Two-Level LFA Multilevel Helmholtz Solver

A. H. Sheikh, Kees Vuik and Domenico Lahaye

with shifted Laplace preconditioner M(1, 0.1).

Helmholtz Equation

The Helmholtz equation on domain Ω reads

 $-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y)$

where $k = \frac{2\pi}{\lambda} = \frac{\omega}{c(x)}$, is the wavenumber.

Discretizaton symmetric, complex valued and highly indefinite linear system for certain large k. Solver and Preconditioner

Krylov solvers for complex indefinite system (GMRES, GCR, IDR(s), etc), with preconditioners:

First level preconditioner : Shifted Laplace Preconditioner

$$M_h := -\Delta - (\beta_1 + \iota \beta_2) k^2 I_h$$

Second level preconditioner : Multigrid deflation

$$P_{h,2h} = I_h - Q_H A_h + Q_H$$

Figure 4: Spectrum of the two grid operator for different values of shift β_2 .

Figure 5: Magnitude of nonzero part of spectrum of the two grid operator for 10 and 20 gp/wl.

where $q_H = I_{2h}^h (A_{2h})^{-1} I_h^{2h}$ and $A_{2h} = I_h^{2h} A_h I_{2h}^h$.

Attraction:

Figure 6: Five smallest eigenvalues of two grid operator for a 2D problem for different k.

Conclusive remarks

- Very slightly dependent.
- More wavenumber is resolved over grid, the more efficient algorithm is.
- Coarse grid solve requires more iteration.
- Increase in imaginary part of shift is privileged by deflation.

References

Figure 3: Number of iterations for various solvers for difference values of k.

•Y.A. Erlangga and R. Nabben, ETNA 2008.

• DIAM Tech. Report. 11-01 TU Delft, Netherlands

• A.H.Sheikh, C.Vuik and D. Lahaye, submitted in NLAA.

DELFT INSTITUTE OF APPLIED MATHEMATICS (DIAM)

Delft University of Technology