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Many wave phenomena are well described by the wave equation. When the
considered wave has a fixed frequency the wave equation is mostly re-written in
the frequency domain which results in the Helmholtz equation

−∆u(x) − k2(x) = g(x). (1)

It is also possible to approximate the time domain solution with a summation
of solutions for several frequencies. Applications consist of the propagation of
sound, sonar, seismic, and many more. We emphasize on the seismic imaging
used for searching oil and gas in the subsoil. In order to have a good image of
the under ground, often high frequencies are chosen for high resolution. The
discrete analogue of the Helmholtz Equation (1) is a combination of a symmetric
positive definite matrix (Poisson) and the mass matrix i.e.

L + iC −M = g (2)

where C represents the boundary conditions.
The discretized linear System (2) has two characteristic properties :

- the product of the wave number and the step size should be smaller than
a given constant,

- if the wavenumber increases the operator has more and more negative
eigenvalues.

Solving the discretized Helmholtz equation have been a challenging problem.
Krylov methods with classical preconditioners and Multigrid methods tend to
break down due to high indefiniteness for high wavenumber problems. During
the year 2005, the idea of using complex shifted Laplacian as preconditioner
(CSLP) [1] gave rise to fast and robust Krylov solvers for Helmholtz. It appears
that the amount of work increases linearly with the wavenumber. This happens
as the near kernel components tend to appear more frequently as the wavenum-
ber increases.

The combination of the complex shifted Laplacian with a multigrid deflation
technique was first proposed in [2] and later analyzed in [3]. In these works the
shifted Laplacian is attributed the role of a multigrid smoother. Where as
the coarse grid correction (CGC) is performed as Preconditioner to the outer
Krylov iterations. We investigate several CGC techniques that differ in the
choice of the coarse grid operator. A rigorous Fourier mode analysis for the
one-dimensional problem with Dirichlet boundary conditions is performed to
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Frequency Solve Time Solve Time Iterations Iterations
SLP-F ADEF1-F SLP-F ADEF1-F

f = 1 1.23 5.08 13 7
f = 10 40.01 21.83 106 8
f = 20 280.08 131.30 177 12
f = 40 20232.6 3997.7 340 21

Table 1: SLP and ADEF1 performance comparison for Marmousi problem.

distinguish these different techniques based on different coarse grid operator.
This creates opportunity to optimize the coarse grid correction preconditioner.
The CGC technique combined with CSLP has been implemented in multilevel
fashion, similar to that of multigrid in Petsc. We refer this combination of
CSLP and CGC techniques as ADEF1 preconditioner. Numerical results for
two-dimensional and three-dimensional problems show significant speed up in
comparison with CSLP and other preconditioners. The iteration count remains
constant for medium wavenumbers and increases mildly for high wavenumber
at the application cost of CGC. However one can notice that the proposed
deflation preconditioner pays off and which is illustrated by a gain in solve
time for industrial problems. Such evidence is presented in Table (1), where a
brief comparison of iteration and solve time is presented in Table for CSLP and
ADEF1 preconditioners.
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