}{c}{ Value of Sales \((\times \$ \mathbf{1 0 0 , 0 0 0})\)} \\
\cline { 2 - 6 } & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Credit & 5.66 & 6.32 & 6.53 & 6.98 & 7.62 \\
Cash & 2.18 & 2.51 & 2.48 & 2.41 & 2.33 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives value index for each year using 1991 as the base period.
16-32 A Georgia firm manufacturing heavy equipment has collected the following production information about the company's principal products. Calculate a weighted aggregates quantity index using the quantities and prices from 1995 as the bases and the weights.
\begin{tabular}{lccccc}
\hline & \multicolumn{3}{c}{} & & \begin{tabular}{c}
Cost of Production/ \\
Unit (thousands)
\end{tabular} \\
\cline { 2 - 3 } Product & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & & \(\mathbf{1 9 9 5}\) \\
\hline River barges & 92 & 118 & 85 & & \(\$ 33\) \\
Railroad gondola cars & 456 & 475 & 480 & & 56 \\
Off-the-road trucks & 52 & 56 & 59 & & 116 \\
\hline
\end{tabular}

16-33 Arkansas Electronics has marketed three basic types of calculators: for the business sector, the scientific sector, and a simple model capable of basic computational functions. The following information describes unit sales for the past 3 years:
\begin{tabular}{lrrrr}
\hline & \multicolumn{3}{c}{ Number Sold \((\times \mathbf{1 0 0 , 0 0 0})\)} & \\
\cline { 3 - 4 } Model & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \\
\hline Price \\
\hline Business & 11.85 & 13.32 & 15.75 & \\
Scientific & 10.32 & 11.09 & 10.18 & \\
\hline Basic & 7.12 & 7.48 & 7.89 & \\
\hline
\end{tabular}

Calculate the weighted average of relatives quantity indices using the prices and quantities from 1995 to compute the value weights with 1993 as the base year.
16-34 In preparation for an appropriations hearing, the police commissioner of a Maryland town has collected the following information:
\begin{tabular}{lrrrr}
\hline Type of Crime & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Assault and rape & 110 & 128 & 134 & 129 \\
Murder & 30 & 45 & 40 & 48 \\
Robbery & 610 & 720 & 770 & 830 \\
Larceny & 2,450 & 2,630 & 2,910 & 2,890 \\
\hline
\end{tabular}

Calculate the unweighted average of relatives quantity index for each of these years using 1995 as the base period.
16-35 Recycled Sounds has collected the following sales information for five different styles of music. Data are presented in hundreds of compact discs sold per year.
\begin{tabular}{lcccccc}
\hline & \multicolumn{6}{c}{ Number of Sales } \\
\cline { 2 - 7 } Type & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\hline Soft rock & 642.4 & 721.5 & 842.6 & 895.3 & 905.6 & 951.2 \\
Hard rock & 325.8 & 347.8 & 398.5 & 406.3 & 418.7 & 426.4 \\
Classical & 118.3 & 123.6 & 174.3 & 176.2 & 174.9 & 185.3 \\
Jazz & 125.6 & 122.4 & 137.8 & 149.6 & 172.9 & 205.4 \\
Alternative & 208.7 & 252.7 & 405.9 & 608.9 & 942.7 & 987.4 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives quantity index for each year using 1991 as the base year.

16-36 After encouraging a chemical company to make its employees handle certain dangerous chemicals with protective gloves, the Public Health Agency is now interested in seeing whether this ruling has had its effect in curbing the number of cancer deaths in that area. Before this rule went into effect, cancer was widespread not only among the workers at the company, but also among their families, close friends, and neighbors. The following data show what these numbers were in 1973 before the ruling and what they were after the ruling in 1993.
\begin{tabular}{cccc}
\hline Age Group & \begin{tabular}{c}
No. in Population \\
for 1973
\end{tabular} & Deaths in 1973 & Deaths in 1993 \\
\hline\(<4\) yr & 5,000 & 400 & 125 \\
\(4-15 \mathrm{yr}\) & 4,000 & 295 & 200 \\
\(16-35 \mathrm{yr}\) & 24,000 & 1,230 & 1,000 \\
\(36-60 \mathrm{yr}\) & 19,000 & 700 & 450 \\
\(>60 \mathrm{yr}\) & 7,000 & 1,100 & 935 \\
\hline
\end{tabular}

Use a weighted aggregates index of the number of deaths using the 1973 population size as the weights to help the Public Health Agency understand what has happened to the cancer rate.
16-37 A veterinarian has noticed she has treated a large number of pets this past winter. She wonders whether this number was spread across the 3 winter months evenly or whether she treated more pets in any certain month. Using December as the base period, calculate the weighted average of relatives quantity indices for January and February.
\begin{tabular}{lrrrlc}
\hline \multicolumn{4}{c}{ Number Treated } & & \multicolumn{2}{c}{ Price per Visit } \\
\hline & Dec. & Jan. & Feb. & & Average for 3 Months \\
\hline Cats & 100 & 200 & 95 & & \(\$ 55\) \\
Dogs & 125 & 75 & 200 & & 65 \\
Parrots & 15 & 20 & 15 & & 85 \\
Snakes & 10 & 5 & 5 & & 100 \\
\hline
\end{tabular}

\section*{Worked-Out Answer to Self-Check Exercise}

\subsection*{16.6 ISSUES IN CONSTRUCTING AND USING INDEX NUMBERS}

In this chapter, we have used examples with small samples and short time spans. Actually, index numbers are computed for composites with many elements, and they cover long periods of time. This produces relatively accurate measures of changes. However, even the best index numbers are imperfect.

\section*{Problems in Construction}

Although there are many problems in constructing index numbers, there are three principal areas of difficulty:
1. Selecting an item to be included in a composite. Almost all indices are constructed to answer a particular question. Thus, the items included in the composite depend on the question. The

Imperfections in index numbers Consumer Price Index asks, "How much has the price of a certain group of items purchased by moderate-income urban Americans changed from one period to another?" From this question, we know that only the items that reflect the purchases of moderate-income urban families should be included in the composite. We must realize that the Consumer Price Index will less accurately reflect price changes of goods purchased by low or high-income rural families than by moderateincome urban families.
2. Selecting the appropriate weights. In the previous sections of this chapter, we emphasized that the weights selected should represent the relative importance of the various

\section*{Which items should be} included in a composite? elements. Unfortunately, what is appropriate in one period may become inappropriate in a short period of time. This must be kept in mind when comparing values of indices computed at different times.
3. Selecting the base period. Typically, the base period selected What is a normal base should be a normal period, preferably a fairly recent period. "Normal" means that the period should not be at either the peak or

\section*{Need for selection of appropriate weights} the trough of a fluctuation. One technique to avoid using an irregular period is to average the values of several consecutive periods to determine a normal value. The U.S. Bureau of Labor Statistics uses the average of 1982, 1983, and 1984 consumption patterns to compute the Consumer Price Index. Management often tries to select a base period that coincides with the base period for one or more of the major indices, such as the Index of Industrial Production. Use of a common base allows management to relate its index to the major indices.

\section*{Caveats in Interpreting an Index}

In addition to these problems in constructing indices, there are several common errors made in interpreting indices:
1. Generalization from a specific index. One of the most common misinterpretations of an index is generalization of the results. The Consumer Price Index measures how prices of a particular

Problems with generalizing from an index combination of goods purchased by moderate-income urban Americans have changed. Despite its specific definition, the Consumer Price Index is often described as reflecting the cost of living for
all Americans. Although it is related to the cost of living to some degree, to say that it measures the change in the cost of living is not correct.
2. Lack of general knowledge regarding published indices. Part of the problem leading to the first error is lack of knowledge of what the various published indices measure. All the well-known

Additional knowledge
needed indices are accompanied by detailed statements concerning measurement. Management should become familiar with exactly what each index measures
3. Effect of time span on an index. Factors related to an index tend to change with time. In particular, the appropriate weights tend to change. Thus, unless the weights are changed accordingly, the index becomes less reliable.
4. Quality changes. One common criticism of index numbers is that Lack of measurement they do not reflect changes in the quality of the items they measure. If the quality has indeed changed, then the index either understates

Time affects an index of quality or overstates the price-level changes. For example, if we construct an index number to describe price changes in pocket calculators over the last decade, the resulting index would understate the actual change that is due to rapid technological improvements in calculators.

\section*{EXERCISES 16.6}

\section*{Basic Concepts}

16-38 What is the effect of time on the weighting of a composite index?
16-39 List several preferences for the choice of base period.
16-40 Describe a technique used to avoid the use of an irregular period for a base.
16-41 Is it correct to say that the Consumer Price Index measures the cost of living?
16-42 What problems exist with index numbers if the quality of an item changes?

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 16: Index Numbers "Lee, help me figure out these shipping charges." Walter Azko was looking at a contract about half an inch thick. "The way we do our buying, the manufacturers are responsible for delivering an order to the airport and then an international shipping agent arranges for all the paperwork and loading. Sometimes it feels as if I'm paying the agents more for shipping the goods than 1 pay the manufacturer for making them. This contract right here is a good example. They want more than 10 percent more than I paid them for a similar shipment last quarter. When I called them, they gave some excuse about the cost of living going up."
"But not by 10 percent," Lee interjected.
"No, and the price of jet fuel went down, so the air-freight bill should be less."
"Well, at least you don't have to worry about exchange rates," Lee said, glancing over the contract. "This says you're to make payment in U.S. dollars."
"That's true-we do send them a check in dollars and they clear it through the local branch of an American bank. Even though the dollar isn't quite the universal currency it once was, people still think it's less risky than many other currencies. But once the agent has cashed the check, they still have to exchange dollars for local currency. They can't pay their warehouse workers in dollars. So, even though the price is stated in dollars, I can tell that I get a better deal when the dollar is 'strong' against other currencies."
"The cost of living is one factor, the cost of aviation fuel is another, and the exchange rate is the third. Does that cover everything?"
"I suppose so," Walter replied. "But with three things going up and down, it's hard to bargain with the agent and tell him I think they're too high."
"I think I have a way I can help," Lee offered cheerfully. "Can I take the afternoon to go down to Denver and talk with the international department of our bank?"

Study Questions: What solution is Lee going to propose as a way to evaluate the proposed price for the shipping agent's contract? What information will Lee be looking for in the bank's international department?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 16}

Consumer Price Index The U.S. government prepares this index, which measures changes in the prices of a representative set of consumer items.
Fixed-Weight Aggregates Method To weight an aggregates index, this method uses as weights quantities consumed during some representative period.
Index of Industrial Production Prepared monthly by the Federal Reserve Board, the IIP measures the quantity of production in the areas of manufacturing, mining, and utilities.
Index Number A ratio that measures how much a variable changes over time.
Laspeyres Method To weight an aggregates index, this method uses as weights the quantities consumed during the base period.
Paasche Method In weighting an aggregates index, the Paasche method uses as weights the quantities consumed during the current period.
Percentage Relative Ratio of a current value to a base value with the result multiplied by 100 .
Price Index Compares levels of prices from one period to another.
Quantity Index A measure of how much the number or quantity of a variable changes over time.
Unweighted Aggregates Index Uses all the values considered and assigns equal importance to each of these values.
Unweighted Average of Relatives Method To construct an index number, this method finds the ratio of the current price to the base price for each product, adds the resulting percentage relatives, and then divides by the number of products.
Weighted Aggregates Index Using all the values considered, this index assigns weights to these values. Weighted Average of Relatives Method To construct an index number, this method weights by importance the value of each element in the composite.

\section*{Equations Introduced in Chapter 16}

16-1 Unweighted aggregates quantity index \(=\frac{\sum Q_{i}}{\sum Q_{0}} \times 100\)
To compute an unweighted aggregates index, divide the sum of the currentyear quantities of the elements in the index by the sum of the base-year quantities and multiply the result by 100 .
\[
\begin{equation*}
\text { Weighted aggregates price index }=\frac{\sum P_{i} Q}{\sum P_{0} Q} \times 100 \tag{p. 865}
\end{equation*}
\]

For a weighted aggregates price index using quantities as weights, obtain the weighted sum of the current-year prices by multiplying each price in the index by its associated quantity and summing the results. Then divide this weighted sum by the weighted sum of the base-year prices and multiply the result by 100 .
\[
\begin{equation*}
\text { Laspeyres index }=\frac{\sum P_{i} Q_{0}}{\sum P_{0} Q_{0}} \times 100 \tag{p. 866}
\end{equation*}
\]

The Laspeyres price index is a weighted aggregates price index using the base-year quantities as weights.

To get the Paasche price index, we compute a weighted aggregates price index using the current-year quantities for weights.
\[
\begin{equation*}
\text { Paasche index }=\frac{\sum P_{i} Q_{i}}{\sum P_{0} Q_{i}} \times 100 \tag{p. 868}
\end{equation*}
\]
\[
\begin{equation*}
\text { Fixed-weight aggregates price index }=\frac{\sum P_{i} Q_{2}}{\sum P_{0} Q_{2}} \times 100 \tag{p. 869}
\end{equation*}
\]

The fixed-weight aggregates price index is a weighted aggregates price index whose weights are the quantities from a representative year, not necessarily either the base year or the current year.

We compute an unweighted average of relatives price index by multiplying the ratios of current prices to base prices by 100 , summing the results, and then dividing by the number of elements used in the index.
nce period and divide the weighted sum of relative prices by the sum of the weights. If we use the base year values as weights, we get
\[
\begin{equation*}
\frac{\sum\left[\left(\frac{P_{i}}{P_{0}} \times 100\right)\left(P_{0} Q_{0}\right)\right]}{\sum P_{0} Q_{0}} \tag{p. 876}
\end{equation*}
\]
which is the same as the Laspeyres price index.

16-9
\[
\begin{equation*}
\text { Weighted average of relatives quantity index }=\frac{\sum\left[\left(\frac{Q_{i}}{Q_{0}} \times 100\right)\left(Q_{n} P_{n}\right)\right]}{\sum Q_{n} P_{n}} \tag{p. 881}
\end{equation*}
\]

In this quantity index, we weight the relative quantities by the values for a fixed reference period and divide the weighted sum by the sum of the weights.

\section*{Review and Application Exercises}

16-43 Kamischika Motorcycles began producing three models of mopeds in 1993. For the 3 years 1993 through 1995, sales were as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multicolumn{3}{|c|}{Average Annual Price} & \multicolumn{3}{|c|}{Units Sold (\(\times \mathbf{1 0 , 0 0 0)}\)} \\
\hline & 1993 & 1994 & 1995 & 1993 & 1994 & 1995 \\
\hline I & \$139 & \$155 & \$149 & 3.7 & 4.1 & 7.6 \\
\hline II & 169 & 189 & 189 & 2.3 & 4.6 & 8.1 \\
\hline III & 199 & 205 & 219 & 1.6 & 2.1 & 3.4 \\
\hline
\end{tabular}
(a) Calculate the weighted average of relatives price indices using the prices and quantities from 1995 as the bases and weights.
(b) Calculate the weighted average of relatives price indices using the total dollar values for each year as the weights and 1995 as the base year.

16-44 These data indicate the value (in millions of dollars) of the principal products exported by a developing country. Determine unweighted aggregate value indices for 1993 and 1995 based on 1991.
\begin{tabular}{llrrr}
\hline Commodity & & \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 5 - 5 } Coffee & & \(\$ 834\) & \(\$ 1,436\) & \(\$ 1,321\) \\
Sugar & & 96 & 118 & 122 \\
Copper & & 241 & 258 & 269 \\
Zinc & & 142 & 125 & 106 \\
\hline
\end{tabular}

16-45 In a survey of U.S. coal production for 4 years, the following information was collected. Using the value of the 1992 production for weighting and 1992 as the base year, calculate the weighted average of relatives quantity index for each of the 4 years.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Type of Coal} & \multicolumn{4}{|c|}{Production
(millions of tons)} & \[
\begin{gathered}
\hline \text { Value } \\
\text { (\$ millions) }
\end{gathered}
\] \\
\hline & 1989 & 1990 & 1991 & 1992 & 1992 \\
\hline Anthracite & 7.4 & 6.8 & 7.1 & 7.2 & 90 \\
\hline Bituminous & 595 & 580 & 601 & 625 & 5,050 \\
\hline
\end{tabular}

16-46 A survey by the National Dairy Products Association produced the following information. Construct a Laspeyres index with 1991 as the base period.
\begin{tabular}{lcccc}
\hline & & \multicolumn{2}{c}{ Average Price per Unit } &
\end{tabular} \(\left.\begin{array}{c}\text { Total Quantity } \\
\text { (billions) }\end{array}\right]\)

16-47 Robert Barry, Ltd., a garment consulting firm, has examined the pricing trends of clothing items for a client. This table contains the results of the survey (shown in unit prices):
\begin{tabular}{lcccc}
\hline Products & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\hline Jeans & \(\$ 13.00\) & \(\$ 13.00\) & \(\$ 15.00\) & \(\$ 15.00\) \\
Jackets & 19.00 & 19.50 & 22.00 & 24.00 \\
Shirts & 12.00 & 11.00 & 12.00 & 13.00 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives index for each year using 1992 as the base period.
16-48 What problem would exist in comparing price indices describing computer sales over the past few decades?
16-49 The VP of sales for the National Hospital Supply Company conducted a survey of travel expenses incurred by selected salespeople. Of particular interest were the following data regarding expenditures for taxis and the price paid per mile.
\begin{tabular}{crrrr}
\hline & \multicolumn{3}{c}{ Expenditures on Taxis } & \begin{tabular}{c}
Average Price/Mile \\
Salespeople
\end{tabular} \\
\cline { 2 - 4 } \(\mathbf{1 9 9 1}\) & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 1}\) \\
\hline A & \(\$ 704\) & \(\$ 985\) & \(\$ 1,391\) & 0.52 \\
B & 635 & 875 & 1306 & 0.55 \\
C & 752 & 1,023 & 1,523 & 0.59 \\
D & 503 & 696 & 1,106 & 0.56 \\
E & 593 & 781 & 1,215 & 0.55 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives index for each year using 1993 as the base period.
16-50 This information describes the unit sales of a bicycle shop for 3 years:
\begin{tabular}{lcccc}
\hline & \multicolumn{3}{c}{ Number Sold } & Price \\
\cline { 2 - 4 } Model & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 3}\) \\
\hline Sport & 45 & 48 & 56 & \(\$ 89\) \\
Touring & 64 & 67 & 71 & 104 \\
Cross-country & 28 & 35 & 27 & 138 \\
Sprint & 21 & 16 & 28 & 245 \\
\hline
\end{tabular}

Calculate the weighted average of relatives quantity indices using the prices and quantities from 1993 to compute the value weights, with 1993 as the base year.
16-51 The Dow Jones Industrial Average (DJIA) is an index number used by many people as a proxy for describing the overall strength of prices on the New York Stock Exchange. It is based on the sum of the prices of single shares of the common stock of 30 large companies traded on the exchange. This sum is then adjusted to account for splits and changes in the companies whose shares make up the index.
(a) Two of the stocks in the index are Coca Cola, which was trading around \(\$ 44\) per share in late July 1993, and Westinghouse, which was then trading around \(\$ 17\) per share. What information does the DJIA ignore by simply adding single-share prices? Does a 10 -percent rise in the price of Westinghouse stock have the same effect as a 10-percent rise in the share price of Coca Cola?
(b) The total annual return of U.S. common stocks has been about 11 percent, as an average, over long time periods. But stockbrokers sometimes choose low points in the market (selected with hindsight) to express gains over time. At the end of 1992, the DJIA stood at 3301. Calculate an index number for how well stocks have done recently, based on the bottom of the market after the October 1987 crash, when the DJIA stood at 1739. Compare this with an index number based on the August 1987 high point of the market, when the DJIA was 2722.
16-52 Pem Jenkins runs a lumberyard and has the following information on costs for 3 years:
\begin{tabular}{|c|c|c|c|}
\hline Costs & 1991 & 1993 & 1995 \\
\hline Wages & \$24,378 & \$36,421 & \$37,613 \\
\hline Lumber & 1,816 & 2,019 & 2,136 \\
\hline Utilities & 638 & 681 & 701 \\
\hline
\end{tabular}

Construct an unweighted aggregates index for production costs in 1991 and 1995 using 1993 as the base year.
16-53 An Ohio consumer protection agency has surveyed the price changes of a meatpacking company. The following table contains the average annual per-pound prices for a sample of the firm's products. Construct an unweighted average of relatives price index using the prices from 1993 as the base period.
\begin{tabular}{llrrr}
\hline Products & & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 5 - 6 } Sirloin & & \(\$ 1.69\) & \(\$ 1.81\) & \(\$ 1.85\) \\
Chuck & & 0.91 & 1.15 & 1.24 \\
Bologna & & 1.45 & 1.58 & 1.53 \\
Hot dogs & & 0.99 & 1.03 & 1.01 \\
Rib eyes & & 2.39 & 2.61 & 2.56 \\
\hline
\end{tabular}

16-54 Why must one exercise caution in selecting a base period?

16-55 Tameka Robinson, a purchasing agent, has compiled the following price information. Using 1992 as the base period, calculate the unweighted aggregates price index for 1993,1994, and 1995.
\begin{tabular}{llcccc}
\hline Material & & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 5 - 6 } Aluminum & & \(\$ 0.96\) & \(\$ 0.99\) & \(\$ 1.03\) & \(\$ 1.06\) \\
Steel & & 1.48 & 1.54 & 1.55 & 1.59 \\
Brass tubing & & 0.21 & 0.25 & 0.26 & 0.31 \\
Copper wire & & 0.06 & 0.08 & 0.07 & 0.09 \\
\hline
\end{tabular}

16-56 AUSDA survey of grain production for selected areas in the United States yielded this information:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Product} & \multicolumn{5}{|c|}{Quantities Produced (millions of bushels)} & \multirow[t]{2}{*}{Price per Bushel 1991} \\
\hline & 1991 & 1992 & 1993 & 1994 & 1995 & \\
\hline Wheat & 610 & 620 & 640 & 630 & 650 & \$ 4.40 \\
\hline Corn & 390 & 390 & 410 & 440 & 440 & 3.60 \\
\hline Oats & 100 & 90 & 120 & 130 & 150 & 1.20 \\
\hline Rye & 10 & 20 & 10 & 10 & 20 & 24.00 \\
\hline Barley & 160 & 150 & 120 & 190 & 180 & 2.10 \\
\hline Soybeans & 130 & 140 & 160 & 120 & 130 & 5.60 \\
\hline
\end{tabular}

Using the prices from 1991 for weights, calculate the weighted aggregates quantity indices for each year.
16-57 John Pringle, an international mineral trader, has collected the following information on prices and quantities of minerals exported by an African country for the years 1994 and 1995. Calculate a Paasche index for 1995 using 1994 as the base period.
\begin{tabular}{lccccc}
\hline & & Quantity (million tons) & & \multicolumn{2}{c}{ Price (per lb) } \\
Mineral & & \(\mathbf{1 9 9 5}\) & & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) \\
\cline { 1 - 1 } \cline { 5 - 6 } \cline { 5 - 6 } & 38.1 & & \(\$ 0.59\) & \(\$ 0.63\) \\
Copper & & 53.5 & & 0.17 & 0.16 \\
Lead & & 86.4 & & 0.21 & 0.23 \\
\hline Zinc & & & & & \\
\hline
\end{tabular}

16-58 A European automobile manufacturer has compiled the following information on car sales of one U.S. manufacturer:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Size} & \multicolumn{3}{|l|}{Average Annual Price (hundreds)} & \multicolumn{3}{|c|}{Units Sold (\(\times 1,000\))} \\
\hline & 1991 & 1993 & 1995 & 1991 & 1993 & 1995 \\
\hline Subcompact & \$62 & \$68 & \$ 70 & 32 & 65 & 86 \\
\hline Compact & 76 & 78 & 80 & 45 & 68 & 73 \\
\hline Sedan & 90 & 98 & 106 & 462 & 325 & 386 \\
\hline
\end{tabular}
(a) Calculate the weighted average of relatives price indices using the prices and quantities from 1993 as the bases and weights.
(b) Calculate the weighted average of relatives price indices using the total dollar values for each year as the weights and 1993 as the base year.

16-59 Sylvia Jensen, cost analyst for a major appliance firm, has compiled price data for four of the company's products. The figures (given in unit prices) for 1993 through 1996 are shown in the table.
\begin{tabular}{llllll}
\hline Products & & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\cline { 5 - 7 } \cline { 5 - 6 } Dishwasher & & \(\$ 219\) & \(\$ 241\) & \(\$ 272\) & \(\$ 306\) \\
Washing machine & & 362 & 385 & 397 & 413 \\
Dryer & & 229 & 241 & 261 & 275 \\
Refrigerator & & 562 & 580 & 598 & 625 \\
\hline
\end{tabular}

Using 1993 as the base period, express the prices in 1994,1995, and 1996 in terms of an unweighted aggregates index.
16-60 The budget director for a New England college wants to keep track of the budget that each engineering department requires to recruit new graduate students. He has received the following data from four departments.
\begin{tabular}{lllll}
\hline & & \multicolumn{3}{c}{ Total Expenditures } \\
Department & & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\cline { 5 - 6 } Mechanical & & \(\$ 3,642\) & \(\$ 3,891\) & \(\$ 4,253\) \\
Chemical & & 3,888 & 4,052 & 4,425 \\
Biomedical & & 4,251 & 4,537 & 4,724 \\
Electrical & & 3,764 & 4,305 & 4,297 \\
\hline
\end{tabular}

Calculate an unweighted average of relatives index for each year using 1994 as the base period.
16-61 In 1991, the average weekly wage for a certain group of households was \(\$ 422.60\). In 1996, the average weekly wage for the same group was \(\$ 521.35\). The Consumer Price Index in 1996 using 1991 as a base, was 152. Calculate the "real" average weekly wage for this group in 1996.
16-62 A national shopping survey was conducted to study the average weekly buying habits of a typical family in 1992 and 1996. The data collected are as follows:
\begin{tabular}{lcccccc}
\hline & \multicolumn{2}{c}{1992} & & \multicolumn{2}{c}{1996} \\
Items & & Unit Price & Quantity & & Unit Price & Quantity \\
\cline { 1 - 1 } \cline { 5 - 7 } Cheese (8 oz) & & \(\$ 1.19\) & 2 & & \(\$ 2.09\) & 1 \\
Bread (1 loaf) & & 0.79 & 3 & & 1.09 & 3 \\
Eggs (1 doz) & & 0.84 & 2 & & 1.35 & 1 \\
Milk (1 gal) & & 1.36 & 2 & & 2.39 & 2 \\
\hline
\end{tabular}

Calculate a Paasche index for 1996 using 1992 as the base period.
16-63 Snow Mountain has several different ticket prices, including discounts for people who own property in the area, handicapped skiers, and snowboarders. The average number of tickets sold per ski-day was as follows:
\begin{tabular}{lrrrrr}
\hline & & \(\mathbf{1 9 9 3}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 5}\) & \(\mathbf{1 9 9 6}\) \\
\cline { 5 - 7 } \cline { 5 - 6 } Local & & 73 & 76 & 112 & 107 \\
Snowboard & & 101 & 129 & 163 & 162 \\
Disabled & & 163 & 189 & 271 & 268 \\
Regular price & & 183 & 210 & 303 & 298 \\
\hline
\end{tabular}

Calculate the unweighted average of relatives quantity index for each of these years using 1996 as the base period.
16-64 Francis Hill, president of an agricultural trade consulting company, has obtained the following information on grain (prices and sales) exported by the United States.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Product} & \multicolumn{4}{|c|}{Amount Exported (in millions of tons)} & Price per Ton \\
\hline & 1992 & 1993 & 1994 & 1995 & 1994 \\
\hline Wheat & 4.6 & 6.7 & 4.0 & 5.2 & \$2,680 \\
\hline Feed grains & 4.9 & 6.2 & 1.8 & 1.2 & 2,270 \\
\hline Soybeans & 4.7 & 5.7 & 1.2 & 1.8 & 3,430 \\
\hline
\end{tabular}

Compute the weighted aggregates quantity indices for each year using the prices for 1994 as weights and 1994 as the base year.
16-65 Andrea Graham, a budget analyst for a long-distance phone company, has collected price and sales volume data for phone calls from New York to Boston. The data for each of the three rate schedules are as follows:
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Rate (times)} & \multicolumn{2}{|l|}{Price per Call (per minute)} & Total \# Calls \\
\hline & 1991 & 1996 & (millions) 1991 \\
\hline Day (8 A.м. - 5 P.м.) & \$0.17 & \$0.19 & 5.2 \\
\hline Evening (5 P.m - 11 P.m.) & 0.13 & 0.16 & 8.7 \\
\hline Night (11 P.m. - 8 A.m.) & 0.09 & 0.12 & 10.3 \\
\hline
\end{tabular}

Construct a Laspeyres price index using 1991 as the base period.
16-66 The Reliable Bus Company provides transportation for its own town, and in addition, it sells buses to neighboring towns. The company has collected the following data in order to analyze its sales for years 1992, 1994, and 1996.
\begin{tabular}{lccccc}
\hline & \multicolumn{3}{c}{\begin{tabular}{c}
Average Selling \\
Price per Bus
\end{tabular}} & \begin{tabular}{c}
Number of \\
Buses Sold
\end{tabular} \\
Town & \(\mathbf{1 9 9 2}\) & \(\mathbf{1 9 9 4}\) & \(\mathbf{1 9 9 6}\) & & \(\mathbf{1 9 9 4}\) \\
\cline { 1 - 1 } & \(\$ 21,206\) & \(\$ 24,210\) & \(\$ 26,235\) & & 17 \\
Hampton & & 17,129 & 19,722 & 22,109 & \\
Middletown & 25,723 & 28,657 & 32,481 & & 21 \\
\hline
\end{tabular}

Construct a Laspeyres index using 1994 as the base period.
16-67 A local fast-food restaurant wants to examine how sales are changing for each of its four most popular menu items. The data for the years 1993 through 1996 follow.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Menu Item} & \multicolumn{4}{|c|}{Unit Price} & \multicolumn{4}{|c|}{Quantity Sold (millions)} \\
\hline & 1993 & 1994 & 1995 & 1996 & 1993 & 1994 & 1995 & 1996 \\
\hline Hamburger & \$0.58 & \$0.62 & \$0.69 & \$0.79 & 2.1 & 2.5 & 2.0 & 1.8 \\
\hline Chicken sandwich & 1.89 & 2.09 & 2.18 & 2.25 & 1.5 & 1.2 & 1.8 & 2.1 \\
\hline French fries & 0.84 & 0.89 & 0.99 & 0.99 & 2.9 & 2.7 & 2.3 & 2.4 \\
\hline Onion rings & 0.91 & 0.99 & 1.14 & 1.19 & 3.1 & 2.4 & 2.0 & 1.6 \\
\hline
\end{tabular}

Calculate a fixed-weight aggregates index for each year using 1993 prices as the base and the 1996 quantities as the fixed weights.
16-68 Use the data from Exercise 16-67 to calculate a Paasche index for each year using 1995 as the base period.

\section*{Flow Chart: Index Numbers}

\section*{Decision Theory}

\section*{LEARNING OBJECTIVES}

After reading this chapter, you can understand:
- To learn methods for making decisions under uncertainty
- To use expected value and utility as decision criteria
- To understand why additional information is useful and to calculate its value
- To help decision makers supply needed probability values even when they do not understand probability theory
- To learn how to use decision trees to structure and analyze complex decisionmaking problems

\section*{CHAPTER CONTENTS}

\subsection*{17.1 The Decision Environment 898}
17.2 Expected Profit under Uncertainty:
Assigning Probability Values 899
17.3 Using Continuous Distributions: Marginal Analysis 908
17.4 Utility as a Decision Criterion 917
17.5 Helping Decision Makers Supply the Right Probabilities 921
17.6 Decision-Tree Analysis 925
- Statistics at Work 938
- Terms Introduced in Chapter 17939
- Equations Introduced in Chapter 17939
- Review and Application Exercises 940

Acme Fruit and Produce Wholesalers buys tomatoes, then sells them to retailers. Acme currently pays \(\$ 20\) a box. Tomatoes sold on the same day bring \(\$ 32\) a box. Extremely perishable, tomatoes not sold on the first day are worth only \(\$ 2\) a box. Acme has calculated that the mean past daily sales is 60 boxes and that the standard deviation of past daily sales is 10 boxes. Using the techniques introduced in this chapter, we can tell Acme how many boxes to order each day to maximize profits.

In Section 5-3 (beginning on page 218), we introduced you to the idea of using expected value in decision making. There we worked through a simple problem involving the purchase of strawberries for resale. That kind of problem is part of a set of problems that can be solved using the techniques developed in this chapter.

In the last 35 years, managers have used newly developed

\section*{What is decision theory?} statistical techniques to solve problems for which information was incomplete, uncertain, or in some cases almost completely lacking. This new area of statistics has a variety of names: statistical decision theory, Bayesian decision theory (after the Reverend Thomas Bayes, whom we introduced in Chapter 4), or simply decision theory. These names are used interchangeably.

When we did hypothesis testing, we had to decide whether to accept or to reject the stated hypothesis. In decision theory, we must decide among alternatives by taking into account the monetary repercussions of our actions. A manager who must select from among a number of available investments should consider the profit or loss that might result from each alternative. Applying decision theory involves selecting an alternative and having a reasonable idea of the economic consequences of choosing that action.

\subsection*{17.1 THE DECISION ENVIRONMENT}

Decision theory can be applied to problems whether the time span is 5 years or 1 day, whether they involve financial management or a plant assembly line, and whether they are in the public or private sector. Regardless of the environment, most of these problems have common characteristics. As a result, decision makers approach their solutions in fairly consistent ways. The elements common to most decision-theory problems are these:
1. An objective the decision maker is trying to reach. If the objective is to minimize downtime of expensive machinery, the

\section*{Elements common to} decision-theory problems manager may try to find the optimal number of spare motors to be kept on hand for quick repairs. Success in finding that number can be measured by counting downtime each month.
2. Several courses of action. The decision should involve a choice among alternatives (called acts). In our example involving spare motors, the various acts open to the decision maker include stocking one, two, three, four, or five spare motors or choosing not to stock any spare motors.
3. A calculable measure of the benefit or worth of the various alternatives. In general, these costs can be negative or positive and are called payoffs. Cost accountants should be able to determine the cost of lost production time resulting from a motor burnout both when a spare is on hand and when one is not available. But sometimes the payoffs involve consequences that are more than solely financial. Imagine trying to decide the optimal number of spare generators a hospital might require in the event of a power failure. Not having enough could cost lives as well as money.
4. Events beyond the control of the decision maker. These uncontrollable occurrences are often called outcomes or states of nature, and their existence creates difficulties as well as interest in decision making under uncertainty. Such events could be the number of motors in our expensive
production machinery that will burn out in a given month. Preventive maintenance will reduce motor burnouts, but they will still happen.
5. Uncertainty concerning which outcome or state of nature will actually happen. In our example, we are uncertain about how many motors will burn out. This uncertainty is generally handled by the use of probabilities assigned to the various events that might take place, say, a 0.1 chance of losing five motors a month.

\section*{EXERCISES 17.1}

\section*{Applications}

17-1 Wholesale Lamps has been in contact with Leerie's, a local retail lamp shop, about supplying it with a special chrome tree lamp, which the shop wants to use as a drawing card in an upcoming sale. Wholesale Lamps must order the lamps in 2 days to deliver them by the sale date. Wholesale's cost is \(\$ 49\) for the lamps; it will sell them to Leerie's for \(\$ 54\). Wholesale is uncertain about the number Leerie's desires but guesses that it will be between 15 and 20. One of the managers has assigned probabilities to the various numbers that Leerie's might order. The manager of Wholesale Lamps does not foresee a market for the lamps it does not sell to Leerie's. Leerie's is expected to submit the order tomorrow. Should the manager of Wholesale Lamps use decision theory to order the lamps for Leerie's?
17-2 Adventures, Inc., is a source of capital for entrepreneurs starting new firms in the field of genetic engineering. Lisa Levin, a partner in Adventures, has been examining several business proposals that have recently been made to her. Each proposal describes a new venture, outlines its potential market, and solicits investment by Adventures. Lisa has just finished reading the chapter on decision theory in her father's statistics text. She thinks decision theory provides a methodology that can help her decide which ventures to support and at what level. Is Lisa correct? If so, what information does she need in order to apply decision theory to her problem? If not, why not?
17-3 The 8th Avenue Book Store relied on Grambler News Service to supply it with several well-known magazines. Each week, Grambler would deliver a predetermined number of Today's Romances, among others, and pick up any unsold copies of the previous week's magazines. The number of copies that the bookstore would sell was never known for sure, but the manager did have past sales data. Grambler charged its bookstands \(\$ 1.60\) for magazines that sold for \(\$ 2.95\). Management of the bookstore wanted to get maximum profitability from the sale of its magazines and was considering the optimal number of Today's Romances to order. Should the manager of the bookstore use decision theory to decide the number of magazines to stock?

\subsection*{17.2 EXPECTED PROFIT UNDER UNCERTAINTY: ASSIGNING PROBABILITY VALUES}

Buying and selling strawberries, as in our example in Chapter 5, Buying decision under is only one case in which decisions have to be made under uncerconditions of uncertainty tainty. Another involves a newspaper dealer who buys newspapers for \(30 \notin\) each and sells them for \(50 \notin\) each. Any papers not sold by the end of the day are completely worthless to him. The dealer's problem is to determine the optimal number he should order each day.

On days when he stocks more than he sells, his profits are reduced by the cost of the unsold papers. On days when buyers request more copies than he has in stock, he loses sales and makes smaller profits than he could have.

The dealer has kept a record of his sales for the past 100 days (Table 17-1). This information is a distribution of the dealer's past sales. Because sales volume can take on only a limited number of values, the distribution is discrete. We will assume, for purposes of discussion, that the dealer will sell only the numbers of papers listed-not, say, 412, 525, or 637. Furthermore, the dealer has no reason to believe that sales volume will take on any other value in the future.

This information tells the dealer something about the historical pattern of his sales. Although it does not tell him what quan-

Computing probabilities of sales levels tity the buyers will request tomorrow, it does tell him that there
are 45 chances in 100 that the quantity will be 500 papers. Therefore, a probability of 0.45 is assigned to the sales figure of 500 papers. The probability column in Table 17-1 shows the relationship between the total observations of sales (100 days) and the number of times each possible value of daily sales appeared in the 100 observations. The probability of each sales level occurring is thus derived by dividing the total number of times each value has appeared in the 100 observations by the total number of observations, that is, \(15 / 100,20 / 100,45 / 100,15 / 100\), and 5/100.

TABLE 17-1 DISTRIBUTION OF NEWSPAPER SALES
\begin{tabular}{ccc}
\hline Daily Sales & \begin{tabular}{c}
Number of \\
Days Sold
\end{tabular} & \begin{tabular}{c}
Probability of Each \\
Number Being Sold
\end{tabular} \\
\hline 300 & 15 & 0.15 \\
400 & 20 & 0.20 \\
500 & 45 & 0.45 \\
600 & 15 & 0.15 \\
700 & \(\underline{5}\) & \(\underline{0.05}\) \\
& \(\mathbf{1 0 0}\) & \(\mathbf{1 . 0 0}\) \\
\hline
\end{tabular}

\section*{Maximizing Profits Instead of Minimizing Losses}

Back in Section 5-3, when we first introduced you to using expected value in decision making, we used an approach that minimized losses and led us to an optimal stocking pattern for our strawberry dealer. It is just as easy to find the optimal stocking pattern by maximizing profits, and that's just what we'll do at this point.

Recall that our fruit and vegetable wholesaler in Chapter 5 A Chapter 5 problem worked bought strawberries at \(\$ 20\) a case and resold them at \(\$ 50\) a case. another way
There we assumed that the product had no value if not sold on the first day (a restriction we shall soon lift). If buyers call for more cases tomorrow than the wholesaler has in stock, profits suffer by \(\$ 30\) (selling price minus cost) for each case he cannot sell. On the other hand, costs also result from stocking too many units on a given day. If the wholesaler has 13 cases in stock but sells only 10 , he makes a profit of \(\$ 300\), or \(\$ 30\) a case on 10 cases. But this profit must be reduced by \(\$ 60\), the cost of the three cases not sold and of no value.

A 100-day observation of past sales gives the information shown in Table 17-2. The probability values there are obtained just as they were in Table 5-6.

TABLE 17-2 CASES SOLD DURING 100 DAYS
\begin{tabular}{ccc}
\hline Daily Sales & \begin{tabular}{c}
Number of \\
Days Sold
\end{tabular} & \begin{tabular}{c}
Probability of Each \\
Number Being Sold
\end{tabular} \\
\hline 10 & 15 & 0.15 \\
11 & 20 & 0.20 \\
12 & 40 & 0.40 \\
13 & \(\underline{25}\) & \(\underline{0.25}\) \\
& \(\underline{\mathbf{1 0 0}}\) & \(\mathbf{1 . 0 0}\) \\
\hline
\end{tabular}

\section*{TABLE 17-3 CONDITIONAL PROFIT TABLE}
\begin{tabular}{ccccc}
\hline \begin{tabular}{l}
Possible Demand \\
(Sales) in Cases
\end{tabular} & \multicolumn{4}{c}{ Possible Stock Action } \\
\cline { 2 - 5 } & 10 Cases & 11 Cases & 12 Cases & 13 Cases \\
\hline 10 & \(\$ 300\) & \(\$ 280\) & \(\$ 260\) & \(\$ 240\) \\
11 & 300 & 330 & 310 & 290 \\
12 & 300 & 330 & 360 & 340 \\
13 & 300 & 330 & 360 & 390 \\
\hline
\end{tabular}

Notice that there are only four discrete values for sales volume, and as far as we know, there is no discernible pattern in the sequence in which these four values occur. We assume that the retailer has no reason to believe sales volume will behave differently in the future.

\section*{Calculating Conditional Profits}

To illustrate this retailer's problem, we can construct a table showing the results in dollars of all possible combinations of purchases and sales. The only values for purchases and for sales that have meaning to us are \(10,11,12\), and 13 cases, because the retailer has no reason to consider buying fewer than 10 or more than 13 cases.

Table 17-3, called a conditional profit table, shows the profit Conditional profit table resulting from any possible combination of supply and demand.
The profits could be either positive or negative (although they are all positive in this example) and are conditional in that a certain profit results from taking a specific stocking action (ordering 10, 11, 12, or 13 cases) and selling a specific number of cases (\(10,11,12\), or 13 cases).

Table 17-3 reflects the losses that occur when stock remains unsold at the end of a day. Notice, too, that the retailer forgoes potential additional profit when customers demand more cases than he has stocked.

Observe that the stocking of 10 cases each day will always result in a profit of \(\$ 300\). Even on days when buyers want 13 cases, the

\section*{Explaining elements in the conditional profit table} retailer can sell only 10 . When the retailer stocks 11 cases, his profit will be \(\$ 330\) on days when buyers request 11,12 , or 13 cases. But on days when he has 11 cases in stock and buyers buy only 10 cases, profit drops to \(\$ 280\). The \(\$ 300\) profit on the 10 cases sold must be reduced by \(\$ 20\), the cost of the unsold case. A stock of 12 cases will increase daily profits to \(\$ 360\), but only on days when buyers want 12 or 13 cases. Should buyers want only 10 cases, profit is reduced to \(\$ 260\); the \(\$ 300\) profit on the sale of 10 cases is reduced by \(\$ 40\), the cost of two unsold cases. Stocking 13 cases will result in a profit of \(\$ 390\) (a \(\$ 30\) profit on each case sold, with no unsold cases) when there is a market for 13 cases. When buyers purchase fewer than 13 cases, such a stock action results in profits of less than \(\$ 390\). For example, with a stock of 13 cases and sale of only 11 cases, the profit is \(\$ 290\); the profit on 11 cases, \(\$ 330\), is reduced by the cost of two unsold cases (\(\$ 40\)).

Such a conditional profit table does not show the retailer how many cases he should stock each day in order to maximize profits. It reveals the outcome only if a specific number of cases is stocked

\section*{Function of the conditional profit table} and a specific number of cases is sold. Under conditions of uncertainty, the retailer does not know in advance the size of any day's market. However, he must still decide which number of cases, stocked consistently, will maximize profits over a long period of time.

TABLE 17-4 EXPECTED PROFIT FROM STOCKING 10 CASES
\begin{tabular}{cccccc}
\hline \begin{tabular}{c}
Market Size in \\
Cases \\
(1)
\end{tabular} & \begin{tabular}{c}
Conditional \\
Profit \\
(2)
\end{tabular} & & \begin{tabular}{c}
Probability of \\
Market Size \\
(3)
\end{tabular} & & \begin{tabular}{c}
Expected \\
Profit \\
\((\mathbf{4})\)
\end{tabular} \\
\hline 10 & \(\$ 300\) & \(\times\) & 0.15 & \(=\) & \(\$ 45.00\) \\
11 & 300 & \(\times\) & 0.20 & \(=\) & 60.00 \\
12 & 300 & \(\times\) & 0.40 & \(=\) & 120.00 \\
13 & 300 & \(\times\) & \(\underline{0.25}\) & \(=\) & \(\frac{75.00}{\mathbf{1 . 0 0}}\) \\
& & & & \(\mathbf{\$ 3 0 0 . 0 0}\) \\
\hline
\end{tabular}

\section*{Calculating Expected Profits}

The next step in determining the best number of cases to stock is assigning probabilities to the possible outcomes or profits. We saw in Table 17-2 that the probabilities of the possible values for the retailer's sales are as follows:
\begin{tabular}{lrrrr}
\hline Cases & 10 & 11 & 12 & 13 \\
Probability & 0.15 & 0.20 & 0.40 & 0.25 \\
\hline
\end{tabular}

Using these probabilities and the information contained in Table 17-3, we can now compute the expected profit of each possible stock action.

We stated in Chapter 5 that we can compute the expected value Computing expected profit of a random variable by weighting each possible value the vari-
able can take by the probability of its taking on that value. Using this procedure, we can compute the expected daily profit from stocking 10 cases each day. See Table 17-4. The figures in column 4 of Table 17-4 are obtained by weighting the conditional profit of each possible sales volume (column 2) by the probability of that conditional profit occurring (column 3). The For 10 units sum in the last column is the expected daily profit resulting from stocking 10 cases each day. It is not surprising that this expected profit is \(\$ 300\) because we saw in Table 17-3 that stocking 10 cases each day would always result in a daily profit of \(\$ 300\), regardless of whether buyers wanted \(10,11,12\), or 13 cases.

The same computation for a daily stock of 11 units can be made,
For 11 units as we have done in Table 17-5. This tells us that if the retailer stocks 11 cases each day, his expected daily profit over time will be \(\$ 322.50\). Eighty-five percent of the time

TABLE 17-5 EXPECTED PROFIT FROM STOCKING 11 CASES
\begin{tabular}{cccccc}
\hline \begin{tabular}{c}
Market Size in \\
Cases
\end{tabular} & \begin{tabular}{c}
Conditional \\
Profit
\end{tabular} & & \begin{tabular}{c}
Probability of \\
Market Size
\end{tabular} & & \begin{tabular}{c}
Expected \\
Profit
\end{tabular} \\
\hline 10 & \(\$ 280\) & \(\times\) & 0.15 & \(=\) & \(\$ 42.00\) \\
11 & 330 & \(\times\) & 0.20 & \(=\) & 66.00 \\
12 & 330 & \(\times\) & 0.40 & \(=\) & 132.00 \\
13 & 330 & \(\times\) & \(\underline{0.25}\) & \(=\) & \(\frac{82.50}{\mathbf{1 . 0 0}}\) \\
& & & & \(\mathbf{\$ 3 2 2 . 5 0}\) \\
\hline
\end{tabular}

\section*{TABLE 17-6 EXPECTED PROFIT FROM STOCKING 12 CASES}
\begin{tabular}{ccccccl}
\hline \begin{tabular}{c}
Market Size in \\
Cases
\end{tabular} & \begin{tabular}{c}
Conditional \\
Profit
\end{tabular} & & \begin{tabular}{c}
Probability of \\
Market Size
\end{tabular} & & \begin{tabular}{c}
Expected \\
Profit
\end{tabular} \\
\hline 10 & \(\$ 260\) & \(\times\) & 0.15 & \(=\) & \(\$ 39.00\) & \\
11 & 310 & \(\times\) & 0.20 & \(=\) & 62.00 & \\
12 & 360 & \(\times\) & 0.40 & \(=\) & 144.00 & Optimal \\
13 & 360 & \(\times\) & \(\underline{0.25}\) & \(=\) & \(\underline{90.00}\) & \begin{tabular}{r}
stock \\
stan
\end{tabular} \\
& & & \(\mathbf{1 . 0 0}\) & & \(\mathbf{\$ 3 3 5 . 0 0}\) & \(\leftarrow\) action \\
\hline
\end{tabular}
the daily profit will be \(\$ 330\); on these days, buyers ask for 11,12 , or 13 cases. However, column 3 tells us that 15 percent of the time the market will take only 10 cases, resulting in a profit of only \(\$ 280\). It is this fact that reduces the daily expected profit to \(\$ 322.50\).

For 12 and 13 units, the expected daily profit is computed as For 12 and 13 units shown in Tables 17-6 and 17-7, respectively.

We have now computed the expected profit of each of the four stock actions open to the retailer. These expected profits are
- If 10 cases are stocked each day, the expected daily profit is \(\$ 300.00\).
- If 11 cases are stocked each day, the expected daily profit is \(\$ 322.50\).
- If 12 cases are stocked each day, the expected daily profit is \(\$ 335.00\).
- If 13 cases are stocked each day, the expected daily profit is \(\$ 327.50\).

The optimal stock action is the one that results in the greatest expected profit-the largest daily average profits and thus the

\section*{Optimal solution}
maximum total profits over a period of time. In this illustration, the proper number to stock each day is 12 cases, because that quantity will give the highest possible average daily profits under the conditions given.

We have not reduced uncertainty in the problem facing the What the solution means retailer. Rather, we have used his past experience to determine the best stock action open to him. He still does not know how many cases will be requested on any given day. There is no guarantee that he will make a profit of \(\$ 335.00\) tomorrow. However, if he stocks 12 cases each day under the conditions given, he will have average profits of \(\$ 335.00\) per day. This is the best he can do, because the choice of any one of the other three possible stock actions will result in a lower expected daily profit.

TABLE 17-7 EXPECTED PROFIT FROM STOCKING 13 CASES
\begin{tabular}{cccccr}
\hline \begin{tabular}{c}
Market Size in \\
Cases
\end{tabular} & \begin{tabular}{c}
Conditional \\
Profit
\end{tabular} & & \begin{tabular}{c}
Probability of \\
Market Size
\end{tabular} & & \begin{tabular}{c}
Expected \\
Profit
\end{tabular} \\
\hline 10 & \(\$ 240\) & \(\times\) & 0.15 & \(=\) & \(\$ 36.00\) \\
11 & 290 & \(\times\) & 0.20 & \(=\) & 58.00 \\
12 & 340 & \(\times\) & 0.40 & \(=\) & 136.00 \\
13 & 390 & \(\times\) & \(\underline{0.25}\) & \(=\) & \(\frac{97.00}{\mathbf{1 . 0 0}}\) \\
& & & & \(\mathbf{\$ 3 2 7 . 5 0}\) \\
\hline
\end{tabular}

\section*{Expected Profit with Perfect Information}

Now suppose that the retailer in our illustration could remove all uncertainty from his problem by obtaining complete and accurate

Definition of perfect information information about the future, referred to as perfect information. This does not mean that sales would not vary from 10 to 13 cases per day. Sales would still be 10 cases per day 15 percent of the time, 11 cases 20 percent of the time, 12 cases 40 percent of the time, and 13 cases 25 percent of the time. However, with perfect information, the retailer would know in advance how many cases were going to be called for each day.

Under these circumstances, the retailer would stock today the Use of perfect information exact number of cases buyers will want tomorrow. For sales of
10 cases, the retailer would stock 10 cases and realize a profit of \(\$ 300\). When sales were going to be 11 cases, he would stock exactly 11 cases, thus realizing a profit of \(\$ 330.00\).

Table 17-8 shows the conditional profit values that are applicable to the retailer's problem if he has perfect information. Knowing the size of the market in advance for a particular day, the retailer chooses the stock action that will maximize his profits. This means he buys and stocks quantities that avoid all losses from obsolete stock as well as all losses that reflect lost profits on unfilled requests for strawberries.

We can now compute the expected profit with perfect information. This is shown in Table 17-9. The procedure is the same as that already used, but you will notice that the conditional profit figures

\section*{Expected profit with perfect} information in column 2 of Table 17-9 are the maximum profits possible for each sales volume. When buyers buy 12 cases, for example, the retailer will always make a profit of \(\$ 360\) with perfect information because he will have stocked exactly 12 cases. With perfect information, then, our retailer could count on making an average profit of \(\$ 352.50\) a day. This is a significant figure because it is the maximum expected profit possible.

TABLE 17-8 CONDITIONAL PROFIT TABLE WITH PERFECT INFORMATION
\begin{tabular}{ccccc}
\hline \multirow{2}{*}{\begin{tabular}{c}
Possible Sales \\
in Cases
\end{tabular}} & \multicolumn{4}{c}{ Possible Stock Action } \\
\cline { 2 - 5 } & 10 Cases & 11 Cases & 12 Cases & \(\mathbf{1 3}\) Cases \\
\hline 10 & \(\$ 300\) & - & - & - \\
11 & - & \(\$ 330\) & - & - \\
12 & - & - & \(\$ 360\) & - \\
13 & - & - & - & \(\$ 390\) \\
\hline
\end{tabular}

TABLE 17-9 EXPECTED PROFIT WITH PERFECT INFORMATION
\begin{tabular}{cccccc}
\hline \begin{tabular}{c}
Market Size in \\
Cases
\end{tabular} & \begin{tabular}{c}
Conditional Profit with \\
Perfect Information
\end{tabular} & \begin{tabular}{c}
Probability of \\
Market Size
\end{tabular} & \begin{tabular}{c}
Expected Profit with \\
Perfect Information
\end{tabular} \\
\hline 10 & \(\$ 300\) & \(\times\) & 0.15 & \(=\) & \(\$ 45.00\) \\
11 & 330 & \(\times\) & 0.20 & \(=\) & 66.00 \\
12 & 360 & \(\times\) & 0.40 & \(=\) & 144.00 \\
13 & 390 & \(\times\) & \(\underline{0.25}\) & \(=\) & \(\underline{97.50}\) \\
& & & \(\mathbf{1 . 0 0}\) & & \(\$ \mathbf{3 5 2 . 5 0}\) \\
\hline
\end{tabular}

\section*{Expected Value of Perfect Information}

Assuming that a retailer could obtain a perfect predictor about the future, what would be its value to him? He must compare the cost of that information with the additional profit he would realize as a result of having the information.

The retailer in our example can earn average daily profits of \$352.50 if he has perfect information about the future (see Table 17-9). His best

\section*{Value of perfect information}

Why do we need the value of perfect information? expected daily profit without the predictor is only \(\$ 335.00\) (see
Tables 17-4 to 17-7). The difference of \(\$ 17.50\) is the maximum amount the retailer would be willing to pay, per day, for a perfect predictor, because that is the maximum amount by which he can increase his expected daily profit. The difference is the expected value of perfect information and is referred to as EVPI. There is no sense in paying more than \(\$ 17.50\) for the predictor; to do so would cost more than the knowledge is worth.

Calculating the value of additional information in the decision-making process is a serious problem for managers. In our illustration, we found that our retailer would pay \(\$ 17.50\) a day for a perfect predictor. Only infrequently, however, can we secure a perfect predictor. In most decision-making situations, managers are really attempting to evaluate the worth of information that will enable them to make better, rather than perfect, decisions.

\section*{HINTS \& ASSUMPTIONS}

Warning: All of the examples used in this section have involved discrete distributions; that is, we've allowed the random variable to take on only a few values. This is not reflective of most real-world situations, but makes it easy for us to do the calculations necessary to introduce this idea. With discrete outcomes, the expected profit is not necessarily one of the outcomes. Hint: A 50 percent chance of making a \(\$ 10\) profit coupled with a 50 percent chance of making no profit gives an expected profit of \(\$ 5\). But with a discrete distribution the outcome will be either \(\$ 10\) or zero! Some real-world situations also turn out like this. A parcel of undeveloped land can be worth either \(\$ 5\) million or \(\$ 250,000\), depending on where a new airport is finally located. The land may also be sold for \(\$ 500,000\) to a speculator who hopes for the final \(\$ 5\) million sale.

\section*{EXERCISES 17.2}

\section*{Self-Check Exercise}

SC 17-1 The Writer's Workbench operates a chain of word-processing franchises in college towns. For an hourly fee of \(\$ 8.00\), Writer's Workbench provides access to a personal computer, wordprocessing software, and a printer to students who need to prepare papers for their classes. Paper is provided at no additional cost. The firm estimates that its hourly variable cost per machine (principally due to paper, ribbons, electricity, and wear and tear on the computers and printers) is about \(85 \phi\). Deborah Rubin is considering opening a Writer's Workbench franchise in Ames, Iowa. A preliminary market survey has resulted in the following probability distribution of the number of machines demanded per hour during the hours she plans to operate:
\begin{tabular}{lrrrrrr}
\hline Number of machines & 22 & 23 & 24 & 25 & 26 & 27 \\
Probability & 0.12 & 0.16 & 0.22 & 0.27 & 0.18 & 0.05 \\
\hline
\end{tabular}

If she wishes to maximize her profit contribution, how many machines should Deborah plan to have? What is the hourly expected value of perfect information in this situation? Even if Deborah could obtain a perfectly accurate forecast of the demand for each and every hour, why wouldn't she be willing to pay up to the EVPI for that information in this situation?

\section*{Applications}

17-4 Center City Motor Sales has recently incorporated. Its chief asset is a franchise to sell automobiles of a major American manufacturer. CCMS's general manager is planning the staffing of the dealership's garage facilities. From information provided by the manufacturer and from other nearby dealerships, he has estimated the number of annual mechanic hours that the garage will be likely to need.
\begin{tabular}{lrrrr}
\hline Hours & 10,000 & 12,000 & 14,000 & 16,000 \\
Probability & 0.2 & 0.3 & 0.4 & 0.1 \\
\hline
\end{tabular}

The manager plans to pay each mechanic \(\$ 9.00\) per hour and to charge customers \(\$ 16.00\). Mechanics will work a 40-hour week and get an annual 2-week vacation.
(a) Determine how many mechanics Center City should hire.
(b) How much should Center City pay to get perfect information about the number of mechanics it needs?
17-5 Airport Rent-A-Car is a locally operated business in competition with several major firms. ARC is planning a new deal for customers who want to rent a car for only one day and return it to the airport. For \(\$ 24.95\), the company will rent a small economy car to a customer, whose only other expense is to fill the car with gas at the day's end. ARC is planning to buy a number of small cars from the manufacturer at a reduced price of \(\$ 6,750\). The big question is how many to buy. Company executives have decided on the following estimated probability distribution of the number of cars rented per day:
\begin{tabular}{lrrrrrr}
\hline Number of cars rented & 10 & 11 & 12 & 13 & 14 & 15 \\
Probability & 0.18 & 0.19 & 0.21 & 0.15 & 0.14 & 0.13 \\
\hline
\end{tabular}

The company intends to offer the plan 6 days a week (312 days per year) and anticipates that its variable cost per car per day will be \(\$ 2.25\). After using the cars for 1 year, ARC expects to sell them and recapture 45 percent of the original cost. Ignoring the time value of money and any noncash expenses, determine the optimal number of cars for ARC to buy.
17-6 For several years, the Madison Rhodes Department Store had featured personalized pencils as a Christmas special. Madison Rhodes purchased the pencils from its supplier, who provided the embossing machine. The personalizing was done on the department store premises. Despite the success of the pencil sales, Madison Rhodes had received comments that the quality of the lead in the pencils was poor, and the store had found a different supplier. The new supplier, however, would be unable to begin servicing the department store until after the first of January. Madison Rhodes was forced to purchase its pencils one final time from its original supplier to meet Christmas demand. It was important, therefore, that pencils not be overstocked, and yet the manager was adamant about not losing too many customers because of stockouts. The pencils came packed 15 to the box, 72 boxes to the case. Madison Rhodes
paid \(\$ 60\) per case and sold the pencils for \(\$ 1.50\) per box. Labor costs are \(37.5 \notin\) per box sold. Based on previous years' sales, management constructed the following schedule:
\begin{tabular}{lrrrrrr}
\hline Expected sales (cases) & 15 & 16 & 17 & 18 & 19 & 20 \\
Probability & 0.05 & 0.20 & 0.30 & 0.25 & 0.10 & 0.10 \\
\hline
\end{tabular}
(a) How many cases should Madison Rhodes order?
(b) What's the expected profit?

17-7 Emily Scott, head of a small business consulting firm, must decide how many M.B.A.s to hire as full-time consultants for the next year. (Emily has decided that she will not bother with any part-time employees.) Emily knows from experience that the probability distribution on the number of consulting jobs her firm will get each year is as follows:
\begin{tabular}{lllll}
\hline Consulting jobs & 24 & 27 & 30 & 33 \\
Probability & 0.3 & 0.2 & 0.4 & 0.1 \\
\hline
\end{tabular}

Emily also knows that each M.B.A. hired will be able to handle exactly three consulting jobs per year. The salary of each M.B.A. is \(\$ 60,000\). Each consulting job is worth \(\$ 30,000\) to Emily's firm. Each consulting job that the firm is awarded but cannot complete costs the firm \(\$ 10,000\) in future business lost.
(a) How many M.B.A.s should Emily hire?
(b) What is the expected value of perfect information to Emily?

17-8 As a fund-raiser for a student organization, some students have decided to sell individual pizzas outside the Union on Friday. Each pizza will sell for \(\$ 1.75\) and costs the organization \$.77. Historical sales indicated that between 55 and 60 dozen pizzas will be sold with the probability distribution given below:
\begin{tabular}{lrrrrrr}
\hline Dozens of pizzas & 55 & 56 & 57 & 58 & 59 & 60 \\
Probability & 0.15 & 0.20 & 0.10 & 0.35 & 0.15 & 0.05 \\
\hline
\end{tabular}

To maximize the profit contribution, how many pizzas should be ordered? Assume pizzas must be ordered by the dozen. What is the expected value of perfect information in this problem? What is the maximum amount the organization would be willing to pay for perfect information?
17-9 Manfred Baum, merchandise manager for the Grant Shoe Company, is planning production decisions for the coming year's summer line of shoes. His chief concern is estimating the sales of a new design of fashion sandals. These sandals have posed problems in the past for two reasons: (1) the limited selling season does not provide enough time for the company to produce a second run of a popular item, and (2) the styles change dramatically from year to year, and unsold sandals become worthless. Manfred has discussed the newest design with salespeople and has formulated the following estimates of how the item will sell:
\begin{tabular}{lrrrrr}
\hline Pairs (thousands) & 45 & 50 & 55 & 60 & 65 \\
Probability & 0.25 & 0.30 & 0.20 & 0.15 & 0.10 \\
\hline
\end{tabular}

Information from the production department reveals that the sandal will cost \(\$ 15.25\) per pair to manufacture, and marketing has informed Manfred that the wholesale price will be \(\$ 31.35\) a pair. Using the expected-value decision criterion, calculate the number of pairs that Manfred should recommend that the company produce.

\section*{Worked-Out Answer to Self-Check Exercise}

SC 17-1 The payoff table below gives both conditional and expected profits.
\begin{tabular}{lrrrrrrrc}
\hline Machines needed & & 22 & 23 & 24 & 25 & 26 & 27 & Expected \\
Probability & & 0.12 & 0.16 & 0.22 & 0.27 & 0.18 & 0.05 & Profit \\
& 22 & 157.30 & 157.30 & 157.30 & 157.30 & 157.30 & 157.30 & 157.30 \\
& 23 & 156.45 & 164.45 & 164.45 & 164.45 & 164.45 & 164.45 & 163.49 \\
Machines & 24 & 155.60 & 163.60 & 171.60 & 171.60 & 171.60 & 171.60 & 168.40 \\
supplied & 25 & 154.75 & 162.75 & 170.75 & 178.75 & 178.75 & 178.75 & 171.55 \\
& 26 & 153.90 & 161.90 & 169.90 & 177.90 & 185.90 & 185.90 & 172.54 \\
& 27 & 153.05 & 161.05 & 169.05 & 177.05 & 185.05 & 193.25 & 172.09 \\
\hline
\end{tabular}

She should have 26 machines.
\[
\begin{aligned}
\mathrm{EVPI}=157.30(0.12) & +164.45(0.16)+171.60(0.22)+178.75(0.27) \\
& +185.90(0.18)+193.25(0.05)-172.54=\$ 1.787
\end{aligned}
\]

Because she cannot every hour adjust the number of machines she will have available, an hour-by-hour forecast of demand is of little value to her in this situation.

\subsection*{17.3 USING CONTINUOUS DISTRIBUTIONS: MARGINAL ANALYSIS}

In many inventory problems, the number of computations required makes the use of conditional-profit and expected-profit tables difficult. Our previous illustration contained only four possible stock actions and four possible sales levels, resulting in a conditional-profit table containing 16 possibilities for conditional profits. If we had 300 possible values for sales volume and an equal number of calculations for determining conditional and expected profit, we would have to do a great many computations. The marginal approach avoids this problem.

Marginal analysis is based on the fact that when an additional unit of an item is bought, two fates are possible: the unit will be sold or it will not be sold. The sum of the probabilities of these two events must be 1. (For example, if the probability of selling the additional unit is 0.6 , then the probability of not selling it must be 0.4.)

If we let \(p\) represent the probability of selling one additional unit, then \(1-p\) must be the probability of not selling it. If the additional unit is sold, we shall realize an increase in our conditional profits as a result of the profit from the additional unit. We refer to this as marginal profit, or MP. In our previous illustration about the retailer, the marginal profit resulting from the sale of an additional unit is \(\$ 30\), the selling price \((\$ 50)\) minus the cost \((\$ 20)\).

Table 17-10 illustrates this point. If we stock 10 units each day and daily demand is for 10 or more units, our conditional profit is \(\$ 300\) per day. Now we decide to stock 11 units each day. If the eleventh unit is sold (and this is the case when demand is for 11,12 , or 13 units), our conditional profit is increased to \(\$ 330\) per day. Notice that the increase in conditional profit does not follow merely from stocking the eleventh unit. Under the conditions assumed in the problem, this increase in profit will result only when demand is for 11 or more units. This will be the case 85 percent of the time.

We must also consider how profits would be affected by stocking an additional unit and not selling it. This reduces our conditional

\section*{Limitations of the tabular approach}

\section*{TABLE 17-10 CONDITIONAL PROFIT TABLE}
\begin{tabular}{cccccc}
\hline \multirow{2}{*}{\begin{tabular}{c}
Possible Demand (sales) \\
in Cases
\end{tabular}} & \begin{tabular}{c}
Probability of \\
Market Size
\end{tabular} & \multicolumn{4}{c}{ Possible Stock Actions } \\
\cline { 3 - 6 } & 10 Cases & 11 Cases & 12 Cases & 13 Cases \\
\hline 10 & 0.15 & \(\$ 300\) & \(\$ 280\) & \(\$ 260\) & \(\$ 240\) \\
11 & 0.20 & 300 & 330 & 310 & 290 \\
12 & 0.40 & 300 & 330 & 360 & 340 \\
13 & 0.25 & 300 & 330 & 360 & 390 \\
\hline
\end{tabular}
profit. The amount of the reduction is referred to as the marginal loss (ML) resulting from the stocking of an item that is not sold. In our previous example, the marginal loss was \(\$ 20\) per unit, the cost of the item.

Table 17-10 also illustrates marginal loss. Once more we decide to stock 11 units. If the eleventh unit (the marginal unit) is not sold, the conditional profit is \(\$ 280\). The \(\$ 300\) conditional profit when 10 units were stocked and 10 were sold is reduced by \(\$ 20\), the cost of the unsold unit.

Additional units should be stocked as long as the expected marginal profit from stocking each of them is greater than the expected

\section*{Derivation of stocking rule} marginal loss from stocking each. The size of each day's order
should be increased up to the point where the expected marginal profit from stocking one more unit if it sells is just equal to the expected marginal loss from stocking that unit if it remains unsold.

In our illustration, the probability distribution of demand is
\begin{tabular}{cc}
\hline Market Size & Probability of Market Size \\
\hline 10 & 0.15 \\
11 & 0.20 \\
12 & 0.40 \\
13 & \(\underline{0.25}\) \\
\hline \(\mathbf{1 . 0 0}\) \\
\hline
\end{tabular}

This distribution tells us that as we increase our stock, the probability of selling one additional unit (this is \(p\)) decreases. If we increase our stock from 10 to 11 units, the probability of selling all eleven is 0.85 . This is the probability that demand will be for 11 units or more. Here is the computation:
\begin{tabular}{ll}
\hline Probability that demand will be for 11 & 0.20 \\
Probability that demand will be for 12 & 0.40 \\
Probability that demand will be for 13 & \(\underline{0.25}\) \\
Probability that demand will be for 11 or more units & \(\mathbf{0 . 8 5}\) \\
\hline
\end{tabular}

If we add a twelfth unit, the probability of selling all 12 units is reduced to 0.65 (the sum of the probabilities of demand for 12 or 13 units). Finally, the addition of a thirteenth unit carries with it only a 0.25 probability of our selling all 13 units, because demand will be for 13 units only 25 percent of the time.

\section*{Deriving the Minimum Probability Equation}

The expected marginal profit from stocking and selling an additional unit is the marginal profit of the unit multiplied by the probability

Expected marginal profit and loss defined that the unit will be sold; this is \(p(M P)\). The expected marginal loss

\section*{loss dedin} from stocking and not selling an additional unit is the marginal loss incurred if the unit is unsold multiplied by the probability that the unit will not be sold; this is \((1-p)(M L)\). We can generalize that the retailer in this situation would stock up to the point at which
\[
\begin{equation*}
p(M P)=(1-p)(M L) \tag{17-1}
\end{equation*}
\]

This equation describes the point at which the expected marginal profit from stocking and selling an additional unit, \(p(M P)\), is equal to the expected marginal loss from stocking and not selling the unit, \((1-p)(M L)\). As long as \(p(M P)\) is larger than \((1-p)(M L)\), additional units should be stocked, because the expected profit from such a decision is greater than the expected loss.

In any given inventory problem, there will be only one value of \(p\) Optimal inventory stock action for which the maximizing equation will be true. We must determine that value in order to know the optimal stock action to take. We can do this by taking our maximizing equation and solving it for \(p\) in the following manner:
\[
\begin{equation*}
p(M P)=(1-p)(M L) \tag{17-1}
\end{equation*}
\]

Multiplying the two terms on the right side of the equation, we get
\[
p(M P)=M L-p(M L)
\]

Collecting terms containing \(p\), we have
\[
p(M P)+p(M L)=M L
\]
or
\[
p(M P+M L)=M L
\]

Dividing both sides of the equation by \(M P+M L\) gives

The symbol \(p^{*}\) represents the minimum required probability of selling at least one additional unit to justify the stocking of that additional unit. The retailer should stock additional units as long as the probability of selling at least an additional unit is greater than \(p^{*}\).

We can now compute \(p^{*}\) for our illustration. The marginal profit per unit is \(\$ 30\) (the selling price minus the cost); the marginal loss per unit is \(\$ 20\) (the cost of each unit); thus
\[
\begin{equation*}
p^{*}=\frac{M L}{M P+M L}=\frac{\$ 20}{\$ 30+\$ 20}=\frac{\$ 20}{\$ 50}=0.40 \tag{17-2}
\end{equation*}
\]

This value of 0.40 for \(p^{*}\) means that in order to make the stocking of an additional unit justifiable, we must have at least a 0.40 cumulative probability of selling that unit or more. In order to determine the

\section*{TABLE 17-11 CUMULATIVE PROBABILITIES OF SALES}
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Sales \\
Units
\end{tabular} & \begin{tabular}{c}
Probability of \\
This Sales Level
\end{tabular} & \begin{tabular}{c}
Cumulative Probability That Sales \\
Will Be at This Level or Greater
\end{tabular} \\
\hline 10 & 0.15 & 1.00 \\
11 & 0.20 & 0.85 \\
12 & 0.40 & 0.65 \\
13 & 0.25 & 0.25 \\
\hline
\end{tabular}
probability of selling each additional unit we consider stocking, we must compute a series of cumulative probabilities, as we have done in Table 17-11.

The cumulative probabilities in the right-hand column of Table 17-11 represent the probabilities that sales will reach or exceed each

Calculation of cumulative probabilities of the four sales levels. For example, the 1.00 that appears beside the 10 -unit sales level means that we are 100 percent of selling 10 or more units. This must be true because our assumes that one of the four sales levels will always occur.

The 0.85 probability value beside the 11 -unit sales figure means that we are only 85 percent sure of selling 11 or more units. This can be calculated in two ways. First, we could add the chances of selling 11,12 , or 13 units:
\begin{tabular}{lr}
\hline 11 Units & 0.20 \\
12 Units & 0.40 \\
13 Units & \(+\underline{0.25}\) \\
& \(\underline{\mathbf{0 . 8 5}}=\) probability of selling 11 or more \\
\hline
\end{tabular}

Or we could reason that sales of 11 or more units include all possible outcomes except sales of 10 units, which has a probability of 0.15 .
\begin{tabular}{lr}
\hline All possible outcomes & 1.00 \\
Probability of selling10 & \(\underline{-0.15}\) \\
& \(\underline{\mathbf{0 . 8 5}}\) = Probability of selling 11 or more \\
\hline
\end{tabular}

The cumulative probability value of 0.65 assigned to sales of 12 units or more can be established in similar fashion. Sales of 12 or more must mean sales of 12 or 13 units.
\begin{tabular}{lc}
\hline Probability of selling 12 & 0.40 \\
Probability of selling 13 & \(+\underline{0.25}\) \\
& \(\mathbf{0 . 6 5}\) = probability of selling 12 or more \\
\hline
\end{tabular}

And, of course, the cumulative probability of selling 13 units is still 0.25 , because we have assumed that sales will never exceed 13.

As we mentioned previously, the value of \(p\) decreases as the level of stock increases. This causes the expected marginal profit to decrease and the expected marginal loss to increase until, at some point, stocking an additional unit would not be profitable.

We have said that additional units should be stocked as long as Stocking rule the probability of selling at least an additional unit is greater than \(p^{*}\). We can now apply this rule to our probability distribution of sales and determine how many units should be stocked.

\section*{912}

In this case, the probability of selling 11 or more units is 0.85 , a figure clearly greater than our \(p^{*}\) of 0.40 ; thus, we should stock an eleventh unit. The expected marginal profit from stocking this unit is greater than the expected marginal loss from stocking it. We can verify this as follows:
\[
\begin{aligned}
& p(M P)=0.85(\$ 30) \\
&=\$ 25.50 \text { expected marginal profit } \\
&(1-p)(M L)=0.15(\$ 20)=\$ 3.00 \text { expected marginal loss }
\end{aligned}
\]

A twelfth unit should be stocked because the probability of selling 12 or more units \((0.65)\) is greater than the required \(p^{*}\) of 0.40 . Such action will result in the following expected marginal profit and expected marginal loss:
\[
\begin{aligned}
p(M P) & =0.65(\$ 30)=\$ 19.50 \text { expected marginal profit } \\
(1-p)(M L) & =0.35(\$ 20)=\$ 7.00 \text { expected marginal loss }
\end{aligned}
\]

Twelve is the optimal number of units to stock, because the addition of a thirteenth unit carried with it only a 0.25 probability

Optimal stocking level for this problem that it will be sold, and that is less than our required \(p^{*}\) of 0.40 . The following figures reveal why the thirteenth unit should not be stocked:
\[
\begin{aligned}
p(M P) & =0.25(\$ 30)=\$ 7.50 \text { expected marginal profit } \\
(1-p)(M L) & =0.75(\$ 20)=\$ 15.00 \text { expected marginal loss }
\end{aligned}
\]

If we stock a thirteenth unit, we add more to expected loss than we add to expected profit.
Notice that the use of marginal analysis leads us to the same conclusion that we reached with the use of conditional profit and expected profit tables. Both methods of analysis suggest that the retailer should stock 12 units each period.

Our strategy, to stock 12 cases every day, assumes that daily sales is a random variable. In actual practice, however, daily sales

\section*{Adjusting the optimal stocking level} often take on recognizable patterns depending on the particular day of the week. In retail sales, Saturday is generally recognized as being a higher-volume day than, say, Tuesday. Similarly, Monday retail sales are typically less than those on Friday. In situations with recognizable patterns in daily sales, we can apply the techniques we have learned by computing an optimal stocking level for each day of the week. For Saturday, we would use as our input data past sales experience for Saturdays only. Each of the other 6 days could be treated in the same fashion. Essentially, this approach represents nothing more than recognition of, and reaction to, discernible patterns in what may at first appear to be a completely random environment.

\section*{Using the Standard Normal Probability Distribution}

We first learned the concept of the standard normal probability distribution in Chapter 5. We can now use this idea to help us solve a decision-theory problem using a continuous distribution.

Assume that a manager sells an article having normally distributed Solving a problem using sales with a mean of 50 units daily and a standard deviation in daily sales of 15 units. The manager purchases this article for \(\$ 4\) per unit and sells it for \(\$ 9\) per unit. If the article is not sold on the selling day, it is worth nothing. Using the marginal method of calculating optimal inventory purchase levels, we can calculate our required \(p^{*}\) :
\[
\begin{align*}
p^{*} & =\frac{M L}{M P+M L} \tag{17-2}\\
& =\frac{\$ 4}{\$ 5+\$ 4}=0.44
\end{align*}
\]

FIGURE 17-1 NORMAL DISTRIBUTION OF PAST DAILY SALES

Suppose the manager considers stocking 25 units, line \(a\). Most of the entire area under the curve lies to the right of the vertical line drawn at 25 ; thus, the probability is great that the manager will sell 25 units or more. If he considers stocking 50 units (the mean), one-half the entire area under the curve lies to the right of vertical line \(b\); thus, he is 0.5 sure of selling the 50 units or more. Now, say he considers stocking 65 units. Only a small portion of the entire area under the curve lies to the right of line \(c\); thus, the probability of selling 65 or more units is quite small.

Figure 17-2 illustrates the 0.44 probability that must exist before it pays our manager to stock another unit. He will stock additional units until he reaches point \(Q\). If he stocks a larger quantity, the shaded area under the curve drops below 0.44 and the probability of selling another unit or more falls below the required 0.44 . How can we locate point \(Q\) ? As we saw in Chapter 5, we can use Appendix Table 1 to determine how many standard deviations it takes to include any portion of the area under the curve measuring from the mean to any point such as \(Q\). In this particular case, because we know that the shaded area must be 0.44 of the total area, the area from the mean to point \(Q\) must be 0.06 (the total area from the mean to the right tail is 0.50). Looking in the body of the table, we find that

This means that the manager must be 0.44 sure of selling at least an additional unit before it would pay to stock that unit. Let us reproduce the curve of past sales and determine how to incorporate the marginal method with continuous distributions of past daily sales.

Now refer
to Figure
\(17-1\). If we erect a verti-

Using the standard normal probability distribution in marginal analysis cal line \(b\) at 50 units, the area under the curve to the right of this line is one-half the total area. This tells us that the probability of selling 50 or more units is 0.5 . The area to the right of any such vertical line represents the probability of selling that quantity or more. As the area to the right of any vertical line decreases, so does the probability that we will sell that quantity or more.

FIGURE 17-2 NORMAL PROBABILITY DISTRIBUTION, WITH 0.44 OF THE AREA UNDER THE CURVE SHADED 0.06 of the area under the curve is located between the mean and a point 0.15 standard deviation to the right of the mean. Thus we know that point \(Q\) is 0.15 standard deviation to the right of the mean (50).

We have been given the information that 1 standard deviation for Optimal solution for this this distribution is 15 units; so 0.15 times this would be 2.25 units. problem Because point \(Q\) is 2.25 units to the right of the mean (50), it must be at about 52 units. This is the optimal order for the manager to place: 52 units per day.

Now that we have been through one problem using a continuous probability distribution, we can work our chapter-opening problem

\section*{Chapter-opening problem} involving these data for a normally distributed daily sales record:
\begin{tabular}{lc}
\hline Mean of past daily sales & 60 boxes \\
Standard deviation of past daily & \\
\(\quad\) sales distribution & 10 boxes \\
Cost per box & \(\$ 20\) \\
Selling price per box & \(\$ 32\) \\
Value if not sold on first day & \(\$ 2\) \\
\hline
\end{tabular}

As we did in the previous problem, we first calculate the \(p^{*}\) that is required to justify the stocking of an additional box. In this instance,

\section*{Minimum required probability}
\[
\begin{align*}
p^{*} & =\frac{M L}{M P+M L} \tag{17-2}\\
& =\frac{\$ 20-\$ 2}{\$ 12+(\$ 20-\$ 2)} \quad \begin{array}{r}
\text { Notice that a salvage value of } \$ 2 \\
\text { is deducted from the cost of } \$ 20 \\
\text { to obtain the } M L
\end{array} \\
& =\frac{\$ 18}{\$ 12+\$ 18} \\
& =\frac{\$ 18}{\$ 30}=0.60
\end{align*}
\]

We can now illustrate the probability on a normal curve by marking off 0.60 of the area under the curve, starting from the right-hand end of the curve, as in Figure 17-3.

The manager wants to increase his order size until it reaches point \(Q\). Now point \(Q\) lies to the left of the mean, whereas in the preceding problem it lay to the right. How can we locate point Q ? Because 0.50 of the area under the curve is located between the mean and the right-hand tail, 0.10 of the shaded area must be to the left of the mean, \((0.60-0.50=0.10)\). In the body of Appendix Table 1, the

FIGURE 17-3 NORMAL PROBABILITY DISTRIBUTION, WITH 0.60 OF THE AREA UNDER THE CURVE SHADED nearest value to 0.10 is 0.0987 , so we want to find a point \(Q\) with 0.0987 of the area under the curve contained between the mean and point \(Q\). The table indicates point \(Q\) is 0.25 standard deviation from the mean. We now solve for point \(Q\) as follows:
\[
\begin{aligned}
0.25 \times \text { standard deviation } & =0.25 \times 10 \text { boxes }=2.5 \text { boxes } \\
\text { Point } \mathrm{Q} & =\text { mean less } 2.5 \text { boxes } \\
& =60-2.5 \text { boxes }=57.5 \text { or } 57 \text { boxes }
\end{aligned}
\]

\section*{HINTS \& ASSUMPTIONS}

Warning: Use of the maximum expected profit calculated from a single sales distribution as your decision rule assumes that the sales distribution you are dealing with represents all of the information you have about demand. If you have information that sales on Saturday, for example, are better represented by a different distribution, then you must treat Saturday as a separate decision and calculate a stocking level for Saturday that will probably be different from that for the other 6 days. Hint: This is how good managers make decisions anyhow. Instead of accepting that every day of the week has identical market characteristics, it's long been known that strong, discernable daily differences exist. These daily differences are themselves quite different in certain countries. Hint: Whereas Saturday is a prime shopping day in the United States, Saturday sales would be near zero in Israel because it is their sabbath.

\section*{EXERCISES 17.3}

\section*{Self-Check Exercise}

SC 17-2 Floyd Guild operates a newsstand near the 53rd Street station of the IC South Shore and Suburban line. The City Herald is the most popular of the newspapers that Floyd stocks. Over many years, he has observed that daily demand for the Herald is well described by a normal distribution with mean \(\mu=165\) and standard deviation \(\sigma=40\). Copies of the Herald sell for \(30 \phi\), but the publisher charges Floyd only \(20 \phi\) for each copy he orders. If any Heralds are left over at the end of the evening commuting hours, Floyd sells them to Jesselman's Fish Market down the street for a dime each. If Floyd wishes to maximize his expected daily profit, how many copies of the Herald should he order?

\section*{Applications}

17-10 Highway construction in North Dakota is concentrated in the months from May through September. To provide some protection to the crews at work on the highways, the Department of Transportation (DOT) requires that large, orange MEN WORKING signs be placed in advance of any construction. Because of vandalism, wear and tear, and theft, the DOT purchases new signs each year. Although the signs are made under the auspices of the Department of Correction, the DOT is charged a price equivalent to one it would pay were it to buy the signs from an outside source. The interdepartmental charge for the signs is \(\$ 21\) if more than 35 of the same kind are ordered. Otherwise, the cost per sign is \(\$ 29\). Because of budget pressures, the DOT attempts to minimize its costs both by not buying too many signs and by attempting to buy in sufficiently large quantity to get the \(\$ 21\) price. In recent years, the department has averaged purchases of 78 signs per year, with a standard deviation of 15 . Determine the number of signs the DOT should purchase.
17-11 The town of Green Lake, Wisconsin, is preparing for the celebration of the seventy-ninth Annual Milk and Dairy Day. As a fund-raising device, the city council once again plans to sell souvenir T-shirts. The T-shirts, printed in six colors, will have a picture of a cow and the words "79th Annual Milk and Dairy Day" on the front. The city council purchases heattransfer patches from a supplier for \(\$ 0.75\) and plain white cotton T-shirts for \(\$ 1.50\). A local merchant supplies the appropriate heating device and also purchases all unsold white cotton

T-shirts. The council plans to set up a booth on Main Street and sell the shirts for \(\$ 3.25\). The transfer of the color to the shirt will be completed when the sale is made. In the past year, similar shirt sales have averaged 200 with a standard deviation of 34 . The council knows that there will be no market for the patches after the celebration. How many patches should the city council buy?
17-12 Jack buys hot dogs each morning for his stand in the city. Jack prides himself on slow-roasted, always-fresh hot dogs. As a result, he will sell only hot dogs purchased that morning. Each hot dog plus bun and condiments sells for \(\$ 1.50\) and costs Jack \(\$ 0.67\). Assume Jack can purchase any number of hot dogs. Because tomorrow is Friday, Jack knows tomorrow's hot dog demand will be normally distributed with mean 375 hot dogs and variance 400. If Jack has any hot dogs left over, he either eats them or gives them away to the less fortunate, earning no additional revenue. If Jack wants to maximize his profits, how many hot dogs should he purchase? How many hot dogs should he buy if leftover hot dogs could always be sold for \(\$ 0.50\) ?
17-13 Bike Wholesale Parts was established in the early 1980s in response to demands of several small and newly established bicycle shops that needed access to a wide variety of inventory but were not able to finance it themselves. The company carries a wide variety of replacement parts and accessories but does not maintain any stock of completed bicycles. Management is preparing to order \(27^{\prime \prime} \times 1^{1 / 4^{\prime \prime}}\) rims from the Flexspin Company in anticipation of a business upturn expected in about 2 months. Flexspin makes a superior product, but the lead time required necessitates that wholesalers make only one order, which must last through the critical summer months. In the past, Bike Wholesale Parts has sold an average of 120 rims per summer with a standard deviation of 28 . The company expects that its stock of rims will be depleted by the time the new order arrives. Bike Wholesale Parts has been quite successful and plans to move its operations to a larger plant during the winter. Management feels that the combined cost of moving some items such as rims and the existing cost of financing them is at least equal to the firm's purchase cost of \(\$ 7.30\). Accepting management's hypothesis that any unsold rims at the end of the summer season are permanently unsold, determine the number of rims the company should order if the selling price is \(\$ 8.10\).
17-14 The B\&G Cafeteria features barbecued chicken each Thursday, and Priscilla Alden, the cafeteria manager, wants to ensure that the cafeteria will make money on this dish. Including labor and other costs of preparation, each portion of chicken costs \(\$ 1.35\). The \(\$ 2.15\) selling price per portion is such a bargain that the barbecued chicken special has become a very popular item. Data taken from the last year indicate that demand for the special is normally distributed with mean \(\mu=190\) portions and standard deviation \(\sigma=32\) portions. If \(\mathrm{B} \& \mathrm{G}\) Cafeteria prepares two portions of barbecued chicken from each whole chicken it cooks, how many chickens should Priscilla order each Thursday?
17-15 Paige's Tire Service stocks two types of radial tires: polyester-belted and steel-belted. The polyester-belted radials cost the company \(\$ 30\) each and sell for \(\$ 35\). The steel-belted radials cost the company \(\$ 45\) and sell for \(\$ 60\). For various reasons, Paige's Tire Service will not be able to reorder any radials from the factory this year so it must order just once to satisfy customers' demand for the entire year. At the end of the year, owing to new tire models, Paige will have to sell all its inventory of radials for scrap rubber at \(\$ 5\) each. The annual sales of both types of radial tires are normally distributed with the following means and standard deviations:
\begin{tabular}{lcc}
\hline Radial Tire Type & Annual Mean Sales & Standard Deviation \\
\hline Polyester-belted & 300 & 50 \\
Steel-belted & 200 & 20 \\
\hline
\end{tabular}
(a) How many polyester-belted radials should be ordered?
(b) How many steel-belted radials should be ordered?

\section*{Worked-Out Answer to Self-Check Exercise}

SC 17-2 \(M P=50-20=30 \quad M L=20-10=10\)
\(p^{*}=\frac{M L}{M P+M L}=\frac{10}{40}=0.25\), which corresponds to \(0.67 \sigma\), so
he should order \(\mu+0.67 \sigma=165+0.67(40)=191.8\), or 192 copies.

\subsection*{17.4 UTILITY AS A DECISION CRITERION}

So far in this chapter, we have used expected value (expected profit, for example) as our decision criterion. We assumed that if

\section*{Different decision criteria} the expected profit of alternative \(A\) was better than that of alternative \(B\), then the decision maker would certainly choose alternative A. Conversely, if the expected loss of alternative C was greater than the expected loss of alternative D , then we assumed that the decision maker would surely choose D as the better course of action.

\section*{Shortcomings of Expected Value as a Decision Criterion}

There are situations, however, in which the use of expected value as the decision criterion would get a manager into serious trouble. Suppose an entrepreneur owns a new factory worth \(\$ 2\) million.

\section*{Expected value is sometimes} inappropriate Suppose further that there is only one chance in \(1,000,(0.001)\) that it will burn down this year. From these two figures, we can compute the expected loss:
\[
0.001 \times \$ 2,000,000=\$ 2,000=\text { expected loss by fire }
\]

An insurance representative offers to insure the building for \(\$ 2,250\) this year. If the entrepreneur applies the notion of minimizing expected losses, he will refuse to insure the building. The expected loss of insuring \((\$ 2,250)\) is higher than the expected loss by fire. However, if the businessman feels that a \(\$ 2\) million uninsured loss would wipe him out, he will probably discard expected Value as his decision criterion and buy the insurance at the extra cost of \(\$ 250\) per year per policy \((\$ 2,250-\$ 2,000)\). He would choose not to minimize expected loss in this case.

Take an example closer, perhaps, to student life. You are a student with just enough money to get through the semester.

\section*{A personal example}

A friend offers to sell you a 0.9 chance of winning \(\$ 10\) for just \(\$ 1\). You would most likely think of the problem in terms of expected values and reason as follows: "Is \(0.9-\$ 10\) greater than \(\$ 1\) ?" Because \(\$ 9\) (the expected value of the bet) is nine times greater than the cost of the bet (\$1), you might feel inclined to take your friend up on this offer. Even if you lose, the loss of \(\$ 1\) will not affect your situation materially.

\section*{FIGURE 17-4 UTILITY OF VARIOUS PROFITS AND LOSSES}

Now your friend offers to sell you a 0.9 chance of winning \(\$ 1,000\) for \(\$ 100\). The question you would now ponder is, "Is \(0.9 \times \$ 1,000\) greater than \(\$ 100\) ?" Of course, \(\$ 900\) (the expected value of the bet) is still nine times the cost of the bet (\(\$ 100\)), but you would more than likely think twice before putting up your money. Why? Because even though the pleasure of winning \(\$ 1,000\) would be high, the pain of losing your hard-earned \(\$ 100\) might be more than you care to experience.

Say, finally, that your friend offers to sell you a 0.9 chance at winning \(\$ 10,000\) for your total assets, which happen to be \(\$ 1,000\). If you use expected value as your decision criterion, you would ask the question, "Is \(0.9 \times \$ 10,000\) greater than \(\$ 1,000\) ?" You would get the same answer as before: yes. The expected value of the bet \((\$ 9,000)\) is still nine times greater than the cost of the bet \((\$ 1,000)\), but now you would probably refuse your friend, not because the expected value of the bet is unattractive, but because the thought of losing all your assets is completely unacceptable as an outcome.

In this example, you changed the decision criterion away from expected value when the thought of losing \(\$ 1,000\) was too painful,

\section*{Function of utility} despite the pleasure to be gained from \(\$ 10,000\). At this point, you no longer considered the expected value; you thought solely of utility. In this sense, utility is the pleasure or displeasure one would derive from certain outcomes. Your utility curve in Figure 17-4 is linear around the origin (\(\$ 1\) of gain is as pleasurable as \(\$ 1\) of loss is painful in this region), but it turns down rapidly when the potential loss rises to levels near \(\$ 1,000\). Specifically, this utility curve shows us that from your point of view, the displeasure from losing \(\$ 1,000\) is about equal to the pleasure from winning nine times that amount. The shape of one's utility curve is a product of one's psychological makeup, one's expectations about the future, and the particular decision or act being evaluated. A person can have one utility curve for one situation and quite a different one for the next situation.

\section*{Different Utilities}

The utility curves of three different managers' decisions are shown on the graph in Figure 17-5. We have arbitrarily named these man-

\section*{Attitudes toward risk} agers David, Ann, and Jim. Their attitudes are readily apparent from analysis of their utility curves. David is a cautious and conservative businessman. A move to the right of the zero-profit point increases his utility only very slightly, whereas a move to the left of the zero-profit point decreases his utility rapidly. In terms of numerical values, David's utility curve indicates that going from \(\$ 0\) to \(\$ 100,000\) profit increases his utility by a value of 1 on the vertical scale, while moving into the loss range by only \(\$ 40,000\) decreases his utility by the same value of 1 on the vertical scale. David will avoid situations in which high losses might occur; he is said to be averse to risk.

FIGURE 17-5 THREE UTILITY CURVES

Ann is quite another story. We see from her utility curve that a profit increases her utility by much more than a loss of the same amount decreases it. Specifically, increasing her profits \(\$ 20,000\) (from \(\$ 80,000\) to \(\$ 100,000\)) raises her utility from 0 to +5 on the vertical scale, but lowering her profits \(\$ 20,000\) (from \(\$ 0\) to \(-\$ 20,000\)) decreases her utility by only 0.33 , from -4 to -4.33 . Ann is a player of long shots; she feels strongly that a large loss would not make things much worse than they are now, but that a big profit would be quite rewarding. She will take large risks to earn even larger gains.

Jim, fairly well-off financially, is the kind of businessman who would not suffer greatly from a \(\$ 60,000\) loss nor increase his wealth significantly with a \(\$ 60,000\) gain. Pleasure from making an

Who would use expected value? additional \(\$ 60,000\) or pain from losing it would be of about equal intensity. Because his utility curve is linear, he can effectively use expected value as his decision criterion, whereas David and Ann must use utility. Jim will act when the expected value is positive, David will demand a high expected value for the outcome, and Ann may act when the expected value is negative.

\section*{HINTS \& ASSUMPTIONS}

An important prerequisite to understanding the behavior of investors is realizing that their utility curves are not all the same. Specifically, some "high rollers" are attracted to high-risk investments that can result in losing the entire investment or making a fortune. Presumably, such people with significant net worths can afford the loss. On the other hand, people with moderate net worths and heavy family obligations tend to be risk averse and invest only when the expected outcome is positive. An interesting question for you to discuss with your classmates is why the elderly are victims of "get rich quick" investment schemes far out of proportion to their number in the population.

\section*{EXERCISES 17.4}

\section*{Applications}

17-16 Bill Johnson's income places him in the 50 percent bracket for federal income tax purposes. Johnson often supplies venture capital to small startup firms in return for some type of equity position in the firm. Recently, Bill has been approached by Circutronics, a small firm entering the microcircuitry industry. Circutronics has requested \(\$ 1.6\) million backing. Because of his tax position, Bill invests in tax-exempt municipal securities when he cannot find any attractive ventures to back. Currently, he has a large position in North Carolina Eastern Municipal Power Agency bonds, which are yielding a return of 9.43 percent. Bill considers this 9.43 percent after-tax return to be his utility breakeven point. Above that point, his utility rises very rapidly; below, it drops slightly because he can well afford to lose the money.
(a) What dollar return must Circutronics promise before Bill will consider financing it?
(b) Graph Bill's utility curve.

17-17 The Enduro Manufacturing Company is a partnership producing structural-steel building components. Financial manager and partner William Flaherty is examining potential projects that the firm might undertake in the coming fiscal year. The company has a target rate of return of 10 percent on its investment, but because there is no outside financing and interference, the partners have accepted projects with rates of return between 0 and 100 percent. Above 10 percent, the partners' utility rises very rapidly; between 0 and 10 percent, it rises only slightly above 0 ; below 0 , it falls very rapidly; Flaherty is considering several projects that will cause Enduro to invest \(\$ 250,000\). Plot the firm's utility curve.
17-18 An investor is convinced that the price of a share of PDQ stock will rise in the near future. PDQ stock is currently selling for \(\$ 57\) a share. Upon inspecting the latest quotes on the options market, the investor finds that she can purchase an option at a cost of \(\$ 5\) per share, allowing her to buy PDQ for \(\$ 55\) per share within the next 2 months. She can also purchase an option to buy the stock within a 4-month period; this option, which costs \(\$ 10\) per share, also has an exercise price of \(\$ 55\) per share. She has estimated the following probability distributions for the stock price on the days the options expire:
\begin{tabular}{lrrrrrr}
\hline Price & 50 & 55 & 60 & 65 & 70 & 75 \\
Probability at 2 months & 0.05 & 0.15 & 0.15 & 0.25 & 0.35 & 0.05 \\
Probability at 4 months & 0 & 0.05 & 0.05 & 0.20 & 0.30 & 0.40 \\
\hline
\end{tabular}

The investor plans to exercise her option just before its expiration if PDQ stock is selling for more than \(\$ 55\) and immediately sell the stock at that market price. Of course, if the stock is selling for \(\$ 55\) or less when the option expires, she will lose the entire purchase cost of the option. The investor is relatively conservative, with the following utility values for changes in her dollar assets:
\begin{tabular}{lrrrrrr}
\hline Change & \(+1,500\) & \(+1,000\) & +500 & 0 & -500 & \(-1,000\) \\
Utility & 1.0 & 0.9 & 0.8 & 0.7 & 0.1 & 0.0 \\
\hline
\end{tabular}

She is considering one of three alternatives:
(1) To buy a 2-month option on 100 shares.
(2) To buy a 4 -month option on 100 shares.
(3) Not to buy at all.

Which of these alternatives will maximize her expected utility?

\subsection*{17.5 HELPING DECISION MAKERS SUPPLY THE RIGHT PROBABILITIES}

The two problems we worked using the normal probability distribution (pp. 912-914) required us to know both the mean \((\mu)\) and the

\section*{Missing information} standard deviation \((\sigma)\). But how can we make use of a probability distribution when past data are missing or incomplete? By working through a problem, we shall see how we can often generate the required values by using an intuitive approach.

\section*{An Intuitive Approach to Estimating the Mean and Standard Deviation}

Assume that you are thinking about purchasing a machine to replace hand labor on an operation. The machine will cost \(\$ 10,000\) per year to operate and will save \(\$ 8\) for each hour it operates. To break even, then, it must operate at least \(\$ 10,000 / \$ 8=1,250\) hours annually. If you are interested in the probability that it will run more than 1,250 hours, you must know something about the distribution of running times, specifically, the mean and standard deviation of this distribution. But because you do not have a history of the machine's operation, where would you find these figures?

We could ask the foreman of this operation, who has been closely involved with the process, to guess the mean running time of the

\section*{Estimating the mean} machine. Let us say that his best estimate is 1,400 hours. But how would he react if you asked him to give you the standard deviation of the distribution? This term may not be meaningful to him, and yet he probably has some intuitive notion of the dispersion of the distribution of running times. Most people understand betting odds, so let us approach him on that basis.

We begin by counting off an equal distance on each side of his mean, say, 200 hours. This gives us an interval from 1,200 to

\section*{Estimating the standard} deviation 1,600 hours. Then we ask, "What are the odds the number of hours will lie between 1,200 and 1,600 hours?" If he has had any experience with betting, he should be able to reply. Suppose he says, "I think the odds it will run between 1,200 and 1,600 hours are 4 to 3 ." We show his answer on a probability distribution in Figure 17-6.

Figure 17-6 illustrates the foreman's reply that the odds are 4 to 3 the machine will run between 1,200 and 1,600 hours rather than outside those limits. What should we do next? First, we label the 1,600-hour

FIGURE 17-6 FOREMAN'S ODDS INTERVALS FOR OPERATING TIMES OF PROPOSED MACHINES

\section*{FIGURE 17-7 DETERMINATION OF STANDARD DEVIATION FROM FOREMAN'S ODDS}
point on the distribution in Figure 17-6 point \(Q\). Then we can see that the area under the curve between the mean and point \(Q\) according to the foreman's estimates is \(4 / 7\) of half the area under the entire curve, or \(4 / 14=(0.2857)\) of the total area under the curve.

Look at Figure 17-7. If we turn to Appendix Table 1 for the value 0.2857 , we find that point \(Q\) is 0.79 standard deviation to the right of the mean. Because we know that the distance from the mean to \(Q\) is 200 hours, we see that
\[
0.79 \text { standard deviation }=200 \text { hours }
\]
and thus
\[
\begin{aligned}
1 \text { standard deviation } & =200 / 0.79 \\
& =253 \text { hours }
\end{aligned}
\]

Now that we know the mean and standard deviation of the distribution of running times, we can calculate the probability of the machine's running fewer than its break-even point of 1,250 hours:

\section*{Calculating the break-even probability}
\[
\begin{aligned}
\frac{1,250-1,400}{253} & =\frac{-150}{253} \\
& =-0.59 \text { standard deviation }
\end{aligned}
\]

Figure 17-8 illustrates this situation. In Appendix Table 1, we find that the area between the mean of the distribution and a point 0.59 standard deviation below the mean (1,250 hours) is 0.2224 of the total area under the curve. To 0.2224 , we add 0.5 , the area from the mean to the right-hand tail. This gives us 0.7224 . Because 0.7224 is the probability that the machine will operate more than 1,250 hours, the chances that it will operate fewer than 1,250 hours (its break-even point) are \(1-0.7224\), or 0.2776 . Apparently, this is not too risky a situation.

This problem illustrates how we can make use of other people's knowledge about a situation without requiring them to understand

Securing information for models the intricacies of various statistical techniques.

Had we expected the foreman to comprehend the theory behind our calculations, or had we even attempted to explain the theory to him, we might never have been able to benefit from his practical

FIGURE 17-8 PROBABILITY THE MACHINE WILL OPERATE BETWEEN 1,250 AND 1,400 HOURS
wisdom concerning the situation. By using language and terms of reference that he understood, we were able to get the foreman to give us workable estimates of the mean and standard deviation of the distribution of operating times for the machine we contemplated purchasing. In this case (and for that matter, in most others, too), it is wiser to accommodate the ideas and knowledge of other people in your models than to search until you find a situation that will fit a model that has already been developed.

\section*{HINTS \& ASSUMPTIONS}

If you used only the methods in this chapter to make decisions, you would not be very likely to wind up successful. And if all you used to make decisions was your intuition, there would be lots of situations where you would miss out on opportunities. But when you combine high intelligence, strong intuition, and sound quantitative models, the chances of winning increase dramatically. Hint: The people with the strongest intuitive ideas about how things work and what is possible and what is more likely to happen are not the "quant jocks," but ordinary people who have a lot of experience and probably little knowledge of expected value models. The real challenge is to capture the industry wisdom of these veterans and focus it on making sensible decisions when the future is unknown.

\section*{EXERCISES 17.5}

\section*{Self-Check Exercise}

SC 17-3 John Stein is the scheduling director of SATPlus Services, a firm that guarantees that its preparatory course for the college board exams will increase a student's combined score on the verbal and quantitative parts of those exams by at least 120 points. Each student taking the course is charged \(\$ 275\) in tuition, and it costs SATPlus about \(\$ 3,300\) in salaries, supplies, and facility rental costs to teach the course. John will not schedule the course in any location where he cannot be at least 90 percent certain that SATPlus will earn no less than \(\$ 2,200\) in profit. Reviewing a marketing survey that he just received from Charlottesville, Virginia, he has decided that if the course is offered there, he can expect about 30 students to enroll.

He also feels that the odds are about 8 to 5 that actual enrollment will be between 25 and 35 students and that it is appropriate to use the normal distribution to describe course enrollment. Should John schedule the course in Charlottesville?

\section*{Applications}

17-19 Northwestern Industrial Pipe Company is considering the purchase of a new electric arc welder for \(\$ 2,100\). The welder is expected to save the firm \(\$ 5\) an hour when it can be used in place of the present, less efficient welder. Before making the decision, Northwestern's production manager noted there were only about 185 hours a year of welding on which the new arc welder could be substituted for the present one. He gave 7 to 3 odds that the actual outcome would be within 25 hours of this estimate. In addition, he felt secure in assuming that the number of hours was well described by a normal distribution. Can Northwestern be 98 percent sure that the new electric arc welder will pay for itself over a 3-year period?
17-20 Relman Electric Battery Company has felt the effects of a recovering economy as demand for its products has risen in recent months. The company is considering hiring six new people for its assembly operation. Plant production manager Mike Casey, whose performance is evaluated in part by cost efficiency, does not want to hire additional employees unless they can be expected to have jobs for at least 6 months. If the employees are terminated involuntarily before that time, the company is forced by union rules to pay a substantial termination bonus. Additionally, if employees are laid off within 6 months after hiring, the company's unemployment insurance rate is raised. Relman's corporate economist expects that the upswing in the economy will last at least 8 months and gives 7 to 2 odds that the length of the upswing will be within a 1-month range of that figure. Casey wants to be 95 percent sure that he will not have to lay off any newly hired employees. Should he hire six new people at this time?
17-21 Speedy Rabbit courier service operates a fleet of 30 cars covering many miles each day. Currently, the cars use regular fuel at a cost of \(\$ 1.059\) per gallon, and the fleet fuel efficiency is about 36 miles per gallon (mpg). A recent report indicates that if they switch to premium at a cost of \(\$ 1.229\) per gallon, each car would see an increase of 6.4 mpg . The company will switch fuel provided they can be 95 percent certain they will save money, which they will do if the fleet fuel efficiency is less than 40 mpg . They believe that the odds are about 6 to 4 that current fuel efficiency is between 33 and 39 mpg and that it is appropriate to use the normal distribution to describe fuel efficiency. Should they switch fuel?
17-22 Natalie Larsen, a traveling sales representative for Nova Products, is considering the purchase of a new car for business use. The car she has in mind has a sticker price of \(\$ 13,497\), but she thinks she can bargain the dealer down to \(\$ 12,250\). Because her car is used solely for business purposes, Natalie can deduct \(31 \phi\) a mile for operating expenses. She will buy the car only if the resulting tax savings will pay for the car over its lifetime. Natalie has been in a combined federal and state 34 percent tax bracket for some years, and it appears she will remain there for the foreseeable future. A reputable automotive magazine states that the average life of the car she is considering is 120,000 miles. The article further states that the odds are 4 to 3 that the actual life of the car will be within 12,000 miles of 120,000 . What is the probability that the car will run long enough for Natalie to break even?
17-23 The Newton Pines Police Force is considering purchasing a VASCAR radar unit to be installed on the town's single police cruiser. The town council has balked at the idea, because it is not certain that the unit is worth its price of \(\$ 2,000\). Police Chief Buren Hubbs has stated that he
is sure that the unit will pay for itself through the increased number of \(\$ 20\) citations that he and his deputy will give. Buren has been overheard to say that he will give 9 to 1 odds that the increase in citations in the first year will be between 95 and 135 if the unit is purchased. He expects that there will be 115 more tickets given if the cruiser is equipped with VASCAR. Can the town council be 99 percent sure that the unit will be paid for by the increase in revenue from citations in the first year?
17-24 You are planning to invest \(\$ 15,000\) in Infometrics common stock if you can be reasonably certain that its price will rise to \(\$ 60\) a share within 6 months. You ask two knowledgeable brokers the following questions:
(a) What is your best estimate of the highest price at which Infometrics will sell in the next 6 months?
(b) What odds will you give that your estimate will be off by no more than \(\$ 5\) ?

Their responses are as follow:
\begin{tabular}{ccc}
\hline Broker & Best Estimate & Odds \\
\hline A & 68 & 2 to 1 \\
B & 65 & 5 to 1 \\
\hline
\end{tabular}

If you had decided that you would buy the stock only if each broker was at least 80 percent certain that it would be selling for at least \(\$ 60\) sometime within the next 6 months, what should you do?

\section*{Worked-Out Answer to Self-Check Exercise}

SC 17-3 \(8 / 26=0.3077\), corresponding to \(0.87 \sigma\), so \(\sigma=5 / 0.87=5.75\) students. To earn a profit of \(\$ 2,200\), they will have to enroll at least \(\frac{3,330+2,200}{275}=20\) students, corresponding to \(z=\frac{20-30}{5.75}=-1.74 . \mathrm{P}(z>-1.74)=0.9591\). Because this exceeds the necessary 0.90 , he should schedule the course in Charlottesville.

\subsection*{17.6 DECISION-TREE ANALYSIS}

A decision tree is a graphic model of a decision process. With it, we can introduce probabilities into the analysis of complex decisions

\section*{Decision-tree fundamentals} involving many alternatives and future conditions that are not known but that can be specified in terms of a set of discrete probabilities or a continuous probability distribution. Decision-tree analysis is a useful tool in making decisions concerning investments, the acquisition or disposal of physical property, project management, personnel, and new-product strategies.

The term decision tree is derived from the physical appearance of the usual graphic representation of this technique. A decision tree is like the probability trees we introduced in Chapter 4. But a decision tree contains not only, the probabilities of outcomes, but also the conditional monetary (or utility) values attached to those outcomes. Because of this, we can use these trees to indicate the expected values of different actions we can take. Decision trees have standard symbols:
- Squares symbolize decision points, where the decision maker must choose among several possible actions. From these decision nodes, we draw one branch for each of the possible actions.

\section*{TABLE 17-12 DISTRIBUTION OF SNOWFALL AND PROFIT FOR SNOW FUN SKI RESORT}
\begin{tabular}{lrc}
\hline Amount of Snow & Profit & Probability of Occurrence \\
\hline More than 40 inches & \(\$ 120,000\) & 0.4 \\
20 to 40 inches & 40,000 & 0.2 \\
Less than 20 inches & \(-40,000\) & 0.4 \\
\hline
\end{tabular}
- Circles represent chance events, where some state of nature is realized. These chance events are not under the decision maker's control. From these chance nodes, we draw one branch for each possible outcome.

Let's use a decision tree to help Christie Stem, the owner and general manager of the Snow Fun Ski Resort, decide how the hotel should be run in the coming season. Christie's profits for this year's

\section*{Decision-tree example:}

Running a ski resort skiing season will depend on how much snowfall occurs during the winter. On the basis of previous experience, she believes the probability distribution of snowfall and the resulting profit can be summarized by Table 17-12.

Christie has recently received an offer from a large hotel chain to operate the resort for the winter, guaranteeing her a \(\$ 45,000\) profit for the season. She has also been considering leasing snowmaking equipment for the season. If the equipment is leased, the resort will be able to operate full time, regardless of the amount of natural snowfall. If she decides to use snowmakers to supplement the natural snowfall, her profit for the season will be \(\$ 120,000\) minus the cost of leasing and operating the snowmaking equipment. The leasing cost will be about \(\$ 12,000\) per season, regardless of how much it is used. The operating cost will be \(\$ 10,000\) if the natural snowfall is more than 40 inches, \(\$ 50,000\) if it is between 20 and 40 inches, and \(\$ 90,000\) if it is less than 20 inches.

Figure 17-9 illustrates Christie's problem as a decision tree. The three branches emanating from the decision node represent her

\section*{Christie's decision tree} three possible ways to operate the resort this winter: hiring the hotel chain, running it herself without snowmaking equipment, and running it by herself with the snowmakers. Each of the last two branches terminates in a chance node representing the amount of snow that will fall during the season. Each

FIGURE 17-9 CHRISTIE STEM'S DECISION TREE
of these nodes has three branches emanating from it, one for each possible value of snowfall, and the probabilities of that much snow are indicated on each branch. Notice that time flows from left to right in the tree; that is, nodes at the left represent actions or chance events that occur before nodes that fall farther to the right. It is very important to maintain the proper time sequence when constructing decision trees.

At the end of each rightmost branch is the net profit that Christie will earn if a path is followed from the root of the tree (at the decision node) to the top of the tree. For example, if she operates the resort herself with the snowmaker and the snowfall is between 20 and 40 inches, her profit will be \(\$ 58,000,(\$ 120,000\) less \(\$ 12,000\) to lease the snowmaker and \(\$ 50,000\) to operate it). The other net profits are calculated similarly.

We can now begin to analyze Christie's decision tree. (The Rules for analyzing a process starts from the right (at the top of the tree) and works

\section*{decision tree} back to the left (to the root of the tree). In this rollback process,
by working from right to left, we make the future decisions first and then roll them back to become part of earlier decisions.) We have two rules directing this process:
1. If we are analyzing a chance node (circle), we calculate the expected value at that node by multiplying the probability on each branch emanating from the node by the profit at the end of that branch and then summing the products for all of the branches emanating from the node.
2. If we are analyzing a decision node (square), we let the expected value at that node be the maximum of the expected values for all of the branches emanating from the node. In this way, we choose the action with the largest expected value and we prune the branches corresponding to the less profitable actions. We mark those branches with a double slash to indicate that they have been pruned.

For Christie's decision, which is illustrated in Figure 17-10, the Christie's optimal decision expected value of hiring the hotel chain to manage the resort is \(\$ 45,000\). If she operates the resort herself and doesn't use the snowmaking equipment, her expected profit is
\[
\$ 40,000=\$ 120,000(0.4)+\$ 40,000(0.2)-\$ 40,000(0.4)
\]

If she uses the snowmakers, her expected profit is
\[
\$ 58,000=\$ 98,000(0.4)+\$ 58,000(0.2)+\$ 18,000(0.4)
\]

Thus, her optimal decision is to operate Snow Fun herself with snowmaking equipment.

FIGURE 17-10 CHRISTIE STEM'S ANALYZED DECISION TREE

\section*{Decision Trees and New Information: Using Bayes' Theorem to Revise Probabilities}

Just as Christie is getting ready to decide whether to let the hotel chain operate Snow Fun or to operate it herself, she receives a call from Meteorological Associates offering to sell her a forecast of snowfall in

\section*{Cost and value of new information} the coming season. The price of the forecast will be \(\$ 2,000\). The forecast will indicate either that the snowfall will be above normal or else that it will be below normal. After doing a bit of research, Christie learns that Meteorological Associates is a reputable firm whose forecasts have been quite good in the past, although, of course, they haven't been perfectly reliable. In the past, the firm has forecast above-normal snowfall in 90 percent of all years when the natural snowfall has been above 40 inches, in 60 percent of all years when it has been between 20 and 40 inches, and in 30 percent of the years in which it has been below 20 inches.

In order to incorporate this new information and decide whether Incorporating new information she should purchase the snowfall forecast, Christie has to use Bayes'
Theorem (which we discussed in Chapter 4) to see how the results of the forecast will cause her to revise the snowfall probabilities that she is using to make her decision. The forecast will have some value to her if it will cause her to change her decision and avoid taking a less-than-optimal action. However, before doing the calculations necessary to apply Bayes' Theorem, she decides to see first how much a perfectly reliable forecast of the snowfall would be worth. The calculation of this EVPI can be done with the tree given in Figure 17-11. In this figure, we have reversed the time sequence of Christie's decision and when she learns the season's level of snowfall. In Figure 17-9, she had to decide how to operate the resort, and she then learned the amount of snowfall by actually experiencing it. If a perfectly reliable forecast were available, she would learn how much snow would fall before she had to decide how to operate the resort.

Let's examine Figure 17-11 carefully. Even though Christie is trying to determine the worth of a perfectly reliable forecast, she can't know beforehand what the result of the forecast will be. Forty

Expected value of perfect
information

FIGURE 17-11 CHRISTIE'S TREE WITH A PERFECTLY RELIABLE FORECAST
percent of the time, there will be over 40 inches of snow in a skiing season. So, the probability is 0.4 that the forecast will be for over 40 inches of snow. When the snowfall is at that level, Christie's best course of action is to operate the resort herself, without using snow-making equipment, and her profit will be \(\$ 120,000\). In another 20 percent of all seasons, when snowfall is between 20 and 40 inches, Christie will earn \(\$ 58,000\) by operating the resort herself and using snowmakers to supplement the meager natural snowfall. Finally, in years with less than 20 inches of natural snowfall (and this happens 40 percent of the time), she should take the \(\$ 45,000\) profit available by letting the hotel chain operate Snow Fun. With a perfectly reliable forecast, we thus see that Christie's expected profit would be
\[
\$ 77,600=\$ 120,000(0.4)+\$ 58,000(0.2)+\$ 45,000(0.4)
\]

Because her best course of action without the forecast (operating Updating probabilities with Snow Fun herself with the snowmaking equipment) has an expected profit of only \(\$ 58,000\), her EVPI is \(\$ 19,600(\$ 77,600-\$ 58,000)\).

\section*{Bayes' Theorem}

Because the forecast from Meteorological Associates is not perfectly reliable, it will be worth less than \(\$ 19,600\). Nevertheless, Christie sees that additional information about the amount of snowfall can be quite valuable. Will the Meteorological Associates forecast be worth its \(\$ 2,000\) cost? The answer to this question can be found in Table 17-13 and Figure 17-12. Table 17-13 uses the same format we used in Chapter 4 to do the calculations for using Bayes' theorem to update the snowfall probabilities, given the results of the forecast.

Notice how the probabilities change. If the forecast is for above-normal snowfall, Christie's probability that there will be more than 40 inches of snow increases to 0.6 from its initial value of 0.4 . With a forecast for below-normal snowfall, she revises her probability downward to 0.1.

Figure 17-12 gives the entire tree, including the option to buy the Analyzing the entire tree forecast from Meteorological Associates. Let's review the rollback procedure for this tree. The top of the tree (from node 3 on) is the same as Figure 17-10. The bottom of the tree (from node 2 on) analyzes Christie's options if she buys the forecast. At the chance nodes 8,9 , 10 , and 11 , she has calculated expected values using rule 1 on p . 927 . Using rule 2 , she decides at node 4 that she will run the resort by herself (but hedges her bets by using the snowmaking equipment) if the forecast is for above-normal snowfall. She decides at node 5, on the other hand, that she will accept the hotel chain's offer to operate Snow Fun if the forecast is for below-normal snowfall.

TABLE 17-13 CHRISTIE'S POSTERIOR PROBABILITIES
\begin{tabular}{cccccc}
\hline Forecast & Event (snowfall) & P(event) & P(forecast event) & \begin{tabular}{c}
P(forecast \\
\& event)
\end{tabular} & \begin{tabular}{c}
P(event \\
forecast)
\end{tabular} \\
\hline Above & Over \(40^{\prime \prime}\) & 0.4 & 0.9 & \(0.4 \times 0.9=0.36\) & \(0.36 / 0.60=0.6\) \\
normal & \(20^{\prime \prime}-40^{\prime \prime}\) & 0.2 & 0.6 & \(0.2 \times 0.6=0.12\) & \(0.12 / 0.60=0.2\) \\
& Under 20" & 0.4 & 0.3 & \(0.4 \times 0.3=0.12\) & \(0.12 / 0.60=0.2\) \\
& & & \multicolumn{3}{c}{ P(above normal) \(=\mathbf{0 . 6 0}\)} \\
Below & Over 40" & 0.4 & 0.1 & \(0.4 \times 0.1=0.04\) & \(0.04 / 0.40=0.1\) \\
normal & \(20^{\prime \prime}-40^{\prime \prime}\) & 0.2 & 0.4 & \(0.2 \times 0.4=0.08\) & \(0.08 / 0.40=0.2\) \\
& Under 20" & 0.4 & 0.7 & \(0.4 \times 0.7=0.28\) & \(0.28 / 0.40=0.7\) \\
& & & & P(below normal) \(=\mathbf{0 . 4 0}\) & \\
\hline
\end{tabular}

\section*{FIGURE 17-12 CHRISTIE STEM'S COMPLETE DECISION TREE}

Continuing to work her way back through the tree, at node 2 she finds that the expected value of buying the forecast is \(\$ 60,400\). Finally, at node 1 , Christie decides that she should pay Meteorological Associates the \(\$ 2,000\) that it is charging for its forecast because the resulting expected profit of \(\$ 60,400\) is more than the \(\$ 58,000\) she expects to earn without buying the forecast.

In summary, we see that Christie's optimal decision is to buy the Christie's optimal decision forecast. Then, if the forecast is for above-normal snowfall, she should operate the resort by herself, but hedge her bets by using the snowmaking equipment. However, if the forecast is for below-normal snowfall, she should accept the hotel chain's offer to operate Snow Fun for her. If she follows this course of action, she expects her profit for the season to be \(\$ 60,400\). Even

\section*{FIGURE 17-13 SPREADSHEET WITH CHRISTIE'S INPUT AND BAYES' THEOREM CALCULATIONS}
after paying \(\$ 2,000\) for the forecast, she is \(\$ 2,400\) better off than she would be if she didn't use it. What is the maximum amount she would be willing to pay for the forecast? She would pay up to an additional \(\$ 2,400\) for it and still expect to earn at least as much as she could earn without buying it. Thus, the expected value of the forecast (sometimes called the expected value of sample information, or EVSI) is \(\$ 4,400\), and this is the maximum amount that Christie would be willing to pay for it.

You probably noticed that Figure 17-12 (Christie's expanded decision tree) was output from a computer. In fact, we constructed the tree and did the Bayes' Theorem calculations and the rollback

\section*{Decision trees on the personal computer} procedure using the Lotus 1-2-3 spreadsheet program on a personal computer. (Figure 17-13 gives the input data and the Bayes' computations from our spread-sheet.) Similar analysis can be done with many other spreadsheet programs. A discussion of how to do this kind of analysis is given by J. Morgan Jones in "Decision Analysis Using Spreadsheets," The European Journal of Operations Research 26(3) (1986): 385-400. There is also some special-purpose software designed specifically for analyzing decision trees. See the survey article by Dennis Buede, "Aiding Insight, 11," OR/MS Today 21(3) (June 1994): 62-68.

Christie is pleased with the results of this analysis, but she still Changing some input data isn't sure that she should go ahead and implement the optimal policy. Her uncertainty stems from the fact that she doesn't know for sure that leasing the snowmaking equipment will cost \(\$ 12,000\) for the season. That was the amount her friend, Betsy Anderson, had paid last year for snowmakers at her place, The Quaking Aspen Lodge. But there are many differences, among them the fact that Snow Fun's slopes are longer than Quaking Aspen's and that there are several more firms renting snowmakers this year. Christie is reasonably certain that the cost of leasing the equipment will be somewhere between \(\$ 5,000\) and \(\$ 20,000\).

She has realized that there are only three reasonable courses of Reasonable strategies action (strategies) to take:
1. Don't buy the forecast and operate Snow Fun herself using the snowmakers.
2. Buy the forecast and operate Snow Fun herself without snowmakers if the predicted snowfall is above normal, but accept the hotel chain's offer if below-normal snowfall is predicted.
3. Buy the forecast and operate Snow Fun herself with snowmakers if the predicted snowfall is above normal, but accept the hotel chain's offer if below-normal snowfall is predicted.

With her original \$12,000 "guesstimate" of the leasing cost,

\section*{Sensitivity analysis} Christie's optimal decision is to follow the third strategy. She wonders how other possible leasing costs between \(\$ 5,000\) and \(\$ 20,000\) will affect her optimal

FIGURE 17-14 SENSITIVITY ANALYSIS ON THE COST OF LEASING THE SNOWMAKING EQUIPMENT
strategy and expected profit, if at all. Although such a sensitivity analysis is tedious to do by hand, it is quite easy to do in Lotus 1-2-3, and Figure 17-14 shows Christie what to do as the cost of leasing the snowmaking equipment varies from \(\$ 5,000\) to \(\$ 20,000\). If the cost is between \(\$ 5,000\) and \(\$ 6,000\), she should adopt the first strategy. (At exactly \(\$ 6,000\), she is indifferent between the first and third strategies.) For costs between \(\$ 6,000\) and \(\$ 14,000\), strategy 3 is optimal. (At exactly \(\$ 14,000\), she is indifferent between the second and third strategies.) Finally, if the cost is above \(\$ 14,000\), she should adopt strategy 2.

The last column in Figure 17-14 gives the maximum amount that Christie will be willing to pay for the snowfall forecast. She is including this calculation in her analysis because she has heard a rumor that Meteorological Associates has gotten so much business that they are considering increasing their fees. These figures will be useful to her if she has to negotiate the fee for the forecast.

We have just seen a sensitivity analysis with respect to a cost. In a similar fashion, it is possible to see how optimal decisions and

\section*{Other sensitivities} profits change when payoffs or probabilities vary. This capability is especially important when you are using subjective probability estimates in your decision making, and it can be done in a quite straightforward fashion on a personal computer. The ability to perform such sensitivity analyses greatly enhances the value of decision trees in helping us to make important decisions.

\section*{Using Decision-Tree Analysis}

Solving Christie Stem's problem was easy because the tree had only 11 nodes in it. But real-world decision analysis problems can be much more complex. There can be many more alternatives to consider
at each decision node and many more possible outcomes at each chance node. In addition, more realistic problems often involve longer sequences of decisions and chance events. (The trees get taller and bushier!) When solving a problem with a decision tree, remember to stop at a level of complexity that allows you to consider major consequences of future alternatives without becoming bogged down in too much detail.

Generally, decision-tree analysis requires the decision maker to proceed through the following six steps:
1. Define the problem in structured terms. First, determine

\section*{Decision-tree steps} which factors are relevant to the solution. Then estimate probability distributions that are appropriate to describe future behavior of those factors. Collect financial data concerning conditional outcomes.
2. Model the decision process; that is, construct a decision tree that illustrates all the alternatives involved in the problem. This step structures the problem in that it allows the entire decision process to be presented schematically and in an organized, step-by-step fashion. In this step, the decision maker chooses the number of periods into which the future is to be divided.
3. Apply the appropriate probability values and financial data to each of the branches and subbranches of the decision tree. This will enable you to distinguish the probability value and conditional monetary value associated with each outcome.
4. "Solve" the decision tree. Using the methodology we have illustrated, proceed to locate the particular branch of the tree that has the largest expected value or that maximizes the decision criterion, whatever it is.
5. Perform sensitivity analysis; that is, determine how the solution reacts to changes in the inputs. Changing probability values and conditional financial values allows the decision maker to test both the magnitude and the direction of the reaction. This step allows experiments without real commitments or real mistakes and without disrupting operations.
6. List the underlying assumptions. Explain the estimating techniques used to arrive at the probability distributions. What kinds of accounting and cost-finding assumptions underlie the conditional financial values used to arrive at a solution? Why has the future been divided into a certain number of periods? By making these assumptions explicit, you enable others to know what risks they are taking when they use the results of your decision-tree analysis. Use this step to specify limits under which the results obtained will be valid, and especially the conditions under which the decision will not be valid.

Decision-tree analysis is a technique managers use to structure and display alternatives and decision processes. It is popular

Advantages of the decisiontree approach because it
- Structures the decision process, guiding managers to approach decision making in an orderly, sequential fashion.
- Requires the decision maker to examine all possible outcomes, desirable and undesirable.
- Communicates the decision-making process to others, illustrating each assumption about the future.
- Allows a group to discuss alternatives by focusing on each financial figure, probability value, and underlying assumption one at a time; thus, a group can move in orderly steps toward a consensus decision, instead of debating a decision in its entirety.
- Can be used with a computer, so that many different sets of assumptions can be simulated and their effects on the final outcome observed.

\section*{HINTS \& ASSUMPTIONS}

Warning: Don't forget that the probabilities at each node of a decision tree must add up to 1.0. And don't forget that the important part of decision tree analysis is supplying the probabilities. These are far more difficult to ascertain than are the financial values. As we become more familiar with accounting and finance, we should feel more secure in estimating financial outcomes. But even when you become a financial whiz, you can still be uncomfortable and unable to "reach way down in your gut" and come up with reasonable probabilities of outcomes. The ability to attach reasonable subjective probabilities to outcomes in a consistent manner is why successful managers are paid more than successful bookkeepers even though both perform useful work for the organization. Finally, it shouldn't surprise you that companies actually use decision trees as a part of expert systems (systems written in advanced computer language that can handle symbols as well as numerical values), which actually make decisions by mimicking a decision maker's behavior as she solves a problem.

\section*{EXERCISES 17.6}

\section*{Self-Check Exercise}

SC 17-4 Evelyn Parkhill is considering three possible ways to invest the \(\$ 200,000\) she has just inherited.
(1) Some of her friends are considering financing a combined laundromat, video-game arcade, and pizzeria, where the young singles in the area can meet and play while doing their laundry. This venture is highly risky and could result in either a major loss or a substantial gain within a year. Evelyn estimates that with probability 0.6 , she will lose all of her money. However, with probability 0.4 , she will make a \(\$ 200,000\) profit.
(2) She can invest in some new apartments that are being built in town. Within 1 year, this fairly conservative project will produce a profit of at least \(\$ 10,000\), but it might yield \(\$ 15,000, \$ 20,000, \$ 25,000\), or possibly even \(\$ 30,000\). Evelyn estimates the probabilities of these five returns at \(0.20,0.30,0.25,0.20\), and 0.05 , respectively.
(3) She can invest in some government securities that have a current yield of 8.25 percent.
(a) Construct a decision tree to help Evelyn decide how to invest her money.
(b) Which investment will maximize her expected 1-year profit?
(c) How high would the yield on the government bonds have to be before she would decide to invest in them?
(d) How much would she be willing to pay for perfect information about the success of the laundromat?
(e) How much would she be willing to pay for perfect information about the success of the apartments?

\section*{Applications}

17-25 The Motor City Auto Company is planning to introduce a new automobile that features a radically new pollution-control system. It has two options. The first option is to build a new plant, anticipating full production in 3 years. The second option is to rebuild a small existing pilot plant for limited production for the coming model year. If the results of the limited production show promise at the end of the first year, full-scale production in a newly constructed plant would still be possible 3 years from now. If it decides to proceed with the pilot plant and later analysis shows that it is unattractive to go into full production, the pilot plant can still
be operated by itself at a small profit. The expected annual profits for various alternatives are as follows:
\begin{tabular}{ccc}
\hline \begin{tabular}{c}
Production \\
Facility
\end{tabular} & \begin{tabular}{c}
Consumer \\
Acceptance
\end{tabular} & \begin{tabular}{c}
Annual Profit \\
(\$ millions)
\end{tabular} \\
\hline New plant & High & 14 \\
New plant & Low & -6 \\
Pilot plant & High & 2 \\
Pilot plant & Low & 1 \\
\hline
\end{tabular}

Motor City's marketing-research division has estimated that there is a 50 percent probability that consumer acceptance will be high and 50 percent that it will be low. If the pilot plant is put into production, with a corresponding low-keyed advertising program, the researchers feel that the probabilities are 45 percent for high consumer acceptance and 55 percent for low acceptance. Further, they have estimated that if the pilot plant is built and consumer acceptance is found to be high, there is a 90 percent probability of high acceptance with full production. If consumer acceptance with the pilot models is found to be low, however, there is only a 10 percent probability of high eventual acceptance with full production. Which plant should be built?
17-26 Refer to Christie Stem's problem on p. 926 and in Figure 17-9.
(a) Suppose that the operating cost of the snowmaking equipment is actually 30 percent higher than Christie had estimated, that is, \(\$ 13,000\) if the snowfall is heavy, \(\$ 65,000\) if it is moderate, and \(\$ 117,000\) if it is light. How will this affect Christie's optimal decision and expected profit?
(b) Answer the same questions if the actual operating cost is 20 percent higher than Christie's original estimate.
(c) At what percentage increase of the operating cost will Christie be indifferent between the optimal decisions in parts (a) and (b)? At this point, what will be her expected profit?
17-27 International Pictures is trying to decide how to distribute its new movie Claws. Claws is the story of an animal husbandry experiment at North Carolina State University that goes awry, with tragicomic results. An effort to breed meatier turkeys somehow produces an intelligent, 1,000 -pound turkey that escapes from the lab and terrorizes the campus. In a surprise ending, the turkey is befriended by Coach Morey Robbins, who teaches it how to play basketball, and State goes on to win the NCAA championship. Because of the movie's controversial nature, it has the potential to be either a smash hit, a modest success, or a total bomb. International picture is trying to decide whether to release the picture for general distribution initially or to start out with a "limited first-run release" at a few selected theaters, followed by general distribution after 3 months. The company has estimated the following probabilities and conditional profits for Claws:
\begin{tabular}{cccc}
\hline & & \multicolumn{2}{c}{\begin{tabular}{c}
Profits \\
(\$ millions)
\end{tabular}} \\
\cline { 3 - 4 } Level Success & Probability & Limited Release & \begin{tabular}{c}
General \\
Distribution
\end{tabular} \\
\hline Smash & 0.3 & 22 & 12 \\
Modest & 0.4 & 9 & 8 \\
Bomb & 0.3 & -10 & -2 \\
\hline
\end{tabular}
(a) Construct a decision tree to help International decide how to release Claws.
(b) Which decision will maximize the expected profit?
(c) How much would International pay for an absolutely reliable forecast of the movie's level of success?
(d) International can run several sneak previews of Claws to get a better idea of the movie's ultimate level of success. Preview audiences rate movies as either good or excellent, but their opinions are not completely reliable. On the basis of past experience with previews, International has found that 90 percent of all smash successes were rated excellent (with 10 percent of them being rated good), 65 percent of all modest successes were rated excellent (with 35 percent of them being rated good), and 40 percent of all bombs were rated excellent (with 60 percent of them being rated good). If the cost of sneak previews would be about \(\$ 750,000\), should Claws be previewed? How should International respond to the preview results? What is the maximum amount International should be willing to pay for the previews?
17-28 Sam Crawford, a junior business major, lives off campus and has just missed the bus that would have taken him to campus for his 9 A.m. test. It is now 8:45 A.m. and Sam has several options available to get him to campus: waiting for the next bus, walking, riding his bike, or driving his car. The bus is scheduled to arrive in 10 minutes, and it will take Sam exactly 20 minutes to get to his test from the time he gets on the bus. However, there is a 0.2 chance that the bus will be 5 minutes early, and a 0.3 chance that the bus will be 5 minutes late. If Sam walks, there is a 0.8 chance he will get to his test in 30 minutes, and a 0.2 chance he will get there in 35 minutes. If Sam rides his bike, he will get to the test in 25 minutes with probability \(0.5,30\) minutes with probability 0.4 , and there is a 0.1 chance of a flat tire, causing him to take 45 minutes. If Sam drives his car to campus, he will take 15 minutes to get to campus, but the time needed to park his car and get to his test is given by the following table:
\begin{tabular}{lrrrr}
\hline Time to park \& arrive (minutes) & 10 & 15 & 20 & 25 \\
Probability & 0.30 & 0.45 & 0.15 & 0.10 \\
\hline
\end{tabular}
(a) Assuming that Sam wants to minimize his expected late time in getting to his test, draw the decision tree and determine his best option.
(b) Suppose instead that Sam wants to maximize his expected utility as measured by the projected test score given below. Use the same decision tree to determine his optional decision now.
\begin{tabular}{lrrrrr}
\hline Arrival time & \(9: 10\) & \(9: 15\) & \(9: 20\) & \(9: 25\) & \(9: 30\) \\
Projected test score & 95 & 85 & 70 & 60 & 45 \\
\hline
\end{tabular}

17-29 The North Carolina Airport Authority is trying to solve a difficult problem with the overcrowded Raleigh-Durham airport. There are three options to consider:
(1) The airport could be totally redesigned and rebuilt at a cost of \(\$ 8.2\) million. The present value of increased revenue from a new airport is in question. There is a 70 percent probability this present value would be \(\$ 11.0\) million, a 20 percent probability the present value would be \(\$ 5\) million, and a 10 percent probability the present value would be \(\$ 1.0\) million, depending on whether the airport is a success, moderate success, or a failure.
(2) The airport could be remodeled with a new runway for a cost of \(\$ 4.7\) million. The present value of increased revenue would be \(\$ 6.0\) million (with probability 0.8) or \(\$ 3.0\) million (with probability 0.2).
(3) They could do nothing with the airport and suffer a loss of revenue of either \(\$ 1\) million (with probability 0.65) or \(\$ 4\) million (with probability 0.35).
(a) Construct a decision tree to help the Airport Authority.
(b) Which option will maximize the present value of profit?
(c) How much would we be willing to pay for perfect information about success of a brand new airport?
(d) How much would we be willing to pay for perfect information about success of a remodeled airport?

\section*{Worked-Out Answer to Self-Check Exercise}

\author{
SC 17-4 (a)
}

(b) She should invest in the apartments.
(c) For the bonds to yield over \(\$ 18,000\), they would have to pay more than a \(9 \%\) rate of interest.
(d) With perfect information about the laundromat, she would invest in it if she knew it would be successful, but would invest in the apartments otherwise. Hence her expected return with perfect information is \(0.6(18)+0.4(200)=90.8\), and so
\[
\mathrm{EVPI}=90.8-18=72.8 \text {, i.e., } \$ 72,800
\]
(e) With perfect information about the apartments, she would invest in them if their return is over \(\$ 16,500\), but would buy government bonds otherwise. Hence, her expected return with perfect information is \(0.5(16.5)+0.25(20)+0.20(25)+0.05(30)=19.75\), and so
\[
\mathrm{EVPI}=19.75-18=1.75 \text {, i.e., } \$ 1,750
\]

\section*{STATISTICS AT WORK}

\section*{Loveland Computers}

Case 17: Decision Theory A curious calm fell over Loveland Computers and Lee Azko began to think about scheduling a well-deserved day on the slopes. Both Walter Azko and Gratia Delaguardia had been away from the office for 2 days-the rumor mill had it that they were in New York, meeting with the investment bankers.

Lee found a message waiting on the answering machine at home: "Lee, this is your uncle. You can forget about skiing this weekend. And don't go into the office. Gratia and I have a big decision to make. Come up to my house early tomorrow morning. I'll fix you breakfast and you can help Gratia and me figure this one out."
"Help yourself," Walter began the next morning, indicating a large stack of pancakes. "You can probably guess where we've been this week." Walter's gesture indicated he was speaking of his partner and himself. "I know that it may seem strange for a company as big as this to still be a partnership. But in many ways it's just a 'mom and pop' business"
"... with some pretty big numbers," Gratia added.
"Well, there are all kinds of companies that got to be pretty big while they were still privately held." Walter concluded.
"Most of the software companies-and some of your direct competitors," Lee commented.
"So now we're at a turning point," the CEO of Loveland Computers continued. "These fellows in New York are prepared to make a substantial investment - and I mean substantial-in Loveland. But, as you'd expect, they want us to form a corporation and give them a 60 percent stake. I guess that's pretty usual. Somewhere down the line, maybe 2 to 5 years from now, they'll take the company public."
"And you and Gratia-with 20 percent each- would be worth a fortune," Lee said cheerfully, wondering if it was too early to ask for a bonus.
"But on the other hand," Gratia cautioned, "we might be better off just staying as we are. Of course, it means that we'll have to limit our growth to, well, maybe 25 percent per year."
"As opposed to 50 to 100 percent annual growth in sales if we have enough capital behind us," said Walter.
"Well, this one's a 'no-brainer,' Nunc." Lee was still dreaming of large bonuses. "Go for the gold. Take the money, expand all you want-new warehouses and more phone banks-and make a bigger profit."
"It's not as simple as that," Gratia continued to have doubts. "The economy is flat at best. If there's a rebound in the economy, expansion will pay off. But if the country continues for another year with very slow growth, then the only way we could expand our market share would be to seriously cut prices. So, we'd keep new facilities humming-but we'd be bringing much less money to the bottom line."
"You mean you could sell more and earn less?" Lee was incredulous.
"Absolutely. It happens more often than you think."
"In fact, I can't be sure about the pricing structure of the whole industry," Walter said, rejoining the conversation and stretching for the maple syrup. "Many industry experts are expecting some of the big names-IBM and Compaq-to give up their high-price strategy. If they accept a much lower margin on their machines they could greatly increase the number of computers they sell. And they both have manufacturing capability here in the U.S., so they may be able to increase production much faster than we can."
"Give me that table napkin and a pen," said Lee beginning to look more serious. "Let me see if I can sketch out your options."
Study Questions: What is Lee drawing on the napkin? What is the action that the partners will-or will not - take after this discussion? What are the uncertainties they face? How good will these three people be at estimating the probabilities of various outcomes?

\section*{CHAPTER REVIEW}

\section*{Terms Introduced in Chapter 17}

Certainty The decision environment in which only one state of nature exists.
Conditional Profit The profit that would result from a given combination of decision alternative and state of nature.

Decision Point Branching point that requires a decision.
Decision Tree A graphic display of the decision environment, indicating decision alternatives, states of nature, probabilities attached to those states of nature, and conditional benefits and losses.
Expected Marginal Loss The marginal loss multiplied by the probability of not selling that unit.
Expected Marginal Profit The marginal profit multiplied by the probability of selling that unit.
Expected Profit The sum of the conditional profits for a given decision alternative, each weighted by the probability that it will happen.
Expected Profit with Perfect Information The expected value of profit with perfect certainty about which of the states of nature will occur.
Expected-Value Criterion A criterion requiring the decision maker to calculate the expected value for each decision alternative (the sum of the weighted payoffs for that alternative in which the weights are the probability values assigned by the decision maker to the states of nature that can happen).
Expected Value of Perfect Information The difference between expected profit (under conditions of risk) and expected profit with perfect information.
Marginal Loss The loss incurred from stocking a unit that is not sold.
Marginal Profit The profit earned from selling one additional unit.
Minimum Probability The probability of selling at least an additional unit that must exist to justify stocking that unit.
Node The point at which a chance event or a decision takes place on a decision tree.
Obsolescence Loss The loss occasioned by stocking too many units and having to dispose of unsold units.
Opportunity Loss The profit that could have been earned if stock had been sufficient to supply a unit that was demanded.
Payoff The benefit that accrues from a given combination of a decision alternative and a state of nature.
Rollback Also called foldback; a method of using decision trees to find optimal alternatives. It involves working from right to left in the tree.
Salvage Value The value of an item after the initial selling period.
State of Nature A future event not under the control of the decision maker.
Utility The value of a certain outcome or payoff to someone; the pleasure or displeasure someone derives from an outcome.

\section*{Equations Introduced in Chapter 17}

17-1
\[
\begin{equation*}
p(M P)=(1-p)(M L) \tag{p. 910}
\end{equation*}
\]

This equation describes the point at which the expected marginal profit from stocking and selling an additional unit, \(p(M P)\), is equal to the expected marginal loss from stocking and
not selling the unit, \((1-p)(M L)\). As long as \(p(M P)\) is larger than \((1-p)(M L)\), additional units should be stocked because the expected marginal profit from such a decision is greater than the expected marginal loss.
\[
\begin{equation*}
p^{*}=\frac{M L}{M P+M L} \tag{p. 910}
\end{equation*}
\]

This is the minimum probability equation. The symbol \(p^{*}\) represents the minimum required probability of selling at least an additional unit to justify the stocking of that additional unit. As long as the probability of selling one additional unit is greater than \(p^{*}\), the retailer should stock that unit. This equation is Equation 17-1 solved for \(p\).

\section*{Review and Application Exercises}

17-30 The Mountain Manufacturing Company is planning to produce dot-matrix printers for use with microcomputers. One problem it faces is a make-or-buy decision for the print heads. It can buy these units from a Japanese manufacturer for \(\$ 35\) each or it can produce them at its own plant with variable costs of \(\$ 24\) a unit. If it elects to produce the print heads itself, it will incur fixed costs of \(\$ 28,000\) each year. Because of defective units, each printer requires 1.15 print heads. The company foresees annual demand for its printers to be normally distributed with mean \(\mu=3,000\) units and standard deviation \(\sigma=700\) units. What is the probability that the required usage of print heads will be sufficiently large to justify producing them rather than buying them? If it is company policy to make components only when there is better than a 60 percent chance that usage is 1.5 standard deviations above the make-or-buy break-even point, what should the decision be on this matter?
17-31 Sarah Peterson is going to open a health-food store, the Boysenberry Farms Organic Food Emporium. In planning for her initial stock, Sarah is trying to decide how many jars of Mrs. Miles’ Currant Jelly to purchase. Mrs. Miles makes her currant jelly only once every 2 months, so it is necessary for Sarah to plan in advance how much she will need (there is no chance of reorder in the interim period). Sarah is torn between satisfying her customers and friends and losing money because of spoilage, since the jelly has only a 2 month shelf life. Sarah is sure that she will sell at least 10 jars during the period, and 18 different friends have promised that they will buy the jelly when it comes into stock. Sarah knows that the probability of selling more than 18 jars is practically nil and feels that sales will fall somewhere between 10 and 18 jars, despite what her friends have promised. Sarah has all the cost data and is planning a 50 percent markup on cost. As the problem stands now, can Sarah reach a solution to her problem by using decision theory?
17-32 For \$26.95, La Langouste offers an entrée consisting of two broiled spiny-lobster tails with drawn-butter garlic sauce. Because of federal health regulations, the lobsters, which are imported from the Yucatan Peninsula, cannot enter the United States if they are still alive. Accordingly, only refrigerated or frozen tails can be imported. The chef at La Langouste refuses to use frozen lobster tails and to maintain his establishment's reputation for serving only haute cuisine, he employs an agent to place freshly refrigerated lobster tails on a plane leaving the peninsula each day. Any tail not served the day it is shipped must be discarded. The chef wants to know how many tails the agent should ship each day. He wants to be able to satisfy his customers, but he realizes that always ordering enough to meet potential demand could involve substantial waste on days with low demand. He has calculated the cost of a single lobster tail at \(\$ 7.35\), including transportation charges. Past records show the following distribution of daily demand for the lobster-tail entrée:
\begin{tabular}{lrrrrrrrr}
\hline Number & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
Probability & 0.07 & 0.09 & 0.11 & 0.16 & 0.20 & 0.15 & 0.14 & 0.08 \\
\hline
\end{tabular}
(a) If he wishes to maximize his daily expected profits on spiny-lobster tails, how many tails should the chef order?
(b) If La Langouste adopted a policy that requires customers to order spiny lobster a day in advance, how much increase in profit could it expect to see?
17-33 Bay Lakes Lawn and Garden Care Company provides services for homeowners and small businesses. The firm is considering the purchase of a new fertilizer spreader at a cost of \(\$ 43.50\). The spreader is estimated to save 8 minutes labor for every hour it is in use. Head lawn-care specialist Ralph Medlin estimates that the expected life of the spreader is only 48 hours due to corrosion and the odds are 7 to 5 that its life will be between 42 and 54 hours. If the company pays its gardening help \(\$ 12.50\) an hour, what is the probability that the spreader will pay for itself before it is scrapped?
17-34 The luggage department of Madison Rhodes Department Store featured a special Day-AfterChristmas Sale of Luggage on unsold Christmas merchandise. The luggage brand on sale was Imagemaker. The manager of the luggage department was planning his order. Because the store did not carry Imagemaker during the year, the manager wanted to avoid over-stocking; yet, because of a special price the manufacturer offered on the line, he also wanted to minimize stockouts. He was currently attempting to decide the number of women's tote bags to purchase. His estimate of the probable sales, based in part on past performance, is
\begin{tabular}{lrrrrrrr}
\hline Bags & 32 & 33 & 35 & 35 & 36 & 37 & 38 \\
Probability & 0.10 & 0.14 & 0.15 & 0.20 & 0.17 & 0.13 & 0.11 \\
\hline
\end{tabular}

The store is planning to sell the tote bag for \(\$ 42.75\). The wholesale cost is \(\$ 26.00\). How many bags should be ordered for the sale?
17-35 Archdale Stores, a chain of retailers specializing in men's fashions, is considering purchasing a batch of 5,700 neckties from Beau Charm Company. The batch of ties will cost Archdale \(\$ 16,500\), and each tie will sell for \(\$ 3.50\). Archdale's vice president of sales has stated that he thinks the chain could sell 5,000 ties, and the odds are 2 to 3 that the actual sales will be within 200 of his estimate. Leftover ties are worthless.
(a) What is the probability that Archdale will at least break even on the necktie sales?
(b) What is the probability that Archdale can earn 10 percent or more on its inventory investment?
17-36 Barry Roberts, chief corporate counsel for Triangle Electronics, has just learned that a competitor has filed two related patent infringement suits against Triangle. The first of these will be heard in Superior Court in 3 months, and the second is scheduled for 6 months thereafter. Barry estimates that the first trial will take no longer than 4 months to complete. The options available to Triangle in each case are to settle out of court or to let the trial take place. Preparing to try either suit alone will cost \(\$ 7,500\), but some of the legal preparation on the first suit will help on the second, so the cost of preparing to try both suits will be only \(\$ 12,000\). Barry estimates that it will cost Triangle \(\$ 75,000\) to settle the first suit out of court and \(\$ 45,000\) to settle the second. Of course, settling out of court enables Triangle to avoid the trial preparation costs. If the suits go to trial and Triangle wins, they will incur no further costs. However, Barry estimates that losing the first will result in additional costs of \(\$ 150,000\), and losing the
second will cost approximately \(\$ 90,000\). He feels that Triangle has a 60 percent chance of winning the first suit. The chance of winning the second suit depends on the resolution of the first: 40 percent if it is settled out of court, 80 percent if it is tried and won, and 10 percent if it is tried and lost.
(a) Construct Barry's decision tree for deciding how to proceed.
(b) What should Barry do to minimize Triangle's expected cost?
(c) Barry could run a mock trial to get a better idea of the probability of winning the first suit. How much should Triangle be willing to pay if Barry can arrange for an absolutely reliable mock trial?
(d) How would Barry's decision in part (b) change if the cost of settling the second suit were only \(\$ 20,000\) ? What if that cost were \(\$ 90,000\) ?
17-37 Optometrics Village owns a regional chain of eyecare shops and its managers were considering adding prescription underwater goggles for customers who like to scuba or snorkel. A marketing consulting firm has estimated annual demand at 4,000 pairs with a standard deviation of 450 if the price is set at \(\$ 130\) per pair; at a price of \(\$ 140\) per pair, the estimated annual demand is 3,200 with a standard deviation of 300 pairs. The investment required for lens grinding equipment is \(\$ 500,000\) and there are fixed costs of \(\$ 125,000\) per year. The variable cost for each pair of goggles is \(\$ 80\). The Board of Directors for Optometrics has set a "hurdle" annual rate of return for new ventures at 13 percent, and the managing director wants at least a 60 percent chance of meeting that target. Should they proceed with this venture? If so, which price is most likely to meet the hurdle rate of return on their investment?
17-38 At the Campus Set, a clothing store for stylish young moderns, manager Judy Sommers is ordering the season's bathing suits from Jamaican Swimwear. As in past years, she is ordering mostly two-piece suits, but she does plan to carry some one-piece suits. From past experience, she estimates demand for the latter:
\begin{tabular}{lrrrrrrr}
\hline Units demanded & 19 & 20 & 21 & 22 & 23 & 24 & 25 \\
Probability & 0.05 & 0.18 & 0.21 & 0.22 & 0.16 & 0.10 & 0.08 \\
\hline
\end{tabular}

The one-piece suits will retail for \(\$ 43.95\); Judy's cost is \(\$ 21.50\). Any suits left at the end of the season go on sale for \(\$ 19.95\) and are certain to sell at that price. Use marginal analysis to determine the number of one-piece suits Judy should order.
17-39 Flint City Appliance Sales is planning for its big Founder's Day Weekend Sale. As a special offer, the store is selling a Royalty washer-dryer combination for only \(\$ 600\). Royalty has recently informed its distributors that a product innovation will make existing washer-dryer combinations virtually obsolete, and therefore it is offering stores its current first-line washerdryer combination for only \(\$ 325\). Although the manager of Flint City does not believe all of Royalty's talk of obsolescence, he does know that any new gadget that Royalty puts on its newer machines will make his older machines very difficult to sell. Therefore, he wants to be very careful about the number of machines he orders for the Founder's Day Sale. His estimate of the demand for the washer-dryer combinations during the sale is
\begin{tabular}{lrrrrrr}
\hline Units demanded & 6 & 7 & 8 & 9 & 10 & 11 \\
Probability & 0.04 & 0.12 & 0.30 & 0.24 & 0.18 & 0.12 \\
\hline
\end{tabular}

Use marginal analysis to determine how many more washer-dryer combinations should be ordered for the sale if Flint City already has two in stock.
17-40 Steel-Fab Manufacturing is a competitor of the Enduro Company (Exercise 17-17) in the structural-steel components market. Unlike Enduro, Steel-Fab is publicly held and is also financed in part by a bond issue. Accordingly, the company has adopted a 9 percent cutoff rate of return. Below the 9 percent level, the firm's utility curve steepens as the return moves farther away. Above the 9 percent level, the firm's utility grows at a slower rate because of the accompanying risk involved with higher rates of return. The utility for 15 percent is only slightly higher than for 14 percent. Steel-Fab is considering a \(\$ 300,000\) project. Plot the firm's utility curve.
17-41 A textile mill must decide whether to extend \(\$ 150,000\) credit to a new customer that manufactures dresses. The mill's prior experience with a number of dress manufacturers has led it to classify such customers as follows: 25 percent are poor risks, 45 percent are average risks, and 30 percent are good risks. Expected profits on this order (if credit is extended to the dress manufacturer) are \(-\$ 20,000\) if it turns out to be a poor risk, \(\$ 18,000\) if it turns out to be an average risk, and \(\$ 25,000\) if it turns out to be a good risk. Draw a decision tree to determine whether the mill should extend credit to this manufacturer.
17-42 For \(\$ 750\), the textile mill in Exercise 17-41 can purchase a comprehensive credit analysis and rating of the manufacturer. The rating, in increasing order of creditworthiness, will be \(\mathrm{C}, \mathrm{B}\), or A . The credit agency's reliability is summed up in the following table, whose entries are the probabilities (from past experience) of the agency's rating of the dress manufacturer, given the true credit category in which the manufacturer belongs.
\begin{tabular}{cccc}
\hline & \multicolumn{3}{c}{ True Category } \\
\cline { 2 - 4 } Agency Rating & Poor & Average & Good \\
\hline A & 0.1 & 0.1 & 0.6 \\
B & 0.2 & 0.8 & 0.3 \\
C & 0.7 & 0.1 & 0.1 \\
\hline
\end{tabular}
(a) Use Bayes' Theorem and a decision tree to determine whether the mill should purchase the credit rating.
(b) If it does purchase the rating, how will this affect the decision to grant credit to the dress manufacturer?
(c) What is the maximum amount the mill will be willing to pay for the credit report?
(d) What would the mill be willing to pay for an absolutely reliable credit rating of the manufacturer?
17-43 John Silver can use his boat, the Jolly Roger, for either commercial tuna fishing or sport fishing. For the latter, he rents it out at a daily charge of \(\$ 500\). In a fishing season with good weather, he averages 150 rental days. However, if the weather is bad, he averages only 105 rental days. For each day the boat is rented, John estimates he incurs variable costs of about \(\$ 135\). When the weather is good, the revenues from fishing for tuna exceed the variable costs of that operation by \(\$ 50,000\), whereas in seasons with bad weather, the profit contribution from tuna fishing is only \(\$ 43,000\). At the beginning of the 1997 season, John feels that the odds are about 7 to 3 in favor of good weather for the season.
(a) Use a decision tree to help John decide how to use the Jolly Roger during the 1997 fishing season.
(b) How much would John pay for a perfectly reliable long-range weather forecast for the season?
John's good friend, Jim Hawkins, runs a private weather forecasting service that has been 90 percent accurate in the past. In 90 percent of all seasons that had good weather, Jim had forecast good weather, and likewise in 90 percent of all seasons when the weather proved to be bad, Jim's forecast had been for bad weather. Jim usually sells his forecast for \(\$ 1,000\), but because John is a good friend, Jim is willing to sell it to him for only \(\$ 400\).
(c) Expand your decision tree to help John decide whether he should buy Jim's forecast. How will the forecast affect his use of the boat during the 1997 season?
(d) Would John buy Jim's forecast if they weren't friends? Explain. What is the maximum amount John would be willing to pay for the forecast?
17-44 Robert Ingersoll of Tungsten Products has approached both the Enduro Manufacturing Company and Steel-Fab Manufacturing about the possibility of a joint venture with one of them. In this venture, a tungsten alloy is used in place of certain steel alloys. Tungsten Products has the technological expertise but not the production capabilities. The joint venture will be a \(50-50\) split and will cost each company \(\$ 500,000\) in capital investment.
(a) If the expected first-year profit on the project is \(\$ 80,000\), would either or both firms accept the offer?
(b) Superimpose the graphs from Exercises 17-17 and 17-40, adjusting the coordinates, and show the area where Euduro would accept a project and Steel-Fab would not.
(c) If the expected first-year profit on the project was \(\$ 110,000\), would either of the firms accept it? How much would Steel-Fab bid for a 50 percent share of the \(\$ 110,000\) ?
17-45 Marty Tait is a housing developer who is considering building a spec house, so called because there is no particular buyer lined up so the venture is speculative. The lot overlooks the Golden Gate Bridge, so it is expensive. The hill-side location means that it will require substantial foundation work. But the view is spectacular and the selling price of the house should be high. If the house is sold quickly upon completion, Marty makes a good profit above the contractor's fee he charges for each deal. But if it takes too long to market the house after completion, his profit is eaten up by interest on the construction loan and price reductions to sell the property. Marty works closely with a real estate agent, who has estimated the chances that the house will sell in 30,60, and 90 days after completion. The payoffs and probabilities are given in the following table. Should Marty go ahead and build the house?
\begin{tabular}{cccc}
\hline & & \multicolumn{2}{c}{ Playoffs (loss) } \\
\cline { 3 - 4 } Days to sell & Probability & Build & Don't Build \\
\hline 30 & 0.20 & \(\$ 71,000\) & \(\$ 0\) \\
60 & 0.30 & \(\$ 26,000\) & \(\$ 0\) \\
90 & 0.50 & \((\$ 42,000)\) & \(\$ 0\) \\
\hline
\end{tabular}

17-46 Stanley Glass, the owner of a chain of family amusement centers in Ohio, plans to open another center in Cincinnati. He must decide whether it should have 20, 25, or 35 video games. He expects that the demand may be either high, medium, or low, and he has determined probabilities associated with each level. The probabilities and payoffs are as follows:
\begin{tabular}{lcccc}
\hline Event & Probability & 20 Games & 25 Games & 35 Games \\
\hline High demand & 0.55 & \(\$ 12,600\) & \(\$ 18,000\) & \(\$ 23,000\) \\
Medium demand & 0.30 & 11,000 & 16,200 & 15,000 \\
Low demand & 0.15 & 10,600 & 8,500 & 7,100 \\
\hline
\end{tabular}
(a) Without further information about demand, what should Mr. Glass choose to do?
(b) What is the maximum amount he would be willing to pay for perfectly reliable information?

17-47 The new engineering school at a small southern university is currently deciding which textbooks to use in its undergraduate courses. The department chairpersons want to know whether to use textbooks written by professors within the university (university textbooks) or those written by professors from other institutions (outside textbooks). It has been rumored that the school's administrators are pushing for more support for the university and may require that departments use university textbooks whenever possible. If this requirement is passed, and if the department has decided to purchase outside textbooks, the switch to university textbooks will prove to be quite costly. The university's preliminary payoff table follows (payoffs are in thousands of dollars).
\begin{tabular}{lccc}
\hline Event & Probability & Use University Texts & Use Outside Texts \\
\hline Requirement passed & 0.70 & \(\$ 8\) & \(\$ 13\) \\
Requirement not passed & 0.30 & 16 & 13 \\
\hline
\end{tabular}
(a) Compute the expected payoff for each of the two decisions.
(b) Which decision should the engineering school choose?

17-48 Allyson Smith, assistant manager of Records and Tapes Unlimited, plans to sell a weekly music magazine. She is aware that if the magazine does not sell within the week of publication, it is considered to be worthless to the store. Allyson speculates, based on past sales data, about how well the magazine would sell; her weekly sales and probability estimates are as follows:
\begin{tabular}{lrrrrr}
\hline No. of magazines & 500 & 600 & 700 & 800 & 900 \\
Probability & 0.10 & 0.12 & 0.15 & 0.33 & 0.30 \\
\hline
\end{tabular}

The magazine has a production cost of \(\$ 0.70\) each, but Records and Tapes Unlimited plans to sell it for \(\$ 1.50\) each. Determine the optimal number of magazines that the store should order, using the expected-value decision criterion.
17-49 The women of Alpha Zeta sorority at a small midwestern college are getting ready to participate in the school's annual 3-day spring celebration. As in previous years, the sorority will run a soda booth, selling drinks for \(\$ 0.75\) a cup. When initial setup and material costs are deducted, the sorority incurs a cost of \(\$ 0.35\) for each (8 oz) cup of soda. Data collected from last year's celebration indicate that total soda sales are normally distributed with mean 960 and standard deviation of 140 . Determine the amount of soda (in ounces) that the women should purchase.
17-50 The chief administrator of a chain of convalescent homes wants to open a new facility in southern California. His decision to build a 50 -, 75 -, or 150 -bed facility will be based on
whether expected demand is low, medium, or high. Based on past experience, he constructs the following table of short-range profits:
\begin{tabular}{lcrrr}
\hline Event & Probability & 50-Bed & 75-Bed & 150-Bed \\
\hline Low demand & 0.2 & \(\$ 41,000\) & \(-\$ 12,000\) & \(-\$ 53,000\) \\
Medium demand & 0.3 & 52,000 & 68,000 & \(-24,000\) \\
High demand & 0.5 & 65,000 & 80,000 & 117,000 \\
\hline
\end{tabular}
(a) What size facility should the administrator decide to build?
(b) Calculate the expected profit with perfect information.
(c) Use your answer to part (b) to calculate the administrator's expected value of perfect information.
17-51 University Gear Sweatshop is a clothing store that caters to the students of a college known for its fantastic football record. Janet Sawyer, the store's manager, is deciding whether to order more sweatshirts printed with the team's name and mascot. If the team loses the championship this year, the extra sweatshirts won't sell very well, but if the team wins, she expects to be able to make a high profit on the shirts. The local paper is predicting a 65 percent chance that the team will win the championship. Sawyer has constructed the following payoff table (for the additional sweatshirts):
\begin{tabular}{lcc}
\hline Event & Stock Additional Shirts & Don’t Stock Shirts \\
\hline Team wins & \(\$ 6,110\) & \(\$ 0\) \\
Team loses & \(\$ 1,500\) & \(\$ 0\) \\
\hline
\end{tabular}

What course of action should Ms. Sawyer take?
17-52 A local telephone distributor, Phones and More, plans to offer a special deal this week on its remote-activated answering machine. The store needs to decide how many "standard" and how many "remote" answering machines to order from the manufacturer. Based on prior experience, the management estimates the sales of the remote machine as given in the following table.
\begin{tabular}{lrrrrrrr}
\hline Sales & 15 & 16 & 17 & 18 & 19 & 20 & 21 \\
Probability & 0.12 & 0.17 & 0.26 & 0.23 & 0.15 & 0.05 & 0.02 \\
\hline
\end{tabular}

The retail price of the remote machine is \(\$ 89.95\), but Phones and More's cost will be \(\$ 75.50\). Use marginal analysis to determine the number of remote machines that the distributor should order.
17-53 Trade talks have broken down and there is a strong possibility of punitive tariffs being assessed on imported luxury cars. The owner of Motors is considering doubling the usual monthly import order; if tariffs are imposed, the firm will make a windfall profit on cars already in the country. But if tariffs are not imposed, the holding costs (chiefly interest on the company's line of credit) will reduce profit. The following table gives the owner's best estimate of the probabilities and payoffs:
\begin{tabular}{lcrc}
\hline & & \multicolumn{2}{c}{ Ordering Decision } \\
\hline Event & Probability & Double & Don't Double \\
\hline Tariffs imposed & 0.15 & \(\$ 240,000\) & \(\$ 100,000\) \\
No tariff & 0.85 & \(\$ 20,000\) & \(\$ 80,000\) \\
\hline
\end{tabular}

What should the owner do?

17-54 Technology stocks often show great price volatility, depending on whether Wall Street analysts perceive that the company's next product will be successful. At the end of the first quarter of 1994, an investment group considered its position in the stock of Digital Equipment Corporation (DEC), which was trading at \(\$ 31.50\), down almost 50 percent from the group's cost basis.

The group had an investment horizon of January 1995, and debated whether to sell the stock. A consensus of expert opinion was that the most likely (expected) January 1995 price of DEC stock was \(\$ 35\) per share, but it might drift lower (say to \(\$ 25\)). There was some hope that the stock could be trading as high as \(\$ 50\), on the strength of the new Alpha chip, a fast proprietary design around which DEC was launching a new line of computers.

The investment group had substantial cash reserves on which they expected to earn 8 percent in the 9 months leading up to January 1995. Proceeds from selling the DEC stock could be added to these cash reserves.

In addition to holding the stock until January 1995 or selling it now and placing the proceeds into their cash reserves, the investors could reinvest the proceeds in LEAPs (long-term options) on DEC stock. A LEAP is the right to buy a stock in the future at a set price. In March 1994, the cost of a LEAP giving the right to buy one share of DEC stock for \(\$ 30\) was \(\$ 6\). This LEAP would expire in January of 1995. If the price of DEC stock at that time was above \(\$ 30\), the investors would exercise the LEAP and then sell the DEC stock. If the price of DEC stock was below \(\$ 30\), then the LEAP would expire, with no further value.

In the following, ignore tax consequences and assume that transaction fees are negligible because of the large number of shares involved. The investors have 100 shares of DEC stock, so if they sell them now at \(\$ 31.50\) per share, they can use the proceeds of \(\$ 3,150\) to buy LEAPs on 525 (\(=3150 / 6\)) DEC shares.
(a) How much will the investors have in January 1995, if they sell their stock now and place the proceeds into their cash reserves?
(b) Suppose they estimate probabilities of \(0.25,0.50\), and 0.25 that DEC stock will be selling for \(\$ 25, \$ 35\), and \(\$ 50\) in January 1995. How much will they expect to receive if they
i. hold their stock until January 1995 before selling?
ii. sell their stock now, buy LEAPs, and liquidate them (exercise them or let them expire) in January 1995?
(c) What strategy do you recommend? Why?

This page is intentionally left blank

\section*{Appendix Tables}

EXAMPLE: TO FIND THE AREA UNDER THE CURVE BETWEEN THE MEAN AND A POINT 2.24 STANDARD DEVIATIONS TO THE RIGHT OF THE MEAN, LOOK UP THE VALUE OPPOSITE 2.2 AND UNDER 0.04 IN THE TABLE; 0.4875 OF THE AREA UNDER THE CURVE LIES BETWEEN THE MEAN AND A z VALUE OF 2.24.

APPENDIX TABLE 1 AREAS UNDER
THE STANDARD NORMAL PROBABILITY
DISTRIBUTION BETWEEN THE MEAN
AND POSITIVE VALUES OF \(z\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(z\) & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\
\hline 0.0 & 0.0000 & 0.0040 & 0.0080 & 0.0120 & 0.0160 & 0.0199 & 0.0239 & 0.0279 & 0.0319 & 0.0359 \\
\hline 0.1 & 0.0398 & 0.0438 & 0.0478 & 0.0517 & 0.0557 & 0.0596 & 0.0636 & 0.0675 & 0.0714 & 0.0753 \\
\hline 0.2 & 0.0793 & 0.0832 & 0.0871 & 0.0910 & 0.094 & 0.0987 & 0.1026 & 0.1064 & 0.1103 & 0.1141 \\
\hline 0.3 & 0.1179 & 0.1217 & 0.1255 & 0.1293 & 0.1331 & 0.1368 & 0.1406 & 0.1443 & 0.1480 & 0.1517 \\
\hline 0.4 & 0.1554 & 0.1591 & 0.1628 & 0.1664 & 0.1700 & 0.1736 & 0.1772 & 0.1808 & 0.1844 & 0.1879 \\
\hline 0.5 & 0.1915 & 0.1950 & 0.1985 & 0.2019 & 0.2054 & 0.2088 & 0.2123 & 0.2157 & 0.2190 & 0.2224 \\
\hline 0.6 & 0.2257 & 0.2291 & 0.2324 & 0.2357 & 0.2389 & 0.2422 & 0.2454 & 0.2486 & 0.2517 & 0.2549 \\
\hline 0.7 & 0.2580 & 0.2611 & 0.2642 & 0.2673 & 0.2704 & 0.2734 & 0.2764 & 0.2794 & 0.2823 & 0.2852 \\
\hline 0.8 & 0.2881 & 0.2910 & 0.2939 & 0.2967 & 0.2995 & 0.3023 & 0.3051 & 0.3078 & 0.3106 & 0.3133 \\
\hline 0.9 & 0.3159 & 0.3186 & 0.3212 & 0.3238 & 0.3264 & 0.3289 & 0.3315 & 0.3340 & 0.3365 & 0.3389 \\
\hline 1.0 & 0.3413 & 0.3438 & 0.3461 & 0.3485 & 0.3508 & 0.3531 & 0.3554 & 0.3577 & 0.3599 & 0.3621 \\
\hline 1.1 & 0.3643 & 0.3665 & 0.3686 & 0.3708 & 0.3729 & 0.3749 & 0.3770 & 0.3790 & 0.3810 & 0.3830 \\
\hline 1.2 & 0.3849 & 0.3869 & 0.3888 & 0.3907 & 0.3925 & 0.3944 & 0.3962 & 0.3980 & 0.3997 & 0.4015 \\
\hline 1.3 & 0.4032 & 0.4049 & 0.4066 & 0.4082 & 0.4099 & 0.4115 & 0.4131 & 0.4147 & 0.4162 & 0.4177 \\
\hline 1.4 & 0.4192 & 0.4207 & 0.4222 & 0.4236 & 0.4251 & 0.4265 & 0.4279 & 0.4292 & 0.4306 & 0.4319 \\
\hline 1.5 & 0.4332 & 0.4345 & 0.4357 & 0.4370 & 0.4382 & 0.4394 & 0.4406 & 0.4418 & 0.4429 & 0.4441 \\
\hline 1.6 & 0.4452 & 0.4463 & 0.4474 & 0.4484 & 0.4495 & 0.4505 & 0.4515 & 0.4525 & 0.4535 & 0.4545 \\
\hline 1.7 & 0.4554 & 0.4564 & 0.4573 & 0.4582 & 0.4591 & 0.4599 & 0.4608 & 0.4616 & 0.4625 & 0.4633 \\
\hline 1.8 & 0.4641 & 0.4649 & 0.4656 & 0.4664 & 0.4671 & 0.4678 & 0.4686 & 0.4693 & 0.4699 & 0.4706 \\
\hline 1.9 & 0.4713 & 0.4719 & 0.4726 & 0.4732 & 0.4738 & 0.4744 & 0.4750 & 0.4756 & 0.4761 & 0.4767 \\
\hline 2.0 & 0.4772 & 0.4778 & 0.4783 & 0.4788 & 0.4793 & 0.4798 & 0.4803 & 0.4808 & 0.4812 & 0.4817 \\
\hline 2.1 & 0.4821 & 0.4826 & 0.4830 & 0.4834 & 0.4838 & 0.4842 & 0.4846 & 0.4850 & 0.4854 & 0.4857 \\
\hline 2.2 & 0.4861 & 0.4864 & 0.4868 & 0.4871 & 0.4875 & 0.4878 & 0.4881 & 0.4884 & 0.4887 & 0.4890 \\
\hline 2.3 & 0.4893 & 0.4896 & 0.4898 & 0.4901 & 0.4904 & 0.4906 & 0.4909 & 0.4911 & 0.4913 & 0.4916 \\
\hline 2.4 & 0.4918 & 0.4920 & 0.4922 & 0.4925 & 0.4927 & 0.4929 & 0.4931 & 0.4932 & 0.4934 & 0.4936 \\
\hline 2.5 & 0.4938 & 0.4940 & 0.4941 & 0.4943 & 0.4945 & 0.4946 & 0.4948 & 0.4949 & 0.4951 & 0.4952 \\
\hline 2.6 & 0.4953 & 0.4955 & 0.4956 & 0.4957 & 0.4959 & 0.4960 & 0.4961 & 0.4962 & 0.4963 & 0.4964 \\
\hline 2.7 & 0.4965 & 0.4966 & 0.4967 & 0.4968 & 0.4969 & 0.4970 & 0.4971 & 0.4972 & 0.4973 & 0.4974 \\
\hline 2.8 & 0.4974 & 0.4975 & 0.4976 & 0.4977 & 0.4977 & 0.4978 & 0.4979 & 0.4979 & 0.4980 & 0.4981 \\
\hline 2.9 & 0.4981 & 0.4982 & 0.4982 & 0.4983 & 0.4984 & 0.4984 & 0.4985 & 0.4985 & 0.4986 & 0.4986 \\
\hline 3.0 & 0.4987 & 0.4987 & 0.4987 & 0.4988 & 0.4988 & 0.4989 & 0.4989 & 0.4989 & 0.4990 & 0.4990 \\
\hline
\end{tabular}

EXAMPLE: TO FIND THE VALUE OF \(\dagger\) THAT CORRESPONDS TO AN AREA OF 0.10 IN BOTH TAILS OF THE DISTRIBUTION COMBINED, WHEN THERE ARE 19 DEGREES OF FREEDOM, LOOK UNDER THE 0.10 COLUMN, AND PROCEED DOWN TO THE 19 DEGREES OF FREEDOM ROW; THE APPROPRIATE + VALUE THERE IS 1.729.

APPENDIX TABLE 2 AREAS IN BOTH TAILS COMBINED FOR STUDENT'S † DISTRIBUTION
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Degrees of Freedom} & \multicolumn{4}{|c|}{Area in Both Tails Combined} \\
\hline & 0.10 & 0.05 & 0.02 & 0.01 \\
\hline 1 & 6.314 & 12.706 & 31.821 & 63.657 \\
\hline 2 & 2.920 & 4.303 & 6.965 & 9.925 \\
\hline 3 & 2.353 & 3.182 & 4.541 & 5.841 \\
\hline 4 & 2.132 & 2.776 & 3.747 & 4.604 \\
\hline 5 & 2.015 & 2.571 & 3.365 & 4.032 \\
\hline 6 & 1.943 & 2.447 & 3.143 & 3.707 \\
\hline 7 & 1.895 & 2.365 & 2.998 & 3.499 \\
\hline 8 & 1.860 & 2.306 & 2.896 & 3.355 \\
\hline 9 & 1.833 & 2.262 & 2.821 & 3.250 \\
\hline 10 & 1.812 & 2.228 & 2.764 & 3.169 \\
\hline 11 & 1.796 & 2.201 & 2.718 & 3.106 \\
\hline 12 & 1.782 & 2.179 & 2.681 & 3.055 \\
\hline 13 & 1.771 & 2.160 & 2.650 & 3.012 \\
\hline 14 & 1.761 & 2.145 & 2.624 & 2.977 \\
\hline 15 & 1.753 & 2.131 & 2.602 & 2.947 \\
\hline 16 & 1.746 & 2.120 & 2.583 & 2.921 \\
\hline 17 & 1.740 & 2.110 & 2.567 & 2.898 \\
\hline 18 & 1.734 & 2.101 & 2.552 & 2.878 \\
\hline 19 & 1.729 & 2.093 & 2.539 & 2.861 \\
\hline 20 & 1.725 & 2.086 & 2.528 & 2.845 \\
\hline 21 & 1.721 & 2.080 & 2.518 & 2.831 \\
\hline 22 & 1.717 & 2.074 & 2.508 & 2.819 \\
\hline 23 & 1.714 & 2.069 & 2.500 & 2.807 \\
\hline 24 & 1.711 & 2.064 & 2.492 & 2.797 \\
\hline 25 & 1.708 & 2.060 & 2.485 & 2.787 \\
\hline 26 & 1.706 & 2.056 & 2.479 & 2.779 \\
\hline 27 & 1.703 & 2.052 & 2.473 & 2.771 \\
\hline 28 & 0.701 & 2.048 & 2.467 & 2.763 \\
\hline 29 & 1.699 & 2.045 & 2.462 & 2.756 \\
\hline 30 & 1.697 & 2.042 & 2.457 & 2.750 \\
\hline 40 & 1.684 & 2.021 & 2.423 & 2.704 \\
\hline 60 & 1.671 & 2.000 & 2.390 & 2.660 \\
\hline 120 & 1.658 & 1.980 & 2.358 & 2.617 \\
\hline Normal Distribution & 1.645 & 1.960 & 2.326 & 2.576 \\
\hline
\end{tabular}
APPENDIX TABLE 3 BIONOMIAL PROBABILITIES
\begin{tabular}{|c|}
\hline \multicolumn{22}{|l|}{FOR A GIVEN COMBINATION OF \(n\) AND \(\boldsymbol{p}\), ENTRY INDICATES THE PROBABILITY OF OBTAINING A SPECIFIED VALUE OF \(r\). ENTRY: WHEN \(\boldsymbol{p} \leq \mathbf{0 . 5 0}\), READ \(\boldsymbol{p}\) ACROSS THE TOP AND BOTH \(\boldsymbol{n}\) AND \(\boldsymbol{r}\) DOWN THE LEFT MARGIN; WHEN \(\boldsymbol{p} \geq \mathbf{0 . 5 0}\), READ BOTTOM AND BOTH \(n\) AND \(r\) UP THE RIGHT MARGIN.} \\
\hline \multicolumn{22}{|l|}{} \\
\hline \(n\) & \(r\) & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 & 0.10 & 0.11 & 0.12 & 0.13 & 0.14 & 0.15 & 0.16 & 0.17 & 0.18 & \(r\) & \\
\hline \multirow[t]{3}{*}{2} & 0 & 0.9801 & 0.9604 & 0.9409 & 0.9216 & 0.9025 & 0.8836 & 0.8649 & 0.8464 & 0.8281 & 0.8100 & 0.7921 & 0.7744 & 0.7569 & 0.7396 & 0.7225 & 0.7056 & 0.6889 & 0.6724 & 2 & \\
\hline & 1 & 0.0198 & 0.0392 & 0.0582 & 0.0768 & 0.0950 & 0.1128 & 0.1302 & 0.1472 & 0.1638 & 0.1800 & 0.1958 & 0.2112 & 0.2262 & 0.2408 & 0.2550 & 0.2688 & 0.2822 & 0.2952 & & \\
\hline & 2 & 0.0001 & 0.0004 & 0.0009 & 0.0016 & 0.0025 & 0.0036 & 0.0049 & 0.0064 & 0.0081 & 0.0100 & 0.0121 & 0.0144 & 0.0169 & 0.0196 & 0.0225 & 0.0256 & 0.0289 & 0.0324 & 0 & 2 \\
\hline \multirow[t]{4}{*}{3} & 0 & 0.9703 & 0.9412 & 0.9127 & 0.8847 & 0.8574 & 0.8306 & 0.8044 & 0.7787 & 0.7536 & 0.7290 & 0.7050 & 0.6815 & 0.6585 & 0.6361 & 0.6141 & 0.5927 & 0.5718 & 0.5514 & 3 & \\
\hline & 1 & 0.0294 & 0.0576 & 0.0847 & 0.1106 & 0.1354 & 0.1590 & 0.1816 & 0.2031 & 0.2236 & 0.2430 & 0.2614 & 0.2788 & 0.2952 & 0.3106 & 0.3251 & 0.3387 & 0.3513 & 0.3631 & 2 & \\
\hline & 2 & 0.0003 & 0.0012 & 0.0026 & 0.0046 & 0.0071 & 0.0102 & 0.0137 & 0.0177 & 0.0221 & 0.0270 & 0.0323 & 0.0380 & 0.0441 & 0.0506 & 0.0574 & 0.0645 & 0.0720 & 0.0797 & & \\
\hline & 3 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0007 & 0.0010 & 0.0013 & 0.0017 & 0.0022 & 0.0027 & 0.0034 & 0.0041 & 0.0049 & 0.0058 & 0 & 3 \\
\hline \multirow[t]{5}{*}{4} & 0 & 0.9606 & 0.9224 & 0.8853 & 0.8493 & 0.8145 & 0.7807 & 0.7481 & 0.7164 & 0.6857 & 0.6561 & 0.6274 & 0.5997 & 0.5729 & 0.5470 & 0.5220 & 0.4979 & 0.4746 & 0.4521 & 4 & \\
\hline & 1 & 0.0388 & 0.0753 & 0.1095 & 0.1416 & 0.1715 & 0.1993 & 0.2252 & 0.2492 & 0.2713 & 0.2916 & 0.3102 & 0.3271 & 0.3424 & 0.3562 & 0.3685 & 0.3793 & 0.3888 & 0.3970 & 3 & \\
\hline & 2 & 0.0006 & 0.0023 & 0.0051 & 0.0088 & 0.0135 & 0.0191 & 0.0254 & 0.0325 & 0.0402 & 0.0486 & 0.0575 & 0.0669 & 0.0767 & 0.0870 & 0.0975 & 0.1084 & 0.1195 & 0.1307 & 2 & \\
\hline & 3 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0005 & 0.0008 & 0.0013 & 0.0019 & 0.0027 & 0.0036 & 0.0047 & 0.0061 & 0.0076 & 0.0094 & 0.0115 & 0.0138 & 0.0163 & 0.0191 & 1 & \\
\hline & 4 & & & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0008 & 0.0010 & 0 & 4 \\
\hline \multirow[t]{6}{*}{5} & 0 & 0.9510 & 0.9039 & 0.8587 & 0.8154 & 0.7738 & 0.7339 & 0.6957 & 0.6591 & 0.6240 & 0.5905 & 0.5584 & 0.5277 & 0.4984 & 0.4704 & 0.4437 & 0.4182 & 0.3939 & 0.3707 & 5 & \\
\hline & 1 & 0.0480 & 0.0922 & 0.1328 & 0.1699 & 0.2036 & 0.2342 & 0.2618 & 0.2866 & 0.3086 & 0.3280 & 0.3451 & 0.3598 & 0.3724 & 0.3829 & 0.3915 & 0.3983 & 0.4034 & 0.4069 & 4 & \\
\hline & 2 & 0.0010 & 0.0038 & 0.0082 & 0.0142 & 0.0214 & 0.0299 & 0.0394 & 0.0498 & 0.0610 & 0.0729 & 0.0853 & 0.0981 & 0.1113 & 0.1247 & 0.1382 & 0.1517 & 0.1652 & 0.1786 & 3 & \\
\hline & 3 & 0.0000 & 0.0001 & 0.0003 & 0.0006 & 0.0011 & 0.0019 & 0.0030 & 0.0043 & 0.0060 & 0.0081 & 0.0105 & 0.0134 & 0.0166 & 0.0203 & 0.0244 & 0.0289 & 0.0338 & 0.0392 & 2 & \\
\hline & 4 & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 0.0007 & 0.0009 & 0.0012 & 0.0017 & 0.0022 & 0.0028 & 0.0035 & 0.0043 & 1 & \\
\hline & 5 & & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0 & 5 \\
\hline \multirow[t]{7}{*}{6} & 0 & 0.9415 & 0.8858 & 0.8330 & 0.7828 & 0.7351 & 0.6899 & 0.6470 & 0.6064 & 0.5679 & 0.5314 & 0.4970 & 0.4644 & 0.4336 & 0.4046 & 0.3771 & 0.3513 & 0.3269 & 0.3040 & 6 & \\
\hline & 1 & 0.0571 & 0.1085 & 0.1546 & 0.1957 & 0.2321 & 0.2642 & 0.2922 & 0.3164 & 0.3370 & 0.3543 & 0.3685 & 0.3800 & 0.3888 & 0.3952 & 0.3993 & 0.4015 & 0.4018 & 0.4004 & 5 & \\
\hline & 2 & 0.0014 & 0.0055 & 0.0120 & 0.0204 & 0.0305 & 0.0422 & 0.0550 & 0.0688 & 0.0833 & 0.0984 & 0.1139 & 0.1295 & 0.1452 & 0.1608 & 0.1762 & 0.1912 & 0.2057 & 0.2197 & 4 & \\
\hline & 3 & 0.0000 & 0.0002 & 0.0005 & 0.0011 & 0.0021 & 0.0036 & 0.0055 & 0.0080 & 0.0110 & 0.0146 & 0.0188 & 0.0236 & 0.0289 & 0.0349 & 0.0415 & 0.0486 & 0.0562 & 0.0643 & 3 & \\
\hline & 4 & - & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0008 & 0.0012 & 0.0017 & 0.0024 & 0.0032 & 0.0043 & 0.0055 & 0.0069 & 0.0086 & 0.0106 & 2 & \\
\hline & 5 & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0009 & 1 & \\
\hline & 6 & - & - & - & - & - & - & - & & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 & 6 \\
\hline \multirow[t]{8}{*}{7} & 0 & 0.9321 & 0.8681 & 0.8080 & 0.7514 & 0.6983 & 0.6485 & 0.6017 & 0.5578 & 0.5168 & 0.4783 & 0.4423 & 0.4087 & 0.3773 & 0.3479 & 0.3206 & 0.2951 & 0.2714 & 0.2493 & 7 & \\
\hline & 1 & 0.0659 & 0.1240 & 0.1749 & 0.2192 & 0.2573 & 0.2897 & 0.3170 & 0.3396 & 0.3578 & 0.3720 & 0.3827 & 0.3901 & 0.3946 & 0.3965 & 0.3960 & 0.3935 & 0.3891 & 0.3830 & 6 & \\
\hline & 2 & 0.0020 & 0.0076 & 0.0162 & 0.0274 & 0.0406 & 0.0555 & 0.0716 & 0.0886 & 0.1061 & 0.1240 & 0.1419 & 0.1596 & 0.1769 & 0.1936 & 0.2097 & 0.2248 & 0.2391 & 0.2523 & 5 & \\
\hline & 3 & 0.0000 & 0.0003 & 0.0008 & 0.0019 & 0.0036 & 0.0059 & 0.0090 & 0.0128 & 0.0175 & 0.0230 & 0.0292 & 0.0363 & 0.0441 & 0.0525 & 0.0617 & 0.0714 & 0.0816 & 0.0923 & 4 & \\
\hline & 4 & - & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0004 & 0.0007 & 0.0011 & 0.0017 & 0.0026 & 0.0036 & 0.0049 & 0.0066 & 0.0086 & 0.0109 & 0.0136 & 0.0167 & 0.0203 & 3 & \\
\hline & 5 & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 0.0006 & 0.0008 & 0.0012 & 0.0016 & 0.0021 & 0.0027 & 2 & \\
\hline & 6 & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & & \\
\hline & 7 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0 & 7 \\
\hline \(n\) & \(r\) & 0.99 & 0.98 & 0.97 & 0.96 & 0.95 & 0.94 & 0.93 & 0.92 & 0.91 & 0.90 & 0.89 & 0.88 & 0.87 & 0.86 & 0.85 & 0.84 & 0.83 & 0.82 & \(r\) & \(n\) \\
\hline \multicolumn{22}{|l|}{\(p\)} \\
\hline
\end{tabular}

\begin{tabular}{|c|}
\hline \multirow[t]{2}{*}{\(n\)} & & \multicolumn{18}{|l|}{\(p\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(r n\)}} \\
\hline & \(r\) & 0.19 & 0.20 & 0.21 & 0.22 & 0.23 & 0.24 & 0.25 & 0.26 & 0.27 & 0.28 & 0.29 & 0.30 & 0.31 & 0.32 & 0.33 & 0.34 & 0.35 & 0.36 & & \\
\hline \multirow[t]{3}{*}{2} & 0 & 0.6561 & 0.6400 & 0.6241 & 0.6084 & 0.5929 & 0.5776 & 0.5625 & 0.5476 & 0.5329 & 0.5184 & 0.5041 & 0.4900 & 0.4761 & 0.4624 & 0.4489 & 0.4356 & 0.4225 & 0.4096 & 2 & \\
\hline & 1 & 0.3078 & 0.3200 & 0.3318 & 0.3432 & 0.3542 & 0.3648 & 0.3750 & 0.3848 & 0.3942 & 0.4032 & 0.4118 & 0.4200 & 0.4278 & 0.4352 & 0.4422 & 0.4488 & 0.4550 & 0.4608 & 1 & \\
\hline & 2 & 0.0361 & 0.0400 & 0.0441 & 0.0484 & 0.0529 & 0.0576 & 0.0625 & 0.0676 & 0.0729 & 0.0784 & 0.0841 & 0.0900 & 0.0961 & 0.1024 & 0.1089 & 0.1156 & 0.1225 & 0.1296 & 02 & 2 \\
\hline \multirow[t]{4}{*}{3} & 0 & 0.5314 & 0.5120 & 0.4930 & 0.4746 & 0.4565 & 0.4390 & 0.4219 & 0.4052 & 0.3890 & 0.3732 & 0.3579 & 0.3430 & 0.3285 & 0.3144 & 0.3008 & 0.2875 & 0.2746 & 0.2621 & 3 & \\
\hline & 1 & 0.3740 & 0.3840 & 0.3932 & 0.4015 & 0.4091 & 0.4159 & 0.4219 & 0.4271 & 0.4316 & 0.4355 & 0.4386 & 0.4410 & 0.4428 & 0.4439 & 0.4444 & 0.4443 & 0.4436 & 0.4424 & 2 & \\
\hline & 2 & 0.0877 & 0.0960 & 0.1045 & 0.1133 & 0.1222 & 0.1313 & 0.1406 & 0.1501 & 0.1597 & 0.1693 & 0.1791 & 0.1890 & 0.1989 & 0.2089 & 0.2189 & 0.2289 & 0.2389 & 0.2488 & 1 & \\
\hline & 3 & 0.0069 & 0.0080 & 0.0093 & 0.0106 & 0.0122 & 0.0138 & 0.0156 & 0.0176 & 0.0197 & 0.0220 & 0.0244 & 0.0270 & 0.0298 & 0.0328 & 0.0359 & 0.0393 & 0.0429 & 0.0467 & 03 & \\
\hline \multirow[t]{5}{*}{4} & 0 & 0.4305 & 0.40 & 0.3895 & 0.3702 & 0.35 & 0.3336 & 0.3164 & 0.2999 & 0.2840 & 0.2687 & 0.254 & 0.2401 & 0.2267 & 0.2138 & 0.2015 & 0.1897 & 0.1785 & 0.1678 & 4 & \\
\hline & 1 & 0.4039 & 0.4096 & 0.4142 & 0.4176 & 0.4200 & 0.4214 & 0.4219 & 0.4214 & 0.4201 & 0.4180 & 0.4152 & 0.4116 & 0.4074 & 0.4025 & 0.3970 & 0.3910 & 0.3845 & 0.3775 & 3 & \\
\hline & 2 & 0.1421 & 0.1536 & 0.1651 & 0.1767 & 0.1882 & 0.1996 & 0.2109 & 0.2221 & 0.2331 & 0.2439 & 0.2544 & 0.2646 & 0.2745 & 0.2841 & 0.2933 & 0.3021 & 0.3105 & 0.3185 & 2 & \\
\hline & 3 & 0.0222 & 0.0256 & 0.0293 & 0.0332 & 0.0375 & 0.0420 & 0.0469 & 0.0520 & 0.0575 & 0.0632 & 0.0693 & 0.0756 & 0.0822 & 0.0891 & 0.0963 & 0.1038 & 0.1115 & 0.1194 & 1 & \\
\hline & 4 & 0.001 & 0.001 & 0.0019 & 0.0023 & 0.0028 & 0.0033 & 0.0039 & 0.0046 & 0.0053 & 0.0061 & 0.0071 & 0.0081 & 0.0092 & 0.0105 & 0.0119 & 0.0134 & 0.0150 & 0.0168 & 0 & \\
\hline \multirow[t]{6}{*}{5} & 0 & 0.3487 & 0.3277 & 0.3077 & 0.2887 & 0.270 & 0.2536 & 0.2373 & 0.2219 & 0.2073 & 0.1935 & 0.180 & 0.168 & 0.1564 & 0.1454 & 0.1350 & 0.1252 & 0.1160 & 0.1074 & 5 & \\
\hline & 1 & 0.4089 & 0.4096 & 0.4090 & 0.4072 & 0.4043 & 0.4003 & 0.3955 & 0.3898 & 0.3834 & 0.3762 & 0.3685 & 0.3601 & 0.3513 & 0.3421 & 0.3325 & 0.3226 & 0.3124 & 0.3020 & 4 & \\
\hline & 2 & 0.1919 & 0.2048 & 0.2174 & 0.2297 & 0.2415 & 0.2529 & 0.2637 & 0.2739 & 0.2836 & 0.2926 & 0.3010 & 0.3087 & 0.3157 & 0.3220 & 0.3275 & 0.3323 & 0.3364 & 0.3397 & 3 & \\
\hline & 3 & 0.0450 & 0.0512 & 0.0578 & 0.0648 & 0.0721 & 0.0798 & 0.0879 & 0.0962 & 0.1049 & 0.1138 & 0.1229 & 0.1323 & 0.1418 & 0.1515 & 0.1613 & 0.1712 & 0.1811 & 0.1911 & 2 & \\
\hline & 4 & 0.0053 & 0.0064 & 0.0077 & 0.0091 & 0.0108 & 0.0126 & 0.0146 & 0.0169 & 0.0194 & 0.0221 & 0.0251 & 0.0283 & 0.0319 & 0.0357 & 0.0397 & 0.0441 & 0.0488 & 0.0537 & 1 & \\
\hline & 5 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0.0010 & 0.0012 & 0.0014 & 0.0017 & 0.0021 & 0.0024 & 0.0029 & 0.0034 & 0.0039 & 0.0045 & 0.0053 & 0.0060 & 0 & 5 \\
\hline \multirow[t]{7}{*}{6} & 0 & 0.2824 & 0.2621 & 0.2431 & 0.2252 & 0.2084 & 0.1927 & 0.1780 & 0.1642 & 0.1513 & 0.1393 & 0.1281 & 0.1176 & 0.1079 & 0.0989 & 0.0905 & 0.0827 & 0.0754 & 0.0687 & 6 & \\
\hline & 1 & 0.3975 & 0.3932 & 0.3877 & 0.3811 & 0.3735 & 0.3651 & 0.3560 & 0.3462 & 0.3358 & 0.3251 & 0.3139 & 0.3025 & 0.2909 & 0.2792 & 0.2673 & 0.2555 & 0.2437 & 0.2319 & 5 & \\
\hline & 2 & 0.2331 & 0.2458 & 0.2577 & 0.2687 & 0.2789 & 0.2882 & 0.2966 & 0.3041 & 0.3105 & 0.3160 & 0.3206 & 0.3241 & 0.3267 & 0.3284 & 0.3292 & 0.3290 & 0.3280 & 0.3261 & 4 & \\
\hline & 3 & 0.0729 & 0.0819 & 0.0913 & 0.1011 & 0.1111 & 0.1214 & 0.1318 & 0.1424 & 0.1531 & 0.1639 & 0.1746 & 0.1852 & 0.1957 & 0.2061 & 0.2162 & 0.2260 & 0.2355 & 0.2446 & 3 & \\
\hline & 4 & 0.0128 & 0.0154 & 0.0182 & 0.0214 & 0.0249 & 0.0287 & 0.0330 & 0.0375 & 0.0425 & 0.0478 & 0.0535 & 0.0595 & 0.0660 & 0.0727 & 0.0799 & 0.0873 & 0.0951 & 0.1032 & 2 & \\
\hline & 5 & 0.0012 & 0.0015 & 0.0019 & 0.0024 & 0.0030 & 0.0036 & 0.0044 & 0.0053 & 0.0063 & 0.0074 & 0.0087 & 0.0102 & 0.0119 & 0.0137 & 0.0157 & 0.0180 & 0.0205 & 0.0232 & 1 & \\
\hline & 6 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0007 & 0.0009 & 0.0011 & 0.0013 & 0.0015 & 0.0018 & 0.0022 & 06 & 6 \\
\hline \multirow[t]{8}{*}{7} & 0 & 0.2288 & 0.2097 & 0.1920 & 0.1757 & 0.1605 & 0.1465 & 0.1335 & 0.1215 & 0.1105 & 0.1003 & 0.0910 & 0.0824 & 0.0745 & 0.0672 & 0.0606 & 0.0546 & 0.0490 & 0.0440 & 7 & \\
\hline & 1 & 0.3756 & 0.3670 & 0.3573 & 0.3468 & 0.3356 & 0.3237 & 0.3115 & 0.2989 & 0.2860 & 0.2731 & 0.2600 & 0.2471 & 0.2342 & 0.2215 & 0.2090 & 0.1967 & 0.1848 & 0.1732 & 6 & \\
\hline & 2 & 0.2643 & 0.2753 & 0.2850 & 0.2935 & 0.3007 & 0.3067 & 0.3115 & 0.3150 & 0.3174 & 0.3186 & 0.3186 & 0.3177 & 0.3156 & 0.3127 & 0.3088 & 0.3040 & 0.2985 & 0.2922 & 5 & \\
\hline & 3 & 0.1033 & 0.1147 & 0.1263 & 0.1379 & 0.1497 & 0.1614 & 0.1730 & 0.1845 & 0.1956 & 0.2065 & 0.2169 & 0.2269 & 0.2363 & 0.2452 & 0.2535 & 0.2610 & 0.2679 & 0.2740 & 4 & \\
\hline & 4 & 0.0242 & 0.0287 & 0.0336 & 0.0389 & 0.0447 & 0.0510 & 0.0577 & 0.0648 & 0.0724 & 0.0803 & 0.0886 & 0.0972 & 0.1062 & 0.1154 & 0.1248 & 0.1345 & 0.1442 & 0.1541 & 3 & \\
\hline & 5 & 0.0034 & 0.0043 & 0.0054 & 0.0066 & 0.0080 & 0.0097 & 0.0115 & 0.0137 & 0.0161 & 0.0187 & 0.0217 & 0.0250 & 0.0286 & 0.0326 & 0.0369 & 0.0416 & 0.0466 & 0.0520 & 2 & \\
\hline & 6 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0.0010 & 0.0013 & 0.0016 & 0.0020 & 0.0024 & 0.0030 & 0.0036 & 0.0043 & 0.0051 & 0.0061 & 0.0071 & 0.0084 & 0.0098 & 1 & \\
\hline & 7 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0 & 7 \\
\hline \(n\) & \(r\) & 0.81 & 0.80 & 0.79 & 0.78 & 0.77 & 0.76 & 0.75 & 0.74 & 0.73 & 0.72 & 0.71 & 0.70 & 0.69 & 0.68 & 0.67 & 0.66 & 0.65 & 0.64 & \(r\) & \\
\hline \multicolumn{22}{|l|}{p} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{20}{|l|}{\(p\)} & \multirow[t]{2}{*}{\(r n\)} \\
\hline \multirow[t]{2}{*}{n} & \(r\) & 0.19 & 0.20 & 0.21 & 0.22 & 0.23 & 0.24 & 0.25 & 0.26 & 0.27 & 0.28 & 0.29 & 0.30 & 0.31 & 0.32 & 0.33 & 0.34 & 0.35 & 0.36 & \\
\hline & 0 & 0.1853 & 0.1678 & 0.1517 & 0.1370 & 0.1236 & 0.1113 & 0.1001 & 0.0899 & 0.0806 & 0.0722 & 0.0646 & 0.0576 & 0.0514 & 0.0457 & 0.0406 & 0.0360 & 0.0319 & 0.0281 & 8 \\
\hline & 1 & 0.3477 & 0.3355 & 0.3226 & 0.3092 & 0.2953 & 0.2812 & 0.2670 & 0.2527 & 0.2386 & 0.2247 & 0.2110 & 0.1977 & 0.1847 & 0.1721 & 0.1600 & 0.1484 & 0.1373 & 0.1267 & 7 \\
\hline & 2 & 0.2855 & 0.2936 & 0.3002 & 0.3052 & 0.3087 & 0.3108 & 0.3115 & 0.3108 & 0.3089 & 0.3058 & 0.3017 & 0.2965 & 0.2904 & 0.2835 & 0.2758 & 0.2675 & 0.2587 & 0.2494 & 6 \\
\hline & 3 & 0.1339 & 0.1468 & 0.1596 & 0.1722 & 0.1844 & 0.1963 & 0.2076 & 0.2184 & 0.2285 & 0.2379 & 0.2464 & 0.2541 & 0.2609 & 0.2668 & 0.2717 & 0.2756 & 0.2786 & 0.2805 & 5 \\
\hline & 4 & 0.0393 & 0.0459 & 0.0530 & 0.0607 & 0.0689 & 0.0775 & 0.0865 & 0.0959 & 0.1056 & 0.1156 & 0.1258 & 0.1361 & 0.1465 & 0.1569 & 0.1673 & 0.1775 & 0.1875 & 0.1973 & 4 \\
\hline & 5 & 0.0074 & 0.0092 & 0.0113 & 0.0137 & 0.0165 & 0.0196 & 0.0231 & 0.0270 & 0.0313 & 0.0360 & 0.0411 & 0.0467 & 0.0527 & 0.0591 & 0.0659 & 0.0732 & 0.0808 & 0.0888 & \\
\hline & 6 & 0.0009 & 0.0011 & 0.0015 & 0.0019 & 0.0025 & 0.0031 & 0.0038 & 0.0047 & 0.0058 & 0.0070 & 0.0084 & 0.0100 & 0.0118 & 0.0139 & 0.0162 & 0.0188 & 0.0217 & 0.0250 & 2 \\
\hline & 7 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0.0010 & 0.0012 & 0.0015 & 0.0019 & 0.0023 & 0.0028 & 0.0033 & 0.0040 & 1 \\
\hline & 8 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 08 \\
\hline \multirow[t]{10}{*}{9} & & 0.150 & 0.1342 & 0.1199 & 0.1069 & 0.0952 & 0.0846 & 0.0751 & 0.0665 & 0.0589 & 0.0520 & 0.0458 & 0.0404 & 0.0355 & 0.0311 & 0.0272 & 0.0238 & 0.0207 & & \\
\hline & & 0.3169 & 0.3020 & 0.2867 & 0.2713 & 0.2558 & 0.2404 & 0.2253 & 0.2104 & 0.1960 & 0.1820 & 0.1685 & 0.1556 & 0.1433 & 0.1317 & 0.1206 & 0.1102 & 0.1004 & 0.0912 & 8 \\
\hline & 2 & 0.2973 & 0.3020 & 0.3049 & 0.3061 & 0.3056 & 0.3037 & 0.3003 & 0.2957 & 0.2899 & 0.2831 & 0.2754 & 0.2668 & 0.2576 & 0.2478 & 0.2376 & 0.2270 & 0.2162 & 0.2052 & 7 \\
\hline & 3 & 0.1627 & 0.1762 & 0.1891 & 0.2014 & 0.2130 & 0.2238 & 0.2336 & 0.2424 & 0.2502 & 0.2569 & 0.2624 & 0.2668 & 0.2701 & 0.2721 & 0.2731 & 0.2729 & 0.2716 & 0.2693 & 6 \\
\hline & , & 0.0573 & 0.0661 & 0.0754 & 0.0852 & 0.0954 & 0.1060 & 0.1168 & 0.1278 & 0.1388 & 0.1499 & 0.1608 & 0.1715 & 0.1820 & 0.1921 & 0.2017 & 0.2109 & 0.2194 & 0.2272 & 5 \\
\hline & 5 & 0.0134 & 0.0165 & 0.0200 & 0.0240 & 0.0285 & 0.0335 & 0.0389 & 0.0449 & 0.0513 & 0.0583 & 0.0657 & 0.0735 & 0.0818 & 0.0904 & 0.0994 & 0.1086 & 0.1181 & 0.1278 & 4 \\
\hline & 6 & 0.0021 & 0.0028 & 0.0036 & 0.0045 & 0.0057 & 0.0070 & 0.0087 & 0.0105 & 0.0127 & 0.0151 & 0.0179 & 0.0210 & 0.0245 & 0.0284 & 0.0326 & 0.0373 & 0.0424 & 0.0479 & 3 \\
\hline & 7 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0010 & 0.0012 & 0.0016 & 0.0020 & 0.0025 & 0.0031 & 0.0039 & 0.0047 & 0.0057 & 0.0069 & 0.0082 & 0.0098 & 0.0116 & 2 \\
\hline & 8 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0008 & 0.0011 & 0.0013 & 0.0016 & 1 \\
\hline & 9 & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 09 \\
\hline \multirow[t]{11}{*}{10} & 0 & 0.1216 & 0.1074 & 0.0947 & 0.0834 & 0.0733 & 0.0643 & 0.0563 & 0.0492 & 0.0430 & 0.0374 & 0.0326 & 0.0282 & 0.0245 & 0.0211 & 0.0182 & 0.0157 & 0.0135 & 0.0 & 0 \\
\hline & 1 & 0.2852 & 0.2684 & 0.2517 & 0.2351 & 0.2188 & 0.2030 & 0.1877 & 0.1730 & 0.1590 & 0.1456 & 0.1330 & 0.1211 & 0.1099 & 0.0995 & 0.0898 & 0.0808 & 0.0725 & 0.0649 & 9 \\
\hline & 2 & 0.3010 & 0.3020 & 0.3011 & 0.2984 & 0.2942 & 0.2885 & 0.2816 & 0.2735 & 0.2646 & 0.2548 & 0.2444 & 0.2335 & 0.2222 & 0.2107 & 0.1990 & 0.1873 & 0.1757 & 0.1642 & 8 \\
\hline & 3 & 0.1883 & 0.2013 & 0.2134 & 0.2244 & 0.2343 & 0.2429 & 0.2503 & 0.2563 & 0.2609 & 0.2642 & 0.2662 & 0.2668 & 0.2662 & 0.2644 & 0.2614 & 0.2573 & 0.2522 & 0.2462 & 7 \\
\hline & 4 & 0.0773 & 0.0881 & 0.0993 & 0.1108 & 0.1225 & 0.1343 & 0.1460 & 0.1576 & 0.1689 & 0.1798 & 0.1903 & 0.2001 & 0.2093 & 0.2177 & 0.2253 & 0.2320 & 0.2377 & 0.2424 & 6 \\
\hline & 5 & 0.0218 & 0.0264 & 0.0317 & 0.0375 & 0.0439 & 0.0509 & 0.0584 & 0.0664 & 0.0750 & 0.0839 & 0.0933 & 0.1029 & 0.1128 & 0.1229 & 0.1332 & 0.1434 & 0.1536 & 0.1636 & 5 \\
\hline & 6 & 0.0043 & 0.0055 & 0.0070 & 0.0088 & 0.0109 & 0.0134 & 0.0162 & 0.0195 & 0.0231 & 0.0272 & 0.0317 & 0.0368 & 0.0422 & 0.0482 & 0.0547 & 0.0616 & 0.0689 & 0.0767 & 4 \\
\hline & 7 & 0.0006 & 0.0008 & 0.0011 & 0.0014 & 0.0019 & 0.0024 & 0.0031 & 0.0039 & 0.0049 & 0.0060 & 0.0074 & 0.0090 & 0.0108 & 0.0130 & 0.0154 & 0.0181 & 0.0212 & 0.0247 & 3 \\
\hline & 8 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0009 & 0.0011 & 0.0014 & 0.0018 & 0.0023 & 0.0028 & 0.0035 & 0.0043 & 0.0052 & 2 \\
\hline & 9 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 1 \\
\hline & 10 & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 010 \\
\hline \multirow[t]{13}{*}{12} & 0 & 0.0798 & 0.0687 & 0.0591 & 0.0507 & 0.0434 & 0.0371 & 0.0317 & 0.0270 & 0.0229 & 0.0194 & 0.0164 & 0.0138 & 0.0116 & 0.0098 & 0.0082 & 0.0068 & 0.0057 & 0.0047 & 2 \\
\hline & 1 & 0.2245 & 0.2062 & 0.1885 & 0.1717 & 0.1557 & 0.1407 & 0.1267 & 0.1137 & 0.1016 & 0.0906 & 0.0804 & 0.0712 & 0.0628 & 0.0552 & 0.0484 & 0.0422 & 0.0368 & 0.0319 & 11 \\
\hline & 2 & 0.2897 & 0.2835 & 0.2756 & 0.2663 & 0.2558 & 0.2444 & 0.2323 & 0.2197 & 0.2068 & 0.1937 & 0.1807 & 0.1678 & 0.1552 & 0.1429 & 0.1310 & 0.1197 & 0.1088 & 0.0986 & 0 \\
\hline & 3 & 0.2265 & 0.2362 & 0.2442 & 0.2503 & 0.2547 & 0.2573 & 0.2581 & 0.2573 & 0.2549 & 0.2511 & 0.2460 & 0.2397 & 0.2324 & 0.2241 & 0.2151 & 0.2055 & 0.1954 & 0.1849 & 9 \\
\hline & 4 & 0.1195 & 0.1329 & 0.1460 & 0.1589 & 0.1712 & 0.1828 & 0.1936 & 0.2034 & 0.2122 & 0.2197 & 0.2261 & 0.2311 & 0.2349 & 0.2373 & 0.2384 & 0.2382 & 0.2367 & 0.2340 & 8 \\
\hline & 5 & 0.0449 & 0.0532 & 0.0621 & 0.0717 & 0.0818 & 0.0924 & 0.1032 & 0.1143 & 0.1255 & 0.1367 & 0.1477 & 0.1585 & 0.1688 & 0.1787 & 0.1879 & 0.1963 & 0.2039 & 0.2106 & 7 \\
\hline & 6 & 0.0123 & 0.0155 & 0.0193 & 0.0236 & 0.0285 & 0.0340 & 0.0401 & 0.0469 & 0.0542 & 0.0620 & 0.0704 & 0.0792 & 0.0885 & 0.0981 & 0.1079 & 0.1180 & 0.1281 & 0.1382 & 6 \\
\hline & 7 & 0.0025 & 0.0033 & 0.0044 & 0.0057 & 0.0073 & 0.0092 & 0.0115 & 0.0141 & 0.0172 & 0.0207 & 0.0246 & 0.0291 & 0.0341 & 0.0396 & 0.0456 & 0.0521 & 0.0591 & 0.0666 & 5 \\
\hline & 8 & 0.0004 & 0.0005 & 0.0007 & 0.0010 & 0.0014 & 0.0018 & 0.0024 & 0.0031 & 0.0040 & 0.0050 & 0.0063 & 0.0078 & 0.0096 & 0.0116 & 0.0140 & 0.0168 & 0.0199 & 0.0234 & 4 \\
\hline & 9 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0009 & 0.0011 & 0.0015 & 0.0019 & 0.0024 & 0.0031 & 0.0038 & 0.0048 & 0.0059 & 3 \\
\hline & 10 & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0003 & 0.0005 & 0.0006 & 0.0008 & 0.0010 & 2 \\
\hline & 11 & - & - & _ & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & , \\
\hline & 12 & & - & - & - & & & - & - & - & - & - & & & & & 0.0000 & 0.0000 & 0.0000 & 012 \\
\hline \(n\) & \(r\) & 0.81 & 0.80 & 0.79 & 0.78 & 0.77 & 0.76 & 0.75 & 0.74 & 0.73 & 0.72 & 0.71 & 0.70 & 0.69 & 0.68 & 0.67 & 0.66 & 0.65 & 0.64 & \(r n\) \\
\hline \multicolumn{21}{|l|}{\(p\)} \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \multicolumn{20}{|l|}{\(p\)} & \multirow[t]{2}{*}{\(r n\)} \\
\hline \(n\) & \(r\) & 0.19 & 0.20 & 0.21 & 0.22 & 0.23 & 0.24 & 0.25 & 0.26 & 0.27 & 0.28 & 0.29 & 0.30 & 0.31 & 0.32 & 0.33 & 0.34 & 0.35 & 0.36 & \\
\hline 15 & 0 & 0.0424 & 0.0352 & 0.0291 & 0.0241 & 0.0198 & 0.0163 & 0.0134 & 0.0109 & 0.0089 & 0.0072 & 0.0059 & 0.0047 & 0.0038 & 0.0031 & 0.0025 & 0.0020 & 0.0016 & 0.0012 & 15 \\
\hline & 1 & 0.1492 & 0.1319 & 0.1162 & 0.1018 & 0.0889 & 0.0772 & 0.0668 & 0.0567 & 0.0494 & 0.0423 & 0.0360 & 0.0305 & 0.0258 & 0.0217 & 0.0182 & 0.0152 & 0.0126 & 0.0104 & 14 \\
\hline & 2 & 0.2449 & 0.2309 & 0.2162 & 0.2010 & 0.1858 & 0.1707 & 0.1559 & 0.1416 & 0.1280 & 0.1150 & 0.1029 & 0.0916 & 0.0811 & 0.0715 & 0.0627 & 0.0547 & 0.0476 & 0.0411 & 13 \\
\hline & 3 & 0.2489 & 0.2501 & 0.2490 & 0.2457 & 0.2405 & 0.2336 & 0.2252 & 0.2156 & 0.2051 & 0.1939 & 0.1821 & 0.1700 & 0.1579 & 0.1457 & 0.1338 & 0.1222 & 0.1110 & 0.1002 & 12 \\
\hline & 4 & 0.1752 & 0.1876 & 0.1986 & 0.2079 & 0.2155 & 0.2213 & 0.2252 & 0.2273 & 0.2276 & 0.2262 & 0.2231 & 0.2186 & 0.2128 & 0.2057 & 0.1977 & 0.1888 & 0.1792 & 0.1692 & 1 \\
\hline & 5 & 0.0904 & 0.1032 & 0.1161 & 0.1290 & 0.1416 & 0.1537 & 0.1651 & 0.1757 & 0.1852 & 0.1935 & 0.2005 & 0.2061 & 0.2103 & 0.2130 & 0.2142 & 0.2140 & 0.2123 & 0.2093 & 10 \\
\hline & 6 & 0.0353 & 0.0430 & 0.0514 & 0.0606 & 0.0705 & 0.0809 & 0.0917 & 0.1029 & 0.1142 & 0.1254 & 0.1365 & 0.1472 & 0.1575 & 0.1671 & 0.1759 & 0.1837 & 0.1906 & 0.1963 & 9 \\
\hline & 7 & 0.0107 & 0.0138 & 0.0176 & 0.0220 & 0.0271 & 0.0329 & 0.0393 & 0.0465 & 0.0543 & 0.0627 & 0.0717 & 0.0811 & 0.0910 & 0.1011 & 0.1114 & 0.1217 & 0.1319 & 0.1419 & 8 \\
\hline & 8 & 0.0025 & 0.0035 & 0.0047 & 0.0062 & 0.0081 & 0.0104 & 0.0131 & 0.0163 & 0.0201 & 0.0244 & 0.0293 & 0.0348 & 0.0409 & 0.0476 & 0.0549 & 0.0627 & 0.0710 & 0.0798 & 7 \\
\hline & 9 & 0.0005 & 0.0007 & 0.0010 & 0.0014 & 0.0019 & 0.0025 & 0.0034 & 0.0045 & 0.0058 & 0.0074 & 0.0093 & 0.0116 & 0.0143 & 0.0174 & 0.0210 & 0.0251 & 0.0298 & 0.0349 & 6 \\
\hline & 10 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0005 & 0.0007 & 0.0009 & 0.0013 & 0.0017 & 0.0023 & 0.0030 & 0.0038 & 0.0049 & 0.0062 & 0.0078 & 0.0096 & 0.0118 & 5 \\
\hline & 11 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0006 & 0.0008 & 0.0011 & 0.0014 & 0.0018 & 0.0024 & 0.0030 & 4 \\
\hline & 12 & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0006 & 3 \\
\hline & 13 & - & - & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 2 \\
\hline & 14 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 1 \\
\hline & 15 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 015 \\
\hline 20 & 0 & 0.0148 & 0.0115 & 0.0090 & 0.0069 & 0.0054 & 0.0041 & 0.0032 & 0.0024 & 0.0018 & 0.0014 & 0.0011 & 0.0008 & 0.0006 & 0.0004 & 0.0003 & 0.0002 & 0.0002 & 0.0001 & 20 \\
\hline & 1 & 0.0693 & 0.0576 & 0.0477 & 0.0392 & 0.0321 & 0.0261 & 0.0211 & 0.0170 & 0.0137 & 0.0109 & 0.0087 & 0.0068 & 0.0054 & 0.0042 & 0.0033 & 0.0025 & 0.0020 & 0.0015 & 19 \\
\hline & 2 & 0.1545 & 0.1369 & 0.1204 & 0.1050 & 0.0910 & 0.0783 & 0.0669 & 0.0569 & 0.0480 & 0.0403 & 0.0336 & 0.0278 & 0.0229 & 0.0188 & 0.0153 & 0.0124 & 0.0110 & 0.0080 & 18 \\
\hline & 3 & 0.2175 & 0.2054 & 0.1920 & 0.1777 & 0.1631 & 0.1484 & 0.1339 & 0.1199 & 0.1065 & 0.0940 & 0.0823 & 0.0716 & 0.0619 & 0.0531 & 0.0453 & 0.0383 & 0.0323 & 0.0270 & 17 \\
\hline & 4 & 0.2168 & 0.2182 & 0.2169 & 0.2131 & 0.2070 & 0.1991 & 0.1897 & 0.1790 & 0.1675 & 0.1553 & 0.1429 & 0.1304 & 0.1181 & 0.1062 & 0.0947 & 0.0839 & 0.0738 & 0.0645 & 16 \\
\hline & 5 & 0.1627 & 0.1746 & 0.1845 & 0.1923 & 0.1979 & 0.2012 & 0.2023 & 0.2013 & 0.1982 & 0.1933 & 0.1868 & 0.1789 & 0.1698 & 0.1599 & 0.1493 & 0.1384 & 0.1272 & 0.1161 & 15 \\
\hline & 6 & 0.0954 & 0.1091 & 0.1226 & 0.1356 & 0.1478 & 0.1589 & 0.1686 & 0.1768 & 0.1833 & 0.1879 & 0.1907 & 0.1916 & 0.1907 & 0.1881 & 0.1839 & 0.1782 & 0.1712 & 0.1632 & 14 \\
\hline & 7 & 0.0448 & 0.0545 & 0.0652 & 0.0765 & 0.0883 & 0.1003 & 0.1124 & 0.1242 & 0.1356 & 0.1462 & 0.1558 & 0.1643 & 0.1714 & 0.1770 & 0.1811 & 0.1836 & 0.1844 & 0.1836 & 13 \\
\hline & 8 & 0.0171 & 0.0222 & 0.0282 & 0.0351 & 0.0429 & 0.0515 & 0.0609 & 0.0709 & 0.0815 & 0.0924 & 0.1034 & 0.1144 & 0.1251 & 0.1354 & 0.1450 & 0.1537 & 0.1614 & 0.1678 & 12 \\
\hline & 9 & 0.0053 & 0.0074 & 0.0100 & 0.0132 & 0.0171 & 0.0217 & 0.0271 & 0.0332 & 0.0402 & 0.0479 & 0.0563 & 0.0654 & 0.0750 & 0.0849 & 0.0952 & 0.1056 & 0.1158 & 0.1259 & 11 \\
\hline & 10 & 0.0014 & 0.0020 & 0.0029 & 0.0041 & 0.0056 & 0.0075 & 0.0099 & 0.0128 & 0.0163 & 0.0205 & 0.0253 & 0.0308 & 0.0370 & 0.0440 & 0.0516 & 0.0598 & 0.0686 & 0.0779 & 10 \\
\hline & 11 & 0.0003 & 0.0005 & 0.0007 & 0.0010 & 0.0015 & 0.0022 & 0.0030 & 0.0041 & 0.0055 & 0.0072 & 0.0094 & 0.0120 & 0.0151 & 0.0188 & 0.0231 & 0.0280 & 0.0336 & 0.0398 & 9 \\
\hline & 12 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0008 & 0.0011 & 0.0015 & 0.0021 & 0.0029 & 0.0039 & 0.0051 & 0.0066 & 0.0085 & 0.0108 & 0.0136 & 0.0168 & 8 \\
\hline & 13 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0005 & 0.0007 & 0.0010 & 0.0014 & 0.0019 & 0.0026 & 0.0034 & 0.0045 & 0.0058 & 7 \\
\hline & 14 & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0006 & 0.0009 & 0.0012 & 0.0016 & 6 \\
\hline & 15 & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0004 & 5 \\
\hline & 16 & - & - & - & - & - & - & - & - & - & - & - & - & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 4 \\
\hline & 17 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 0.0000 & 3 \\
\hline & 18 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 2 \\
\hline & 19 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 1 \\
\hline & 20 & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & - & 020 \\
\hline \(n\) & \(r\) & 0.81 & 0.80 & 0.79 & 0.78 & 0.77 & 0.76 & 0.75 & 0.74 & 0.73 & 0.72 & 0.71 & 0.70 & 0.69 & 0.68 & 0.67 & 0.66 & 0.65 & 0.64 & \(r n\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{15}{|l|}{\(p\)} & \multirow[t]{2}{*}{\(r\)} & \multirow[t]{2}{*}{\(n\)} \\
\hline \(n\) & \(r\) & 0.37 & 0.38 & 0.39 & 0.40 & 0.41 & 0.42 & 0.43 & 0.44 & 0.45 & 0.46 & 0.47 & 0.48 & 0.49 & 0.50 & & \\
\hline \multirow[t]{3}{*}{2} & 0 & 0.3969 & 0.3844 & 0.3721 & 0.3600 & 0.3481 & 0.3364 & 0.3249 & 0.3136 & 0.3025 & 0.2916 & 0.2809 & 0.2704 & 0.2601 & 0.2500 & 2 & \\
\hline & 1 & 0.4662 & 0.4712 & 0.4758 & 0.4800 & 0.4838 & 0.4872 & 0.4902 & 0.4928 & 0.4950 & 0.4968 & 0.4982 & 0.4992 & 0.4998 & 0.5000 & 1 & \\
\hline & 2 & 0.1369 & 0.1444 & 0.1521 & 0.1600 & 0.1681 & 0.1764 & 0.1849 & 0.1936 & 0.2025 & 0.2116 & 0.2209 & 0.2304 & 0.2401 & 0.2500 & 0 & 2 \\
\hline \multirow[t]{4}{*}{3} & 0 & 0.2500 & 0.2383 & 0.2270 & 0.2160 & 0.2054 & 0.1951 & 0.1852 & 0.1756 & 0.1664 & 0.1575 & 0.1489 & 0.1406 & 0.1327 & 0.1250 & 3 & \\
\hline & 1 & 0.4406 & 0.4382 & 0.4354 & 0.4320 & 0.4282 & 0.4239 & 0.4191 & 0.4140 & 0.4084 & 0.4024 & 0.3961 & 0.3894 & 0.3823 & 0.3750 & 2 & \\
\hline & 2 & 0.2587 & 0.2686 & 0.2783 & 0.2880 & 0.2975 & 0.3069 & 0.3162 & 0.3252 & 0.3341 & 0.3428 & 0.3512 & 0.3594 & 0.3674 & 0.3750 & 1 & \\
\hline & 3 & 0.0507 & 0.0549 & 0.0593 & 0.0640 & 0.0689 & 0.0741 & 0.0795 & 0.0852 & 0.0911 & 0.0973 & 0.1038 & 0.1106 & 0.1176 & 0.1250 & 0 & 3 \\
\hline \multirow[t]{5}{*}{4} & 0 & 0.1575 & 0.1478 & 0.1385 & 0.1296 & 0.1212 & 0.1132 & 0.1056 & 0.0983 & 0.0915 & 0.0850 & 0.0789 & 0.0731 & 0.0677 & 0.0625 & 4 & \\
\hline & 1 & 0.3701 & 0.3623 & 0.3541 & 0.3456 & 0.3368 & 0.3278 & 0.3185 & 0.3091 & 0.2995 & 0.2897 & 0.2799 & 0.2700 & 0.2600 & 0.2500 & 3 & \\
\hline & 2 & 0.3260 & 0.3330 & 0.3396 & 0.3456 & 0.3511 & 0.3560 & 0.3604 & 0.3643 & 0.3675 & 0.3702 & 0.3723 & 0.3738 & 0.3747 & 0.3750 & 2 & \\
\hline & 3 & 0.1276 & 0.1361 & 0.1447 & 0.1536 & 0.1627 & 0.1719 & 0.1813 & 0.1908 & 0.2005 & 0.2102 & 0.2201 & 0.2300 & 0.2400 & 0.2500 & 1 & \\
\hline & 4 & 0.0187 & 0.0209 & 0.0231 & 0.0256 & 0.0283 & 0.0311 & 0.0342 & 0.0375 & 0.0410 & 0.0448 & 0.0488 & 0.0531 & 0.0576 & 0.0625 & 0 & 4 \\
\hline \multirow[t]{6}{*}{5} & 0 & 0.0992 & 0.0916 & 0.0845 & 0.0778 & 0.0715 & 0.0656 & 0.0602 & 0.0551 & 0.0503 & 0.0459 & 0.0418 & 0.0380 & 0.0345 & 0.0312 & 5 & \\
\hline & 1 & 0.2914 & 0.2808 & 0.2700 & 0.2592 & 0.2484 & 0.2376 & 0.2270 & 0.2164 & 0.2059 & 0.1956 & 0.1854 & 0.1755 & 0.1657 & 0.1562 & 4 & \\
\hline & 2 & 0.3423 & 0.3441 & 0.3452 & 0.3456 & 0.3452 & 0.3442 & 0.3424 & 0.3400 & 0.3369 & 0.3332 & 0.3289 & 0.3240 & 0.3185 & 0.3125 & 3 & \\
\hline & 3 & 0.2010 & 0.2109 & 0.2207 & 0.2304 & 0.2399 & 0.2492 & 0.2583 & 0.2671 & 0.2757 & 0.2838 & 0.2916 & 0.2990 & 0.3060 & 0.3125 & 2 & \\
\hline & 4 & 0.0590 & 0.0646 & 0.0706 & 0.0768 & 0.0834 & 0.0902 & 0.0974 & 0.1049 & 0.1128 & 0.1209 & 0.1293 & 0.1380 & 0.1470 & 0.1562 & 1 & \\
\hline & 5 & 0.0069 & 0.0079 & 0.0090 & 0.0102 & 0.0116 & 0.0131 & 0.0147 & 0.0165 & 0.0185 & 0.0206 & 0.0229 & 0.0255 & 0.0282 & 0.0312 & 0 & 5 \\
\hline \multirow[t]{7}{*}{6} & 0 & 0.0625 & 0.0568 & 0.0515 & 0.0467 & 0.0422 & 0.0381 & 0.0343 & 0.0308 & 0.0277 & 0.0248 & 0.0222 & 0.0198 & 0.0176 & 0.0156 & 6 & \\
\hline & 1 & 0.2203 & 0.2089 & 0.1976 & 0.1866 & 0.1759 & 0.1654 & 0.1552 & 0.1454 & 0.1359 & 0.1267 & 0.1179 & 0.1095 & 0.1014 & 0.0937 & 5 & \\
\hline & 2 & 0.3235 & 0.3201 & 0.3159 & 0.3110 & 0.3055 & 0.2994 & 0.2928 & 0.2856 & 0.2780 & 0.2699 & 0.2615 & 0.2527 & 0.2436 & 0.2344 & 4 & \\
\hline & 3 & 0.2533 & 0.2616 & 0.2693 & 0.2765 & 0.2831 & 0.2891 & 0.2945 & 0.2992 & 0.3032 & 0.3065 & 0.3091 & 0.3110 & 0.3121 & 0.3125 & 3 & \\
\hline & 4 & 0.1116 & 0.1202 & 0.1291 & 0.1382 & 0.1475 & 0.1570 & 0.1666 & 0.1763 & 0.1861 & 0.1958 & 0.2056 & 0.2153 & 0.2249 & 0.2344 & 2 & \\
\hline & 5 & 0.0262 & 0.0295 & 0.0330 & 0.0369 & 0.0410 & 0.0455 & 0.0503 & 0.0554 & 0.0609 & 0.0667 & 0.0729 & 0.0795 & 0.0864 & 0.0937 & 1 & \\
\hline & 6 & 0.0026 & 0.0030 & 0.0035 & 0.0041 & 0.0048 & 0.0055 & 0.0063 & 0.0073 & 0.0083 & 0.0095 & 0.0108 & 0.0122 & 0.0138 & 0.0156 & 0 & 6 \\
\hline \multirow[t]{8}{*}{7} & 0 & 0.0394 & 0.0352 & 0.0314 & 0.0280 & 0.0249 & 0.0221 & 0.0195 & 0.0173 & 0.0152 & 0.0134 & 0.0117 & 0.0103 & 0.0090 & 0.0078 & 7 & \\
\hline & 1 & 0.1619 & 0.1511 & 0.1407 & 0.1306 & 0.1211 & 0.1119 & 0.1032 & 0.0950 & 0.0872 & 0.0798 & 0.0729 & 0.0664 & 0.0604 & 0.0547 & 6 & \\
\hline & 2 & 0.2853 & 0.2778 & 0.2698 & 0.2613 & 0.2524 & 0.2431 & 0.2336 & 0.2239 & 0.2140 & 0.2040 & 0.1940 & 0.1840 & 0.1740 & 0.1641 & 5 & \\
\hline & 3 & 0.2793 & 0.2838 & 0.2875 & 0.2903 & 0.2923 & 0.2934 & 0.2937 & 0.2932 & 0.2918 & 0.2897 & 0.2867 & 0.2830 & 0.2786 & 0.2734 & 4 & \\
\hline & 4 & 0.1640 & 0.1739 & 0.1838 & 0.1935 & 0.2031 & 0.2125 & 0.2216 & 0.2304 & 0.2388 & 0.2468 & 0.2543 & 0.2612 & 0.2676 & 0.2734 & 3 & \\
\hline & 5 & 0.0578 & 0.0640 & 0.0705 & 0.0774 & 0.0847 & 0.0923 & 0.1003 & 0.1086 & 0.1172 & 0.1261 & 0.1353 & 0.1447 & 0.1543 & 0.1641 & 2 & \\
\hline & 6 & 0.0113 & 0.0131 & 0.0150 & 0.0172 & 0.0196 & 0.0223 & 0.0252 & 0.0284 & 0.0320 & 0.0358 & 0.0400 & 0.0445 & 0.0494 & 0.0547 & 1 & \\
\hline & 7 & 0.0009 & 0.0011 & 0.0014 & 0.0016 & 0.0019 & 0.0023 & 0.0027 & 0.0032 & 0.0037 & 0.0044 & 0.0051 & 0.0059 & 0.0068 & 0.0078 & 0 & 7 \\
\hline \multirow[t]{2}{*}{\(n\)} & \(r\) & 0.63 & 0.62 & 0.61 & 0.60 & 0.59 & 0.58 & 0.57 & 0.56 & 0.55 & 0.54 & 0.53 & 0.52 & 0.51 & 0.50 & \(r\) & \(n\) \\
\hline & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(n\)} & & \multicolumn{14}{|l|}{\(p\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(r n\)}} \\
\hline & \(r\) & 0.37 & 0.38 & 0.39 & 0.40 & 0.41 & 0.42 & 0.43 & 0.44 & 0.45 & 0.46 & 0.47 & 0.48 & 0.49 & 0.50 & & \\
\hline \multirow[t]{9}{*}{8} & 0 & 0.0248 & 0.0218 & 0.0192 & 0.0168 & 0.0147 & 0.0128 & 0.0111 & 0.0097 & 0.0084 & 0.0072 & 0.0062 & 0.0053 & 0.0046 & 0.0039 & 8 & \\
\hline & 1 & 0.1166 & 0.1071 & 0.0981 & 0.0896 & 0.0816 & 0.0742 & 0.0672 & 0.0608 & 0.0548 & 0.0493 & 0.0442 & 0.0395 & 0.0325 & 0.0312 & 7 & \\
\hline & 2 & 0.2397 & 0.2297 & 0.2194 & 0.2090 & 0.1985 & 0.1880 & 0.1776 & 0.1672 & 0.1569 & 0.1469 & 0.1371 & 0.1275 & 0.1183 & 0.1094 & 6 & \\
\hline & 3 & 0.2815 & 0.2815 & 0.2806 & 0.2787 & 0.2759 & 0.2723 & 0.2679 & 0.2627 & 0.2568 & 0.2503 & 0.2431 & 0.2355 & 0.2273 & 0.2187 & 5 & \\
\hline & 4 & 0.2067 & 0.2157 & 0.2242 & 0.2322 & 0.2397 & 0.2465 & 0.2526 & 0.2580 & 0.2627 & 0.2665 & 0.2695 & 0.2717 & 0.2730 & 0.2734 & 4 & \\
\hline & 5 & 0.0971 & 0.1058 & 0.1147 & 0.1239 & 0.1332 & 0.1428 & 0.1525 & 0.1622 & 0.1719 & 0.1816 & 0.1912 & 0.2006 & 0.2098 & 0.2187 & 3 & \\
\hline & 6 & 0.0285 & 0.0324 & 0.0367 & 0.0413 & 0.0463 & 0.0517 & 0.0575 & 0.0637 & 0.0703 & 0.0774 & 0.0848 & 0.0926 & 0.1008 & 0.1094 & 2 & \\
\hline & 7 & 0.0048 & 0.0057 & 0.0067 & 0.0079 & 0.0092 & 0.0107 & 0.0124 & 0.0143 & 0.0164 & 0.0188 & 0.0215 & 0.0244 & 0.0277 & 0.0312 & 1 & \\
\hline & 8 & 0.0004 & 0.0004 & 0.0005 & 0.0007 & 0.0008 & 0.0010 & 0.0012 & 0.0014 & 0.0017 & 0.0020 & 0.0024 & 0.0028 & 0.0033 & 0.0039 & 0 & 8 \\
\hline \multirow[t]{10}{*}{9} & 0 & 0.0156 & 0.0135 & 0.0117 & 0.0101 & 0.0087 & 0.0074 & 0.0064 & 0.0054 & 0.0046 & 0.0039 & 0.0033 & 0.0028 & 0.0023 & 0.0020 & 9 & \\
\hline & 1 & 0.0826 & 0.0747 & 0.0673 & 0.0605 & 0.0542 & 0.0484 & 0.0431 & 0.0383 & 0.0339 & 0.0299 & 0.0263 & 0.0231 & 0.0202 & 0.0176 & 8 & \\
\hline & 2 & 0.1941 & 0.1831 & 0.1721 & 0.1612 & 0.1506 & 0.1402 & 0.1301 & 0.1204 & 0.1110 & 0.1020 & 0.0934 & 0.0853 & 0.0776 & 0.0703 & 7 & \\
\hline & 3 & 0.2660 & 0.2618 & 0.2567 & 0.2508 & 0.2442 & 0.2369 & 0.2291 & 0.2207 & 0.2119 & 0.2027 & 0.1933 & 0.1837 & 0.1739 & 0.1641 & 6 & \\
\hline & 4 & 0.2344 & 0.2407 & 0.2462 & 0.2508 & 0.2545 & 0.2573 & 0.2592 & 0.2601 & 0.2600 & 0.2590 & 0.2571 & 0.2543 & 0.2506 & 0.2461 & 5 & \\
\hline & 5 & 0.1376 & 0.1475 & 0.1574 & 0.1672 & 0.1769 & 0.1863 & 0.1955 & 0.2044 & 0.2128 & 0.2207 & 0.2280 & 0.2347 & 0.2408 & 0.2641 & 4 & \\
\hline & 6 & 0.0539 & 0.0603 & 0.0671 & 0.0743 & 0.0819 & 0.0900 & 0.0983 & 0.1070 & 0.1160 & 0.1253 & 0.1348 & 0.1445 & 0.1542 & 0.1641 & 3 & \\
\hline & 7 & 0.0136 & 0.0158 & 0.0184 & 0.0212 & 0.0244 & 0.0279 & 0.0318 & 0.0360 & 0.0407 & 0.0458 & 0.0512 & 0.0571 & 0.0635 & 0.0703 & 2 & \\
\hline & 8 & 0.0020 & 0.0024 & 0.0029 & 0.0035 & 0.0042 & 0.0051 & 0.0060 & 0.0071 & 0.0083 & 0.0097 & 0.0114 & 0.0132 & 0.0153 & 0.0176 & 1 & \\
\hline & 9 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0.0009 & 0.0011 & 0.0014 & 0.0016 & 0.0020 & 0 & 9 \\
\hline \multirow[t]{11}{*}{10} & 0 & 0.0098 & 0.0084 & 0.0071 & 0.0060 & 0.0051 & 0.0043 & 0.0036 & 0.0030 & 0.0025 & 0.0021 & 0.0017 & 0.0014 & 0.0012 & 0.0010 & 10 & \\
\hline & 1 & 0.0578 & 0.0514 & 0.0456 & 0.0403 & 0.0355 & 0.0312 & 0.0273 & 0.0238 & 0.0207 & 0.0180 & 0.0155 & 0.0133 & 0.0114 & 0.0098 & 9 & \\
\hline & 2 & 0.1529 & 0.1419 & 0.1312 & 0.1209 & 0.1111 & 0.1017 & 0.0927 & 0.0843 & 0.0763 & 0.0688 & 0.0619 & 0.0554 & 0.0494 & 0.0439 & 8 & \\
\hline & 3 & 0.2394 & 0.2319 & 0.2237 & 0.2150 & 0.2058 & 0.1963 & 0.1865 & 0.1765 & 0.1665 & 0.1564 & 0.1464 & 0.1364 & 0.1267 & 0.1172 & 7 & \\
\hline & 4 & 0.2461 & 0.2487 & 0.2503 & 0.2508 & 0.2503 & 0.2488 & 0.2462 & 0.2427 & 0.2384 & 0.2331 & 0.2271 & 0.2204 & 0.2130 & 0.2051 & 6 & \\
\hline & 5 & 0.1734 & 0.1829 & 0.1920 & 0.2007 & 0.2087 & 0.2162 & 0.2229 & 0.2289 & 0.2340 & 0.2383 & 0.2417 & 0.2441 & 0.2456 & 0.2461 & 5 & \\
\hline & 6 & 0.0849 & 0.0934 & 0.1023 & 0.1115 & 0.1209 & 0.1304 & 0.1401 & 0.1499 & 0.1596 & 0.1692 & 0.1786 & 0.1878 & 0.1966 & 0.2051 & 4 & \\
\hline & 7 & 0.0285 & 0.0327 & 0.0374 & 0.0425 & 0.0480 & 0.0540 & 0.0604 & 0.0673 & 0.0746 & 0.0824 & 0.0905 & 0.0991 & 0.1080 & 0.1172 & 3 & \\
\hline & 8 & 0.0063 & 0.0075 & 0.0090 & 0.0106 & 0.0125 & 0.0147 & 0.0171 & 0.0198 & 0.0229 & 0.0263 & 0.0301 & 0.0343 & 0.0389 & 0.0439 & 2 & \\
\hline & 9 & 0.0008 & 0.0010 & 0.0013 & 0.0016 & 0.0019 & 0.0024 & 0.0029 & 0.0035 & 0.0042 & 0.0050 & 0.0059 & 0.0070 & 0.0083 & 0.0098 & 1 & \\
\hline & 10 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 & 0.0010 & 0 & 10 \\
\hline \multirow[t]{2}{*}{\(n\)} & \(r\) & 0.63 & 0.62 & 0.61 & 0.60 & 0.59 & 0.58 & 0.57 & 0.56 & 0.55 & 0.54 & 0.53 & 0.52 & 0.51 & 0.50 & \(r\) & \(n\) \\
\hline & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX TABLE 4(a) VALUES OF \(e^{-\lambda}\) FOR COMPUTING POISSON PROBABILITIES}
\begin{tabular}{cccccccc}
\hline\(\lambda\) & \(e^{-\lambda}\) & \(\lambda\) & \(e^{-\lambda}\) & \(\lambda\) & \(e^{-\lambda}\) & \(\lambda\) & \(e^{-\lambda}\) \\
\hline 0.1 & 0.90484 & 2.6 & 0.07427 & 5.1 & 0.00610 & 7.6 & 0.00050 \\
0.2 & 0.81873 & 2.7 & 0.06721 & 5.2 & 0.00552 & 7.7 & 0.00045 \\
0.3 & 0.74082 & 2.8 & 0.06081 & 5.3 & 0.00499 & 7.8 & 0.00041 \\
0.4 & 0.67032 & 2.9 & 0.05502 & 5.4 & 0.00452 & 7.9 & 0.00037 \\
0.5 & 0.60653 & 3.0 & 0.04979 & 5.5 & 0.00409 & 8.0 & 0.00034 \\
0.6 & 0.54881 & 3.1 & 0.04505 & 5.6 & 0.00370 & 8.1 & 0.00030 \\
0.7 & 0.49659 & 3.2 & 0.04076 & 5.7 & 0.00335 & 8.2 & 0.00027 \\
0.8 & 0.44933 & 3.3 & 0.03688 & 5.8 & 0.00303 & 8.3 & 0.00025 \\
0.9 & 0.40657 & 3.4 & 0.03337 & 5.9 & 0.00274 & 8.4 & 0.00022 \\
1.0 & 0.36788 & 3.5 & 0.03020 & 6.0 & 0.00248 & 8.5 & 0.00020 \\
1.1 & 0.33287 & 3.6 & 0.02732 & 6.1 & 0.00224 & 8.6 & 0.00018 \\
1.2 & 0.30119 & 3.7 & 0.02472 & 6.2 & 0.00203 & 8.7 & 0.00017 \\
1.3 & 0.27253 & 3.8 & 0.02237 & 6.3 & 0.00184 & 8.8 & 0.00015 \\
1.4 & 0.24660 & 3.9 & 0.02024 & 6.4 & 0.00166 & 8.9 & 0.00014 \\
1.5 & 0.22313 & 4.0 & 0.01832 & 6.5 & 0.00150 & 9.0 & 0.00012 \\
1.6 & 0.20190 & 4.1 & 0.01657 & 6.6 & 0.00136 & 9.1 & 0.00011 \\
1.7 & 0.18268 & 4.2 & 0.01500 & 6.7 & 0.00123 & 9.2 & 0.00010 \\
1.8 & 0.16530 & 4.3 & 0.01357 & 6.8 & 0.00111 & 9.3 & 0.00009 \\
1.9 & 0.14957 & 4.4 & 0.01228 & 6.9 & 0.00101 & 9.4 & 0.00008 \\
2.0 & 0.13534 & 4.5 & 0.01111 & 7.0 & 0.00091 & 9.5 & 0.00007 \\
2.1 & 0.12246 & 4.6 & 0.01005 & 7.1 & 0.00083 & 9.6 & 0.00007 \\
2.2 & 0.11080 & 4.7 & 0.00910 & 7.2 & 0.00075 & 9.7 & 0.00006 \\
2.3 & 0.10026 & 4.8 & 0.00823 & 7.3 & 0.00068 & 9.8 & 0.00006 \\
2.4 & 0.09072 & 4.9 & 0.00745 & 7.4 & 0.00061 & 9.9 & 0.00005 \\
2.5 & 0.08208 & 5.0 & 0.00674 & 7.5 & 0.00055 & 10.0 & 0.00005 \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{APPENDIX TABLE 4(b) DIRECT VALUES FOR DETERMINING POISSON PROBABILITIES} FOR A GIVEN VALUE OF \(\lambda\), ENTRY INDICATES THE PROBABILITY OF OBTAINING A SPECIFIED VALUE OF X.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{\(\lambda\)} \\
\hline \(\boldsymbol{X}\) & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0 \\
\hline 0 & 0.9048 & 0.8187 & 0.7408 & 0.6703 & 0.6065 & 0.5488 & 0.4966 & 0.4493 & 0.4066 & 0.3679 \\
\hline 1 & 0.0905 & 0.1637 & 0.2222 & 0.2681 & 0.3033 & 0.3293 & 0.3476 & 0.3595 & 0.3659 & 0.3679 \\
\hline 2 & 0.0045 & 0.0164 & 0.0333 & 0.0536 & 0.0758 & 0.0988 & 0.1217 & 0.1438 & 0.1647 & 0.1839 \\
\hline 3 & 0.0002 & 0.0011 & 0.0003 & 0.0072 & 0.0126 & 0.0198 & 0.0284 & 0.0383 & 0.0494 & 0.0613 \\
\hline 4 & 0.0000 & 0.0001 & 0.0003 & 0.0007 & 0.0016 & 0.0030 & 0.0050 & 0.0077 & 0.0111 & 0.0153 \\
\hline 5 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0004 & 0.0007 & 0.0012 & 0.0020 & 0.0031 \\
\hline 6 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0003 & 0.0005 \\
\hline 7 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 \\
\hline \multicolumn{11}{|c|}{\(\lambda\)} \\
\hline \(\boldsymbol{X}\) & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 & 1.8 & 1.9 & 2.0 \\
\hline 0 & 0.3329 & 0.3012 & 0.2725 & 0.2466 & 0.2231 & 0.2019 & 0.1827 & 0.1653 & 0.1496 & 0.1353 \\
\hline 1 & 0.3662 & 0.3614 & 0.3543 & 0.3452 & 0.3347 & 0.3230 & 0.3106 & 0.2975 & 0.2842 & 0.2707 \\
\hline 2 & 0.2014 & 0.2169 & 0.2303 & 0.2417 & 0.2510 & 0.2584 & 0.2640 & 0.2678 & 0.2700 & 0.2707 \\
\hline 3 & 0.0738 & 0.0867 & 0.0998 & 0.1128 & 0.1255 & 0.1378 & 0.1496 & 0.1607 & 0.1710 & 0.1804 \\
\hline 4 & 0.0203 & 0.0260 & 0.0324 & 0.0395 & 0.0471 & 0.0551 & 0.0636 & 0.0723 & 0.0812 & 0.0902 \\
\hline 5 & 0.0045 & 0.0062 & 0.0084 & 0.0111 & 0.0141 & 0.0176 & 0.0216 & 0.0260 & 0.0309 & 0.0361 \\
\hline 6 & 0.0008 & 0.0012 & 0.0018 & 0.0026 & 0.0035 & 0.0047 & 0.0061 & 0.0078 & 0.0098 & 0.0120 \\
\hline 7 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0008 & 0.0011 & 0.0015 & 0.0020 & 0.0027 & 0.0034 \\
\hline 8 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0003 & 0.0005 & 0.0006 & 0.0009 \\
\hline 9 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 \\
\hline \multicolumn{11}{|c|}{\(\lambda\)} \\
\hline \(\boldsymbol{X}\) & 2.1 & 2.2 & 2.3 & 2.4 & 2.5 & 2.6 & 2.7 & 2.8 & 2.9 & 3.0 \\
\hline 0 & 0.1225 & 0.1108 & 0.1003 & 0.0907 & 0.0821 & 0.0743 & 0.0672 & 0.0608 & 0.0550 & 0.0498 \\
\hline 1 & 0.2572 & 0.2438 & 0.2306 & 02177 & 0.2052 & 0.1931 & 0.1815 & 0.1703 & 0.1596 & 0.1494 \\
\hline 2 & 0.2700 & 0.2681 & 0.2652 & 0.2613 & 0.2565 & 0.2510 & 0.2450 & 0.2384 & 0.2314 & 0.2240 \\
\hline 3 & 0.1890 & 0.1966 & 0.2033 & 0.2090 & 0.2138 & 0.2176 & 0.2205 & 0.2225 & 0.2237 & 0.2240 \\
\hline 4 & 0.0992 & 0.1082 & 0.1169 & 0.1254 & 0.1336 & 0.1414 & 0.1488 & 0.1557 & 0.1622 & 0.1680 \\
\hline 5 & 0.0417 & 0.0476 & 0.0538 & 0.0602 & 0.0668 & 0.0735 & 0.0804 & 0.0872 & 0.0940 & 0.1008 \\
\hline 6 & 0.0146 & 0.0174 & 0.0206 & 0.0241 & 0.0278 & 0.0319 & 0.0362 & 0.0407 & 0.0455 & 0.0504 \\
\hline 7 & 0.0044 & 0.0055 & 0.0068 & 0.0083 & 0.0099 & 0.0118 & 0.0139 & 0.0163 & 0.0188 & 0.0216 \\
\hline 8 & 0.0011 & 0.0015 & 0.0019 & 0.0025 & 0.0031 & 0.0038 & 0.0047 & 0.0057 & 0.0068 & 0.0081 \\
\hline 9 & 0.0003 & 0.0004 & 0.0005 & 0.0007 & 0.0009 & 0.0011 & 0.0014 & 0.0018 & 0.0022 & 0.0027 \\
\hline 10 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0003 & 0.0004 & 0.0005 & 0.0006 & 0.0008 \\
\hline 11 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 \\
\hline 12 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{\(\lambda\)} \\
\hline \(X\) & 6.1 & 6.2 & 6.3 & 6.4 & 6.5 & 6.6 & 6.7 & 6.8 & 6.9 & 7.0 \\
\hline 0 & 0.0022 & 0.0020 & 0.0018 & 0.0017 & 0.0015 & 0.0014 & 0.0012 & 0.0011 & 0.0010 & 0.0009 \\
\hline 1 & 0.0137 & 0.0126 & 0.0116 & 0.0106 & 0.0098 & 0.0090 & 0.0082 & 0.0076 & 0.0070 & 0.0064 \\
\hline 2 & 0.0417 & 0.0390 & 0.0364 & 0.0340 & 0.0318 & 0.0296 & 0.0276 & 0.0258 & 0.0240 & 0.0223 \\
\hline 3 & 0.0848 & 0.0806 & 0.0765 & 0.0726 & 0.0688 & 0.0652 & 0.0617 & 0.0584 & 0.0552 & 0.0521 \\
\hline 4 & 0.1294 & 0.1249 & 0.1205 & 0.1162 & 0.1118 & 0.1076 & 0.1034 & 0.0992 & 0.0952 & 0.0912 \\
\hline 5 & 0.1579 & 0.1549 & 0.1519 & 0.1487 & 0.1454 & 0.1420 & 0.1385 & 0.1349 & 0.1314 & 0.1277 \\
\hline 6 & 0.1605 & 0.1601 & 0.1595 & 0.1586 & 0.1575 & 0.1562 & 0.1546 & 0.1529 & 0.1511 & 0.1490 \\
\hline 7 & 0.1399 & 0.1418 & 0.1435 & 0.1450 & 0.1462 & 0.1472 & 0.1480 & 0.1486 & 0.1489 & 0.1490 \\
\hline 8 & 0.1066 & 0.1099 & 0.1130 & 0.1160 & 0.1188 & 0.1215 & 0.1240 & 0.1263 & 0.1284 & 0.1304 \\
\hline 9 & 0.0723 & 0.0757 & 0.0791 & 0.0825 & 0.0858 & 0.0891 & 0.0923 & 0.0954 & 0.0985 & 0.1014 \\
\hline 10 & 0.0441 & 0.0469 & 0.0498 & 0.0528 & 0.0558 & 0.0588 & 0.0618 & 0.0649 & 0.0679 & 0.0710 \\
\hline 11 & 0.0245 & 0.0265 & 0.0285 & 0.0307 & 0.0330 & 0.0353 & 0.0377 & 0.0401 & 0.0426 & 0.0452 \\
\hline 12 & 0.0124 & 0.0137 & 0.0150 & 0.0164 & 0.0179 & 0.0194 & 0.0210 & 0.0227 & 0.0245 & 0.0264 \\
\hline 13 & 0.0058 & 0.0065 & 0.0073 & 0.0081 & 0.0089 & 0.0098 & 0.0108 & 0.0119 & 0.0130 & 0.0142 \\
\hline 14 & 0.0025 & 0.0029 & 0.0033 & 0.0037 & 0.0041 & 0.0046 & 0.0052 & 0.0058 & 0.0064 & 0.0071 \\
\hline 15 & 0.0010 & 0.0012 & 0.0014 & 0.0016 & 0.0018 & 0.0020 & 0.0023 & 0.0026 & 0.0029 & 0.0033 \\
\hline 16 & 0.0004 & 0.0005 & 0.0005 & 0.0006 & 0.0007 & 0.0008 & 0.0010 & 0.0011 & 0.0013 & 0.0014 \\
\hline 17 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0004 & 0.0005 & 0.0006 \\
\hline 18 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 \\
\hline 19 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 \\
\hline & \multicolumn{10}{|l|}{\(\lambda\) 退 \(\lambda\),} \\
\hline \(\boldsymbol{X}\) & 7.1 & 7.2 & 7.3 & 7.4 & 7.5 & 7.6 & 7.7 & 7.8 & 7.9 & 8.0 \\
\hline 0 & 0.0008 & 0.0007 & 0.0007 & 0.0006 & 0.0006 & 0.0005 & 0.0005 & 0.0004 & 0.0004 & 0.0003 \\
\hline 1 & 0.0059 & 0.0054 & 0.0049 & 0.0045 & 0.0041 & 0.0038 & 0.0035 & 0.0032 & 0.0029 & 0.0027 \\
\hline 2 & 0.0208 & 0.0194 & 0.0180 & 0.0167 & 0.0156 & 0.0145 & 0.0134 & 0.0125 & 0.0116 & 0.0107 \\
\hline 3 & 0.0492 & 0.0464 & 0.0438 & 0.0413 & 0.0389 & 0.0366 & 0.0345 & 0.0324 & 0.0305 & 0.0286 \\
\hline 4 & 0.0874 & 0.0836 & 0.0799 & 0.0764 & 0.0729 & 0.0696 & 0.0663 & 0.0632 & 0.0602 & 0.0573 \\
\hline 5 & 0.1241 & 0.1204 & 0.1167 & 0.1130 & 0.1094 & 0.1057 & 0.1021 & 0.0986 & 0.0951 & 0.0916 \\
\hline 6 & 0.1468 & 0.1445 & 0.1420 & 0.1394 & 0.1367 & 0.1339 & 0.1311 & 0.1282 & 0.1252 & 0.1221 \\
\hline 7 & 0.1489 & 0.1486 & 0.1481 & 0.1474 & 0.1465 & 0.1454 & 0.1442 & 0.1428 & 0.1413 & 0.1396 \\
\hline 8 & 0.1321 & 0.1337 & 0.1351 & 0.1363 & 0.1373 & 0.1382 & 0.1388 & 0.1392 & 0.1395 & 0.1396 \\
\hline 9 & 0.1042 & 0.1070 & 0.1096 & 0.1121 & 0.1144 & 0.1167 & 0.1187 & 0.1207 & 0.1224 & 0.1241 \\
\hline 10 & 0.0740 & 0.0770 & 0.0800 & 0.0829 & 0.0858 & 0.0887 & 0.0914 & 0.0941 & 0.0967 & 0.0993 \\
\hline 11 & 0.0478 & 0.0504 & 0.0531 & 0.0558 & 0.0585 & 0.0613 & 0.0640 & 0.0667 & 0.0695 & 0.0722 \\
\hline 12 & 0.0283 & 0.0303 & 0.0323 & 0.0344 & 0.0366 & 0.0388 & 0.0411 & 0.0434 & 0.0457 & 0.0481 \\
\hline 13 & 0.0154 & 0.0168 & 0.0181 & 0.0196 & 0.0211 & 0.0227 & 0.0243 & 0.0260 & 0.0278 & 0.0296 \\
\hline 14 & 0.0078 & 0.0086 & 0.0095 & 0.0104 & 0.0113 & 0.0123 & 0.0134 & 0.0145 & 0.0157 & 0.0169 \\
\hline 15 & 0.0037 & 0.0041 & 0.0046 & 0.0051 & 0.0057 & 0.0062 & 0.0069 & 0.0075 & 0.0083 & 0.0090 \\
\hline 16 & 0.0016 & 0.0019 & 0.0021 & 0.0024 & 0.0026 & 0.0030 & 0.0033 & 0.0037 & 0.0041 & 0.0045 \\
\hline 17 & 0.0007 & 0.0008 & 0.0009 & 0.0010 & 0.0012 & 0.0013 & 0.0015 & 0.0017 & 0.0019 & 0.0021 \\
\hline 18 & 0.0003 & 0.0003 & 0.0004 & 0.0004 & 0.0005 & 0.0006 & 0.0006 & 0.0007 & 0.0008 & 0.0009 \\
\hline 19 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0003 & 0.0004 \\
\hline 20 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 \\
\hline 21 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{\(\lambda\)} \\
\hline \(X\) & 8.1 & 8.2 & 8.3 & 8.4 & 8.5 & 8.6 & 8.7 & 8.8 & 8.9 & 9.0 \\
\hline 0 & 0.0003 & 0.0003 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0001 & 0.0001 \\
\hline 1 & 0.0025 & 0.0023 & 0.0021 & 0.0019 & 0.0017 & 0.0016 & 0.0014 & 0.0013 & 0.0012 & 0.0011 \\
\hline 2 & 0.0100 & 0.0092 & 0.0086 & 0.0079 & 0.0074 & 0.0068 & 0.0063 & 0.0058 & 0.0054 & 0.0050 \\
\hline 3 & 0.0269 & 0.0252 & 0.0237 & 0.0222 & 0.0208 & 0.0195 & 0.0183 & 0.0171 & 0.0160 & 0.0150 \\
\hline 4 & 0.0544 & 0.0517 & 0.0491 & 0.0466 & 0.0443 & 0.0420 & 0.0398 & 0.0377 & 0.0357 & 0.0337 \\
\hline 5 & 0.0882 & 0.0849 & 0.0816 & 0.0784 & 0.0752 & 0.0722 & 0.0692 & 0.0663 & 0.0635 & 0.0607 \\
\hline 6 & 0.1191 & 0.1160 & 0.1128 & 0.1097 & 0.1066 & 0.1034 & 0.1003 & 0.0972 & 0.0941 & 0.0911 \\
\hline 7 & 0.1378 & 0.1358 & 0.1338 & 0.1317 & 0.1294 & 0.1271 & 0.1247 & 0.1222 & 0.1197 & 0.1171 \\
\hline 8 & 0.1395 & 0.1392 & 0.1388 & 0.1382 & 0.1375 & 0.1366 & 0.1356 & 0.1344 & 0.1332 & 0.1318 \\
\hline 9 & 0.1256 & 0.1269 & 0.1280 & 0.1290 & 0.1299 & 0.1306 & 0.1311 & 0.1315 & 0.1317 & 0.1318 \\
\hline 10 & 0.1017 & 0.1040 & 0.1063 & 0.1084 & 0.1104 & 0.1123 & 0.1140 & 0.1157 & 0.1172 & 0.1186 \\
\hline 11 & 0.0749 & 0.0776 & 0.0802 & 0.0828 & 0.0853 & 0.0878 & 0.0902 & 0.0925 & 0.0948 & 0.0970 \\
\hline 12 & 0.0505 & 0.0530 & 0.0555 & 0.0579 & 0.0604 & 0.0629 & 0.0654 & 0.0679 & 0.0703 & 0.0728 \\
\hline 13 & 0.0315 & 0.0334 & 0.0354 & 0.0374 & 0.0395 & 0.0416 & 0.0438 & 0.0459 & 0.0481 & 0.0504 \\
\hline 14 & 0.0182 & 0.0196 & 0.0210 & 0.0225 & 0.0240 & 0.0256 & 0.0272 & 0.0289 & 0.0306 & 0.0324 \\
\hline 15 & 0.0098 & 0.0107 & 0.0116 & 0.0126 & 0.0136 & 0.0147 & 0.0158 & 0.0169 & 0.0182 & 0.0194 \\
\hline 16 & 0.0050 & 0.0055 & 0.0060 & 0.0066 & 0.0072 & 0.0079 & 0.0086 & 0.0093 & 0.0101 & 0.0109 \\
\hline 17 & 0.0024 & 0.0026 & 0.0029 & 0.0033 & 0.0036 & 0.0040 & 0.0044 & 0.0048 & 0.0053 & 0.0058 \\
\hline 18 & 0.0011 & 0.0012 & 0.0014 & 0.0015 & 0.0017 & 0.0019 & 0.0021 & 0.0024 & 0.0026 & 0.0029 \\
\hline 19 & 0.0005 & 0.0005 & 0.0006 & 0.0007 & 0.0008 & 0.0009 & 0.0010 & 0.0011 & 0.0012 & 0.0014 \\
\hline 20 & 0.0002 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0004 & 0.0005 & 0.0005 & 0.0006 \\
\hline 21 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0003 \\
\hline 22 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 \\
\hline & \multicolumn{10}{|c|}{\(\lambda\)} \\
\hline \(X\) & 9.1 & 9.2 & 9.3 & 9.4 & 9.5 & 9.6 & 9.7 & 9.8 & 9.9 & 10 \\
\hline 0 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0000 \\
\hline 1 & 0.0010 & 0.0009 & 0.0009 & 0.0008 & 0.0007 & 0.0007 & 0.0006 & 0.0005 & 0.0005 & 0.0005 \\
\hline 2 & 0.0046 & 0.0043 & 0.0040 & 0.0037 & 0.0034 & 0.0031 & 0.0029 & 0.0027 & 0.0025 & 0.0023 \\
\hline 3 & 0.0140 & 0.0131 & 0.0123 & 0.0115 & 0.0107 & 0.0100 & 0.0093 & 0.0087 & 0.0081 & 0.0076 \\
\hline 4 & 0.0319 & 0.0302 & 0.0285 & 0.0269 & 0.0254 & 0.0240 & 0.0226 & 0.0213 & 0.0201 & 0.0189 \\
\hline 5 & 0.0581 & 0.0555 & 0.0530 & 0.0506 & 0.0483 & 0.0460 & 0.0439 & 0.0418 & 0.0398 & 0.0378 \\
\hline 6 & 0.0881 & 0.0851 & 0.0822 & 0.0793 & 0.0764 & 0.0736 & 0.0709 & 0.0682 & 0.0656 & 0.0631 \\
\hline 7 & 0.1145 & 0.1118 & 0.1091 & 0.1064 & 0.1037 & 0.1010 & 0.0982 & 0.0955 & 0.0928 & 0.0901 \\
\hline 8 & 0.1302 & 0.1286 & 0.1269 & 0.1251 & 0.1232 & 0.1212 & 0.1191 & 0.1170 & 0.1148 & 0.1126 \\
\hline 9 & 0.1317 & 0.1315 & 0.1311 & 0.1306 & 0.1300 & 0.1293 & 0.1284 & 0.1274 & 0.1263 & 0.1251 \\
\hline 10 & 0.1198 & 0.1210 & 0.1219 & 0.1228 & 0.1235 & 0.1241 & 0.1245 & 0.1249 & 0.1250 & 0.1251 \\
\hline 11 & 0.0991 & 0.1012 & 0.1031 & 0.1049 & 0.1067 & 0.1083 & 0.1098 & 0.1112 & 0.1125 & 0.1137 \\
\hline 12 & 0.0752 & 0.0776 & 0.0799 & 0.0822 & 0.0844 & 0.0866 & 0.0888 & 0.0908 & 0.0928 & 0.0948 \\
\hline 13 & 0.0526 & 0.0549 & 0.0572 & 0.0594 & 0.0617 & 0.0640 & 0.0662 & 0.0685 & 0.0707 & 0.0729 \\
\hline 14 & 0.0342 & 0.0361 & 0.0380 & 0.0399 & 0.0419 & 0.0439 & 0.0459 & 0.0479 & 0.0500 & 0.0521 \\
\hline 15 & 0.0208 & 0.0221 & 0.0235 & 0.0250 & 0.0265 & 0.0281 & 0.0297 & 0.0313 & 0.0330 & 0.0347 \\
\hline 16 & 0.0118 & 0.0127 & 0.0137 & 0.0147 & 0.0157 & 0.0168 & 0.0180 & 0.0192 & 0.0204 & 0.0217 \\
\hline 17 & 0.0063 & 0.0069 & 0.0075 & 0.0081 & 0.0088 & 0.0095 & 0.0103 & 0.0111 & 0.0119 & 0.0128 \\
\hline 18 & 0.0032 & 0.0035 & 0.0039 & 0.0042 & 0.0046 & 0.0051 & 0.0055 & 0.0060 & 0.0065 & 0.0071 \\
\hline 19 & 0.0015 & 0.0017 & 0.0019 & 0.0021 & 0.0023 & 0.0026 & 0.0028 & 0.0031 & 0.0034 & 0.0037 \\
\hline 20 & 0.0007 & 0.0008 & 0.0009 & 0.0010 & 0.0011 & 0.0012 & 0.0014 & 0.0015 & 0.0017 & 0.0019 \\
\hline 21 & 0.0003 & 0.0003 & 0.0004 & 0.0004 & 0.0005 & 0.0006 & 0.0006 & 0.0007 & 0.0008 & 0.0009 \\
\hline 22 & 0.0001 & 0.0001 & 0.0002 & 0.0002 & 0.0002 & 0.0002 & 0.0003 & 0.0003 & 0.0004 & 0.0004 \\
\hline 23 & 0.0000 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0001 & 0.0002 & 0.0002 \\
\hline 24 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{10}{|c|}{\(\lambda\)} \\
\hline \(X\) & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline 0 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 1 & 0.0002 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 2 & 0.0010 & 0.0004 & 0.0002 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 3 & 0.0037 & 0.0018 & 0.0008 & 0.0004 & 0.0002 & 0.0001 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline 4 & 0.0102 & 0.0053 & 0.0027 & 0.0013 & 0.0006 & 0.0003 & 0.0001 & 0.0001 & 0.0000 & 0.0000 \\
\hline 5 & 0.0224 & 0.0127 & 0.0070 & 0.0037 & 0.0019 & 0.0010 & 0.0005 & 0.0002 & 0.0001 & 0.0001 \\
\hline 6 & 0.0411 & 0.0255 & 0.0152 & 0.0087 & 0.0048 & 0.0026 & 0.0014 & 0.0007 & 0.0004 & 0.0002 \\
\hline 7 & 0.0646 & 0.0437 & 0.0281 & 0.0174 & 0.0104 & 0.0060 & 0.0034 & 0.0018 & 0.0010 & 0.0005 \\
\hline 8 & 0.0888 & 0.0655 & 0.0457 & 0.0304 & 0.0194 & 0.0120 & 0.0072 & 0.0042 & 0.0024 & 0.0013 \\
\hline 9 & 0.1085 & 0.0874 & 0.0661 & 0.0473 & 0.0324 & 0.0213 & 0.0135 & 0.0083 & 0.0050 & 0.0029 \\
\hline 10 & 0.1194 & 0.1048 & 0.0859 & 0.0663 & 0.0486 & 0.0341 & 0.0230 & 0.0150 & 0.0095 & 0.0058 \\
\hline 11 & 0.1194 & 0.1144 & 0.1015 & 0.0844 & 0.0663 & 0.0496 & 0.0355 & 0.0245 & 0.0164 & 0.0106 \\
\hline 12 & 0.1094 & 0.1144 & 0.1099 & 0.0984 & 0.0829 & 0.0661 & 0.0504 & 0.0368 & 0.0259 & 0.0176 \\
\hline 13 & 0.0926 & 0.1056 & 0.1099 & 0.1060 & 0.0956 & 0.0814 & 0.0658 & 0.0509 & 0.0378 & 0.0271 \\
\hline 14 & 0.0728 & 0.0905 & 0.1021 & 1.1060 & 0.1024 & 0.0930 & 0.0800 & 0.0655 & 0.0514 & 0.0387 \\
\hline 15 & 0.0534 & 0.0724 & 0.0885 & 0.0989 & 0.1024 & 0.0992 & 0.0906 & 0.0786 & 0.0650 & 0.0516 \\
\hline 16 & 0.0367 & 0.0543 & 0.0719 & 0.0866 & 0.0960 & 0.0992 & 0.0963 & 0.0884 & 0.0772 & 0.0646 \\
\hline 17 & 0.0237 & 0.0383 & 0.0550 & 0.0713 & 0.0847 & 0.0934 & 0.0963 & 0.0936 & 0.0863 & 0.0760 \\
\hline 18 & 0.0145 & 0.0256 & 0.0397 & 0.0554 & 0.0706 & 0.0830 & 0.0909 & 0.0936 & 0.0911 & 0.0844 \\
\hline 19 & 0.0084 & 0.0161 & 0.0272 & 0.0409 & 0.0557 & 0.0699 & 0.0814 & 0.0887 & 0.0911 & 0.0888 \\
\hline 20 & 0.0046 & 0.0097 & 0.0177 & 0.0286 & 0.0418 & 0.0559 & 0.0692 & 0.0798 & 0.0866 & 0.0888 \\
\hline 21 & 0.0024 & 0.0055 & 0.0109 & 0.0191 & 0.0299 & 0.0426 & 0.0560 & 0.0684 & 0.0783 & 0.0846 \\
\hline 22 & 0.0012 & 0.0030 & 0.0065 & 0.0121 & 0.0204 & 0.0310 & 0.0433 & 0.0560 & 0.0676 & 0.0769 \\
\hline 23 & 0.0006 & 0.0016 & 0.0037 & 0.0074 & 0.0133 & 0.0216 & 0.0320 & 0.0438 & 0.0559 & 0.0669 \\
\hline 24 & 0.0003 & 0.0008 & 0.0020 & 0.0043 & 0.0083 & 0.0144 & 0.0226 & 0.0328 & 0.0442 & 0.0557 \\
\hline 25 & 0.0001 & 0.0004 & 0.0010 & 0.0024 & 0.0050 & 0.0092 & 0.0154 & 0.0237 & 0.0336 & 0.0446 \\
\hline 26 & 0.0000 & 0.0002 & 0.0005 & 0.0013 & 0.0029 & 0.0057 & 0.0101 & 0.0164 & 0.0246 & 0.0343 \\
\hline 27 & 0.0000 & 0.0001 & 0.0002 & 0.0007 & 0.0016 & 0.0034 & 0.0063 & 0.0109 & 0.0173 & 0.0254 \\
\hline 28 & 0.0000 & 0.0000 & 0.0001 & 0.0003 & 0.0009 & 0.0019 & 0.0038 & 0.0070 & 0.0117 & 0.0181 \\
\hline 29 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0004 & 0.0011 & 0.0023 & 0.0044 & 0.0077 & 0.0125 \\
\hline 30 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0006 & 0.0013 & 0.0026 & 0.0049 & 0.0083 \\
\hline 31 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0003 & 0.0007 & 0.0015 & 0.0030 & 0.0054 \\
\hline 32 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0001 & 0.0004 & 0.0009 & 0.0018 & 0.0034 \\
\hline 33 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0005 & 0.0010 & 0.0020 \\
\hline 34 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0006 & 0.0012 \\
\hline 35 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0003 & 0.0007 \\
\hline 36 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 & 0.0004 \\
\hline 37 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 & 0.0002 \\
\hline 38 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 \\
\hline 39 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0001 \\
\hline
\end{tabular}

EXAMPLE: IN A CHI-SQUARE DISTRIBUTION WITH 11 DEGREES OF FREEDOM, TO FIND THE CHI-SQUARE VALUE FOR 0.20 OF THE AREA UNDER THE CURVE (THE COLORED AREA IN THE RIGHT TAIL) LOOK UNDER THE 0.20 COLUMN IN THE TABLE AND THE 11 DEGREES OF FREEDOM ROW; THE APPROPRIATE CHISQUARE VALUE IS 14.631.

APPENDIX TABLE 5 AREA IN THE RIGHT TAIL OF A CHI-SQUARE \(\left(\chi^{2}\right)\) DISTRIBUTION
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Degrees of Freedom} & \multicolumn{5}{|c|}{Area in Right Tail} \\
\hline & 0.99 & 0.975 & 0.95 & 0.90 & 0.800 \\
\hline 1 & 0.00016 & 0.00098 & 0.00398 & 0.0158 & 0.0642 \\
\hline 2 & 0.0201 & 0.0506 & 0.103 & 0.211 & 0.446 \\
\hline 3 & 0.115 & 0.216 & 0.352 & 0.584 & 1.005 \\
\hline 4 & 0.297 & 0.484 & 0.711 & 1.064 & 1.649 \\
\hline 5 & 0.554 & 0.831 & 1.145 & 1.610 & 2.343 \\
\hline 6 & 0.872 & 1.237 & 1.685 & 2.204 & 3.070 \\
\hline 7 & 1.239 & 1.690 & 2.167 & 2.833 & 3.822 \\
\hline 8 & 1.646 & 2.180 & 2.733 & 3.490 & 4.594 \\
\hline 9 & 2.088 & 2.700 & 3.325 & 4.168 & 5.380 \\
\hline 10 & 2.558 & 3.247 & 3.940 & 4.865 & 6.179 \\
\hline 11 & 3.053 & 3.816 & 4.575 & 5.578 & 6.989 \\
\hline 12 & 3.571 & 4.404 & 5.226 & 6.304 & 7.807 \\
\hline 13 & 4.107 & 5.009 & 5.892 & 7.042 & 8.634 \\
\hline 14 & 4.660 & 5.629 & 6.571 & 7.790 & 9.467 \\
\hline 15 & 5.229 & 6.262 & 7.261 & 8.547 & 10.307 \\
\hline 16 & 5.812 & 6.908 & 7.962 & 9.312 & 11.152 \\
\hline 17 & 6.408 & 7.564 & 8.672 & 10.085 & 12.002 \\
\hline 18 & 7.015 & 8.231 & 9.390 & 10.865 & 12.857 \\
\hline 19 & 7.633 & 8.907 & 10.117 & 11.651 & 13.716 \\
\hline 20 & 8.260 & 9.591 & 10.851 & 12.443 & 14.578 \\
\hline 21 & 8.897 & 10.283 & 11.591 & 13.240 & 15.445 \\
\hline 22 & 9.542 & 10.982 & 12.338 & 14.041 & 16.314 \\
\hline 23 & 10.196 & 11.689 & 13.091 & 14.848 & 17.187 \\
\hline 24 & 10.856 & 12.401 & 13.848 & 15.658 & 18.062 \\
\hline 25 & 11.524 & 13.120 & 14.611 & 16.473 & 18.940 \\
\hline 26 & 12.198 & 13.844 & 15.379 & 17.292 & 19.820 \\
\hline 27 & 12.879 & 14.573 & 16.151 & 18.114 & 20.703 \\
\hline 28 & 13.565 & 15.308 & 16.928 & 18.939 & 21.588 \\
\hline 29 & 14.256 & 16.047 & 17.708 & 19.768 & 22.475 \\
\hline 30 & 14.953 & 16.791 & 18.493 & 20.599 & 23.364 \\
\hline
\end{tabular}

Note: If \(v\), the number of degrees of freedom, is greater than 30 , we can approximate \(\chi_{\alpha}^{2}\), the chi-square value leaving \(\alpha\) of the area the right tail, by
\[
\chi_{\alpha}^{2}=v\left(1-\frac{2}{9 v}+z_{\alpha} \sqrt{\frac{2}{9 v}}\right)^{3}
\]
where \(z_{x}\) is the standard normal value (from Appendix Table 1) that leaves \(\alpha\) of the area in the right tail.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Area in Right Tail} & \multirow[t]{2}{*}{Degrees of Freedom} \\
\hline 0.20 & 0.10 & 0.05 & 0.025 & 0.01 & \\
\hline 1.642 & 2.706 & 3.841 & 5.024 & 6.635 & 1 \\
\hline 3.219 & 4.605 & 5.991 & 7.378 & 9.210 & 2 \\
\hline 4.642 & 6.251 & 7.815 & 9.348 & 11.345 & 3 \\
\hline 5.989 & 7.779 & 9.488 & 11.143 & 13.277 & 4 \\
\hline 7.289 & 9.236 & 11.070 & 12.833 & 15.086 & 5 \\
\hline 8.558 & 10.645 & 12.592 & 14.449 & 16.812 & 6 \\
\hline 9.803 & 12.017 & 14.067 & 16.013 & 18.475 & 7 \\
\hline 11.030 & 13.362 & 15.507 & 17.535 & 20.090 & 8 \\
\hline 12.242 & 14.684 & 16.919 & 19.023 & 21.666 & 9 \\
\hline 13.442 & 15.987 & 18.307 & 20.483 & 23.209 & 10 \\
\hline 14.631 & 17.275 & 19.675 & 21.920 & 24.725 & 11 \\
\hline 15.812 & 18.549 & 21.026 & 23.337 & 26.217 & 12 \\
\hline 16.985 & 19.812 & 22.362 & 24.736 & 27.688 & 13 \\
\hline 18.151 & 21.064 & 23.685 & 26.119 & 29.141 & 14 \\
\hline 19.311 & 22.307 & 24.996 & 27.488 & 30.578 & 15 \\
\hline 20.465 & 23.542 & 26.296 & 28.845 & 32.000 & 16 \\
\hline 21.615 & 24.769 & 27.587 & 30.191 & 33.409 & 17 \\
\hline 22.760 & 25.989 & 28.869 & 31.526 & 34.805 & 18 \\
\hline 23.900 & 27.204 & 30.144 & 32.852 & 36.191 & 19 \\
\hline 25.038 & 28.412 & 31.410 & 34.170 & 37.566 & 20 \\
\hline 26.171 & 29.615 & 32.671 & 35.479 & 38.932 & 21 \\
\hline 27.301 & 30.813 & 33.924 & 36.781 & 40.289 & 22 \\
\hline 28.429 & 32.007 & 35.172 & 38.076 & 41.638 & 23 \\
\hline 29.553 & 33.196 & 36.415 & 39.364 & 42.980 & 24 \\
\hline 30.675 & 34.382 & 37.652 & 40.647 & 44.314 & 25 \\
\hline 31.795 & 35.563 & 38.885 & 41.923 & 45.642 & 26 \\
\hline 32.912 & 36.741 & 40.113 & 43.194 & 46.963 & 27 \\
\hline 34.027 & 37.916 & 41.337 & 44.461 & 48.278 & 28 \\
\hline 35.139 & 39.087 & 42.557 & 45.722 & 49.588 & 29 \\
\hline 36.250 & 40.256 & 43.773 & 46.979 & 50.892 & 30 \\
\hline
\end{tabular}

EXAMPLE: FOR A TWO-TAILED TEST OF SIGNIFICANCE AT THE 0.20 LEVEL, WITH \(n=12\), THE APPROPRIATE VALUE FOR \(r_{s}\) CAN BE FOUND BY LOOKING UNDER THE 0.20 COLUMN AND ACROSS THE 12 ROW; THE APPROPRIATE \(r_{s}\) VALUE IS 0.3986.

APPENDIX TABLE 7 VALUES FOR SPEARMAN'S RANK CORRELATION \(\left(r_{s}\right)\) FOR COMBINED AREAS IN BOTH TAILS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(n\) & 0.20 & 0.10 & 0.05 & 0.02 & 0.01 & 0.002 \\
\hline 4 & 0.8000 & 0.8000 & & & & \\
\hline 5 & 0.7000 & 0.8000 & 0.9000 & 0.9000 & & \\
\hline 6 & 0.6000 & 0.7714 & 0.8286 & 0.8857 & 0.9429 & \\
\hline 7 & 0.5357 & 0.6786 & 0.7450 & 0.8571 & \[
0.8929
\] & 0.9643 \\
\hline 8 & \[
0.5000
\] & \[
0.6190
\] & \[
0.7143
\] & \[
0.8095
\] & \[
0.8571
\] & 0.9286 \\
\hline 9 & \[
0.4667
\] & \[
0.5833
\] & \[
0.6833
\] & \[
0.7667
\] & \[
0.8167
\] & \[
0.9000
\] \\
\hline 10 & \[
0.4424
\] & \[
0.5515
\] & \[
0.6364
\] & \[
0.7333
\] & \[
0.7818
\] & \[
0.8667
\] \\
\hline 11 & 0.4182 & 0.5273 & 0.6091 & 0.7000 & 0.7455 & 0.8364 \\
\hline 12 & 0.3986 & 0.4965 & 0.5804 & 0.6713 & 0.7273 & 0.8182 \\
\hline 13 & 0.3791 & 0.4780 & \[
0.5549
\] & 0.6429 & 0.6978 & 0.7912 \\
\hline 14 & \[
0.3626
\] & \[
0.4593
\] & 0.5341 & 0.6220 & 0.6747 & 0.7670 \\
\hline 15 & \[
0.3500
\] & 0.4429 & \[
0.5179
\] & 0.6000 & 0.6536 & \[
0.7464
\] \\
\hline 16 & 0.3382 & 0.4265 & 0.5000 & 0.5824 & 0.6324 & 0.7265 \\
\hline 17 & 0.3260 & 0.4118 & 0.4853 & 0.5637 & 0.6152 & 0.7083 \\
\hline 18 & \[
0.3148
\] & \[
0.3994
\] & \[
0.4716
\] & 0.5480 & \[
0.5975
\] & 0.6904 \\
\hline 19 & \[
0.3070
\] & \[
0.3895
\] & \[
0.4579
\] & \[
0.5333
\] & \[
0.5825
\] & \[
0.6737
\] \\
\hline 20 & \[
0.2977
\] & \[
0.3789
\] & \[
0.4451
\] & \[
0.5203
\] & \[
0.5684
\] & \[
0.6586
\] \\
\hline 21 & 0.2909 & 0.3688 & 0.4351 & 0.5078 & 0.5545 & 0.6455 \\
\hline 22 & 0.2829 & \[
0.3597
\] & 0.4241 & 0.4963 & 0.5426 & 0.6318 \\
\hline 23 & 0.2767 & 0.3518 & 0.4150 & 0.4852 & 0.5306 & 0.6186 \\
\hline 24 & 0.2704 & \[
0.3435
\] & \[
0.4061
\] & 0.4748 & 0.5200 & 0.6070 \\
\hline 25 & 0.2646 & 0.3362 & 0.3977 & 0.4654 & 0.5100 & 0.5962 \\
\hline 26 & 0.2588 & 0.3299 & 0.3894 & 0.4564 & 0.5002 & 0.5856 \\
\hline 27 & 0.2540 & 0.3236 & 0.3822 & 0.4481 & 0.4915 & 0.5757 \\
\hline 28 & 0.2490 & 0.3175 & 0.3749 & 0.4401 & 0.4828 & 0.5660 \\
\hline 29 & \[
0.2443
\] & \[
0.3113
\] & \[
0.3685
\] & \[
0.4320
\] & \[
0.4744
\] & \[
0.5567
\] \\
\hline 30 & 0.2400 & 0.3059 & 0.3620 & 0.4251 & 0.4665 & 0.5479 \\
\hline
\end{tabular}

\section*{APPENDIX TABLE 8 CRITICAL VALUES OF D IN THE KOLMOGOROV-SMIRNOV GOODNESS-OFFIT TEST}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Sample Size \\
(\(n\))
\end{tabular}} & \multicolumn{5}{|c|}{Level of Significance for \(\boldsymbol{D}=\) Maximum \(\left|F_{e}-F_{o}\right|\)} \\
\hline & 0.20 & 0.15 & 0.10 & 0.05 & 0.01 \\
\hline 1 & 0.900 & 0.925 & 0.950 & 0.975 & 0.995 \\
\hline 2 & 0.684 & \[
0.726
\] & 0.776 & 0.842 & 0.929 \\
\hline 3 & \[
0.565
\] & \[
0.597
\] & \[
0.642
\] & \[
0.708
\] & 0.828 \\
\hline 4 & 0.494 & \[
0.525
\] & 0.564 & 0.624 & 0.733 \\
\hline 5 & \[
0.446
\] & \[
0.474
\] & \[
0.510
\] & 0.565 & 0.669 \\
\hline 6 & 0.410 & 0.436 & 0.470 & 0.521 & 0.618 \\
\hline 7 & 0.381 & 0.405 & 0.438 & 0.486 & 0.577 \\
\hline 8 & 0.358 & 0.381 & 0.411 & 0.457 & 0.543 \\
\hline 9 & 0.339 & 0.360 & 0.388 & 0.432 & 0.514 \\
\hline 10 & 0.322 & 0.342 & 0.368 & 0.410 & 0.490 \\
\hline 11 & 0.307 & 0.326 & 0.352 & 0.391 & 0.468 \\
\hline 12 & 0.295 & \[
0.313
\] & 0.338 & 0.375 & 0.450 \\
\hline 13 & \[
0.284
\] & \[
0.302
\] & \[
0.325
\] & 0.361 & \[
0.433
\] \\
\hline 14 & 0.274 & \[
0.292
\] & \[
0.314
\] & 0.349 & 0.418 \\
\hline 15 & \[
0.266
\] & 0.283 & 0.304 & 0.338 & 0.404 \\
\hline 16 & 0.258 & 0.274 & 0.295 & 0.328 & 0.392 \\
\hline 17 & 0.250 & 0.266 & 0.286 & 0.318 & 0.381 \\
\hline 18 & 0.244 & 0.259 & 0.278 & 0.309 & 0.371 \\
\hline \[
19
\] & \[
0.237
\] & \[
0.252
\] & \[
0.272
\] & 0.301 & 0.363 \\
\hline 20 & 0.231 & 0.246 & 0.264 & 0.294 & 0.356 \\
\hline \[
25
\] & \[
0.21
\] & \[
0.22
\] & 0.24 & 0.27 & 0.32 \\
\hline \[
30
\] & \[
0.19
\] & \[
0.20
\] & \[
0.22
\] & 0.24 & 0.29 \\
\hline 35 & 0.18 & 0.19 & 0.21 & 0.23 & 0.27 \\
\hline Over 35 & \[
\frac{1.07}{\sqrt{n}}
\] & \(\frac{1.14}{\sqrt{n}}\) & \[
\frac{1.22}{\sqrt{n}}
\] & \[
\frac{1.36}{\sqrt{n}}
\] & \[
\frac{1.63}{\sqrt{n}}
\] \\
\hline
\end{tabular}

\footnotetext{
Note: The values of \(D\) given in the table are critical values associated with selected values of \(n\). Any value of \(D\) that is greater than or equal to the tabulated value is significant at the indicated level of significance.
}

\section*{APPENDIX TABLE 9 CONTROL CHART FACTORS}
\begin{tabular}{cccccc}
\hline & \multicolumn{2}{c}{ Factors for \(\overline{\boldsymbol{x}}\) Charts } & \multicolumn{3}{c}{ Factors for \(\boldsymbol{R}\) Charts } \\
\cline { 2 - 5 } Sample size, \(\boldsymbol{n}\) & \(\boldsymbol{d}_{\mathbf{2}}=\frac{\boldsymbol{R}}{\boldsymbol{\sigma}}\) & \(\boldsymbol{A}_{\mathbf{2}}=\frac{\mathbf{3}}{\boldsymbol{d}_{\mathbf{2}} \sqrt{\boldsymbol{n}}}\) & \(\boldsymbol{d}_{\mathbf{3}}=\frac{\boldsymbol{\sigma}_{\boldsymbol{R}}}{\boldsymbol{\sigma}}\) & \(\boldsymbol{D}_{\mathbf{3}}=\mathbf{1}-\frac{\mathbf{3} \boldsymbol{d}_{\mathbf{3}}}{\boldsymbol{d}_{\mathbf{2}}}\) & \(\boldsymbol{D}_{\mathbf{4}}=\mathbf{1}+\frac{\mathbf{3} \boldsymbol{d}_{\mathbf{3}}}{\boldsymbol{\boldsymbol { W } _ { \mathbf { 2 } }}}\) \\
\hline 2 & 1.128 & 1.881 & 0.853 & 0 & 3.269 \\
3 & 1.693 & 1.023 & 0.888 & 0 & 2.574 \\
4 & 2.059 & 0.729 & 0.880 & 0 & 2.282 \\
5 & 2.326 & 0.577 & 0.864 & 0 & 2.114 \\
6 & 2.534 & 0.483 & 0.848 & 0 & 2.004 \\
7 & 2.704 & 0.419 & 0.833 & 0.076 & 1.924 \\
8 & 2.847 & 0.373 & 0.820 & 0.136 & 1.864 \\
9 & 2.970 & 0.337 & 0.808 & 0.184 & 1.816 \\
10 & 3.078 & 0.308 & 0.797 & 0.223 & 1.777 \\
11 & 3.173 & 0.285 & 0.787 & 0.256 & 1.744 \\
12 & 3.258 & 0.266 & 0.779 & 0.283 & 1.717 \\
13 & 3.336 & 0.249 & 0.770 & 0.308 & 1.692 \\
14 & 3.407 & 0.235 & 0.763 & 0.328 & 1.672 \\
15 & 3.472 & 0.223 & 0.756 & 0.347 & 1.653 \\
16 & 3.532 & 0.212 & 0.750 & 0.363 & 1.637 \\
17 & 3.588 & 0.203 & 0.744 & 0.378 & 1.622 \\
18 & 3.640 & 0.194 & 0.739 & 0.391 & 1.609 \\
19 & 3.689 & 0.187 & 0.734 & 0.403 & 1.597 \\
20 & 3.735 & 0.180 & 0.729 & 0.414 & 1.586 \\
21 & 3.778 & 0.173 & 0.724 & 0.425 & 1.575 \\
22 & 3.819 & 0.167 & 0.720 & 0.434 & 1.566 \\
23 & 3.858 & 0.162 & 0.716 & 0.443 & 1.557 \\
24 & 3.895 & 0.157 & 0.712 & 0.452 & 1.548 \\
25 & 3.931 & 0.153 & 0.708 & 0.460 & 1.540 \\
\hline
\end{tabular}

Note: If \(1-3 d_{3} / d_{2}<0\), then \(D_{3}=0\).

\section*{Bibliography}

\section*{Data Analysis and Presentation}

Cleveland, W. S., The Elements of Graphing Data, rev. ed., Murray Hill, NJ, AT\&T Bell Laboratories, 1994.

Everitt, B. S., and G. Dunn. Advanced Methods of Data Exploration and Modelling, London, Heinemann Education Books, Ltd., 1983.
Tufte, E. R., The Visual Display of Quantitative Information, Chelshire, CT, Graphics Press, 1983.
Tukey, J. W., Understanding Robust and Exploratory Data Analysis, New York, John Wiley E Sons, 1983.

\section*{History of Statistics}

Stigler, S. M., The History of Statistics: The Measurement of Uncertainty before 1900, Cambridge, MA, Belknap Press, 1986.

\section*{Introductory Statistics}

Berenson, M. L., and D. M. Levine, Basic Business Statistics: Concepts and Applications, 6th ed., Englewood Cliffs, NJ, Prentice Hall, 1996.
Freund, J. E., F. J. Williams, and B. M. Perles, Elementary Business Statistics, 6th ed., Englewood Cliffs, NJ, Prentice Hall, 1993.
McClave, J. T., and P. G. Benson, Statistics for Business and Economics, 6th ed., Englewood Cliffs, NJ, Prentice Hall, 1994.

\section*{Nonparametric Statistics}

Conover, W. J., Practical Nonparametric Statistics, 2d ed., New York, John Wiley \& Sons, 1980.
Gibbons, J. D., and S. Chakraborti, Nonparametric Statistical Inference, 3d ed., New York, Marcel Dekker, 1992.

\section*{Probability}

Hogg, R. V., and E. A. Tanis, Probability and Statistical Inference, 5th ed., Englewood Cliffs, NJ, Prentice Hall, 1997.
Rowntree, D., Probability, New York, Charles Scribner’s Sons, 1984.

\section*{Quality and Quality Control}

Deming, W. E., Out of the Crisis, Cambridge, MA, MIT Center for Advanced Engineering Study, 1986. Gitlow, H., S. Gitlow, A. Oppenheim, and R. Oppenheim, 2d ed., Quality Management: Tools and Methods for Improvement, Homewood, IL, Richard D. Irwin, Inc., 1995.
Grant, E. L., and R. S. Leavenworth, Stastistical Quality Control, 7th ed., New York, McGraw-Hill Book Co., 1996.
Ishikawa, K., Guide to Quality Control, 2d ed., White Plains, NY, Kraus International Publications, 1986.

\section*{Regression and Analysis of Variance}

Berry, W. D., Multiple Regression in Practice Beverly Hills, Sage Publications, 1985.
Kleinbaum, D. G., L. L. Kupper, and K. E. Muller, Applied Regression Analysis and Other Multivariable Methods, 2d ed. Boston, PWS-Kent Publishing Co., 1988.
Mendenhall, W. and T. Sincich, A Second Course in Statistics: Regression Analysis, 5th ed., Englewood Cliffs, NJ, Prentice Hall, 1996.
Neter, J., W. Wasserman, and M. H. Kutner, Applied Linear Statistical Models, 2d ed., Homewood, IL, Richard D. Irwin, Inc., 1985.

\section*{Sampling}

Guy, D. M., D. R. Carmichael, and O. R. Whittington, Audit Sampling: An Introduction, 3rd ed., New York, John Wiley \& Sons, 1994.
Schaefer, R. L., W. Mendenhall, and L. Ott, Elementary Survey Sampling, Boston, 5th ed., Duxbury Press, 1996.

\section*{Special Topics in Statistics}

Huff, D., How to Lie with Statistics, New York, W. W. Norton \& Co., 1954.
Jaffe, A. J., Misused Statistics: Straight Talk for Twisted Numbers, New York, Marcel Dekker, 1987. Madansky, A., Prescriptions for Working Statisticians, New York, Springer-Verlag, 1988.

\section*{Statistical Decision Theory}

Соoк, T. M., and R. A. Russell, Introduction to Management Science, 5th ed., Englewood Cliffs, NJ, Prentice Hall, 1993.
Hillier, F. S., and G. J. Lieberman, Introduction to Operations Research, 6th ed., New York, McGrawHill Book Co., 1995.
Levin, R. I, D. S. Rubin, J. P. Stinson, and E. S. Gardner, Jr., Quantitative Approaches to Management, 8th ed. New York, McGraw-Hill Book Co., 1992.

\section*{Statistical Software}

Minitab, Inc., MINITAB User's Guide: Release 10 Xtra, State College, PA, 1995.
SAS Institute, Inc., SAS Introductory Guide for Personal Computers, Release 6.03 ed., Cary, NC, 1988.

\section*{Time Series}

Bowerman, B. L. and R. T. O’Connell, Forecasting and Time Series: An Applied Approach, 3d ed., Boston, Duxbury Press, 1993.
Farnum, N. R., and L. W. Stanton, Quantitative Forecasting Methods, Boston, PWS-Kent Publishing Co., 1989.
Mills, T. C., Time Series Techniques for Economists, Cambridge, Cambridge University Press, 1990.

This page is intentionally left blank

\section*{Index}

\section*{A}
\(\alpha\) (the greek letter, alpha), 343, 373
A priori, 158
Absolute values, 608
Acceptable quality level (AQL), 501
Acceptance sampling, 500
Acts, 898
Addition rule, 166
Alternative hypothesis, 371
Analysis
correlation, 629
decision-tree, 925-933
marginal, 908
multiple regression and correlation, 664
of variance, 542
time-series, 804
trend, 806
Analysis of variance (ANOVA), 542
one way classification, 552-557
two way classification, 558-562
Analysis of variance(ANOVA) for the regression, 691
Appropriate distribution, 534
Approximate confidence interval, 677
Approximate prediction intervals, 619
Assignable variation, 469
Attribute, 487
Average of relatives methods, 874
Average outgoing quality (AOQ) graph, 504

\section*{B}
\(\beta\) (the greek letter beta), 373
Bayes, Reverend Thomas, 154, 188
Bayes' theorem, 188-189
Bayesian decision theory, 898
Bernoulli process, 222

Bernoulli, Jacob, 154
Between-column variance, 544
Biased samples, 270
Bills of mortality, 3
Bimodal distribution, 106, 222
Binomial formula, 223
Bivariate frequency distributions, 30
Boxplot, 141
Brennan, Maureen, 503

\section*{C}

Causal relationship, 598
Cause-and-effect diagram, 495
Census, 268
Center line (CL), 470
Central limit theorem, 296
Central tendency, 74
Certainty, 939
Chance events, 926
Chance node, 927
Chebyshev. P. L., 122
Chebyshev's theorem, 122
Chi-square as a test of goodness of fit, 534
Chi-square as a test of independence, 519
Chi-square distribution, 523
Chi-square statistic, 522
Chi-square test, 518
Chi-square test using spss, 529-531
Class
class, 98-99
discrete, 22
equal, 27
open ended, 22
Classical linear regression model
(CLRM), 670

Classical probability, 158
Cluster sampling, 274
Clusters, 274
Codes, 81
Coding, 81
Coefficient of variation, 132
Collectively exhaustive, 156
Common variation, 469
Complete enumeration, 268
Computed \(f\) ratio, 721
Computed \(t, 721\)
Conditional probability, 175
Conditional probability of
dependent events, 179
Conditional profit table, 901
Confidence interval, 646, 687
Confidence level, 329
Confidence limits, 329
Consistent estimator, 318
Consumer price index (CPI), 856
Consumer's risk, 501
Contingency table, 520
Continuity correction factors, 250
Continuous data, 22
Continuous probability distributions, 210
Continuous quality improvement (CQI), 497
Continuous random variable, 212
Convenience sampling, 279
Correlation analysis, 629
Critical value, 381
Curve(s)
power, 388
skewed, 75
symmetrical, 75
transforming variables and fitting, 709-713
utility, 918
Curvilinear, 599
Cyclical fluctuation, 804
Cyclical variation, 818

\section*{D}

Data, 14
array, 18
array, 18
continuous, 22
point, 14
raw, 17
sample arithmetic mean of grouped, 79
set, 14
tests for, 15
ungrouped, 79
Data array, 18
advantages of, 19
disadvantages of, 19
Data point, 14
Data set, 14
De Fermat, Pierre, 154
De Laplace, Marquis, 154
De Moivre, Abraham, 154
Deciles, 115
Decision environment, 898-899
Decision node, 927
Decision points, 925
Decision theory, 4, 897-939
Decision tree, 925
Decision-tree analysis, 925-933
Degrees of freedom, 341
Dependence, 179
Dependent samples, 431
Dependent variable, 597
Deterministic models, 155
Diagram
cause-and-effect, 495
fishbone, 495
fishbone, 495
ishikawa, 495
scatter, 598
venn, 165
Direct relationship, 597
Discrete classes, 22
Discrete probability distributions, 210
Discrete random variable, 212
Dispersion, 74
Distance measures, 113
Distribution
appropriate, 534
bimodal, 106
binomial, 222
bivariate frequency, 30
chi-square, 523
continuous probability, 210
discrete probability, 210
frequency, \(16,19,210\)
gaussian, 238
hypergeometric, 502
normal, 238
of proportion, 298
poisson, 230
population, 290
probability, 208
relative frequency, 20
sampling, 289
standard normal probability, 242
student's, 341
student's t, 341
theoretical sampling, 291
Distribution-free tests, 734
Dodge, Harold F.,500
Domesday book, 3
Doublesampling, 500
Dummy variable, 665, 706

\section*{E}

Efficient estimator, 318
Equal classes, 27
Error
margin of, 2
root-mean-square, 677
sampling, 287
standard, 287
type I, 373
type II, 373
Estimate, 317
intervel, 317
point, 317
Estimated regression coefficients, 669
Estimation, 316
Estimation using the regression
line, 603
Estimator, 317
Event(s), 155, 282
chance, 926
conditional probability of
dependent, 179
joint probability independent, 171
marginal probability of independent, 170
mutually exclusive, 156
statistically independent, 170
Expected frequencies, 521

Expected marginal loss, 910
Expected marginal profit, 910
Expected value, 214
Expected value of sample
information (EVSI), 931
Experiment, 155, 282

\section*{F}

Factorial, 223
Federal trade commission (FTC), 113
Finite population multiplier, 303, 375
Fishbone diagrams, 495
Fixed-weight aggregates
method, 866,869
Fixed-weight aggregates price index, 869
Food and Drug Administration, 2
Fractile, 114, 116
deciles, 115,141
percentile, 115
quartile, 115
Frequency distribution, 16, 19, 210
bivariate, 30
constructing a, 27-30
cumulative, 41
graphing, 38-52
relative, 20
Frequency polygons, 39, 45-47
Frequency table, 19

\section*{G}

Galton, Sir Francis, 596
Garbage in, garbage out (GIGO), 15
Gardner, Everette S., Jr., 503
Gauss, Karl, 238
Gaussian distribution, 238
Geometric mean (G.M.), 93
Geometric mean growth rate, 93
Gombauld, Antoine, 154
Gottfried Achenwall, 3
Good, Richard, 161
Goodness of fit, 535
Graunt, Captain John, 3
Grade-point averages (GPAS), 17
Grand mean (x), 473
Gross domestic product (GDP), 597

\section*{H}

Henry VII, 3
Histogram, 38
relative frequency, 38
How to lie with statistics, 3
Hypergeometric distribution, 502
Hypothesis, 366
alternative, 371
hypothesis, 369, 371
null, 371
testing for differences between means
and proportions, 412
testing using the standardized scale, 381-383
Hypothesis testing, 369, 371
Hypothesis testing for differences between
means and proportions, 412
Hypothesis testing using the standardized scale, 381-383

\section*{I}

Inferential statistics, 4
Independent events
conditional probability, 175
joint probability, 174
marginal probability, 170
Independent variable, 597
Index numbers, 856
Indicator variable, 706
Inferences about a population
variance, 568
Inferences about two population
variances, 576
Infinite population, 272
Inherent variation, 469
Interfractile range, 114
Interquartile range, 115
Interval estimates, 317, 324-326
Irregular variation, 805, 833
Ishikawa diagrams, 495
Ishikawa, Kaoru, 495

\section*{J}

Joint probability, 174
Joint probability independent
events, 171
Judgement sampling, 279
Juran, Joseph M., 467

\section*{K}

Kolmogorov, A. N., 779
Kolmogorov-Smirnov test, 735, 779
Koopman, Bernard, 161
Kruskal-wallis test, 734
K-S test, 779
Kurtosis, 76

\section*{L}

Lagrange, Joseph, 154
Laspeyres method, 865
Latin square, 286
Law of diminishing return, 305
Least-squares method, 609
Left-tailed test, 376, 384
Less-than ogive, 41-42
Linear relationship, 599
Losses, 218
obsolescence, 218
opportunity, 218
Lot tolerance percent
defective (LTPD), 501
Lower confidence limit (LCL), 329
Lower control limit (LCL) line, 470
Lower-tailed test, 376

\section*{M}
\(\mu\) (the Greek letter mu), 77
Making inferences about population
parameters, 643
Mann-Whitney U test, 734
Margin of error, 2
Marginal analysis, 908
Marginal loss (ML), 909
Marginal probabilities under statistical dependence, 183
Marginal probability, 165, 174
Marginal probability of independent
events, 170
Marginal profit, 908
Mean, 20
arithmetic, 77-83
compared to median and mode, 107
distribution of the, 291
geometric, 93
grand, 473
one-tailed test of, 383
population, 316
population arithmetic, 78
sample arithmetic, 78
sampling distribution of the, 286, 291
standard error of the, 287
weighted, 87
Measures of central tendency, 74
Measures of location, 74
Median, 96
advantages and disadvantages
of, 100-101
compared to mean and mode, 107
class, 98, 141
Median class, 98-99
Minimum probability, 910
Minitab, 30
Modal class, 105
Mode, 104-105, 141
advantages and disadvantages of, 106
compared to mean and median, 107
Model, 703
Modeling techniques, 703
\(\mathrm{Mu}(\mu), 77\)
Multicollinearity, 692, 721
Multimodal distributions, 106
Multiple regression and correlation analysis, 664
Mutually exclusive events, 156

\section*{N}

Natural and Political Observations ... Made Upon the Bills of Morality, 3
Negative slope, 597
Node, 939
Nonparametric methods, 733-784
Nonparametric tests, 734
Nonrandom sampling, 269
Non-random sampling, 279-280
Normal distribution, 238
Null hypothesis, 371

\section*{0}

Observed value, 381
Obsolescence losses, 218, 939
Ogive, 41-42, 60
One-sample runs test, 735, 758, 759
One-tailed test of a variance, 572-573

One-tailed test of means, 383
One-tailed tests, 375
One-tailed tests for differences between proportions, 445-448
One-tailed tests of proportions, 393
Open ended class, 22
Operating characteristic (OC)
graph, 503
Opportunity losses, 218, 939
Original scale, 381
Outcomes, 898
Outliers, 471
P
\(P\) charts, 487-491
Paasche method, 866, 868
Paasche price index, 868
Paired samples, 431
Parameters, 77, 269, 734
Pareto chart, 496
Pareto, Vilfredo, 496
Pascal, Blaise, 154
Payoffs, 898
Percentiles, 115
Perfect correlation, 630
Point estimates, 319-322
Poisson distribution, 230
Poisson, Siméon Denis, 230
Population, 16, 268, 543
infinite, 272
Population arithmetic mean, 78
Population characteristics, 268
Population distribution, 290
Population mean, 316
Population parameter, 269
Population proportion, 316
Population standard deviation, 120
Positive slope, 597
Posterior probabilities, 188
Power curve, 388
Precision, 302
Price index, 856
Prob values, 450
Probabilistic models, 155
Probability, 4
classical, 158
conditional, 175
distributions, 208
joint, 174
marginal, 165, 174
minimum, 910
sampling, 269
single, 165
tree, 172
unconditional, 165
Probability distributions, 208
continuous, 210
discrete, 210
standard normal, 242
Probability sampling, 269
Probability tree, 172
Producer's risk, 501
Proportion, 286
Proportions, 391

\section*{Q}

Quadratic regression model, 713
Qualitative data, 703
Quality, 467
Quantitative data, 703
Quantity index, 856
Quantity indices, 881
Quartiles, 115
Quota sampling, 279

\section*{R}
\(R\) charts, 481-484
Ramsey, Frank, 161
Random models, 155
Random sampling, 269, 271
Random variables, 212
Random variation, 469
Range, 113
interfractile, 114, 141
interquartile, 115, 141
Rank correlation, 735, 767
Rank sum tests, 734, 744
Rank-correlation coefficient, 768
Ratio-to-moving-average method, 825
Raw data, 17
Raw scale, 381
Regression, 596
Relative cyclical residual, 819

Relative frequency distribution, 20
Relative frequency histogram, 38
Relative frequency of
occurrence, 159
Relative frequency polygon, 40
Relative measure, 132
Representative sample, 16
Residual method, 818
Response variable, 283
Revised probabilities, 188
Right-tailed test, 377
Rollback process, 927
Romig, Harry G., 500
Root-mean-square error, 677
Run, 759

\section*{S}
\(\sigma\) (population standard deviation), 124
Salvage value, 939
Sample
representative, 16, 60
standard deviation, 124-125
Sample arithmetic mean, 78
Sample arithmetic mean of grouped data, 79
Sample coefficient of correlation, 637
Sample coefficient of
determination, 629
Sample space, 155
Sample statistic, 269
Sampling
acceptance, 500
cluster, 274
convenience, 279
distribution of proportion, 298
distribution of the mean, 291
double, 500
fraction, 304
from nonnormal populations, 294-296
from normal populations, 291-294
judgement, 279
nonrandom, 269
non-random, 279
probability, 269
quota, 279
random, 269, 271
shopping-mall intercept, 279
simple random, 271
single, 500
stratified, 274
systematic, 273
Sampling distribution of proportion, 298
Sampling distribution of the mean, 286, 291
Sampling distributions, 289
Sampling error, 287
Sampling fraction, 304
Sampling from nonnormal
populations, 294-296
Sampling from normal
populations, 291-294
SAS, 30
Savage, Leonard, 161
Scatter diagram, 598
Seasonal variation, 805, 824
Second-degree regression model, 713
Secular trend, 804
Shewhart, Walter, 500
Shopping-mall intercept
sampling, 279
Sigma (\(\sigma\)), 78, 290
Sigma hat, 333
Sign test, 734
Sign test for paired data, 736
Significance level, 371
Simon, Pierre, 154
Simple random sampling, 271
Single probability, 165
Single-sampling, 500
Skewed curves, 75
Skewness, 75
Slope, 654
negative, 597
positive, 597
Smirnov, N.V., 779
Snowball sampling, 280
Special cause variation, 469
Spinks, Leon, 154
SPSS, 30
Standard deviation, 119, 120
Standard error, 287
Standard error of estimate, 615

Standard error of the difference between two means, 414
Standard error of the mean, 287
Standard error of the median, 287
Standard error of the proportion, 287, 337
Standard error of the range, 287
Standard error of the regression coefficient, 645, 686
Standard error of the statistic, 287
Standard normal probability distribution, 242
Standard score, 122
Standard units, 244
Standardized scale, 381
Statistical Account of Scotland 1791-1799, 3
States of nature, 898
Statistical account of scotland, 3
Statistical decision theory, 898
Statistical dependence, 179
Statistical independence, 170
Statistical inference, 275
Statistical process control (SPC), 468
Statistically independent, 223
Statistically independent events, 170
Statistics, 2, 3, 77, 269
chi-square, 522
descriptive, 4
inference, 4
inferential, 4
sample, 269
summary, 74
Stem and leaf display, 142
Strata, 274
Stratified sampling, 274
Student's distribution, 341
Subjective probabilities, 160
Sufficient estimator, 318
Summary statistics, 74
Symmetrical curves, 75
Systat, 30
Systematic sampling, 273
Systematic variation, 469

\section*{T}
\(T\) distribution, 341
Table of random digits, 272
Test of independence, 519
Testing differences between means with
dependent samples, 431
Tests
distribution-free, 734
for differences between means:
large sample sizes, 414
for differences between means:
small sample sizes, 420
for differences between proportions:
large sample sizes, 441
kolmogorov-smirnov, 779
nonparametric, 734
one-tailed, 375
rank sum, 744
Tests for differences between means:
large sample sizes, 414
Tests for differences between means:
small sample sizes, 420
Tests for differences between proportions:
large sample sizes, 441
The foundation of mathematics and other logical essays, 161
The index of industrial production (IIP), 881
Theoretical sampling distribution, 291
Theory of runs, 759
Time-series analysis, 804
Time-series analysis in forecasting, 844
Total quality management (TQM), 466, 494-497
Transformations, 721
Transforming variables and fitting curves, 709-713
Trend analysis, 806
Two-tailed prob values, 451
Two-tailed test, 375
Two-tailed test of a variance, 571-572
Two-tailed tests for differences between
proportions, 442-445
Type I error, 373
Type II error, 373

\section*{U}

Unbiased estimator, 319
Unbiasedness, 318
Unconditional probability, 165
Ungrouped data, 79
Unweighted aggregates index, 860
Unweighted average of relatives method, 874
Upper confidence limit (UCL), 329
Upper control limit (UCL) line, 470
Upper-tailed test, 377
Utility, 917-918
Utility curves, 918

\section*{V}

Value index, 857
Value indices, 882
Value(s)
absolute, 608
critical, 381
expected, 214
index, 857
indices, 882
observed, 381
prob, 450
salvage, 939
two-tailed prob, 451
Variance, 119
analysis of, 542
between-column, 544
one-tailed test of a, 572-573
two-tailed test of a, 571-572
within-column, 545
Variance inflation factor (VIF), 694
Variation, 469, 629
assignable, 469
coefficient of, 132
common, 469
in time series, 804
inherent, 469
random, 469
special cause, 469
systematic, 469
Variations in time series, 804

Venn diagram, 165
Venn, John, 165

\section*{W}

Weighted average, 88
Weighted average of relatives
method, 874
Weighted mean, 87
Width of a class interval, 28
Within-column variance, 545

X
\(\bar{x}\) charts, 470

Y
Yate's correction, 531
Y-intercept, 654

Z
Zero defects, 468
Zimmerman. E.A.W., 3```

[^0]: * Minitab is a registered trademark of Minitab, Inc., University Park, PA. SAS is a registered trademark of SAS Institute, Inc., Cary, N.C. SPSS is a registered trademark of SPSS, Inc., Chicago, IL. SYSTAT is a registered trademark of SYSTAT, Inc., Evanston, IL.

[^1]: *The symbol \bar{x}_{w} is read x-bar sub w. The lowercase w is called a subscript and is a reminder that this is not an ordinary mean but one that is weighted according to the relative importance of the values of x.

[^2]: *To find the joint probability of events A and B, you could also use the formula $\mathrm{P}(B A)=\mathrm{P}(A B)=\mathrm{P}(A \mid B) \times \mathrm{P}(B)$. This is because $B A=A B$.

[^3]: *A comma is used to separate joint events. We can join individual letters to indicate joint events without confusion (AB, for example), but joining whole words in this way could produce strange looking events (aceelementaryevent) in this table, and they could be confusing.

[^4]: * We have not used the finite population multiplier to calculate the standard error of the mean because the population of batteries is large enough to be considered infinite.

[^5]: *Notice that we do not use the finite population multiplier, because our population is so large compared with the sample size.

