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SUMMARY

Deflating the shifted Laplacian with geometric multigrid vectors yields speedup. To verify this claim,
we investigate a simplified variant of Erlangga and Nabben presented in [Erlangga and Nabben, ETNA,
2008;31:403–424]. We derive expressions for the eigenvalues of the two-level preconditioner for the one-
dimensional problem. These expressions show that the algorithm analyzed is not scalable. They also show
that the imaginary shift can be increased without delaying the convergence of the outer Krylov acceleration.
An increase of the number of grid points per wavelength results in convergence acceleration. This contrasts
to the use of the shifted Laplace preconditioner. Our analysis also shows that the use of deflation results in
a spectrum more favorable to the convergence of the outer Krylov acceleration. The near-null space compo-
nents are still insufficiently well resolved, and the number of iterations increases with the wavenumber. In the
two-dimensional case, the number of near-zero eigenvalues is larger than in the one-dimensional case. We
perform numerical computations with the two-level and multilevel versions of the algorithm on constant and
nonconstant wavenumber problems. Our numerical results confirm our spectral analysis. Copyright © 2013
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The aim of this work is to analyze a multilevel algorithm resembling the one presented in [1]
for the iterative solution of the finite difference discretized Helmholtz equation with contrast in
the wavenumber. The efficient solution of this problem has long been an open problem. It indeed
appears that an increase of the wavenumber in almost all of the currently available solvers leads to
a large increase in the number of iterations and therefore in computational cost. With the shifted
Laplace preconditioner (SLP), the number of iterations increases linearly with the wavenumber.
Alternative methods can be found in [2–5]. For a recent overview of preconditioners for the
Helmholtz equation, we refer to [6].

The first papers on these preconditioners are [7] and [8] in which a Laplace operator and a Laplace
operator with a real shift, respectively, are proposed. Both preconditioners lead to good results
for medium-sized wavenumbers. For large wavenumbers, numerical results on the contrary show
a steep increase in the number of iterations. A pioneering paper on SLPs is [9] in which incomplete
LU decompositions of a shifted Laplace operator are used as a preconditioner. With the Laplace
preconditioners with a complex shift proposed and studied in [10–12], the solver requires a number
of iterations that grow only linearly as the wavenumber increases. Inspired by this work, a number
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of generalizations appeared shortly afterward in [1, 13–16] together with applications in different
industrial contexts in [17–24]. More recent developments are given in [13, 25]. The convergence of
the SLPs is analyzed in [26, 27]. This analysis shows that the smallest eigenvalues of the precondi-
tioned operator rush to zero as the wavenumber increases and explains the nonscalability. In [1,28],
Erlangga and Nabben therefore propose to combine the SLP with deflation. As deflation vectors,
the columns of the bilinear interpolation operator from coarse to fine grid are used. We will refer to
these vectors as multigrid vectors. The deflation can be seen as a second-level preconditioner that
attempts to remove small eigenvalues. The resulting method is quite involved and requires a flexible
Krylov subspace method. Numerical results however suggest that the required number of iterations
is nearly independent of the wavenumber.

In this paper, we analyze a simplified two-level variant of the method proposed in [1], referred
to in the literature as ADEF-1 [29, 30]. In this algorithm, the SLP and the deflation operator are
interpreted as a smoother and a coarse-grid correction step, respectively. We perform a rigorous
Fourier two-grid analysis of one-dimensional and two-dimensional model problems with Dirichlet
boundary conditions. In this analysis, both the smoother and the coarse-grid system are inverted
by a direct method. Despite being a simplified setting, the one-dimensional analysis results in a
closed-form expression for the eigenvalues of the two-grid operator that reveals the following three
essential features of the solver. The deflation operator allows to make the SLP arbitrarily diagonally
dominant by increasing the imaginary part of the shift without paying any penalty in the number of
Krylov subspace iterations. It also shows that the performance of ADEF-1 improves if the number
of grid points per wavelength is increased. Although it is well known that for the SLP the number of
iterations for a fixed wavelength is mesh-width independent [26], a reduction of the number of itera-
tions for the SLP in the limit of increasing the number of grid points per wavelength has never been
observed before. Our analysis finally provides insight into the convergence of the outer GMRES
iteration as it shows that the use of deflation results in a tighter clustered spectrum more favorable
for the convergence of GMRES [31]. The near-null space components are still insufficiently well
resolved as the wavenumber increases to obtain a scalable algorithm. The number of GMRES itera-
tions in the one-dimensional problem considered increases linearly in case the wavenumber is larger
than or equal to thousand. We subsequently apply the two-level solver to two-dimensional model
problems with constant and nonconstant wavenumber discretized by a second-order finite differ-
ence scheme on uniform meshes. Numerical results confirm the result of the theoretical analysis:
The convergence of the two-level solver deteriorates for large wavenumber values.

To verify to what extend the aforementioned results carry over to the multilevel method proposed
in [1], we present some numerical results for a multilevel extension of the ADEF-1. These results
confirm that for small and medium values of the wavenumber, the number of iterations of the
multilevel method is constant, but for large wavenumbers, we observe an increase in the number
of iterations.

The paper is structured as follows. In Section 2, we describe a Helmholtz problem with
and without heterogeneity, its computational domain, and its second-order finite difference
discretization. In Section 3, the SLP and multigrid deflation are introduced. Section 4 outlines the
multilevel Krylov algorithm. Theoretical results of the Fourier analysis of one-dimensional and
two-dimensional Helmholtz problems are presented in Sections 5 and 6, respectively. In Section 7,
numerical results supporting the theory are shown, and finally, conclusions are drawn in Section 8.

2. PROBLEM FORMULATION

The Helmholtz equation for the unknown field u.x,y/ on a two-dimensional domain � with
boundary @� reads

��u� k2uD g on � , (2.1)

where k.x,y/ and g.x,y/ are the wavenumber and the source function, respectively. The
wavenumber k, the frequency f and angular frequency ! D 2�f , the speed of propagation c.x,y/,
and the wavelength �D c.x, y/=f are related by
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k D
2�

�
D
!

c
. (2.2)

On the boundary @�, we impose either the homogeneous Dirichlet or the first-order Sommerfeld
radiation boundary conditions. By denoting the imaginary unit by �, the latter is given by

@u

@n
� �kuD 0 on @� . (2.3)

More accurate radiation conditions are treated in, for example, [13, 22]. We will consider the
following two model problems.

Problem 1
In the first problem, we set � D .0, 1/ � .0, 1/, the wavenumber constant, and the source equal to
the Dirac delta function

g.x,y/D ı

�
x �

1

2
,y �

1

2

�
. (2.4)

For the rigorous Fourier analysis, we will consider a one-dimensional variant of this problem.

Problem 2
As the second problem, we consider the so-called wedge-problem introduced in [32] in which
� D .0, 600m/ � .0, 1000m/ is subdivided into three layers in which the wave velocity is set
to c D 2000 m/s, c D 1500 m/s, and c D 3000 m/s, respectively. A point source is centered in
x D 300 m and y D 0.

2.1. Finite difference discretization

The finite difference discretization of the two aforementioned problems on a uniform mesh with
mesh width h in both x and y directions with the stencil

ŒAh�D
1

h2

2
4 0 �1 0

�1 4� �2 �1
0 �1 0

3
5where � D k h (2.5)

leads to a system of linear equations

Ahxh D bh, (2.6)

where the discrete Helmholtz operator Ah is complex symmetric and equal to the sum of a stiffness
matrix ��h and ��2 times the identity Ih

Ah D��h � k
2Ih . (2.7)

We discretize the normal derivative on the boundary by using first-order forward differences. We
use the rule of thumb that at least 10 nodes per wavelength should be employed, which leads the
restriction

� 6 2�
10
Ð 0.628 . (2.8)

In some class of problems, the accuracy might require more refined grids, with say 20 or 30 nodes
per wavelength. To overcome the pollution error, the expression k2h3 should be kept constant,
requiring far more points per wavelength for large k [33]. In our experiments, the restriction (2.8) is
used, unless mentioned explicitly.
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3. TWO-LEVEL DEFLATED SHIFTED LAPLACE PRECONDITIONER

The linear system matrix Ah in (2.6) is complex-valued, sparse, symmetric, non-Hermitian, and
indefinite. The number of eigenvalues with negative real part increases with an increase of the
wavenumber k. Solving this linear system on a large scale necessarily requires the use of iterative
solution techniques. GMRES [34] and Bi-CGSTAB [35] are suitable choices for this system. Results
in [31] show that for the matrices considered in this paper, meaningful bounds on the convergence
of GMRES in terms of the eigenvalues of the preconditioned system can be obtained. This motivates
the study of how preconditioning and deflation transform the spectrum of the preconditioned matrix
such that the resulting system is easier to solve by GMRES. In this work, we make use of the SLP
combined with deflation with multigrid vectors. These vectors were constructed geometrically by
first standard h ! H D 2h coarsening the fine grid and subsequently setting the columns of the
interpolation matrix as deflation vectors. The combination of the preconditioner and the deflation
will result in an algorithm referred to as ADEF-1 in the literature [29, 30].

3.1. Shifted Laplace preconditioner

The SLPs are popular preconditioners for the Helmholtz equation. Their development started with
the preconditioner obtained by discretizing Laplace operator (Mh D��h) as proposed in [7]. Later,
the Helmholtz operator with an opposite sign in front of the wavenumber (Mh D��hC �

2Ih) was
considered in [8]. Subsequently, a Laplace operator with a complex shift was introduced in [10, 36]
and found to be more effective. Denoting by ˇ1 and ˇ2 two real numbers, the complex SLP can be
written as

Mh,.ˇ1,ˇ2/ D��h � .ˇ1 � �ˇ2/�
2Ih, ˇ1,ˇ2 2R , (3.1)

and the preconditioned operator as

Sh,.ˇ1,ˇ2/ DM
�1
h,.ˇ1,ˇ2/

Ah . (3.2)

The complex shift introduces damping and renders the preconditioned system amenable to approx-
imate inversion using either geometric multigrid [1, 36] or MILU [9]. More recently, algebraic
multigrid has been used to invert the preconditioner [14, 15].

The spectral properties of the shifted Laplace preconditioned Helmholtz operator M�1
h,.ˇ1,ˇ2/

Ah
are elaborated in [26]. This paper shows that the introduction of damping renders the problem easier
to solve and that the spectrum consists of a cluster in the complex plane near one and some eigen-
values that lie at a distance of O.	=k2/ from the origin where 	 is a small number not depending
upon k. As k increases, the smallest eigenvalues go to zero causing the convergence of the outer
Krylov subspace iteration to slow down. For fixed k, the number of iterations remains constant as
the mesh width h is reduced. A reduction of the number of iterations has not been observed. The
paper [26] also shows that the difficulty in solving the problem with Dirichlet boundary conditions
is representative for problems with radiation boundary conditions. In this paper, we analyze how the
use of deflation with multigrid vectors affects the convergence.

3.2. Two-level deflation

Multigrid vectors affect the convergence. Deflation is a technique to deal with small eigenvalues
in the preconditioned system that adversely affect the convergence of a Krylov subspace iteration
[29,30]. The basic idea is to bring the small eigenvalues to zero by a projection procedure. Denoting
the size of Ah by n, we define the matrix Zh 2 Rn�r whose r < n columns are the deflation
vectors. These vectors should be chosen such that the matrix Zh has full rank. Then, the Galerkin
or coarse-level matrix becomes Eh D ZT

h
AhZh. Given Zh, we define the deflation operator

Ph 2C
n�n as

Ph D Ih �AhQh where Qh DZhE
�1
h ZTh and Eh DZ

T
h AhZh . (3.3)

Observe that Qh inherits the complex symmetry from Ah. As Ph is a projection, its spectrum
consists of 0 and 1.

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:645–662
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In this paper, we will perform deflation with geometrically constructed multigrid vectors. We
therefore assume that p is a nonzero natural number and discretize � by a uniform mesh with
n D 2p elements and mesh width h D 1=n in each direction. Standard h ! H D 2h coarsening
of the fine mesh �h will result in a coarse mesh �H . As a prolongation operator, we choose the
bilinear interpolation operator such that fine grid points not belonging to the coarse grid have the
stencil

h
I hH

i
D
1

4

2
4 1 2 1

2 4 2

1 2 1

3
5
h

H

. (3.4)

To satisfy the requirement on the restriction IH
h

that IH
h
D c

�
I hH
�T

with c as a constant scalar,
we choose a full-weighting restriction operator. Corresponding equivalents for one-dimensional
problems are used. We set the matrix Zh in (3.3) equal to the coarse-to-fine grid interpolation
operator I hH . With this choice, the deflation operator Ph,H defined by (3.3) coincides with the
transpose of the two-grid correction operator with a coarse-grid operator AH build by Galerkin
coarsening, that is,

Ph,H D Ih �AhQh,H where Qh,H D I
h
HA
�1
H I

H
h and AH D I

H
h AhI

h
H , (3.5)

whereas both Ah and Qh,H are complex symmetric

P Th,H D Ih �Qh,HAh . (3.6)

The deflation here described shifts troublesome eigenvalues to the origin unlike multigrid methods
that push such eigenvalues to unity. For large problems, the exact inversion of AH is impractical,
and one has to resort to approximate solvers instead. Without proper care, this will however lead
to the introduction of close-to-zero eigenvalues in the preconditioned systems. This can be avoided
by controlling the approximate solver with AH or by deflating to the largest eigenvalue of the pre-
conditioned system. These issues are further discussed in the multilevel extension of the algorithm
in Section 4.

3.3. Two-level preconditioner

Applying the SLP preconditioner (3.2) to the multilevel deflated system requires solving a system
withM�1

h,.ˇ1,ˇ2/
Ph,HAh as coefficient matrix. Applying the multilevel deflation operator (3.6) to the

SLP preconditioned system instead leads to a system with P T
h,HM

�1
h,.ˇ1,ˇ2/

Ah as coefficient matrix.
The rigorous Fourier analysis in the sequel of this paper shows that in the case of homogeneous
Dirichlet boundary conditions, and in the case that both the SLP preconditioner Mh,.ˇ1,ˇ2/ and the
coarse-grid operator AH are inverted exactly, a basis of discrete sine modes exists that allows to
diagonalize both Ah and Mh,.ˇ1,ˇ2/ and to block-diagonalize Ph,H . This immediately implies that
the two aforementioned coefficient matrices have the same spectrum, that is,



�
M�1h,.ˇ1,ˇ2/

Ph,HAh

�
D 


�
P Th,HM

�1
h,.ˇ1,ˇ2/

Ah

�
. (3.7)

A more general proof of this identify is given in [30]. The presence of roundoff errors however
gives rise to algorithms referred to in the literature as ADEF-1 and ADEF-2, respectively [29, 30].
Whereas we implemented ADEF-2 according to the scheme shown in Figure 1 to generate the
numerical results in Section 7, we study ADEF-1 in our Fourier analysis. In this analysis, we will
denote the deflated preconditioned operator as

Bh,H ,.ˇ1,ˇ2/ D P
T
h,HM

�1
h,.ˇ1,ˇ2/

Ah D P
T
h,HSh,.ˇ1,ˇ2/ (3.8)

Copyright © 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2013; 20:645–662
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Figure 1. A schematic representation of the two-level ADEF-2 algorithm considered.

and use the following notation

diag

�
d1
d2

	
D

�
d1 0

0 d2

	

and

diag

2
64
d1
d2
d3
d4

3
75D

2
64
d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 d4

3
75 .

4. MULTILEVEL KRYLOV METHOD

The algorithm described in the previous section can be viewed as a two-level preconditioner for an
outer Krylov iteration in which the SLP preconditioner (3.1) acting on the first level is combined
with the multigrid deflation algorithm (3.5) acting on the second. The SLP preconditioner can be
approximated by using standard multigrid cycle [12]. The multigrid deflation requires the solution
of a coarse-grid problem with AH as coefficient matrix. As this matrix has the same properties of
the original operator, the preconditioned Krylov method just described can be applied recursively
on the condition that a flexible outer subspace Krylov method such as GCR [37] is employed. This
approach gives rise to a multilevel algorithm. Note however that convergence of the outer Krylov
method critically depends on the accuracy to which the system with AH as coefficient matrix is
solved. Indeed, an approximate coarse grid solver will yield a deflated operator with near-zero eigen-
values slowing down the convergence. The deflation operator is therefore adapted in such a way that
the undesired eigenvalues are shifted to the largest eigenvalue, which in case of the SLP precon-
ditioned Helmholtz is one, instead of zero. The multilevel algorithm in which a V-cycle is used to
approximate the SLP preconditioner is named ML-ADEF-1. Numerical results with ML-ADEF-1
as a preconditioner for GCR acceleration will be presented in Section 7.5.

5. ONE-DIMENSIONAL TWO-GRID FOURIER ANALYSIS

In this section, we perform a rigorous two-grid Fourier analysis of the solver proposed earlier in a
one-dimensional setting. We therefore consider the Helmholtz equation (2.1) supplied with homo-
geneous Dirichlet boundary conditions discretized on � D .0, 1/. Dirichlet boundary conditions
are easy to analyze. Furthermore, as these boundary conditions do not introduce any damping, the
analysis that follows can be considered to be a worst-case analysis for the problem with Sommerfeld
boundary conditions. This fact will be illustrated by numerical results in Section 7.3. The discretiza-
tion of the Helmholtz equation on a uniform mesh �h � .0, 1/ with mesh width hD 1=n using the
second-order accurate stencil

ŒAh�D
1

h2



�1 2� �2 �1

�
where � D k h , (5.1)
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results after elimination of the boundary conditions in the linear system

Ahxh D bh , (5.2)

where Ah 2 C.n�1/�.n�1/. Given the preconditioner Mh,.ˇ1,ˇ2/ defined in (3.1) and the multigrid
deflation operator Ph,H defined in (3.5), the goal of our analysis is to find all eigenvalues of the
deflated preconditioned operator Bh,H ,.ˇ1,ˇ2/. In this analysis, we assume that both the precondi-
tioner Mh,.ˇ1,ˇ2/ and the coarse grid matrix AH are inverted exactly. Details of our analysis can be
found in our technical report [38] and the monograph [39].

We denote by x 2Rn�1 the vector with components xi D i h and start our analysis by observing
that the grid vectors �`

h
2Rn�1 for 16 `6 n� 1 with components

�`h,i D sin.`�xi / (5.3)

are eigenvectors of Ah corresponding to the eigenvalues

�`.Ah/D
1

h2

�
2� 2c` � �

2
�

, (5.4)

where c` D cos.`�h/. This implies that the same grid vectors are eigenvectors of the precondi-
tioner Mh,.ˇ1,ˇ2/ and of the preconditioned operator (or smoother) Sh,.ˇ1,ˇ2/ corresponding to the
eigenvalues

�`.Mh,.ˇ1,ˇ2//D
1

h2

�
2� 2c` � �

2.ˇ1 � �ˇ2/
�

, (5.5)

and

�`.Sh,.ˇ1,ˇ2//D
2� 2c` � �

2

2� 2c` � �2.ˇ1 � �ˇ2/
, (5.6)

respectively.
The multigrid deflation (or coarse grid correction) operator P T

h,H employs a coarser grid with
mesh width H D 2h and as intergrid transfer and coarser operators the one-dimensional variants
of those described above. By reordering the eigenvectors of Ah in a standard way in .`,n � `/
harmonics, we obtain the basis

Vh D
n�
�`h,�n�`h

�
j `D 1, : : : ,n=2� 1

o
[
n
�
n=2

h

o
(5.7)

in which P T
h,H can be written in a block-diagonal form; that is, we can write

P Th,H D

��
P `h,H

�T 	
16`6n=2

, (5.8)

where the individual blocks are given by

P `h,H D I �
�
I hH

�` �
A`H

��1 �
IHh

�`
A`h . (5.9)

A standard computation gives the 2�1 blocks of the bilinear interpolation where for 16 `6 n=2�1,

�
I hH

�`
D
1

2

�
.1C c`/
�.1� c`/

	
, (5.10)

and where �
I hH

�n=2
D 0 . (5.11)
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The Galerkin coarsening then results in the 1� 1 blocks where for 16 `6 n=2� 1,

A`H D
�
IHh

�`
A`h

�
I hH

�`
D

1

2h2



2
�
1� c2`

�
� �2

�
1C c2`

��
(5.12)

and where

A
n=2
H D 0 . (5.13)

A straightforward computation subsequently allows to obtain, for 1 6 ` 6 n=2 � 1, the following

2� 2 blocks of
�
P `
h,H

�T
�
P `h,H

�T
D
1

Ç

2
4 �.c`C 1/ �c2` � 1�C 1

2
�2
�
c2
`2
� 1

�
1
2

�
c2
`
� 1

� �
2C 2c` � �

2
�

1
2

�
c2
`
� 1

� �
�2C 2c`C �

2
� �

c2
`
� 1

�
.3C c`/C

1
2
�2
�
c2
`
C 3

�
3
5

where ÇD 2
�
1� c2

`

�
C �2

�
c2
`
C 1

�
, and the 1� 1 block

�
P
n=2

h,H

�T
D 1 . (5.14)

The basis Vh (5.7) can therefore be used to block-diagonalize the deflated preconditioned operator;
that is, we can write

Bh,H ,.ˇ1,ˇ2/ D
h
B`h,H ,.ˇ1,ˇ2/

i
16`6n=2

(5.15)

where for 16 `6 n=2� 1, B`
h,H ,.ˇ1,ˇ2/

is the 2� 2 matrix

B`h,H ,.ˇ1,ˇ2/
D
�
P `h,H

�T
diag

"
�`
�
Sh,.ˇ1,ˇ2/

�
�n�`

�
Sh,.ˇ1,ˇ2/

�
#

(5.16)

and where

B
n=2

h,H ,.ˇ1,ˇ2/
D �n=2

�
Sh,.ˇ1,ˇ2/

�
D

2� �2

2� �2.ˇ1 � �ˇ2/
. (5.17)

This block-diagonal form renders an analytical computation of the eigenvalues of Bh,H ,.ˇ1,ˇ2/

feasible and results in the conclusion that Bh,H ,.ˇ1,ˇ2/ has a zero eigenvalue of multiplicity n=2�1,
the eigenvalue (5.17), and n=2� 1 eigenvalues of the form

�`.Bh,H ,.ˇ1,ˇ2//D
a`C �b`

c`C �d`
for 16 `6 n=2� 1, (5.18)

where a`, b`, c`, and d` are third-order polynomials in �2 and given by

a` D
�
�1� c`

2
�
ˇ1�

6C
�
4ˇ1C 2� 2c`

2C 4c`
2ˇ1

�
�4

C
�
8c`

2 � 4ˇ1 � 8C 4c`
4ˇ1

�
�2C

�
8� 16c`

2C 8c`
4
�

b` D
�
1C c`

2
�
ˇ2�

6C
�
�4c`

2ˇ2 � 4ˇ2
�
�4C

�
4ˇ2 � 4c`

4ˇ2
�
�2

c` D
�
ˇ2
2 � ˇ1

2C c`
2ˇ2

2 � c`
2ˇ1

2
�
�6

C
�
4ˇ1 � 2c`

2ˇ1
2C 2c`

2ˇ2
2C 2ˇ1

2 � 2ˇ2
2C 4c`

2ˇ1

�
�4

C
�
8ˇ1c`

2 � 8ˇ1 � 4C 4c`
4
�
�2C 8c`

4C 8� 16c`
2

d` D
�
2ˇ1ˇ2C 2c`

2ˇ1ˇ2
�
�6C

�
4c`

2ˇ1ˇ2 � 4ˇ1ˇ2 � 4ˇ2 � 4c`
2ˇ2

�
�4

C
�
8ˇ2 � 8c`

2ˇ2
�
�2.
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In the remainder of this section, we will use the aforementioned expression to investigate the
behavior of the spectrum of Bh,H ,.ˇ1,ˇ2/ in three parameter studies: varying wavenumber, vary-
ing the number of grid points per wavelength, and varying the imaginary part in the shift ˇ2. In
Figures 2–4, we plot the spectrum studied in the complex plane. We observe that the zero eigen-
value of Bh,H ,.ˇ1,ˇ2/ does not influence the convergence of the outer Krylov subspace acceleration
and is therefore left out of our considerations.

Figure 2 shows the nonzero part of the spectrum of Bh,H ,.ˇ1D1,ˇ2D1/ for k D 100, k D 1000,
and k D 10, 000 using 20 grid points per wavelength (and thus � D 0.3215). The magnitude of the
smallest eigenvalue in size is explicitly given. This figure shows that the spectrum for k D 100
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is clustered around .0.5, 0/ on the complex plane. As the wavenumber increases, however, the
spectrum smears out on both sides, and eigenvalues shift toward the origin. Eigenvalues with a
negative real part appear. In the range of wavenumbers considered, the smallest eigenvalue decreases
by more than one order of magnitude. On the basis of these observations, we expect GMRES
to converge fast for k up to 100. For larger wavenumbers, however, the increasing number of
small eigenvalues prevents the solver from being scalable. This nonscalability becomes even more
pronounced in two dimensions as will be confirmed by further analysis and numerical experiments.

Figure 3 shows the nonzero spectrum of Bh,H ,.ˇ1D1,ˇ2D1/ for k D 2000 and for � D 0.625,
� D 0.312, and � D 0.2015. The magnitude of the smallest eigenvalue is again shown. This figure
shows that the number of small eigenvalues decreases, that the spectrum becomes more clustered,
and the deflated preconditioned system becomes easier to solve by Krylov subspace methods as the
number of grid points per wavelength is increased. This effect has not been observed when the SLP
preconditioner is used without deflation.

Figure 4 shows the nonzero spectrum of Bh,H ,.ˇ1D1,ˇ2/ for � D 0.625, for k D 2000, and for
ˇ2 D 0.5, ˇ2 D 0.75, and ˇ2 D 1. This figure shows that, contrary to the case in which the SLP pre-
conditioner is used without deflation, the spectrum remains virtually unchanged as ˇ2 increases. The
SLP preconditioner becomes more diagonally dominant as ˇ2 increases. This result opens promising
perspectives to obtain a good approximation of the preconditioner at low cost.

Figure 5 finally shows a bar plot of the modulus j�`j of the eigenvalues of Bh,H ,.ˇ1D1,ˇ2D1/ in
magnitude close to zero for � D 0.625 and � D 0.3215 and for various values for k. The numbering
` in this figure corresponds to the one defined earlier. This figure clearly shows that the number of
small eigenvalues grows with k and that this effect is more pronounced in case a smaller number of
grid points per wavelength is used (which corresponds to a larger value of �). This figure therefore
confirms the findings discussed earlier for Figure 3.
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Figure 5. Magnitude j�j of nonzero part of � 2 
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6. TWO-DIMENSIONAL TWO-GRID FOURIER ANALYSIS

In this section, we extend the analysis of the previous section to two dimensions. We therefore
consider the Helmholtz equation (2.1) supplied with homogeneous Dirichlet boundary conditions
discretized on�D .0, 1/�.0, 1/. As before, we assume the preconditionerMh,.ˇ1,ˇ2/ and the coarse
grid operator AH to be inverted exactly. The second-order finite difference discretization using the
stencil (2.5) results after elimination of the boundary conditions in the linear system

Ahxh D bh (6.1)

where Ah 2C.n�1/
2�.n�1/2 .

We denote by x,y 2 Rn�1 the vectors with components xi D i h and yi D i h and observe that

the grid vectors �`1,`2
h
2R.n�1/

2
for 16 `1, `2 6 n� 1 with components

�
`1,`2
h,j.n�1/Ci D sin.`1�xi / sin.`2�yj / (6.2)

are eigenvectors of Ah corresponding to the eigenvalues

�`1,`2 .Ah/D
1

h2

�
4� 2c`1 � 2c`2 � �

2
�

, (6.3)

where c`1 D cos.`1�h/ and c`2 D cos.`2�h/. The eigenvalues of the preconditionerMh,.ˇ1,ˇ2/ and
the preconditioned operator Sh,.ˇ1,ˇ2/ DM

�1
h,.ˇ1,ˇ2/

Ah are therefore given by

�`1,`2
�
Mh,.ˇ1,ˇ2/

�
D

1

h2



4� 2c`1 � 2c`2 � .ˇ1 � �ˇ2/�

2
�

(6.4)

and

�`1,`2
�
Sh,.ˇ1,ˇ2/

�
D

4� 2c`1 � 2c`2 � �
2

4� 2c`1 � 2c`2 � �
2.ˇ1 � �ˇ2/

, (6.5)

respectively.
To block-diagonalize the multigrid deflation operator P T

h,H , we again reorder the basis of eigen-
vectors of Ah in a standard way in
..`1, `2/, .n� `1,n� `2/, .`1,n� `2/, .n� `1, `2// harmonics [39] to obtain the basis

Vh D
n�
�
`1,`2
h

,�n�`1,n�`2
h

,�`1,n�`2
h

,�`1,n�`2
h

�
j `1, `2 D 1, : : : ,n=2� 1

o
(6.6)

[
n�
�
`1,n=2
h

,�n�`1,n=2
h

�
j `1 D 1, : : : ,n=2� 1

o

[
n�
�
n=2,`2
h

,�n=2,n�`2
h

�
j `2 D 1, : : : ,n=2� 1

o
[
n
�
n=2,n=2
h

o
.

In this basis, P T
h,H can be written in a block diagonal form; that is, we can write

P Th,H D

��
P
`1,`2
h,H

�T 	
16`1,`26n=2

, (6.7)

where the individual blocks are given by�
P
`1,`2
h,H

�T
D I �

�
I hH

�`1,`2 �
A
`1,`2
H

��1 �
IHh

�`1,`2
A
`1,`2
h

. (6.8)

A standard computation results in the 4 � 1 blocks of the bilinear interpolation I hH where for
16 `1, `2 6 n=2� 1,

�
I hH

�`1,`2
D
1

4

2
6664
�
1C c`1

� �
1C c`2

��
1� c`1

� �
1� c`2

��
1C c`1

� �
1� c`2

��
1� c`1

� �
1C c`2

�

3
7775 (6.9)
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and where for other values of `1 and `2, �
I hH

�`1,`2
D 0 . (6.10)

The Galerkin coarsening gives the 1� 1 blocks where for 16 `1, `2 6 n=2� 1,

A
`1,`2
H D

1

h2

h
4
�
1� 2 c`1c`2 C c2`1 C c2`2 C c2`1c

2
`2
� c3`1c`2 � c`1c

3
`2

�
��2

�
1C c2`1 C c2`2 C c2`1c

2
`2

�i
(6.11)

and where for other values of `1 and `2,

A
`1,`2
H D 0 . (6.12)

The 4 � 4 blocks of the multigrid deflation operator P T
h,H can subsequently be computed for

1 6 `1, `2 6 n=2 � 1. For other values of `1 and `2, these blocks are of size either 2 � 2 or
1� 1 and equal to the identity.

The basis Vh (6.6) can therefore be used to block-diagonalize the deflated preconditioned
operator; that is, we can write

Bh,H ,.ˇ1,ˇ2/ D
h
B
`1,`2
h,H ,.ˇ1,ˇ2/

i
16`1,`26n=2

(6.13)

where for 16 `1, `2 6 n=2� 1, B`
h,H ,.ˇ1,ˇ2/

is the 4� 4 block

B
`1,`2
h,H ,.ˇ1,ˇ2/

D
�
P
`1,`2
h,H

�T
diag

2
66664

�`1,`2
�
Sh,.ˇ1,ˇ2/

�
�n�`1,n�`2

�
Sh,.ˇ1,ˇ2/

�
�n�`1,`2

�
Sh,.ˇ1,ˇ2/

�
�`1,n�`2

�
Sh,.ˇ1,ˇ2/

�

3
77775 , (6.14)

and where for other values of `1 and `2, B`1,`2
h,H ,.ˇ1,ˇ2/

is either a 2� 2 block, for example,

B
`1,n=2
h,H ,.ˇ1,ˇ2/

D diag

"
�`1,n=2

�
Sh,.ˇ1,ˇ2/

�
�n�`1,n=2

�
Sh,.ˇ1,ˇ2/

�
#

(6.15)

or the 1� 1 block

B
n=2,n=2
h,H ,.ˇ1,ˇ2/

D �n=2,n=2
�
Sh,.ˇ1,ˇ2/

�
D

4� �2

4� �2.ˇ1 � �ˇ2/
. (6.16)

The eigenvalues of Bh,H ,.ˇ1,ˇ2/ can therefore be computed numerically as the eigenvalues of the
separate blocks. In the remainder of this section, we will present the results of such computations
that confirm the properties of the solver revealed in the previous section.

Figure 6 shows the nonzero part of the spectrum of Bh,H ,.ˇ1D1,ˇ2D1/ for k D 30, k D 60,
and k D 120 using 10 grid points per wavelength (and thus � D 0.625). The value of the eigen-
value smallest in size is given. For k D 30, the spectrum is clustered away from the origin. As
the wavenumbers increase, the radius of the cluster increases. Eigenvalues close to the origin and
eigenvalues with a negative real part appear. The number of unresolved near-null space eigenmodes
grows substantially faster than in the one-dimensional case. These unresolved modes hamper the
solver from being scalable.

Figure 7 shows the magnitude of the five eigenvalues smallest in size of 
.Bh,H ,.1, 1// versus the
wavenumber for � D 0.625 (left) and � D 0.3215 (right) on a logarithmic scale. This figure serves
to further illustrate the observation made earlier for Figure 6 that the eigenvalues shift to the origin
as the wavenumber increases and that this effect is more pronounced in case that a small number of
grid points per wavelength is used.
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Figure 6. Nonzero part of 
.Bh,H ,.1, 1// for the two-dimensional problem for various values of k satisfying
� D 0.625. (a) k D 30, (b) k D 60, and (c) k D 120.
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Figure 7. Magnitude of the five eigenvalues smallest in size of 
.Bh,H ,.1, 1// versus the wavenumber in the
two-dimensional problem for (a) � D 0.625 and (b) � D 0.3215.

7. NUMERICAL EXPERIMENTS

In this section, we perform numerical experiments on the constant (Problem 1) and nonconstant
(Problem 2) wavenumber problems described in Section 2 aiming at various goals. First, in
Section 7.1, we show that using deflation allows us to make the SLP preconditioner more diag-
onally dominant by increasing the imaginary part in the shift (ˇ2) without paying any penalty in
the number of GMRES iterations. Next, in Section 7.2, we employ the one-dimensional problem
with Sommerfeld boundary conditions to show that the number of deflated preconditioned GMRES
iterations remains constant up to k D 800 and grows linearly starting at k D 1000. Subsequently,
in Section 7.3, we show how imposing Dirichlet boundary conditions in our Fourier analysis can be
justified and how the use of deflation affects the number of preconditioned GMRES iterations. We
repeat these experiments for the nonconstant wavenumber problem in Section 7.4. Until here, we
employ a two-level version of our algorithm. Finally, in Section 7.5, we conduct numerical experi-
ments with the multilevel extension of the algorithm to give further evidence of the nonscalability
of the algorithm at sufficiently high wavenumbers. In our experiments, we use a zero starting guess
and stop the outer Krylov subspace iterations if

kbh �Ahxk2

kbhk2
6 10�7 . (7.1)
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7.1. Influence of the imaginary part of the shift

In Figure 8, we plotted the required number of GMRES iterations to solve Problems 1 and 2 with
first-order Sommerfeld boundary conditions as a function of the imaginary shift ˇ2. In Problems 1
and 2, we used k D 50 and f D 30, respectively, and employed 10 grid points per wavelength.
We have chosen ˇ1 D 1 and allowed ˇ2 to vary between 0 and 1. For ˇ2 D 0, the SLP precon-
ditioner coincides with the discrete Helmholtz operator, and the algorithm converges in a single
iteration. The figure shows that without deflation, the number of GMRES iterations increases with
ˇ2. This is because the SLP preconditioner differs more from the discrete operator as ˇ2 increases
(observed in, e.g., [36]). More interestingly, the figure shows that with deflation, the required number
of GMRES iterations initially increases but remains constant for ˇ2 > 0.1. These results confirm
the Fourier analysis spectrum in Section 5 and opens promising perspectives on obtaining a good
preconditioner at low cost.

7.2. One-dimensional constant wavenumber problem

In Figure 9, we plotted the number of SLP preconditioned GMRES iterations with and without
deflation required to solve the one-dimensional Helmholtz on the interval .0, 1/ supplied with
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Figure 8. Number ofMh,.1, ˇ2/ preconditioned GMRES iterations with and without deflation versus ˇ2 for
Problem 1 for k D 50 and Problem 2 for f D 30, both problems with Sommerfeld boundary conditions.
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Sommerfeld boundary conditions. We used the shift .ˇ1,ˇ2/ D .1, 1/ and 20 grid points per
wavelength. In Figure 9(a) and (b), we consider the wavenumber in the range of 0 6 k 6 1000
and 1000 6 k 6 20, 000, respectively. This figure shows that in the low wavenumber range up to
k D 1000, the number of iterations is almost independent of k. Starting at k D 1000, however, we
observed a number of iterations that scales linearly with the wavenumber.

7.3. Two-dimensional constant wavenumber problem

In Figure 10, we plotted the spectrum of the SLP preconditioned operator Sh,.1, 1/ and two-grid
operator Bh,H ,.1, 1/ for the constant wavenumber problem (Problem 1) for k D 50 with Sommerfeld
boundary conditions using 10 grid points per wavelength. In this figure, we used circles to highlight
the distance of the cluster of eigenvalues to the origin. Comparing Figure 10(a) and (b) with their
equivalues for the Dirichlet boundary conditions in Figure 6 confirms earlier findings in, that is,
[36] that the problem with Sommerfeld boundary conditions is easier to solve. This is due to the
damping that the boundary conditions introduce. This justifies the use of Dirichlet boundary con-
ditions to analyze the worst-case scenario by Fourier analysis. Figure 10(b) shows that the use of
deflation results in a spectrum much more favorable for the convergence of GMRES. Indeed, the
cluster of eigenvalues of Bh,H ,.1, 1/ lies further away from the origin than the spectrum of Sh,.1, 1/.
How the spectra shown in Figure 10 translate into iteration counts is shown in Tables I and II for
various wavenumbers.

In Tables I and II, we give the number of GMRES iterations required to solve the constant
wavenumber problem with Dirichlet and Sommerfeld boundary conditions for a range of
wavenumbers and number of elements, respectively. We contrast the variants with and without
deflation. In both tables, only the number of elements on and below the diagonal highlighted in bold
suffice to meet the requirement of 20 mesh points per wavelength, corresponding to � D 0.3125. For
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Figure 10. Spectrum of (a) the preconditioned Helmholtz Sh,.1, 0.5/ and (b) two-grid preconditioner
Bh,H ,.1, 0.5/ for Problem 1 with Sommerfeld boundary conditions for � D 0.625.

Table I. Number of GMRES iterations for Problem 1 with Dirichlet boundary conditions for various
wavenumbers and grid resolutions using the SLP preconditioner Mh,.1, 0.5/ with and without deflation.

k D 10 k D 20 k D 30 k D 40 k D 50 k D 100

nD 32 3/10 8/17 17/31 35/50 52/80 13/14
nD 64 3/10 6/17 10/30 17/47 24/63 221/252
nD 96 3/10 5/17 7/30 11/46 15/62 209/220
nD 128 3/10 5/17 6/30 10/45 11/62 90/196
nD 160 3/10 4/17 5/30 8/45 9/62 65/194
nD 320 2/10 3/17 4/30 5/45 6/61 24/193
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Table II. Number of GMRES iterations for Problem 1 with Sommerfeld boundary conditions for various
wavenumbers and grid resolutions using the SLP preconditioner Mh,.1, 0.5/ with and without deflation.

k D 10 k D 20 k D 30 k D 40 k D 50 k D 100

nD 32 5/10 8/17 14/28 26/44 42/70 13/14
nD 64 4/10 6/17 8/28 12/36 18/45 173/163
nD 96 3/10 5/17 7/27 9/35 12/43 36/97
nD 128 3/10 4/17 6/27 7/35 9/43 36/85
nD 160 3/10 4/17 5/27 6/35 8/43 25/82
nD 320 3/10 4/17 4/27 5/35 5/42 10/80

both Dirichlet and Sommerfeld boundary conditions, the number of iterations for fixed k decreases
with increasing n and thus increasing the number of grid points per wavelength. This confirms our
Fourier analysis. The diagonal just above the highlighted one corresponds to � D 0.625. For this
often used discretization, the growth in the number of iterations is larger than for the case that
� D 0.3125.

7.4. Two-dimensional wedge problem

In this section, we consider the two-dimensional wedge problem (Problem 2). As in the previous
section, we give in Table III the required number of GMRES iterations for various frequencies and
mesh sizes with and without deflation. In this table, the leftmost column indicates the number of
grid points used in each coordinate direction. This table shows that although deflation is effective
in reducing the number of iterations even in the case of nonconstant wavenumbers, not all near-null
spaces of the system are sufficiently removed to obtain a fully scalable algorithm. The number of
elements on the diagonal highlighted in bold meet the requirement of approximately 20 mesh points
per wavelength.

7.5. Multilevel Krylov algorithm

In Table IV, we give the number of outer GCR [37] iterations required to solve Problem 1 using
multilevel algorithm ML-ADEF-1 for various values of the wavenumber using 20 grid points per
wavelength. We recursively apply coarsening until we obtain a single grid point on the coarsest level.

Table III. Number of Mh,.1, 0.5/ preconditioned GMRES iterations with and without deflation for
Problem 2 for various wavenumbers and grid resolutions.

freqD 10 freqD 20 freqD 30 freqD 40 freqD 50

74� 124 7/33 20/60 79/95 267/156 490/292
148� 248 5/33 9/57 17/83 42/112 105/144
232� 386 5/33 7/57 10/81 25/108 18/129
300� 500 4/33 6/57 8/81 12/105 18/129
374� 624 4/33 5/57 7/80 9/104 13/128

Table IV. Number of outer GCR iterations preconditioner by ML-ADEF-1 for Problem 1 for various
wavenumbers and � D 0.3125 using the shifts .ˇ1,ˇ2/D .1, 1/.

k D 10 k D 20 k D 40 k D 80 k D 160

TL 6 7 11 15 25
ML-ADEF-1(4,2,1) 9 11 16 27 100+
ML-ADEF-1(6,2,1) 9 10 14 21 47
ML-ADEF-1(8,2,1) 9 10 13 20 38
ML-ADEF-1(8,3,2) 9 10 13 19 37
ML-ADEF-1(10,2,1) 9 10 14 19 32
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In Table IV, the abbreviation TL stands for the two-level algorithm considered before, whereas the
indices n1, n2, and n3 in the notation ML-ADEF-1.n1,n2, andn3/ denote the number of GCR
iterations on the first, second, and third coarser levels, respectively. On the next coarser levels,
a single GCR iteration is used, except for the coarsest level where a direct solver is employed. A
single standard V(1, 1)-cycle with damped Jacobi used as a damping parameter and ! D 2=3 as a
smoother was used to approximate the SLP preconditioner. Table IV shows that obtaining scalability
in the range of wavenumbers considered requires increasing n1 (the number of GMRES iterations
on the first coarser level), indicating again that the solver considered is not scalable.

8. CONCLUSIONS

In this paper, we performed a rigorous Fourier analysis of a two-level variant of the multilevel
Krylov method for the Helmholtz equation proposed in [1]. The distinct feature of the solver
analyzed is the two-level deflation of the SLP at each step of an outer Krylov subspace acceleration.
Our analysis of one-dimensional and two-dimensional models reveals three properties of the solver.
The first is that with deflation, the solver performs better than without deflation for medium-
sized wavenumber problems. Beyond a certain threshold value, however, the solver depends again
linearly on the wavenumber. The second property is that the SLP can be made arbitrarily diagonally
dominant by increasing the imaginary part of the shift without paying any penalty in the number of
Krylov iterations. The third property is that with the use of deflation, the required number of shifted
Laplacian iterations decreases with an increasing number of grid points per wavelength. These prop-
erties are verified by numerical experiments on constant and nonconstant wavenumber problems and
will be exploited in the future in tackling large-scale problems.
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