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Abstract

This report is oriented towards the step by step iterative solution of the Helmholtz
equation. Discretization is done using the Finite Difference Method. Before solving
iteratively, Krylov subspace methods are discussed, particularly the GMRES method
which is used for experiments for Problems 2 in this report. Further ILU and shifted
Laplace preconditioners [1] and [2] are reviewed and incorporated within GMRES.
Deflation is used and its effectiveness is discussed for the Helmholtz equation with two
right-hand side vectors as typically appears in adjoint based optimization problems.
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1 Introduction

This report is related to the iterative solution of an elliptic partial differential equation,
namely the Helmholtz equation. This equation often arises in the study of physical prob-
lems involving partial differential equations (PDE) in both space and time. (In this report
we only consider the time-independent case.) Many problems related to steady state
oscillations (mechanical, acoustical, thermal, electromagnetic) are modelled by the two-
dimensional Helmholtz equation. Helmholtz equations have applications in many fields
of science and technology, i.e in electromagnetics, aeronautics, acoustics, optics and in
geo-physics.

The Helmholtz equation reads

−∆u(x, y)− (1− αι)k2(x, y)u(x, y) = g(x, y) (1)

where u(x, y) is the physical variable (quantity), 0 ≤ α � 1 the fraction of damping, k
the wave number and ι the imaginary unit i.e ι =

√
−1. The equation is called homoge-

neous if the source function g(x, y) = 0 and inhomogeneous otherwise. A relation for the
wavenumber k is

k(x) =
2π

λ
=

ω

c(x)
,

where ω = 2πf with f the wave frequency, λ = c(x)
f the wavelength and c(x) the speed

of sound. The Helmholtz equation is basically derived from equations of Newton’s law of
motion and Hook’s law [3].

Two test problems are discussed in this report. The first one has Dirichlet conditions
and leads to symmetric positive definite systems. the second one has Sommerfeld radia-
tion conditions and leads to nonsymmetric indefinite systems. Details are given in Section
2. A finite difference scheme is used for discretization as discussed in Section 3. Since the
two problems have different boundary conditions, they need different boundary discretiza-
tion schemes. In Section 4, Krylov methods and GMRES in particular are discussed and
later properties of the linear systems of both problems are given. Section 5 contains few
numerical results and further results are given in Section 6 and 7 for preconditioning and
deflation respectively. As preconditioners, ILU and the shifted Laplace preconditioner [1,2]
are used.

An overview of the literature review is given in the references.

2 Problem Description

Both Helmholtz problems we consider in this report are inhomogeneous, undamped (i.e.
α = 0), defined on the unit square Ω := (0, 1)× (0, 1) and have a constant wavenumber.

2.1 Problem 1

In Problem 1 we choose negative constant wavenumber k2 = −5 such that discretization
of problem leads to symmetric and positive definite (SPD) system. The source function is
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defined as
g(x, y) = −6xy2(x2 + 2y2) + 5x3y4 (2)

Dirichlet conditions are imposed on this problem such that

u(x, y) = x3y4 (3)

is the analytic solution of Problem 1.

2.2 Problem 2

In Problem 2 we choose the source function

g(x, y) = δ(x1 −
1
2
, x2 −

1
2
) (4)

with x1, x2 ∈ (0, 1) where Dirac delta function

δ(x1, x2) = +∞ if x1 = 0, x2 = 0
= 0 if x1 6= 0, x2 6= 0,

and is also constrained to satisfy∫ ∫
δ2(x1, x2) dx dy = 1.

This means that the waves propagates from the center of the domain outwards. Here the
Sommerfeld radiation conditions of first order are imposed meaning that

∂u

∂n
− ιku = 0. (5)

Due to the complex term in the boundary conditions imposed on Problem 2, one ends up
with a complex-valued linear system. The exact solution is

u(x) =
ι

4
H

(1)
0 (k|x|), (6)

where H
(1)
0 is an Hankel function.

Numerical experiments for both problems are done with variation of the wave number k.
Problem 1 will act as an auxiliary problem in solving Problem 2.

3 Discretization

The problems under discussion can be discretized by many methods including Finite Ele-
ment Method (FEM) and the Finite Difference Method (FDM). In this report the latter
is used. The procedure to solve a partial differential equation numerically is to obtain a
discrete analogue of the given continuous equation and boundary conditions and then to
solve it. Discretization is performed on a square grid

Gh =
{

(xi, yj) | xi = ih, yj = jh, h =
1
N

, 0 ≤ i, j ≤ N

}
6



with mesh-size h = 1
N for the both problems.

In FDM, the differential terms are approximated by finite differences using Taylor’s poly-
nomials. The differential terms in Equation 1 are approximated by finite differences as

uxx =
ui−1,j − 2ui,j + ui+1,j

h2
+ O(h2)

and

uyy =
ui,j−1 − 2ui,j + ui,j+1

h2
+ O(h2).

The error in this approximation is of O(h2).

Using above differences for differential terms on the square grid Gh, the discrete ana-
logue of Equation 1 is

−(
ui−1,j − 2ui,j + ui+1,j

h2
+

ui,j−1 − 2ui,j + ui,j+1

h2
) + k2ui,j = gi,j .

Rewriting above equation results in

1
h2

{
−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j − h2k2ui,j

}
= gi,j . (7)

3.1 Discretization of Problem 1

In Problem 1, the wave number k2 is a fixed negative constant i.e k2 = −5 and Dirichlet
boundary conditions are imposed. The boundary data is evaluated in the boundary points
and these values are added to the right-hand side vector.
Due to Dirichlet boundary conditions, only internal nodes of the grid are unknowns in the
system. The stencil for those internal points is

1
h2

 −1
−1 k2 + 5h2 −1

−1

ui,j = gi,j

Due to the elimination of boundary conditions, the structure of the stencil for nodes next
to the boundary is different from that of the internal nodes. The stencil for the point
which is connected to the upper and the left boundary for instance, is given by

1
h2

 0
0 k2 + 5h2 −1

−1

ui,j = gi,j

The unknowns are lexicographically ordered, and conversion of two indices into one is
according to formula fk = fi+(j−1)(N−1). Finally, the discretization leads to the linear
system

Au = g
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where

A =
1
h2



k2 + 5h2 −1 ... −1
−1 k2 + 5h2 −1 ... −1
... −1 k2 + 5h2 0 −1
−1 ... 0 k2 + 5h2 −1 −1

−1 −1 k2 + 5h2 −1 −1
−1 −1 k2 + 5h2 0 −1

−1 0 ... −1 ...
−1 −1 ... −1

−1 ... −1 k2 + 5h2


(8)

and

u =



u1

u2

...

...
uN−1

nN

...

...
u(N−1)2


g = [gk] where 1 ≤ k ≤ (N − 1)2.

Boundary elimination is such that the values of the boundary function at points on four
different edges are added to right-hand side vector g as

� Lower(South) :fi + ( 1
h2 )gs(1,i) for 1 ≤ i ≤ (N − 1)

� Right(East): f(N−1)i + ( 1
h2 )ge(1,i) for 1 ≤ i ≤ (N − 1)

� Upper(North): f(N−2)(N−1)+i + ( 1
h2 )gn(1,i) for 1 ≤ i ≤ (N − 1)

� Left(West): f1+(N−1)(i−1) + ( 1
h2 )gw(1,i) for 1 ≤ i ≤ (N − 1).

Note that the boundary function “g” was already stored on four different edges respectively
as above. Order of discretization error is shown in Figure 2.

3.2 Discretization of Problem 2

In Problem 2, the Sommerfeld radiation condition of first order given in Equation 5 are
imposed.
For discretization of this condition, a point is supposed to lie opposite every node on each
boundary with same mesh size (Figure 1), which is called a ghost point [4]. For e.g. the
right boundary, ghost point is uN+1,j where 1 ≤ j ≤ N and from discretized (by central
difference) radiation boundary conditions at any point (i, j)

∂u

∂n
− ιku = ui+1,j − ui−1,j − 2hιkui,j = 0,
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the value of u at a ghost point is replaced by value of u at the first internal point to the
boundary. The stencil for internal points is

Figure 1: Grid for mesh size h = 1/5: circles show nodes for unknown and squares for
(introduced) ghost points

1
h2

 −1
−1 4− k2h2 −1

−1

ui,j = gi,j

and after boundary eliminating with above vertex centered strategy, the stencil for points
on boundaries (for instance on left boundary) and corner (for instance on lower-left corner)
are given by

1
h2

 −1
0 4− k2h2 + 2ιkh −2

−1

ui,j = gi,j

1
h2

 −2
0 4− k2h2 + 4ιkh −2

0

ui,j = gi,j ,

respectively. The resulting coefficient matrix A of the linear system obtained by this
discretization is of the form

A =
1
h2



p + 4q −2 ... −2 ...
−1 p + 2q −1 ... −2 ...
... −2 p + 4q 0 ... −2 ...
−1 ... 0 p + 2q −2 ... −1 ...
... −1 ... −1 p −1 ... −1 ...

... −1 ... −2 p + 2q 0 ... −1
... −2 ... 0 p + 4q −2 ...

... −2 ... −1 p + 2q −1
... −2 ... −2 p + 4q


(9)
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where p = 4 − k2h2 and q = ιkh. For sake of simplicity, the matrix above is such that it
is discretized on mesh of size N = 3.
Now the linear systems obtained from discretization of Problem 1 and Problem 2 are
discussed in the next section, but before touching the linear systems, some information
about iterative solvers, particularly Krylov subspace methods are discussed.

4 Linear System and Solvers

In this section, first Krylov subspace methods are discussed. Afterwards we describe the
linear systems of our problems. Krylov subspace methods are considered as one of the
important classes of numerical methods for Sparse Linear Systems of Equations and Large
Sparse Matrix Eigenvalue Problems. Here, systems of equations are treated only as our
concern, but many of the numerical methods for large eigenvalue problems are based on
similar ideas as the ones treated below.

4.1 Introduction to Iterative Solvers (Krylov Space Methods)

For any linear system Au = g with invertible matrix A, a basic iterative method is of the
form

un+1 = Qun + s

for all n, where Q is the iteration matrix and s a vector. This is equivalent to the original
system, as it is obtained by splitting A. Variation of types of splitting lead to different
stationary (basic iterative ) methods. Using simple splitting of A = B + (A−B), we get
the following recursion which is equivalent to the given system

un+1 = un + B−1(g −Aun) = (I −B−1A)un −B−1g. (10)

Comparison tells that the iteration matrix Q = (I −B−1A) and s = B−1g.

For the most problems, since exact solution u∗ = A−1g is not available, we can not
compute the error

en = u∗ − un.

Thus for checking the convergence, one usually use the residual defined as:

rn = g −Aun. (11)

Also an other relation for the residual is rn = Aen. Hence once we have residual, we can
analyze error by this relation.
Assuming B = I, then Q = I −A and then we have

rn = g −Aun = (I −A)un + g − un = un+1 − un.

Thus the iteration can be rewritten as:

un+1 = un + rn. (12)
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Recursion in equation 12 is

u1 = uo + ro

u2 = u1 + r1

= uo + 2ro −Aro

...

The recursion for the residual can also be obtained from equation 12

rn+1 = g −Aun+1

= g −A(un + rn)
= rn −Arn

rn+1 = Qrn

Combining above recursions leads to

rn+1 = Pn(A)ro ∈ Span
{
ro, Aro, A2ro, ..., Anro

}
,

where Pn(A)ro is an nth degree polynomial in A. Now Equation 10 takes the form

un = uo + r0 + .. + rn−1 = uo + Pn−1(A)ro

which assures the existence of an approximation to solution in the space

uo + Span
{
ro, Aro, A2ro, ..., Anro

}
.

This space
Kn(A; ro) = Span

{
ro, Aro, A2ro, ..., An−1ro

}
is called the Krylov subspace.

The basics of Krylov subspace methods are to construct iterations initiating with an initial
approximation uo (usually taken the zero vector) and corresponding residual ro = f−Auo

untill one gets an accurate approximation to the exact solution u∗.

Conjugate Gradient (CG) [5], MINRES [6], Generalized Minimal Residual Algorithm (GM-
RES) [7], BICG, BICGSTAB, CGNR are some Krylov methods. CG is a standard Krylov
method, however CG is limited in application to only symmetric and definite problems. On
contrast, GMRES has the property that it can be used for indefinite and non-symmetric
problems as well. This algorithm is developed by Saad and Schultz [7]. Basically GMRES
minimizes the residual over the Krylov subspace as

‖rn‖ =‖g −Aun‖ = min
z∈Kn(A;ro)

‖ro −Az‖, (13)

where un = uo + zn with zn ∈ Kn (A; ro).
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4.2 GMRES: Algorithm

1. Start: ro = g −Auo with uo initial guess, β =‖ro‖ and v1 = ro/β

2. for j = 1, 2...n do
3. wj = Avj

4. for i = i, 2...j do
5. hi,j = (wj , vi)
6. wj = wj − hi,jvi

7. end do
8. hj+1,i =‖wj‖
9. vj+1 = wjhj+1,i

10. end do
11. Hn = [hi,j ] Hessenberg matrix of dimension (n + 1)× n

12. Computing of minimizer yn over ‖βe1 −Hny‖
13. Set solution: un = uo + Vnyn

Here e1 is unit vector ∈ Rn+1.

At nth iteration, for computed solution is un, corresponding residual

‖rn‖ =‖g −Aun‖ =‖uo + zn‖

As however zn ∈ Kn(A; ro) and zn = Vny, where Vn is orthonormal basis of Krylov space
computed according to first 9 lines of above algorithm, the residual can be written as

rn = g −Aun = g −A(uo + Vny). (14)

GMRES approximates the solution un over the Krylov space, while minimizing residual
in Equation 13. This approximation is obtained as in line 13 of the algorithm and with
Vny, the residual is

rn = ro −AVny

= βv1 − Vn+1Hny

= Vn+1(βe1 −Hny)

As Vn is an orthonormal matrix, its 2-norm is 1 and we have

J(y) =‖βe1 −Hnyn‖ = min
y∈Rn

‖βe1 −Hny‖ (15)

The problem reduces to finding out the solution yn of the above least squares problem.
To solve the least squares problem, the Hessenberg matrix Hn is transformed into a QnRn

factorization using plane rotations [7]. For convenience we suppose Hn to be a 2 × 2
Hessenberg matrix. The rotation matrix Q2 is then

Q2 =
c −s
s c
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where c = h1,1q
h2
1,1+h2

2,1

and s = h2,1q
h2
1,1+h2

2,1

with property QT
2 Q2 = I [7].

Since our linear system is complex valued, hence elements of Q2 are also complex, and
therefore Q2 must satisfy Q̄T Q = I and therefore Q is developed as

Q2 =
c̄ −s̄
s c

with c = h1,1√
h1,1h̄1,1+h2,1h̄2,1

and s = h2,1√
h1,1h̄1,1+h2,1h̄2,1

[8].

Now some properties of linear systems of both problems are given.

4.3 Linear system

4.3.1 Properties of Linear System of Problem 1

The coefficient matrix in the Problem 1 with Dirichlet condition is sparse with five diago-
nals. The matrix has also zero elements in off-diagonals in the rows corresponding to (left
and right) boundaries. The matrix is a real, symmetric, positive definite M-matrix.

4.3.2 Properties of Linear System of Problem 2

The coefficient matrix in the Problem 2 is large, sparse, complex-valued due to inclusion of
Sommerfeld radiation condition and for the bigger value of wave number, it is indefinite,
as discussed in spectral analysis of the system. Further more the matrix is non symmetric
and non-hermitian.

5 Numerical Experiments

5.1 Problem 1

To show the order of the discretization, first the linear system obtained from the discretiza-
tion of Problem 1 is solved in Matlab by the backslash operator with different values of
N and the error obtained with the analytical solution for different step sizes is given in
Table 1. This data is also plotted in Figure 2. Figure 2 indicates quadratic convergence

Stepsize “h“ Abs: Error-norm
1
22 0.001650
1
23 0.000452
1
24 0.000116
1
25 0.000029
1
26 0.000007

Table 1: Increasing step size h decreases error with order O(h2)

for Problem 1.
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Figure 2: Stepsize-Norm of the Error

5.2 Problem 2

For all the experiments, u0 = 0 is used as initial guess. As stopping criteria for the iterative
algorithms, the following condition is used

‖g −Aun‖
‖g‖

≤ 10−7 (16)

Also from here and onwards, the mesh size h is such that for a wave number k, it satisfies
kh = 0.625 (equivalent to 10 grid points per wave length) in all numerical experiments,
unless mentioned.

For Problem 2, a first result is shown in Figure 3. In this figure, the real part of the
solution for k = 50, computed by using GMRES is compared with the analytical solution
given in Equation 6.
Table 2 shows the performance of the GMRES algorithm with respect to a variation of

k. Increasing the wave number k severely affects the number of iterations and the actual
residual. The later is due to the structure of the right hand side vector. The effect of

k Dim of A Iterations Norm of Actual Residual
10 289 36 8.19468 10−6

20 1089 82 7.13048 10−5

30 2401 143 1.57232 10−4

40 4225 231 3.6748 10−4

50 6561 341 5.77987 10−4

Table 2: An observation:Number of iterations by GMRES with different values of wave
number k along with the Actual Residual.

decreasing mesh size for a fixed wave number for e.g. k = 20 is shown in Figure 4. This
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Figure 3: (a) Real part of Numerical Solution by GMRES at k = 50(b)Real part of
Analytical solution at k = 50 and α = 0

figure clearly shows that decreasing the mesh size is costly in terms of iterations.
In Figure 6, the convergence history of GMRES for wavenumber k = 30 is given and is
compared with the convergence history of preconditioned GMRES (see Section 6.1).
In the next section, we discuss the preconditioning of our linear systems with various
preconditioners.

6 Preconditioning

In our problems, the GMRES (and other Krylov subspace solvers) are slow to converge.
In general, the convergence rate of Krylov subspace methods depends upon the spectrum,
it is therefore necessary for all Krylov subspace methods to have favorable spectrum in
order to converge fast. Therefore preconditioning is introduced.
Simply said, preconditioning means transforming a linear system by multiplying the pre-
conditioner M(on left, right and split) into one favourable for any iterative solver, preserv-
ing the solution. In the extreme case, A itself is the best choice to choose as preconditioner,
but it is impracticable, since using A as a preconditioner is as expensive as solving the
original system. So the preconditioner must resemble the coefficient matrix A but also be
easier to solve than A. Many preconditioners are developed and used for various prob-
lems, those were obtained by coefficient matrix of linear system or by a discrete operator
of a related problem. After choosing a preconditioner M for any system Au = g, whose
invertible is cheap to compute, then the transformed system is

M−1Au = M−1g.

This is called left preconditioning. Also right preconditioning

AM−1ū = g,

where ū = Mu and split preconditioning if M = M1M2 then

M1AM2M
−1
2 u = M1b.
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Figure 4: Dependence of number of GMRES iterations on grid size for a problem with
k = 20.

6.1 ILU Preconditioner

One simple class of preconditioners is obtained by an Incomplete LU factorization of A,
where L and U are a lower and upper triangular matrix respectively. There are many
ways to obtain approximate ILU factorizations of A, e.g. Zero fill-in ILU and ILU with
some tolerance. ILU obtained by restricting the structure of L and U to equal that of A
leads to preconditioner, known as ILU(0) which is easy to compute but not so effective for
Krylov space methods. A more accurate ILU factorization of A is obtained by allowing
more fill-in the ILU -factorization. Dropping the elements less than some given value in
ILU gives rise to ILU(tolerance).

Some experiments are done using GMRES with preconditioners ILU(0) and ILU(tolerance)
with tolerance (0.01). Table 3 and 4 show the number of iterations with actual residual
as it seems to be decreased with decreasing mesh size and also increasing wave number k.
Results in Table 3 and 4 indicate that ILU(0.01) works better than ILU(0) but at the
cost of big storage, that is due to more fill-in is allowed, which is indicated by the number
of non zero elements in factorizations L and U .

We observe that the convergence depends upon the mesh size as shown in Figure 5. This
figure shows that the rate of convergence increases when mesh size is decreased for a fixed
wave number k = 30. One can observe from Table 3 that with for larger wave number
ILU(0.01) is more effective regarding the number of iterations. ILU(0.01) is however not
acceptable since the amount of fill-in is quite large. One can note from Table 4 that the
ratio of the nonzero number of entries in L and U to nonzero entries of A is increasing

16



k Dim of A Iterations nz(A) nz(L and U) Actual Residual
10 289 21 1377 833 7.19781 10−6

20 1089 43 5313 3201 8.87075 10−5

30 2401 71 11809 7105 2.20553 10−4

40 4201 99 20865 12545 3.91858 10−4

50 6561 120 32481 19521 6.37758 10−4

Table 3: Number of iterations by GMRES with preconditioner ILU(0) with different
values of wave length k.

k Dim of A Its. nz(A) nz(L) nz(U) nz(L+U)/nz(A) Actual Residual
10 289 8 1377 2531 2500 3.6536 9.53795 10−6

20 1089 13 5313 11327 11208 4.2415 5.80282 10−5

30 2401 21 11809 26665 26195 4.4762 2.02485 10−4

40 4225 32 20865 48533 47688 4.6116 3.81552 10−4

50 6561 49 32481 77094 75816 4.7077 4.38258 10−4

Table 4: Number of iterations by GMRES with preconditioner ILU(0.01) with different
values of wave length k .

gradually and hence ILU(0.01) is expensive to apply. Also in both versions of ILU , stor-
age problems can occur, where the problem with ILU(0.01) can be severe. Actual residual
is decreasing with respect to increasing wave number (See Table 3 and 4).

The convergence history for GMRES with ILU(0) and ILU(0.01) as preconditioners is
given in Figure 6 and compared with that of GMRES without preconditioners. Some more
effective preconditioner is needed. In next section, an other preconditioner called ”Shifted
Laplace Preconditioner” is discussed

6.2 Shifted Laplace Preconditioner

Another class of preconditioners for the Helmholtz equation is obtained by discretizing
the Laplace operator with the same boundary conditions of the problem and subsequently
adding some zeroth order term [2]. These preconditioners are called shifted Laplace pre-
conditioners. This is developed by a discretization of the operator

M(β1, β2) = −∆− (β1 − ιβ2)k2, β1, β2 ∈ R

where β1 and β2 are real and imaginary shifts respectively. This class starts with a simple
Laplace operator M = ∆, which was used as preconditioner [9]. Later an additional real
term Shift was added in the Laplace operator, making this preconditioner resembling more
the Helmholtz operator but with an opposite sign as investigated in [10]. Later Laplace
operator with imaginary shift was introduced in [3] and found to be more effective for the
Helmholtz equation.
The optimal choice of real and imaginary shifts with restriction to be SPD (with positive

17



Figure 5: Dependency of number of iterations upon size of mesh for k = 30.

real parts of eigenvalues of preconditioner) is investigated in detail in [3] in the context of
the condition number for Conjugate Gradient, first for a real shift and then generalized
to complex shifts. β1 = −1 for (only) real shifted Laplace preconditioner and β1 = 0 and
β2 = 1 for shifted Laplace preconditioner are concluded as optimal choice. (For details,
see [3]).

Although the above analysis for optimality of shifts is carried out in context of CG, but
is also favorable for GMRES in terms of clustering of eigenvalues.

For the notation, M(0, 0) is simply discretized Laplace preconditioner without any shift,
M(−1, 0) is preconditioning matrix with real shift 0, and M(0, 1) is complex shifted
Laplace preconditioner.

Table 5 shows the numbers of GMRES iterations using three different shifted Laplace
preconditioners. An observation is that for very small wave number k, M(0, 0) do work
well, but for larger wave numbers, this is no more effective. For large wave number M(0, 1)
is found satisfactory somehow. An additional result is taken into account for wave number
k = 100 with mesh size h = 1

160 (kh = 0.625), the number of iterations taken by GMRES
with ILU(0.01) is 189 and the same with Shifted laplace preconditioner M(0, 1) is 83,
indicating clearly that M(0, 1) is the best choice upto some hindrances to be discussed
later.

The eigenvalue spectrum of the Helmholtz operator preconditioned with M(0, 1) is given

18



Figure 6: Compare of convergence history for GMRES without preconditioner and with
ILU(0) and ILU(0.01) preconditioner for k = 30.

in Figure 7. Figure 7-a shows the spectrum for fixed wavenumber k = 10 with two different
mesh sizes. The differences are small. Figure 7-b shows the spectrum with two different
wavenumbers k = 10 and k = 40 with mesh size satisfying kh = 0.625. One observes that
the eigenvalues are rushing to zero with increase in wavenumber. This is the drawback or
hindrance of M(0, 1) noted earlier. Some eigenvalues near to zero affect the convergence
of GMRES badly. This is dealt in next section using Deflation.

Finally, the convergence history of GMRES with Laplace preconditioner M(0, 0) and
shifted Laplace preconditioners M(−1, 0) and M(0, 1) is presented in Figure 8. Also
CPU time (in seconds) for direct solver is compared with the CPU times for GMRES and
GMRES with different preconditioners in Table 6 and 7. Table 6 shows total time (prob-
lem construction time and solving time) where as the Table 7 shows the exclusive time for
solver. The CPU time for GMRES preconditioned with both ILU(0) and shifted Laplace
preconditioners include the time of preconditioner construction and problem construction.
GMRES with shifted Laplace preconditioner M(0, 1) takes more time because a direct
solver is used for the solution of preconditioner systems.
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k Dim of A Mh(0, 0) Mh(−1, 0) Mh(0, 1)
Iterations Iterations Iterations

10 289 9 12 10
20 1089 19 22 19
30 2401 37 38 30
40 4225 62 58 40
50 6561 96 84 51

Table 5: Number of iterations by GMRES with shifted Laplace preconditioners Mh(0, 0),
Mh(−1, 0) and Mh(0, 1).

Figure 7: (a) Spectrum of Helmholtz operator preconditioned with shifted Laplace pre-
conditioner M(0, 1) for different mesh sizes for k = 10 (b)Spectrum for different wave
numbers k = 10 and k = 40
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k Direct Solver GMRES GMRES with ILU(0) GMRES with M(0, 1)
Time in Seconds

10 0.06 0.11 0.16 0.17
20 0.73 0.95 1.40 1.70
30 3.50 4.37 5.86 7.60
40 10.50 14.10 16.81 22.52
50 25.10 25.25 24.87 50.02

Table 6: Total time Problem construction time and time taken by different solvers.

k Direct Solver GMRES GMRES with ILU(0) GMRES with M(0, 1)
Time in Seconds

10 0.0019 0.024 0.066 0.029
20 0.007 0.23 0.58 0.24
30 0.010 1.06 2.40 0.81
40 0.018 4.43 6.66 1.85
50 0.067 13.82 13.76 4.20

Table 7: Time taken by different solvers.

Figure 8: Comparison of the convergence history for GMRES with shifted Laplace Pre-
conditioners Mh(β1, β2) with different shifts for k = 30.
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7 Deflation

The iterative solution of a linear system is typically adversely affected by a few unfa-
vorable eigenvalues of the coefficient matrix. Deflation is a technique dealing with those
undesired eigenvalues. Deflation for SPD systems is used in [11] and [12] with Conjugate
Gradient to improve the condition number. Various ideas such as subdomain deflation are
used in [12]. Later this idea was extended to non-symmetric systems in [13]. The basic
idea is to deflate the smallest eigenvalues to zero by choosing eigenvectors or approximate
Ritz vectors corresponding to those smallest eigenvalues as deflation vectors [11] and [12].
In [13], instead of deflating the small eigenvalues to zero, a deflating preconditioner is
discussed which deflates the smallest eigenvalues to the maximum eigenvalue (in absolute
value for a complex eigenvalues).

Defining deflation for any matrix Z ∈ Rn×k of deflating vectors, deflation preconditioner
is the projection defined as

P = I −AQ with Q = ZE−1ZT E = ZT AZ

where E is called the Galerkin or coarse matrix and Z the matrix, whose columns span
the deflation subspace, is chosen such that E is nonsingular. for A SPD, it is sufficient
thta Rank(Z) = k. Further properties of deflation space for an arbitrary Z are elaborated
in detail in [11] and [13].
By the splitting,

u = (I − P T )u + P T u

one obtains
(I − P T )u = (AQ)T u = QT AT u = QAu = Qb

where A is supposed to be SPD. We only need to compute P T u and for u we need to solve
PAū = Pg by the Conjugate Gradient method and then solution is u = Qb + P T ū.
In fact we aim to treat with unfavorable(smallest) eigenvalues of wellposed Helmholtz
equation (Problem 2), which are causing slow convergence in iterative method. Here in
this report, however we restrict to the SPD case and use CG and residual vectors as
deflating vectors. The experiments are done with Problem 1 with different right-hand
side vectors. In Problem 1, if there is an other source function along with g as typically
appears in Adjoint-based Optimized Methods i.e

ḡ = 5x3 − 5x2y − 5xy2 − 8x− 8y

then we have a linear system with two right-hand side vectors, Au = g and Au = ḡ. The
idea is to extract residuals from linear system Au = ḡ and set those as deflation vectors i.e
Z and then solve the linear system Au = g by using those residuals Z as basis of deflation
subspace.
In Figure 9-a, the convergence history of PCG and deflated PCG for k = 10 and N = 20
are shown. ILU(0) is used as preconditioner. One observes that number of iterations
is reduced after applying deflation to the system preconditioned with ILU(0). It is also
assured the that condition number of matrix PA is less than that of A i.e

κ(PA) =
max (λPA)
min (λPA)

= 21.972 ≤ max (λA)
max (λA)

= 27.400,
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where min (λPA) is the smallest non-zero eigenvalue of PA.
Figure 9-b shows the convergence history for wavenumber k = 20 and N = 36. One
observes that the convergence of PCG and deflated PCG coincide and the effect on the
condition number is very small. This is because we observe more clustered spectrum with
increasing wave number.
For zero wavenumber k = 0, the spectrum of system is more scattered than with some
nonzero wavenumber. In Figure 10-a, the convergence history of deflated CG is compared
with the convergence history of CG for k = 0. We observe a good effect of deflation for
k = 0, as compare to k = 10 and k = 20. Further we observe deflation also works for the
preconditioned scheme. Using ILU(0) as preconditioner,the convergence history of PCG
and deflated PCG for wavenumber k = 0 is shown in Figure 10-b. Further the condition
number for k = 0 and N = 20

κ(PM−1A) = 64.300 � κ(M−1A) = 161.44

is also reduced remarkably.
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Figure 9: (a) Convergence history for PCG and deflated PCG for N = 20 and k = 10 (b)
Convergence history of PCG and deflated PCG for N = 36 and k = 20. ILU is used as
Preconditioner.

Figure 10: (a) Convergence History for CG and deflated CG for k = 0 and N = 20 (b)
Convergence history of PCG and deflated PCG for k = 0 and N = 20. ILU is used as
Preconditioner
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8 Conclusion

For linear systems obtained from a discretization of the Helmholtz equation by the finite
difference method, experiments are done with GMRES, GMRES preconditioned by ILU
and shifted Laplace preconditioner. The comparison of preconditioners for the Helmholtz
equation is carried out. For a small wavenumber k, ILU preconditioners with GMRES work
well, but they are no more of use for larger k. For larger k, shifted Laplace preconditioner
performs better than ILU. The preconditioned coefficient matrix however still has some
eigenvalues near zero, causing GMRES to converge slowly. This problem appears to be
more serious for increasing k, but can be fixed by deflation, by taking approximations
to eigenvectors as deflation vectors. Approximated eigenvectors as deflation vectors for
Problem 1 along with some preconditioned iterative solver will lead to an efficient iterative
scheme for Problem 1.
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A Eigenvalues and Eigenvalues

An eigenvalue problem is finding a pair (u,λ) of eigenfunctions and eigenvalues respectively.
For Problem (2)

−∆u + k2u = g

the corresponding eigenvalue problem is

−∆u + k2u = λu

First we find eigenvalues and functions of Laplace operator −∆ then it is straightforward
to find eigenvalues for −∆ + k2I. Hence first we solve

−∆u = λu (A-1)

where λ is an eigenvalue and u is the corresponding eigenfunction. By separation of
variables and substituting

u(x, y) = X(x)Y (y)

in equation (A1) , we get
−X

′′
(x)

X(x)
=

Y
′′
(y)

Y (y)
+ λ

Here two different function of two different variables are equal to each other. This implies

that this can only be true if both are constant functions i.e −X
′′
(x)

X(x) = µ and Y
′′
(y)

Y (y) +λ = µ

or Y
′′
(y)

Y (y) = −µ1 where λ = µ + µ1. Solving these two ODEs with boundary conditions, we
have

X(x) = A sin(
√

µx) + B cos(
√

µx)

and
Y (y) = Ā sin(

√
µx) + B̄ cos(

√
µx)

For the case λ ≤ 0, it only gives the trivial solution i-e u(x, y) = 0 and since we are
interested in nontrivial solutions, these values are skipped. Using boundary conditions
and collecting results, it reduces to

u(x, y) = sin(µ1x) sin(µ2y) (A-2)

where µ1 = (l1π)2 and µ2 = (l2π)2 with l1, l2 ∈ Z. Now the eigenvalues are λ = µ1 +µ2 =
(l1π)2 + (l2π)2 and above u are eigenfunction. Now in discrete phenomenon, first for
notation, u at node (i, j) on the grid of discretization is noted as ui,j = u(xi, yj).
−∆u = λu is then written as

Āu = λu

From Section 3, the discretization on grid of size h = 1
N of −∆ leads to

−ui−1,j − ui+1,j − ui,j−1 − ui,j+1 + 4ui,j

and substituting eigenfunctions u from equation (A2), and after simplifying using trigono-
metric identities we have

−∆u = [4− 2 cos(l1πh)− 2 cos(l2πh)] sin(l1πih) sin(l2πjh)



from where, it is concluded that

4− 2 cos(l1πh)− 2 cos(l2πh)

are (N − 1)2 eigenvalues for variation of l1 and l2 between 1 and (N − 1) and their
corresponding eigenvectors are

u(x, y) = sin(l1πih) sin(l2πjh)

For eigenvalues of −∆u − k2u, the discrete formulation of eigenvalue problem will be
(Ā + (−k)I)u = λu where I is identity matrix and (−k)I is a diagonal matrix with
eigenvalues as its diagonal entries and afterwards, it is straightforward that eigenvalues of
−∆− k2I are

4− 2 cos(l1πh)− 2 cos(l2πh)− k2

.


