On convergence of shifted Laplace preconditioner combined with multigrid deflation

A. H. Sheikh, Kees Vuik and Domenico Lahaye

	k = 10	$\mathbf{k} = 20$	$\mathbf{k} = 40$	k = 80	k = 160	320
TL	6	7	11	15	25	50+
$ \mathbf{MLMGV}(4,2,1) $	9	11	16	27	100+	_
$ \mathbf{MLMGV}(4,2,1)^* $	9	11	15	24	50	_
$\mathbf{MLMGV}(6,2,1)$	9	10	14	21	47	-
$NII N C V (6 2 1)^*$	Q	10	1/	20	37	

Figure 1: Real *(left)* part and imagenary *(right)* part of solution of the Helmholtz equation solved by GMRES preconditioned with shifted Laplace preconditioner M(1, 0.1).

Helmholtz Model Problem

The Helmholtz equation with Sommerfeld B.cs. is

$$\begin{split} -\Delta \mathbf{u}(x,y) - k^2 \mathbf{u}(x,y) \mathbf{u}(x,y) &= \mathbf{g}(x,y) \\ & (\frac{\delta u}{\delta n} - \iota k u) = 0 \\ \text{where } \frac{\delta u}{\delta n} \text{, the normal derivative of } u \text{ , } k = \frac{2\pi}{\lambda} = \frac{\omega}{c(x)} \text{ , the wavenumber } \\ \text{and } g(x,y) \text{ , the point source function.} \end{split}$$

Discretizaton leads to 5 diagonal, symmetric, complex valued and indefinite linear system.
Solver

 $\mathbf{VIL}\mathbf{VIC} \mathbf{V} (\mathbf{0}, \mathbf{2}, \mathbf{L})$ ΤŪ 14 20 J JI MLMGV(8, 2, 1)38 9 10 13 20 ----- $MLMGV(8, 2, 1)^*$ 9 13 10 19 29 _ MLMGV(10, 2, 1)19 32 9 10 14 _

* with damping $\alpha = 0.001$

LFA: 2D Model problem

Figure 3: Spectrum of the two grid operator for different values of shift β_2 .

Two-level preconditioned **Krylov** subspace solvers i.e. **GMRES**.

Shifted Laplace preconditioner performs better than available preconditioners for Helmholtz, and comes up near-zero eigenvalues for large wavenumber probelm.Second level preconditioner:

First level preconditioner : Shifted Laplace Preconditioner

$$M_h := -\Delta - (\beta_1 + \iota \beta_2) k^2 I_h$$

Second level preconditioner : Multigrid deflation

$$P_{h,H} = I_h - I_H^h (A_H)^{-1} I_h^H A_h$$
 with $A_H = I_h^H A_h I_H^h$.

A Good Characteristic

Figure 4: Spectrum of the two grid operator for 10 and 20 gp/wl.

Conclusive remarks

- Very slightly dependent.
- More wavenumber is resolved over grid, the more efficient algorithm is.
- Coarse grid solve requires more iteration.
- Increase in imaginary part of shift is privileged by deflation.

 (\bot)

(2)

Y.A. Erlangga and R. Nabben, ETNA 2008.
DIAM Tech. Report. 11-01 TU Delft, Netherlands

DELFT INSTITUTE OF APPLIED MATHEMATICS (DIAM)

Delft University of Technology