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Figure 1. Real (left) part and imagenary (right) part of solution of the Helmholtz equation solved by GMRES preconditioned
with shifted Laplace preconditioner M (1,0.1)

Helmholtz Model Problem

The Helmholtz equation is

—Au(z,y) — k*u(z, y)u(z,y) = glz,y)

with Sommerfeld boundary conditions

ou

(5n vku) =0 (2)
where
og—% Is normal derivative of u

e 1, is physical variable,

ok = 2T — Y _is wavenumber and
A co(x)

® g is source function.

Discretization Finite difference method :

1
1
% 1 kz -+ 5h2 —1 Ui 5 = Gi.
—1

Linear system Au =g
*  Symmetric

*  Complex valued
% Indefiniteness for sufficient large £
Ilterative Schemes

Indefiniteness of the linear system Au = ¢ leaves less choice, still best
are Krylov subspace methods, and GMRES, in particular.

Shifted Laplace Preconditioner:
—Au — (B + 1) k"u(z, y)

e with same boundary conditions

(3)

e spectrum of preconditioned system is bounded within unit circle

e outlayers of spectrum rushes to zero as k£ increases

o  Multigrid works well for SL preconditioner than Helmholtz ,
because of inclusion of imagenary shift
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Figure 2: Spectrum for preconditioned Helmholtz Operator preconditioned with shifted Laplace preconditionerfig (a) M (0, 1)
(b) M(1,0.5)

Deflation
P=1-AQ (4)
with Q=ZE~'Z! E=27"AZ (5)

Z is deflation matrix.
In Multigrid Matrix, Z = R, Restriction operator .

Deflated spectrum of M™2A(1,0.5)
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Figure 3: Deflated spectrum of M ~1A with left: M = M (0, 1) and right: M = M (1,0.5)

Numerical Experiments

k SLP SLP with deflation
100 10 7
20 19 0
30 30 11
40 40 13
50 51 15

*  Also h-independent scheme.

Conclusive remarks and further work

e sparse deflation (Multigrid deflation)

e h-independent solution

Further:

e Analysis of scheme (Local Fourier Analysis, in process )

e Proceeding to Wedge problem.
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