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Real part of solution of Helmholtz problem
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Imagenary part of solution of Helmholtz problem
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Figure 1: Real (left) part and imagenary (right) part of solution of the Helmholtz equation solved by GMRES preconditioned
with shifted Laplace preconditioner M (1, 0.1)

Helmholtz Model Problem

The Helmholtz equation is

−∆u(x, y) − k2u(x, y)u(x, y) = g(x, y) (1)

with Sommerfeld boundary conditions

(
δu

δn
− ιku) = 0 (2)

where

•
δu
δn is normal derivative of u

•u is physical variable,

•k = 2π
λ = ω

c(x) is wavenumber and

•g is source function.

Discretization Finite difference method :
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Linear system Au = g

⋆ Symmetric

⋆ Complex valued

⋆ Indefiniteness for sufficient large k

Iterative Schemes

Indefiniteness of the linear system Au = g leaves less choice, still best

are Krylov subspace methods, and GMRES, in particular.

Shifted Laplace Preconditioner:

−∆u − (β1 + ιβ2)k
2u(x, y) (3)

•with same boundary conditions

• spectrum of preconditioned system is bounded within unit circle

•outlayers of spectrum rushes to zero as k increases

• Multigrid works well for SL preconditioner than Helmholtz ,

because of inclusion of imagenary shift
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Figure 2: Spectrum for preconditioned Helmholtz Operator preconditioned with shifted Laplace preconditionerfig (a) M (0, 1)
(b) M (1, 0.5)

Deflation

P = I − AQ (4)

with Q = ZE−1ZT E = ZTAZ (5)

Z is deflation matrix.

In Multigrid Matrix, Z = R, Restriction operator .
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Figure 3: Deflated spectrum of M−1A with left: M = M (0, 1) and right: M = M (1, 0.5)

Numerical Experiments

k SLP SLP with deflation

10 10 7

20 19 9

30 30 11

40 40 13

50 51 15

⋆ Also h-independent scheme.

Conclusive remarks and further work

• sparse deflation (Multigrid deflation)

•h-independent solution

Further:

•Analysis of scheme (Local Fourier Analysis, in process )

•Proceeding to Wedge problem.


