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Many important physical phenomena can be described by the Helmholtz equation. We 
investigate to what extent the convergence of the shifted Laplacian preconditioner for 
the Helmholtz equation can be accelerated using deflation with multigrid vectors. We 
therefore present a unified framework for two published algorithms. The first deflates the 
preconditioned operator and requires no further preconditioning. The second deflates the 
original operator and combines deflation and preconditioning in a multiplicative fashion. 
We pursue two scientific contributions. First we show, using a model problem analysis, 
that both algorithms cluster the eigenvalues. The new and key insight here is that the near-
kernel of the coarse grid operator causes a limited set of eigenvalues to shift away from the 
center of the cluster with a distance proportional to the wave number. This effect is less 
pronounced in the first algorithmic variant at the expense of a higher computational cost. 
In the second contribution we quantify for the first time the large amount of reduction 
in CPU-time that results from the clustering of eigenvalues and the reduction in iteration 
count. We report to this end on the findings of an implementation in PETSc on two and 
three-dimensional problems with constant and variable wave number.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The Helmholtz equation is a fundamental physical model for the propagation and scattering of waves. It appears in vari-
ous branches of science and engineering. Examples include applications in acoustics, seismics and medical imaging. A finite 
dimensional model is obtained by discretizing the equation using the finite difference or finite element method. This leads 
to a linear system of equations with a complex symmetric, non-Hermitian and indefinite coefficient matrix. For the wave-
like solutions to be sufficiently well resolved a minimum of 10 points per wave length is required. This restriction is often 
made more stringent to avoid unphysical pollution errors resulting from the discretization [1]. In real-world applications the 
system of equations therefore becomes too large to be tackled by direct methods. Iterative solvers should be used instead. 
Most iterative methods however are known to perform very poorly when applied to the Helmholtz equation. A survey is 
given in [2]. Ideally, the number of iterations of such a method should be independent or only mildly dependent of the 
wave number and the number of grid points. The wavenumber is here the main parameter of interest.
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The development of an efficient solver for the Helmholtz equation has attracted considerable attention over the course 
of the past decades. An important contribution is the publication of the wave-ray method first published in [3] and later 
further elaborated in [4]. Alternative techniques are the use of multigrid methods with Krylov smoothers [5], sweeping 
preconditioners [6], domain decomposition [7,8], adaptive [9] and smoothed aggregation multigrid [10] methods. All these 
techniques have a limited range of applicability and no standard method exists at the moment.

We focus on the complex shifted Laplacian preconditioners (CSLP). These preconditioners introduce damping and render 
the preconditioned system easy to solve by e.g. multigrid methods. The eigenvalues of the preconditioned operator however 
move closer to zero as the wave number increases [11,12]. This causes the number of outer Krylov subspace iterations to 
increase with the wave number. The CSLP preconditioners were initially proposed in [13]. The idea of adding weight to the 
diagonal of the ILU preconditioner forms the basis of [14]. The CSLP preconditioners were further developed in [15,16] and 
later generalized in [17–21]. This lead to a breakthrough in industrial applications [22–24]. For a survey we refer to [25].

In this paper we further develop ideas initially established by Erlangga and Nabben in their recent paper [20]. In this 
paper the authors propose to deploy a deflation procedure [26–28] to remove the eigenmodes that hamper the fast conver-
gence of the CSLP preconditioner. This strategy originated from a deflation perspective that was motivated by previous work 
on the convection–diffusion equation. The authors employ a relatively large set of multigrid deflation vectors and resort 
to a multilevel extension to alleviate the computational burden of the coarse grid solve. On each level a Krylov subspace 
method accelerates the CSLP preconditioner. Spectral analysis and numerical results in [20] show that this so-called multi-
level Krylov method significantly reduces the required number of iterations. The required deflated preconditioned operator 
is too difficult to construct and some form of approximation is mandatory. Such an approximation results in a computation-
ally feasible multilevel method in [20]. An alternative multilevel Krylov approach in which the original Helmholtz operator 
is deflated instead was proposed in [29]. This approach circumvents the necessity of constructing expensive operators.

In this paper we give a unified presentation of the methods proposed in [20] and in [29]. The method in [20] deflates the 
CSLP preconditioned system and requires no further preconditioning. The method published in [29] deflates the Helmholtz 
operator and combines this deflation multiplicatively with the CSLP preconditioner. Both methods use a flexible Krylov 
method on each level and can be seen as preconditioned multilevel Krylov methods. We perform a Fourier analysis of 
the one-dimensional model problem in which the homogeneous Dirichlet boundary conditions are explicitly taken into 
account. We analyze two-level variants of both algorithms assuming standard coarsening of a uniform mesh and the exact 
inversion of both the preconditioner and the coarse grid operator. With these assumptions, the Helmholtz operator, the CSLP 
preconditioned operator and the multigrid deflated preconditioned operator share a set of orthogonal eigenvectors and are 
thus normal. The convergence theory for GMRES can thus be applied. The analysis shows that both algorithms are governed 
by a spectrum whose convex hull has a characteristic dimension that grows with the wave number. The key new insight 
that this paper provides is the link between the shifting of a limited number of eigenvalues away from a common cluster 
and the shifting towards zero of eigenvalues of the coarse grid operator as the wave number increases. The first algorithm 
provides a better clustering at the expenses of a substantially higher computational cost.

We implemented the second method within the PETSc [30] software library. We tested this code on two- and three-
dimensional test problems with constant and variable wave numbers. These problems were discretized by a second order 
finite difference scheme on increasingly finer meshes. The numerical results show that the use of deflation results in a 
reduction in iteration count. This reduction grows with the wave number. It thus confirms the spectral analysis that pre-
dicts that the use of deflation results in a more favorable eigenvalue distribution. The reduction in iterations results in a 
significant reduction in CPU time for sufficiently large problems. The numerical results for the non-constant wavenumber 
problems show that the method does work for such problems as well. On the three-dimensional test cases considered the 
use of deflation results in speedup of a factor between six and ten.

This paper is structured as follows: In Section 2 we describe the model problems, their finite difference discretization 
and the eigenvalues of the discrete Helmholtz operator. In Section 3 we describe the CSLP preconditioner and give the 
eigenvalues of the preconditioned operator. In Section 4 we introduce the framework for multilevel deflation methods. In 
Section 5 and Section 6 we conduct a model problem analysis for the first and second solution algorithm, respectively. In 
Section 7 we show numerical results. Finally we draw conclusions in Section 8.

2. Problem formulation

On the computational domain � with boundary ∂� and outward normal n we consider the Helmholtz equation for the 
unknown field u(x)

−�u(x) − (1 − αι)k2(x)u(x) = g(x), (2.1)

where ι, α, k(x) and g(x) are the imaginary unit, the damping parameter, the wave number and the source function, 
respectively. The wave number k(x), the frequency f and angular frequency ω = 2π f , the speed of propagation c(x) and 
the wave length λ = c(x)

f are related by

k = 2π = ω
. (2.2)
λ c(x)
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Fig. 1. Layered wave number distribution and point source location in three dimensional unit cube domain.

On the boundary ∂� we impose the homogeneous first order Sommerfeld radiation boundary condition given by

∂u

∂n
− ιku = 0 on ∂� . (2.3)

In the analysis of the solvers we will make use of homogeneous Dirichlet boundary conditions. To demonstrate the perfor-
mance of the solver by numerical experiments, we will make use of the following three model problems.

Problem 1. The first problem is posed on the unit cube � = (0, 1)3. The wave number k is assumed to be constant on �. 
The damping parameter α is set equal to zero. The source function g(x) is modeled as a Dirac delta function centered in 
the Centre of the domain

g(x1, x2, x3) = δ(x1 − 1

2
, x2 − 1

2
, x3 − 1

2
) . (2.4)

Problem 2. The second problem is posed on the unit cube � = (0, 1)3 subdivided into three layers parallel to the x1x2-plane 
as shown in Fig. 1. In this figure the x3-axis points upward. The wave number is assumed to be constant on each layer and 
its value in the top and bottom layer is assumed to be equal to a = 1.2 and b = 1.5 times the value in the middle layer, 
respectively. Damping is set equal to zero as in the previous problem. The excitation is caused by a point source located in 
the middle of the top surface where x3 = 1, i.e.,

g(x1, x2, x3) = δ(x1 − 1

2
, x2 − 1

2
, x3 − 1) . (2.5)

Problem 3. The third problem is a modified Marmousi problem [31] in which the original computational domain � =
(0, 3000 m) × (0, 9200 m) was reduced to � = (0, 2048 m) × (0, 8192 m). This reduction allows a convenient geometri-
cal coarsening of a uniform fine mesh by reducing the mesh size by a factor of two in each direction. The contrast in 
the wave number was reduced by limiting the range of the speed of propagation c(x) to 2587.5 m/s ≤ c(x) ≤ 3325 m/s. 
The geometric multigrid method used to approximately invert the complex shifted Laplace preconditioner appears not to 
be robust for higher contrast values. In the future we will investigate and implement more advanced multigrid meth-
ods. Here both the cases of no and small damping will be considered. This problem will be solved using the frequencies 
f = 1, 10, 20 and 40 Hz. A point source is centered in x1 = 1024 m and x2 = 0.

Finite difference discretization. The finite difference discretization of two-dimensional problems on a uniform mesh with mesh 
width h in both directions with stencil

[Ah] = 1

h2

⎡
⎣ 0 −1 0

−1 4 − (1 − αι)κ2 −1
0 −1 0

⎤
⎦ where κ = k h , (2.6)

leads to a system of linear equations

Ahxh = bh, (2.7)

where the discrete Helmholtz operator Ah is the sum of the finite difference discretized Laplacian −�h and −k2 times the 
identity Ih

Ah = −�h − (1 − αι)k2 Ih . (2.8)
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Stencil (2.6) is easily adapted to one and three-dimensional problems. The point sources are treated in a finite difference 
setting by setting the i-th component of the right-hand side vector g equal to g(i) = 1/hd , where i and d are the index 
corresponding to the source in the global enumeration of the grid nodes and the dimension of the problem, respectively. 
The treatment of the first order Sommerfeld boundary condition (2.3) adds a term ιku to the diagonal. The discretized 
operator remains complex symmetric. The numerical representation of waves requires the grid to be sufficiently fine. This is 
especially true in cases in which the computational domain contains many wave lengths. We will enforce the use of a fixed 
number of nodes per wave length [32]. The use of at least 10 nodes per wave length for instance leads to the restriction

κ ≤ 2π

10
≈ 0.628 . (2.9)

In problems in which the wave number is constant per subdomain (as in Problem 2 and Problem 3), the discontinuity in 
wavenumber is allowed to cut through the finite difference grid cells. As the contrast in the wavenumber is relatively small 
(ratio less than three), no special adaptions to the discretization scheme are made. The largest wave number is then used 
to enforce condition (2.9). For a discussion on higher order finite difference approximations for the Helmholtz equation, we 
refer to e.g. [33].

Spectral analysis. The linear system matrix Ah is sparse, symmetric, indefinite and has in the absence of damping a non-
empty near-null space. In this paragraph we will discuss the spectrum of Ah . The information provided here will be used 
as a reference to study the spectrum of the CSLP preconditioned and deflated operator in the forthcoming sections. We will 
employ a sequence of coarser levels to solve the linear system (2.7) for various values of k. We will study how the spectrum 
of Ah changes as k increases while κ is kept fixed.

The discretization of the one-dimensional Helmholtz operator on a uniform mesh with mesh width h = 1/n with 
Dirichlet boundary conditions results in a matrix of size Ah ∈ R

(n−1)×(n−1) assuming that the boundary nodes have been 
eliminated. In the absence of damping, the eigenvalues of Ah are the negatively shifted eigenvalues of the discrete Poisson 
operator and are given by [29,2]

λ�(Ah) = 1

h2
(2 − 2c� − κ2) , (2.10)

for 1 ≤ � ≤ n − 1, where

c� = cos(�π h) . (2.11)

The corresponding eigenvectors are the discrete sine modes. As this set is orthogonal, the matrix Ah is normal. The use 
of Dirichlet boundary conditions renders the boundary of the computational domain reflective for outgoing waves. One 
could instead consider problems in which (part of) the boundary is transparent for outgoing waves through the use of 
absorbing boundary conditions. Results in e.g. [15,11] indicate that for these boundary conditions the discrete operators 
have a more favorable spectrum for Krylov methods. In the following we will scale the eigenvalues λ�(Ah) with h2. This 
scaling cancels the h2 in the denominator of (2.10). This canceling will naturally arise in the forthcoming spectral analysis 
of the preconditioned and the deflated operator.

The near-null space of h2 Ah will play a very important role in the analysis. The null-space of h2 Ah is defined by the 
index �∗ such that λ�∗

(h2 Ah) = 2 − 2c�∗ − κ2 is minimal, or equivalently

�∗ = round

[
1

πh
arccos(1 − κ2/2)

]
. (2.12)

For a fixed value of k, this value of �∗ is nearly constant in κ in the range of κ considered. This implies that for fixed k, the 
null space of h2 Ah shift towards lower frequencies as the number of grid points per wavelength is increased. The near-null 
space of h2 Ah is defined as the set of those values of � for which λ�(h2 Ah) is smaller than some tolerance.

In Fig. 2 we plotted the eigenvalues of h2 Ah for two values of the wavenumber, namely k = 100 and k = 10,000 and for 
each of these values using both 10 and 20 grid points per wavelength. On the x-axis we labeled the value of �∗ computed 
using κ = 0.625 and equal to �∗ = 32 and �∗ = 3237 for k = 100 and k = 10,000, respectively. The range on the y-axis 
is bounded below by −κ2 (where c�=1 ≈ 1) and above by 4 − κ2 (where c�=n−1 ≈ −1). We will use values as large as 
k = 10,000 to illustrate features of our analysis that appear in the limit of large k.

In Fig. 3 we plotted on the left the smallest eigenvalue λ�∗
(h2 Ah) as a function of the wavenumber k in the range 

between k = 0 and k = 1000 using both 10 and 20 grid points per wavelength. The value of λ�∗
(h2 Ah) is seen to converge to 

zero, although non-monotonically. On the right we plotted the number of small eigenvalues again for 10 and 20 grid points 
per wavelength in the same range k as before. Fig. 3 confirms earlier statements made on λ�∗

(h2 Ah) and the near-kernel 
of Ah .

We conclude this section by summarizing the most salient features of the spectral analysis of the scaled discrete 
Helmholtz operator h2 Ah . We saw that increasing k while κ is kept constant has the following two important consequences:
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Fig. 2. Eigenvalues of the h2-scaled 1D Helmholtz operator Ah with Dirichlet boundary conditions for k = 100 and k = 10,000 using both 10 (solid line) 
and 20 (dashed line) grid points per wavelength.

Fig. 3. Size of smallest eigenvalue of h2 Ah as a function of the wavenumber for both 10 (solid line) and 20 (dashed line) grid points per wavelength.

• the smallest eigenvalue becomes smaller due to finer grid resolution;
• the number of eigenvalues in the near-kernel relative to the problem size increases.

Decreasing instead κ while k is kept constant (by increasing the number of grid points) has the consequences that

• the near-kernel shift towards the lower end of the spectrum;

These consequences will be key aspects in explaining the spectrum of the CSLP preconditioned and deflated Helmholtz 
operator in the forthcoming sections.

3. Shifted Laplacian preconditioner

The complex shifted Laplace (CSLP) preconditioner [13,15] is currently ranked among the most efficient preconditioners 
for the Helmholtz equation. Denoting by β2 the damping parameter, this preconditioner can be written as1

Mh,β2 = −�h − (1 + ι β2)k2 Ih with β2 ∈R . (3.1)

In this paper we will consider both left and right preconditioning. The CSLP preconditioners are effective because they trans-
form the spectrum of Ah into the spectrum of Ah M−1

h,β2
that lies in the right half of the complex plane and that is mostly 

clustered around (1, 0). For such spectra, the Krylov methods converge faster than for the spectra of the Helmholtz operator 

1 To be consistent with the notation previously introduced in e.g. [34], we denote the damping parameter in the CSLP preconditioner by β2 and set the 
parameter β1 introduced in [34] equal to one.
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as extensively shown both by theory and experiments in e.g. [15,16,11,17–19]. The term with β2 introduces damping in the 
preconditioner and renders the solution of a linear system with Mh,β2 as coefficient matrix easy to compute. In the litera-
ture, approximate inversions using either MILU [14], geometric [20,34] or algebraic multigrid [19,18] have been studied. In 
this work we will use geometric multigrid with Galerkin coarsening on a sequence of uniformly coarsened meshes.

The amount of damping (i.e. the value of β2) needs to balance the quality of the preconditioner (favoring small damping) 
with the ease to invert it (favoring large damping). This balance has received considerable attention in the literature [16,11,
17,29,21]. The results of the recent paper [21] indicate that the complex shift in (3.1) should scale like the wave number k
in order to obtain an optimal preconditioner for the Helmholtz operator. Results in the paper [29] instead indicate that the 
combined use of the CSLP preconditioner allows to increase the amount of damping without compromising the convergence 
of the outer Krylov iteration. This motivates the choice of β2 = 1 and β2 = .5 in this paper when used with and without 
deflation, respectively.

Spectral analysis. Paper [11] analyzes the spectrum of the shifted Laplace preconditioned Helmholtz operator Ah M−1
h,β2

in 
detail. This analysis shows that eigenvalues of the preconditioned system lie in a circle with radius 0.5 centered in (0.5, 0). 
These eigenvalues shift towards zero as the wave number increases. This explains the non-scalability of the CSLP precondi-
tioner with increasing wave number. In this paragraph we show that the eigenvalues shifting to zero are those corresponding 
to the near-null space of h2 Ah . This motivates the use of deflation to remove these small eigenvalues. We consider to this 
end again the one-dimensional problem without damping and with Dirichlet boundary conditions discretized on a uniform 
mesh with mesh width h = 1/n. In case that the preconditioner is inverted exactly, Ah and M−1

h,β2
share a basis of orthogonal 

eigenvectors. The matrices Ah M−1
h,β2

and M−1
h,β2

Ah are then similar and normal. We expect that the similar results carry over 
to higher dimensional problems that include damping or other boundary conditions.

Given the above assumptions, the eigenvalues of Mh,β2 for 1 ≤ � ≤ n − 1 are given by

λ�(h2Mh,β2) = λ�(h2 Ah) − ιβ2κ
2 , (3.2)

where λ�(h2 Ah) is given by (2.10). The eigenvalues of Ah M−1
h,β2

for 1 ≤ � ≤ n − 1 are thus given by

λ�(Ah M−1
h,β2

) = λ�(h2 Ah)

λ�(h2 Ah) − ιβ2κ2

=
[
λ�(h2 Ah)

]2[
λ�(h2 Ah)

]2 + β2
2κ4

+ ι
λ�(h2 Ah)β2κ

2[
λ�(h2 Ah)

]2 + β2
2κ4

(3.3)

The real and imaginary part of λ�(Ah M−1
h,β2

) are thus small in size for those values of � for which λ�(h2 Ah) is small. We 
more precisely have that

�∗ = argmin1≤�≤n−1

∣∣∣λ�(h2 Ah)

∣∣∣ = argmin1≤�≤n−1Re
[
λ�(Ah M−1

h,β2
)
]

= argmin1≤�≤n−1Im
[
λ�(Ah M−1

h,β2
)
]

(3.4)

From the discussion in the previous section we can then infer that increasing k while κ is kept constant has the following 
two important consequences. The first is that the smallest real and imaginary part of Ah M−1

h,β2
becomes smaller. The second 

is that the number of eigenvalues small in size increases. For eigenvalues in the near-kernel of h2 Ah we can set ε =
λ�(h2 Ah) � 1. Clearly ε is a function of both k and h. The real and imaginary part of Ah M−1

h,β2
can then for small ε be 

written as

Re
[
λ�(Ah M−1

h,β2
)
]

= ε2

ε2 + β2
2κ4

= 2

β2
2κ4

ε2 +O(ε3) ,

Im
[
λ�(Ah M−1

h,β2
)
]

= β2κ
2ε

ε2 + β2
2κ4

= 1

β2κ2
ε +O(ε2) . (3.5)

The action of the preconditioner is seen to map the near-kernel eigenvalues ε of Ah to near-kernel eigenvalues eigenvalues 
( 2

β2
2 κ4 ε2, 1

β2κ2 ε) of Ah M−1
h,β2

. Given that for a fixed value of k and h holds that β2κ
2 � 1, the popularity of the CSLP 

preconditioner can be explained by the relative increase of the imaginary part of the smallest eigenvalue.
The CSLP preconditioner does however require more iterations as k increases while κ is held constant and is therefore 

not scalable. This can be explained by the smallest eigenvalue of Ah M−1
h,β2

to become smaller and the number of small 
eigenvalues to increase. The number of unfavorable eigenvalues however remains limited and decreases as κ is decreased. 
This motivates looking into the use of deflation to remove them from the spectrum of the preconditioned matrix.
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4. Multilevel deflation

In this section we describe the multilevel deflation method. We subsequently discuss the two-level deflation method, its 
combination with a preconditioner and its multilevel extension. In the next section we give more details on the application 
of these ideas to the discretized Helmholtz equation.

The convergence of the CSLP preconditioned Krylov methods for the Helmholtz equation is hampered by small eigen-
values. As the wavenumber k increases while κ is held fixed, the smallest eigenvalue decreases in size and the number of 
small eigenvalues increases. Deflation is a technique that aims at dealing with these small eigenvalues [28,26,27]. The basic 
idea is to bring the small eigenvalues to zero by a projection procedure.

Two-level deflation. Here we briefly explain the two-level deflation technique to solve the linear system resulting from the 
discretization of a PDE on a fine mesh with grid size h

Ahxh = bh . (4.1)

We assume a coarse mesh with grid size H to be also available and denote by Zh,H the interpolation operator mapping from 
the coarse to the fine mesh. Later, we assume the fine mesh to be uniform, the coarse mesh to be constructed geometrically 
by standard coarsening and the interpolation to be linear in each coordinate direction. The columns of Zh,H are referred to 
as the multigrid vectors. We use Galerkin coarsening to construct the coarse grid operator

E H = Z T
h,H Ah Zh,H (4.2)

and denote the coarse grid solve matrix as Q h,H = Zh,H E−1
H Z T

h,H . The deflation operator Ph,H is then defined as

Ph,H = Ih − Ah Q h,H . (4.3)

This operator corresponds with the residual propagation operator in a coarse grid correction scheme. It satisfies the relation 
(Ph,H )2 = Ph,H and thus defines a projection. Each column of Zh,H belongs to the kernel of the deflated operator Ph,H Ah . 
The spectrum of Ph,H Ah therefore contains zero as an eigenvalue [28]. In case that E H is inverted only approximately, the 
projection property is lost and eigenvalues close to zero in the spectrum of Ph,H Ah appear [26]. By applying the deflation 
operator, system (4.1) is transformed into

Ph,H Ah x̃h = Ph,H bh , (4.4)

which can be solved by a Krylov subspace method. To obtain a unique solution of (4.1) the computed x̃h must be updated 
by

xh = (Ih − Q h,H Ah) x̃h + Q h,H b. (4.5)

We call this technique two-level deflation. The geometric construction of the deflation vectors is such that the number of 
deflation vectors increases with the wave number and the dimensions of the problem. This construction is in accordance 
with the increase of small eigenvalues with these parameters. This technique can be extended to higher order discretization 
methods by using the columns of the interpolation operator proposed in [33] as deflation vectors.

The two-level deflation technique can be combined with a preconditioner Mh in two ways that we will refer as First 
Precondition, then Deflate and First Deflate, then Preconditioning in the following two paragraphs.

First Precondition, then Deflate. To combine the two-level deflation technique with preconditioning, one can deflate the 
preconditioned operator and avoid any subsequent application of the preconditioner. This approach is motivated by two 
previous papers [35,36] that show that diagonal scaling prior to deflating the discretized convection–diffusion operator 
results in a tight clustering of eigenvalues. Preconditioning from the right transforms the linear system (4.1) into

Âh x̂h = bh where Âh = Ah M−1
h and x̂h = Mhxh . (4.6)

Deflating this linear system requires in the Galerkin operator

Êh = Z T
h,H Âh Zh,H , (4.7)

the coarse grid solve operator Q̂ h,H = Zh,H Ê−1
H Z T

h,H and the deflation operator

P̂h,H = Ih − Âh Q̂ h,H . (4.8)

As before we have that ( P̂h,H )2 = P̂h,H . This variant then solves the deflated linear system

P̂h,H Âhx̃h = P̂h,H bh , (4.9)

and no additional form of preconditioning is used. This method is referred to as the Multilevel Krylov method (MK-method) 
and if the CSLP preconditioner is used as the MKMG-method in [35,36].
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This method requires the explicit construction of ̂E H = Z T
h,H Ah M−1

h Zh,H . This construction is feasible if the preconditioner 
is sufficiently simple to apply. An example is the use of diagonal scaling as in [35,36]. In case of CSLP preconditioning of 
the Helmholtz equation however, the preconditioner is much more expensive to apply. A matrix-free approach which the 
matrix–vector multiplication with the matrix Z T

h Ah M−1
h,β2

Zh is replaced by the action of this matrix on a vector still requires 
too many fine grid computations and still costs too much work per iteration. Some form of approximation in constructing 
operator Ê H is therefore mandatory. One alternative is to coarsen the preconditioner and the original operator separately, 
i.e., to build the operators MH,β2 = Z T

h,H Mh,β2 Zh,H and E H = Z T
h,H Ah Zh,H and to subsequently approximate Ê H as

Ê H = Z T
h,H (Ah M−1

h,β2
)Zh,H ≈ E H M−1

H,β2
= ˆ̂E H . (4.10)

Let ˆ̂Ph,H denote the corresponding deflation operator. This approximation is such that the deflation operator defined ceases 

to satisfy the relation ( ˆ̂Ph,H )2 = ˆ̂Ph,H and thus ceases to define a projection. The computational feasibility comes at the 
price of a spectrum that is less favorable to the convergence of the outer Krylov iteration. This is essentially due to the fact 
that a coarse grid solve by the complex shifted Laplacian Ê H is replaced by a coarse grid solve that involves the Helmholtz 
operator E H . Details will be given in the next section.

First deflate, then precondition. To combine the two-level deflation technique with preconditioning, one can alternatively 
deflate the original system matrix and combine the deflation and the preconditioner operators in a multiplicative fashion. 
The coarse grid operator and deflation operator are then defined by (4.2) and (4.3). If we choose to apply the preconditioner 
after the deflation, the linear system to be solved can be written as

M−1
h,β2

Ph,H Ah x̃ = M−1
h,β2

Ph,H bh . (4.11)

The explicit construction or approximation of Ah M−1
h,β2

is avoided in this approach.

Multilevel deflation. In a two-level method the coarse grid operators E H and Ê H remain too large in size to be inverted 
exactly. A multilevel extension is thus needed to become computationally viable. In such an extension the coarse grid solve 
requires attention in order to avoid close-to-zero eigenvalues in the spectrum of Ph,H Ah or P̂h,H Âh . Such small eigenvalues 
will hamper the convergence of the Krylov method. This can be addressed by adding to Ph,H a scalar γ times Q h,H which 
leads to the operator

Ph,H,γ = Ph,H + γ Q h,H = Ih − Ah Q h,H + γ Q h,H , (4.12)

[27] and similarly for P̂h,H,γ and ˆ̂Ph,H,γ . The linear system to be solved can now be written as

(M−1
h,β2

Ph,H + γ Q h,H )Ah x̃ = (M−1
h,β2

Ph,H + γ Q h,H )bh . (4.13)

For γ = 1 this corresponds to a two-grid V(0, 1)-cycle with Mh,β2 as a smoother in a multigrid context. This method is 
referred to as the Adaptive Deflation 1 (A-DEF1) method in [27]. We will refer to the matrix

Bh,H,β2 = (M−1
h,β2

Ph,H + γ Q h,H )Ah (4.14)

as the preconditioned deflated matrix without and with shift if γ = 0 and γ �= 0, respectively. The term with γ allows 
to solve the coarser grid system with matrix E H , Ê H or ˆ̂E H inexactly using flexible Krylov subspace solvers preconditioned 
using a next coarser level. This gives rise to a so-called multilevel Krylov method [35,36]. Numerical experiments in [20] and 
[29] have shown that solving the first coarser level more accurately than the other levels is beneficial for the convergence 
of the outer Krylov iteration. An algorithmic representation of the multilevel First Deflate, Then Precondition algorithm is 
given in Algorithm 1.

Neither Ph,H,γ nor P̂h,H,γ is a projection. The only difference in the spectrum of Ph,H Ah and Ph,H,γ Ah is that the zero 
eigenvalue of Ph,H Ah is replaced by γ in the spectrum of Ph,H,γ Ah (and similarly for P̂h,H,γ Âh). The term γ Q h,H acts like 
a shift. The parameter γ is in most applications set equal to the largest eigenvalue of the preconditioned operator. As the 
eigenvalues largest in magnitude of Ah M−1

h,β2
is bounded by one, we set γ = 1 in the following. In the theorem that follows, 

we prove that Ph,H,γ is nonsingular for γ = 1.

Theorem 1. Let A, M ∈C
n×n be nonsingular matrices and Z ∈ Rn×r of full rank, where r < n. Suppose that the Galerkin matrix Z T A Z

is nonsingular and let Q = Z(Z T A Z)−1 Z and P = M−1(I − A Q ) + Q . Then P is nonsingular if and only if the Galerkin matrix Z T M Z
is nonsingular.

Proof. Note that P̃ = I − A Q is the projection (i.e. P̃ 2 = P̃ ) onto im(Z)⊥ along im(A Z), therefore im( P̃ ) = im(Z)⊥ and 
ker( P̃ ) = im(A Z). Also, observe that Q = A−1(I − P̃ ), and since (I − P̃ ) is the complementary projection of P̃ we have 
im(Q ) = im(Z) and ker(Q ) = im(Z)⊥ .
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We show first the “⇒” implication. Let x ∈ C
n with P x = 0. Then M P x = (I − A Q )x + M Q x = 0, and if y = (I − A Q )x =

−M Q x, we have y ∈ im( P̃ ) ∩ im(M Q ) = im(Z)⊥ ∩ im(M Z). So y = M Z ŷ for some ŷ ∈ C
r and Z T y = Z T M Z ŷ = 0. Since 

Z T M Z is nonsingular this implies ŷ = 0, and also y = 0 which gives x = 0. Therefore P is nonsingular.
For the implication “⇐”, we prove the contrapositive. Suppose that Z T M Z x = 0 for some x �= 0. Let y = M Z x and 

z = A Z x, then y �= 0 and z �= 0 since M and A are nonsingular and Z is full rank. Moreover, y ∈ im(Z)⊥ and z ∈ im(A Z). 
Let w = y − z, we will show that w �= 0 and P w = 0. For the first assertion, suppose that w = 0, then y = z and y ∈
im(Z)⊥ ∩ im(A Z), but since im(Z)⊥ ∩ im(A Z) = {0} because the projection P̃ is well defined (cf. the remark at the beginning 
of the proof) this gives y = 0 which is not possible. Hence w �= 0. The equality P w = 0 follows from a direct computation 
that can be simplified recalling the projection representations mentioned at the beginning of the proof:

P w = (I − A Q )(y − z) + Q (y − z)

= P̃ (y − z) + A−1(I − P̃ )(y − z)

= y − A−1z

= Z x − Z x = 0.

Remark 1. This theorem proves that the matrix Ph,H,γ defined by (4.12) in the First Deflate, Then Precondition Method is 
non-singular for γ = 1. The theorem with A replaced by Â = M−1 A and M = I proves that the matrix P̂h,H,γ defined in 
the First Precondition, Then Deflate Method is non-singular for γ = 1.

Algorithm 1 The First Deflate, Then Precondition (A-DEF1) method including the shift on multiple levels used as a precondi-
tioner for a flexible Krylov subspace. The coarse grid problem is solved by the same Krylov subspace method preconditioned 
again by the First Deflate, Then Precondition method.

Solve Ah xh = bh by a Flexible Krylov method preconditioned by the following three-step multiplicative procedure that given the residual ri
h at 

iteration i computes the new search direction zi+1
h

1 zi+1/3

h = Ph,H ri
h Deflation without shift

1.1: ri
H = Z T

h,H ri
h Restrict to coarse grid

1.2: ei
H = E−1

H ri
H Coarse grid solve by recursion

1.3: si
h = Zh,H ei

H Interpolate to fine grid
Therefore si

h = Q h,H ri
h

1.4: ti
h = Ah si

h Matrix–vector multiply
Therefore ti

h = Ah Q h,H ri
h

1.5: zi+1/3

h = ri
h − ti

h Adding intermediate results

Therefore zi+1/3

h = Ph,H ri
h

2 zi+2/3

h = M−1
h,β2

zi+1/3

h CSLP Preconditioning

Therefore zi+2/3

h = M−1
h,β2

Ph,H ri
h

3 zi+1
h = zi+2/3

h + si
h Adding the shift

Therefore zi+1
h = (M−1

h,β2
Ph,H + Q h,H )ri

h

5. Model problem analysis of first precondition, then deflate

In this section we perform a spectral analysis of the First Precondition, Then Deflate method introduced in the previous 
section. We will study both variants that use the matrices Ê H and ˆ̂E H defined by (4.7) and (4.10) as coarse grid matri-
ces, respectively. For the variant that uses Ê H , we will derive analytical expressions for the eigenvalues of the deflated 
preconditioned Helmholtz operator that we will denote as

B̂h,H,β2 = P̂h,H Âh = P̂h,H Ah M−1
h,β2

. (5.1)

These expressions will allow us to describe the spectrum as a function of the wavenumber k without resorting to numerical 
computations. In case that the shift is included by adding the term γ Q h,H to obtain P̂h,H,γ defined by (4.12), the zero 

eigenvalue of B̂h,H,β2 is shifted to γ without significantly changing the non-zero spectrum. For the variant that uses ˆ̂E H , we 

will revert to a numerical evaluation of the eigenvalues of the deflated preconditioned operator denoted by ˆ̂Bh,H,β2 . In the 
case that the shift parameter γ is zero, this operator is defined by

ˆ̂Bh,H,β = ˆ̂Ph,H Âh = ˆ̂Ph,H Ah M−1 . (5.2)
2 h,β2
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We will consider both the case of zero and non-zero γ . The goal of our analysis is two-fold. We show that the use of 
First Precondition, Then Deflate method that employs Ê H results in a spectrum of clustered eigenvalues favorable for the 
convergence of a Krylov iteration. We next show that the variant that uses ˆ̂E H results in a spectrum that is remarkably 
close to the spectrum resulting from the First Deflate, Then Precondition method.

We perform a two-grid Fourier analysis (see e.g. [37]) of B̂h,H,β2 and ˆ̂Bh,H,β2 for a one-dimensional constant wave num-
ber problem on the domain � = (0, 1). We will use Dirichlet boundary conditions because with these boundary conditions 
the eigenvalues and eigenvectors of Ah can be determined as described in Section 2. The Fourier analysis that takes the 
boundary conditions explicitly into account is referred to as rigorous Fourier analysis to distinguish it from a local Fourier 
analysis.

The fine grid is assumed uniform with meshwidth h = 1/n where n = 2p and the coarse one is obtained using standard 
coarsening. With elimination of the boundary conditions, the size of the fine grid operators is n −1. Intergrid transfer will be 
performed by linear interpolation and its transpose. We assume that the preconditioner Mh,β2 and the coarse grid operator 

Ê H and ˆ̂E H to be inverted exactly. In a rigorous Fourier analysis the eigenvalues of B̂h,H,β2 are computed by computing the 
action of B̂h,H,β2 on the eigenvectors of Ah . The latter are the discrete sine functions. The coarse grid aliasing in fact is such 
that B̂h,H,β2 is found to be similar to a block diagonal matrix with 2 × 2 diagonal blocks. This implies that we can write

B̂h,H,β2 ∼ diag
[

B̂�
h,H,β2

]
1≤�≤n/2 (5.3)

where for 1 ≤ � ≤ n/2 − 1, B̂�
h,H,β2

are the 2 × 2 matrices and where B̂n/2
h,H,β2

is a scalar. The eigenvalues of B̂h,H,β2 can 

then be computed as the eigenvalues of the diagonal blocks (and similarly for ˆ̂Bh,H,β2 ). A determining factor in the eigen-

value distribution of B̂h,H,β2 and ˆ̂Bh,H,β2 is the near-kernel of Ê H and ˆ̂E H , respectively. This motivates looking into these 
near-kernel first.

We will denote as before c� = cos(� π h) and κ = k h. In our analysis we will use β2 = 1 and κ = 0.625 unless stated 
otherwise. Motivating the value for β2 = 1 is the observation in [29] that in the First Deflate, Then Precondition method the 
complex shift can be large without compromising the convergence of the outer Krylov acceleration. We assume here that 
the same argument holds for the First Precondition, Then Deflate method.

5.1. Spectral analysis of Galerkin coarse grid operators

The analysis in [29] can easily be extended to compute the eigenvalues of the Galerkin coarse grid operators Ê H and ˆ̂E H . 
For 1 ≤ � ≤ n/2 − 1, this results in

λ�(̂E H ) = (
1
4 (1 + c�)

2 1
4 (1 − c�)

2
)⎛
⎝ 2−2cl−κ2

2−2cl−(1+ιβ2)κ2

2+2cl−κ2

2+2cl−(1+ιβ2)κ2

⎞
⎠ , (5.4)

and

λ�(
ˆ̂E H ) = 2(1 − c2

�) − κ2(1 + c2
�)

2(1 − c2
�) − (1 + ιβ2)κ2(1 + c2

�)
, (5.5)

respectively. For � = n/2 we have that

λn/2(̂E H ) = (2 − κ2)/[2 − (1 + ιβ2)κ
2] = λn/2(

ˆ̂E H ) . (5.6)

In Fig. 4 we plotted the non-zero eigenvalues of ̂E H (left) and ˆ̂E H (right) for k = 100 using 10 grid points per wavelength 
in the complex plane. This figure clearly shows that the approximation made to render the construction of ̂E H computation-

ally feasible and to obtain ˆ̂E H has a negative impact on the eigenvalue distribution. Indeed, Fig. 4 clearly shows that ˆ̂E H has 
an eigenvalue smaller in size than Ê H . At large wave numbers, the near-null space of ˆ̂E H will contain more elements than 
that of Ê H . This richer near-null space will adversely affect on the eigenvalue distribution of the deflated preconditioned 
operator ˆ̂Bh,H,β2 .

5.2. Deflated preconditioned operator defined using ̂E H

The deflation operator defined by the First Precondition, Then Deflate method using Ê H is a projection. The deflated 
preconditioned operator B̂h,H,β = P̂h,H Âh defined by (5.2) without the shift with γ Q h,H in P̂h,H for this method has thus 
2
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Fig. 4. Eigenvalues of Galerkin coarsened CSLP preconditioned Helmholtz operators ̂E H (left) and of its approximation ˆ̂E H (right) for k = 100 using 10 grid 
points per wave length.

a zero eigenvalue. A rigorous Fourier analysis yields that this zero eigenvalues has multiplicity n/2 − 1, that B̂h,H,β2 has an 
eigenvalue equal to (2 −κ2)/(2 −κ2(1 − ιβ2)) and additional n/2 − 1 eigenvalues that for � = 1, . . . , n/2 − 1 are of the form

λ�
(

B̂h,H,β2

) = D̂(c�, κ
2)

F̂ (c�, κ2) + ι β2 Ĝ(c�, κ2, β2)
, (5.7)

where the damping parameter β2 only appears in the imaginary part of the denominator and where D̂ , F̂ and Ĝ are second 
order polynomials in κ2 given by

D̂(c�, κ
2) = (1 + c2

�)κ
4 − 4(1 + c2

�)κ
2 + 4(1 − c4

�) (5.8)

F̂ (c�, κ
2) = −(1 + c2

�)κ
4 + 2(2 − c2

� + 3 c2
�)κ

2 − 4(1 − c4
�)

Ĝ(c�, κ
2) = (1 − c2

�)κ
4 − 2(1 − c2

�)κ
4 .

To understand to what extend this spectrum is clustered and bounded away from the origin, we consider the real and 
imaginary part of the non-zero eigenvalues that we denote by Re

[
λ�

(
B̂h,H,β2

)]
and Im

[
λ�

(
B̂h,H,β2

)]
, respectively. We have 

that for � = 1, . . . , n/2 − 1

Re
[
λ�

(
B̂h,H,β2

)] = p( c�, κ
2)

p( c�, κ2) + β2
2 q( c�, κ2) κ4

(5.9)

Im
[
λ�

(
B̂h,H,β2

)] = β2 r( c�, κ
2) κ2

p( c�, κ2) + β2
2 q( c�, κ2) κ4

, (5.10)

where p( c�, κ2), q( c�, κ2) and r( c�, κ2) are polynomials in κ2 given by

p( c�, κ
2) = (c2

� + 1)2
[
κ8 − 8κ6 − 8(c� − 3)κ4 + 32(c� − 1)κ2 + 16(c2

� − 1)2
]

q( c�, κ
2) = (c2

� + 1)2κ4 + 4(c4
� − 1)κ2 + 4(c2

� − 1)2

r( c�, κ
2) = κ6(1 + c2

�)
2 − 2κ4(1 + c2

�)(3 + c2
�) + 4κ4(1 − c2

�)(c4
� + 4c2

� + 3) − 8(1 − c2
�)(1 − c4

�) .

The numerator and denominator of Re
[
λ�

(
B̂h,H,β2

)]
are seen to be equal up to the small perturbation β2

2 q( c�, κ2) κ4. 
One can thus expect that Re

[
λ�

(
B̂h,H,β2

)] ≈ 1 for � = 1, . . . , n/2 − 1 unless possibly for some value of � we have that 
p( c�, κ2) = 0. Given that the numerator of Im

[
λ�

(
B̂h,H,β2

)]
is small, the analysis yields a tight cluster of non-zero eigenval-

ues around (1, 0) in the complex plane.
In [20] the spectrum of B̂h,H,β2 for β2 = 0.5 is computed numerically and plotted in the complex plane. In Fig. 5 instead 

we plotted using a solid line the real part of these eigenvalues vs. the index � for two values of the wave number k, 
namely k = 100 and k = 10,000. We used 10 grid points per wavelength and a logarithmic scale on the y-axis. We also 
plotted using dashed line the real part of the eigenvalues of CSLP preconditioned operator Re

[
λ�

(
M−1

h,1 Ah
)]

. Plotting both 
spectra clearly illustrates the action of the deflation operator on the spectrum of the CSLP preconditioned operator. The 
figure shows that the deflation operator clusters the real part of the eigenvalues around one. This clustering is however not 
uniform in the wave number. At very high wave numbers the real part of the eigenvalues that correspond to the near-kernel 
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Fig. 5. Log10 of the real part of the non-zero eigenvalues of the deflated preconditioned operator B̂h,H,1 using ̂E H defined by the First Precondition, Then 
Deflate method (solid line) and of the preconditioned operator M−1

β1,β2
Ah (dashed line) with Dirichlet boundary conditions for k = 100 and k = 10,000 using 

10 grid points per wave length. The shift towards 0 of the eigenvalues corresponding to the near kernel can clearly be seen.

Fig. 6. Spectrum of the deflated preconditioned operator ˆ̂Bh,H,1 using ˆ̂E H defined by the First Precondition, Then Deflate method assuming no shift (i.e. 
γ = 0) with Dirichlet boundary conditions for k = 100 and k = 10,000 using 10 grid points per wave length.

of the Helmholtz equation again moves towards the zero. In the complex plane these eigenvalues thus move towards the 
origin. The number of eigenvalues undergoing this shift is however much smaller that in the case of merely using CSLP 
preconditioning.

5.3. Deflated preconditioned operator defined using ˆ̂E H

The First Precondition, Then Deflate method using the Galerkin coarse grid operator ˆ̂E H defines a deflated preconditioned 
operator ˆ̂Bh,H,β2 defined by (5.2) that is not a projection. To illustrate to what extent this affects the spectrum of this 
operator, we will analyze both the case without shift (i.e. setting γ = 0 in (4.12)) and with shift to one (i.e. setting γ = 1). 
The spectrum of ˆ̂Bh,H,β2 without shift and with shift to one is shown in Fig. 6 and Fig. 7, respectively.

Fig. 6 shows the spectrum of ˆ̂Bh,H,β2 for β2 = 1 without shift (i.e. γ = 0) in the complex plane for two values of the 
wave number k. This figure shows that the zero eigenvalue of multiplicity n/2 − 1 of the deflated preconditioned operator 
B̂h,H,β2 considered in the previous subsection is replaced by a set of small eigenvalues. This figure also shows that the 
spectrum consists of two clusters, the first around the origin and the second around (1, 0). The spread of both clusters is 
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Fig. 7. Spectrum of two operators. The first is the deflated preconditioned operator ˆ̂Bh,H,1 using ˆ̂E H defined by the First Precondition, Then Deflate method 
assuming again shift to one. The second is the preconditioned deflated operator Bh,H,1 defined by the First Deflate, Then Precondition method assuming 
shift (i.e. γ = 1). For both Dirichlet boundary conditions, k = 100 and k = 10,000 and 10 grid points per wave length were used.

seen to grow with the wave number k. For k = 10,000 in particular the real part of the eigenvalues is bounded below by 
−1 and above by 2. The imaginary part of these eigenvalues is bounded below by −1 and above by 1.

Fig. 7 shows the spectrum of two operators in the complex plane for two values of the wave number k. The first is the 
operator ˆ̂Bh,H,β2 with shift to one (i.e. γ = 1) and β2 = 1. The second is the preconditioned deflated operator Bh,H,β2 defined 
by (4.14) with again γ = 1 and β2 = 1. The spectrum of the latter was extensively analyzed in [29]. We restricted the range 
of the real part of the operator to lie between −0.5 and 2. The figure shows a close resemblance. This resemblance is to 
a large extent caused by the shift, the fact that ˆ̂Bh,H,β2 is not a projection and the near-kernel of the Galerkin coarse grid 
operator. The spectrum is clustered around (0, 1) for low and intermediate wave number values. The spectrum smears out 
in both directions along the real axis as the wave number increases. Explaining the fact that both spectra closely resemble 
each other requires further study.

6. Model problem analysis of first deflate, then precondition

In this section we analyze the First Deflate, Then Precondition method introduced in Section 4. We complement the 
analysis previously published in [29] with new and key insight that the spectrum consists of two sets of eigenvalues. The 
first set is a tight cluster of eigenvalues that result from the use of deflation. The second set can be further subdivided 
into two tails that spread away from the cluster in opposite directions along the real axis. This spreading is caused by the 
near-null kernel components of the Helmholtz coarse grid operator. For a fixed value of κ , the length of the tails and the 
number of elements in the tail increase proportionally with the wavenumber. The number of eigenvalues not belonging to 
the cluster however remains small compared to the problem size. The spectrum is therefore favorable to the convergence of 
the outer Krylov acceleration.

To quantify the claims made on the spectrum, we will in this section first derive closed-form expressions for the eigen-
values of the H2-scaled Galerkin coarsened Helmholtz operator H2 E H and the h2-scaled deflated preconditioned operator 
h2 Ph,H Ah defined by (4.2) and (4.4), respectively. We will subsequently discuss the spectrum of the deflated operator 
Ph,H,γ Ah with γ = 1 where the deflation operator includes the shift with γ Q h,H and of the preconditioned deflated oper-

ator M−1
h,β2

Ph,H Ah .

6.1. Spectral analysis of Galerkin coarse grid operator

The eigenvalues of the H2-scaled Galerkin coarsened Helmholtz operator H2 E H are for 1 ≤ � ≤ n/2 − 1 given by [29]

λ�(H2 E H ) = 4 − 2(2 + κ2)c2
� − 2κ2 , (6.1)

where H = 2 h denotes as before the coarse mesh size. For � = n/2, we have that λn/2(H2 E H ) = 4 − 2 κ2. In the range 
1 ≤ � ≤ n/2 − 1, the eigenvalues (6.1) increase monotonically between

λ1(H2 E H ) ≈ −4κ2 < 0 and λn/2−1(H2 E H ) ≈ 4 − 2κ2 > 0 , (6.2)

where c�=1 ≈ 1 and c�=n/2−1 ≈ 0, respectively. The expression (6.1) allows to determine the smallest in size eigenvalue of 
H2 E H and the number of eigenvalues in the near-kernel of this matrix. In analogy with the analysis of the scaled fine 
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Fig. 8. Eigenvalues of the deflated operator Ph,H Ah vs. the index � with Dirichlet boundary conditions for k = 100 and k = 10,000 using 10 grid points per 
wave length. Here the method used is the First Deflate, Then Precondition (A-DEF1) method.

grid Helmholtz operator h2 Ah in Section 2 we infer that in the limit that k increases for a fixed value of κ , the smallest 
eigenvalues of H2 E H decreases in size and that the number of eigenvalues in the near-kernel of H2 E H increases. As κ
decreases for a fixed value of k, the number of elements in the near-kernel of H2 E H decreases and the corresponding 
eigenmodes become more low frequent.

6.2. Spectral analysis of the deflated Helmholtz operator

The spectrum of the h2-scaled deflated Helmholtz operator h2 Ph,H Ah consists of a zero eigenvalue of multiplicity n/2 −1
and a set of n/2 real-valued eigenvalues. For � = n/2, we have that λn/2(h2 Ph,H Ah) = h2. For 1 ≤ � ≤ n/2 − 1 instead we 
have that

λ�
(

h2 Ph,H Ah

)
= 2

(
c�

2 + 1
)
κ4 + (−4 c�

2 − 4
)
κ2 − 4

(
c�

4 − 1
)

λ�(H2 E H )
, (6.3)

where the denominator is given by (6.1). Given that for those values of � that corresponds to the near-kernel of H2 E H , the 
numerator is finite and the denominator very small, the eigenvalues λ�

(
h2 Ph,H Ah

)
become very large for those values of �. 

On the extremities of the domain in � instead, we have that

λ1
(

h2 Ph,H Ah

)
≈ 4 − κ2 and λn/2−1

(
h2 Ph,H Ah

)
≈ 2 − κ2 (6.4)

where c�=1 ≈ 1 and c�=n/2−1 ≈ 0, respectively.
In Fig. 8 we plotted both the non-zero eigenvalues λ�

(
h2 Ph,H Ah

)
as well as the eigenvalues λ�

(
H2 E H

)
versus the index 

� in the range 1 ≤ � ≤ n/2 − 1 for k = 100 and k = 10, 000 using 10 grid points per wavelength. This figures shows that 
most of the eigenvalues λ�

(
h2 Ph,H Ah

)
lie between 2 − κ2 and 4 − κ2. Eigenvalues not in this range correspond to those 

values of � in the near-kernel of H2 E H and have both negative and positive values.
The non-zero eigenvalues of h2 Ph,H Ah can thus be partitioned into two sets. The majority of the eigenvalues lies on the 

real axis between 2 − κ2 and 4 − κ2. A smaller set of eigenvalues can be further subdivided into two tails that develop on 
both sides of this interval. As k increases for a fixed value of κ , the number of elements in the tail and the length of the tail 
increases. As κ decreases for a fixed value of k, the number of elements in the tail relative to the problem size decreases.

Computations using a multilevel hierarchy with more than two levels require to include a shift and to add the term 
γ Q h,H to Ph,H to obtain Ph,H,γ defined by (4.12). By including this term, the zero eigenvalue of Ph,H Ah (without shift) is 
transformed in an eigenvalue γ with the same multiplicity of Ph,H,γ Ah (with shift). The non-zero eigenvalues of Ph,H Ah

are not changed. To obtain a good clustering of the eigenvalues of the CSLP preconditioned operator M−1
h,β2

Ah , the value of 
γ is set equal to 1 as this value is an upper bound for the magnitude of the eigenvalues of the preconditioned operator.

6.3. Spectral analysis of the preconditioned deflated Helmholtz operator

The action of the inverse of the CSLP preconditioner M−1
h,β2

is to scale and rotate the non-zero eigenvalues of Ph,H,γ Ah

with shift γ = 1. Plots of the resulting spectrum of M−1 Ph,H,γ Ah are given in [29]. Here we are able to give a more 
h,β2
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Table 1
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the three-dimen-
sional constant wave number problem using 10 grid points per wave length (Problem 1).

Wave 
number k

Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

5 0.007 0.055 7 9
10 0.06 0.46 9 10
20 1.07 3.2 21 11
40 21.79 31.99 58 16
60 113.19 165.2 90 23
80 511.80 501.9 159 29

120 2832.7 2056.7 254 39

Table 2
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the three-dimen-
sional constant wave number problem using 20 grid points per wave length (Problem 1).

Wave 
number k

Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

5 0.04 0.32 7 8
10 0.48 2.32 9 9
20 8.14 17.28 20 9
40 228.29 155.52 70 10
60 1079.99 607.45 97 11

refined interpretation of these plots. The plots in [29] show that the preconditioner does well in clustering those eigen-
values of h2 Ph,H,γ Ah that lie in the interval from 2 − κ2 to 4 − κ2. The preconditioner is however not able to cluster 
the eigenvalues in the earlier described tails of the spectrum of h2 Ph,H,γ Ah . Therefore two rotated and scaled tails appear 
in the spectrum of M−1

h,β2
Ph,H,γ Ah . The preconditioner is unable to repair the shift away from the cluster caused by the 

near-kernel components of the coarse grid solve. The number of elements in the tails is however small compared to the 
problem size. The spectrum of M−1

h,β2
Ph,H,γ Ah is therefore more favorable to the convergence of an outer Krylov iteration 

than the spectrum of M−1
h,β2

Ah . Numerical evidence for this statement will be given in the next section.

7. Numerical results

In this section we will demonstrate the performance of the First Deflate, Then Precondition or A-DEF1 Method using 
the three test problems introduced in Section 2. For preliminary results in which the First Deflate, Then Precondition and 
the First Precondition, Then Deflate methods are compared, we refer to [38]. Here we focus on the computational efficiency 
of the first method. We will do so by comparing this method with merely using CSLP as a preconditioner. The first and 
second solution strategy will be used in combination with FGMRES(20) and Bi-CGSTAB, respectively. We will compare the 
performance in terms of the required number of outer Krylov iterations and CPU-time. Doing so we will quantify by what 
amount the use of a coarse grid correction technique is able to accelerate the CSLP preconditioner. Each of the three 
problems will be discretized by a fine mesh with a number of grid points that allows standard coarsening in each coordinate 
direction up to obtaining a coarse mesh consisting of a single grid point. In our solver of choice, the combination of A-DEF1 
and CSLP is employed recursively to solve the coarser grid problem. This requires the action of CSLP and a flexible Krylov 
acceleration on each level. On each level we approximate the CSLP preconditioner using one F-cycle with one pre and one 
post ω-Jacobi (ω = 2/3) smoothing iterations. We will use the shift β2 = 1 and β2 = 5 when using CSLP with and without 
deflation, respectively. Motivating this choice is the fact that the previous paper [29] showed that deflation allows for more 
complex damping without penalizing the convergence of the outer Krylov acceleration. Outer Krylov iterations are started 
with a zero initial guess and stopped if the scaled residual ‖rn‖

‖b‖ is reduced by a factor of 107. The number of FGMRES 
iterations on the second, third and higher coarser levels is set equal to eight, two and one, respectively. Experiments are 
performed in the PETSc software [30] on a Dell Precision Machine with processor E8400 at 3.00 GHz.

7.1. Three dimensional constant wave number problem

Numerical results for the constant wave number problem (Problem 1 in Section 2) using 10 and 20 grid points per wave 
length are given in Table 1 and Table 2, respectively. These tables list the number of outer Krylov iterations and CPU-time 
for various values of the wave number. The solve time reported excludes the time required for the computation of the 
Galerkin products in the set-up phase of the two algorithms. This set-up time is equal for both algorithms. From these 
tables it is clear that the use of A-DEF1 results in a reduction in the number of iterations. The reduction in iteration count 
increases with the wave number. Table 1 in particular shows that without the coarse correction the number of iterations 
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Fig. 9. CPU time per grid point in constant wave number problem using 10 (left) and 20 (right) grid points per wave number (Problem 1).

Table 3
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the three-dimen-
sional non-constant wave number problem using 10 grid points per wave length (Problem 2).

Wave 
number k

Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

5 0.09 0.24 9 11
10 1.07 1.94 15 12
20 16.70 18.89 32 16
30 73.82 78.04 43 21
40 1304.2 214.7 331 24
60 xx 989.5 xx 34

increases more than linearly with the wave number. With the coarse grid correction this increase is slower than linear. The 
CPU-time in this table shows a cross-over point between k = 60 and k = 80. The use of a coarse grid correction results in 
speed-up for sufficiently large wave numbers. For the largest wave number reported, the use of the coarse grid correction 
yields a thirty percent reduction in solve time. Table 2 shows that with 20 grid points per wave length the number of 
A-DEF1 iterations remains almost constant in the range of wave numbers considered. The A-DEF1 solver outperforms the 
CSLP solver in CPU-time starting at wave number k = 40. For the largest wave number considered, a speed-up of forty 
percent is reported.

The CPU-time per grid point for both solvers using 10 and 20 grid points per wave length is plotted versus the wave 
number in the left and right part of Fig. 9, respectively. These figures show how the CPU time using the solver variant with 
deflation increases at a slower rate and is therefore more attractive to use at a given wave number. This cross over wave 
number is equal to k = 80 and k = 30 in case that 10 and 20 grid points per wave length are used, respectively.

7.2. Three dimensional variable wave number problem

Numerical results for the non-constant wave number problem (Problem 2 in Section 2) using 10 and 20 grid point per 
wave length are given in Table 3 and Table 4, respectively. The layered heterogeneity is reflected in an increase in the 
required number of outer Krylov iterations of both solvers. The problem for k = 60 in particular could not be solved using 
the CSLP solver. The use of A-DEF1 again results in a reduction of the number of iterations and to lower the increase in 
number of iterations in case that 10 grid points per wave length are used. The use of A-DEF1 results in a six-fold reduction 
in CPU-time for k = 40 and in a converged solution for k = 60. In case that 20 grid points per wave length are used, 
A-DEF1 renders the iteration count almost constant in the range of wave numbers considered. For the largest wave number 
k = 30, the use of A-DEF1 results in a more than ten-fold reduction in CPU time. These results clearly show that the method 
proposed works in case that the wave number is non-constant throughout the computational domain.
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Table 4
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the three-dimen-
sional non-constant wave number problem using 20 grid points per wave length (Problem 2).

Wave 
number k

Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

5 0.6 1.4 9 9
10 7.5 10.04 14 9
20 324.1 79.2 72 9
30 3810.90 361.7 285 11

Table 5
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the Marmousi prob-
lem using 10 grid points per wave length without damping (Problem 3).

Frequency f Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

1 1.22 5.07 13 7
10 10.18 9.437 112 13
20 72.16 60.32 189 22
40 550.20 426.79 354 39

Table 6
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the Marmousi prob-
lem using 10 grid points per wave length with damping parameter set equal to α = 0.025 (Problem 3).

Frequency f Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

1 1.25 5.06 13 7
10 9.63 9.35 106 13
20 70.45 57.47 181 21
40 522.90 424.74 333 38

Table 7
Solve time and number of iterations of CSLP/Bi-CGSTAB and A-DEF1 + CSLP/FGMRES(20) for the Marmousi prob-
lem using 20 grid points per wave length without damping (Problem 3).

Frequency f Solve time Iterations

CSLP A-DEF1 + CSLP CSLP A-DEF1 + CSLP

1 1.23 5.08 13 7
10 40.01 21.83 106 8
20 280.08 131.30 177 12
40 20232.6 3997.7 340 21

7.3. Marmousi problem

Numerical results for the Marmousi problem (Problem 3 in Section 2) are given in Table 5, Table 6 and Table 7. Table 5
and Table 6 consider the problem using 10 grid points per wave length with damping parameter α in Equation (2.1) set 
equal to α = 0 and α = 0.025, respectively. Table 7 considers the problem using 20 grid points per wave length and without 
damping. Table 5 and Table 7 confirm the earlier observed trend that the use of A-DEF1 lowers the number of iterations 
and that a reduced iteration count results in speedup in solve time at sufficiently high wave number. Table 6 shows that 
the inclusion of damping renders the problem easier to solve.

8. Conclusions

We have shown that the convergence of the complex shifted Laplacian preconditioner for the Helmholtz equation can 
be accelerated by combining it with deflation using multigrid vectors. The lower iteration count results for the problems 
considered in a reduction of computation time by a factor between four and ten depending on the problem size. Particular 
problems that were previously too large can now be solved. We performed a one-dimensional model problem analysis of 
two methods. This analysis shows that the First Deflate, Then Precondition method brings most eigenvalues of the Helmholtz 
operator in the vicinity of (1, 0) in the complex plane. The eigenvalues not belonging to this cluster form two tails on op-
posite sides of the cluster. These tails are caused by the near-singularity of the Helmholtz coarse grid operator. The number 
of elements in these tails and the spread of these tails increases with the wavenumber. The computationally expensive 
variant of the First Precondition, Then Deflate method produces a tightly clustered spectrum. Only at very high wavenum-
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bers the spread of the spectrum can be seen. Here the spread is caused by the shift towards zero of the eigenvalues of 
the Galerkin coarsened preconditioned operator. The computationally feasible variant of the First Precondition, Then Deflate 
method on the other hand is characterized by a spectrum that closely resembles the one resulting from the First Deflate, 
Then Precondition method.
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