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Control and Identification of Distributed Systems

Control of spatially interconnected system arise in many applications

multi-agent systems

distributed power control

control of PDEs

· · · · · ·
Challenge for control and identification of such systems

High Computational Complexity

N interconnected systems, each system with n states, O(n3N3)

Memory Consumption

O(n2N2), not economical for large N.
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Ways Out

Overcome the computational complexity

Linear matrix inequality (LMI) approach

Spatially invariant system transformed by fractional transformation,
O(n2αNα), where 2.5 < α < 3.5. [D’Andrea & Dullerud, TAC 2003.]

Structured matrix approach

Exploit the matrix structure, O(n3N). [Rice & Verhaegen, TAC 2010,
TAC 2011; Torres & van Wingerden, TAC 2014.]

Approximate sparse inverse

Exploit the sparsity of the system matrix, compute an approximate sparse
inverse. [Haber & Verhaegen, TAC 2013; Lin & Jovanovic, TAC 2014.]

Reduce memory consumption

Structured matrix approach

O(n2N) for sequentially semiseparable (SSS) matrix, n� N.

Approximate sparse inverse

Depends on the prescribed sparsity patten and approximation error, and
< O(n2N2).
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1-D Distributed Systems

Spatially Interconnected Systems
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Global System Model

x̄ =
[
xT1 xT2 · · · xTN

]T
ū =

[
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]T
ȳ =
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]T
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SSS Matrices and Properties

Definition
Let A be an N × N block matrix with SSS structure, then A can be written in
the following block partitioned form

Ai,j =


UiWi+1 · · ·Wj−1V

T
j , if i < j ;

Di , if i = j ;
PiRi−1 · · ·Rj+1Q

T
j , if i > j .

and denoted as A = SSS(PS , RS , Qs , Ds , Us , Ws , Vs).

Properties of SSS Matrices

+, ×, and ()−1 are closed under such structure.

Complexity of at most O(r3N)

+, × will lead to growth of the rank of the off-diagonal blocks, ri , where
r = max

i
ri .

Model order reduction (MOR) is necessary to keep the computational
complexity low.
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Model Reduction for SSS Matrices

Why Model Reduction?

The off-diagonal rank r defined by

r = max {rl , ru}
where

rl = max {size(Ri )} , ru = max {size(Wi )}

Basic matrix-matrix operations increase r (keep in mind O(r3N)).

What is Model Reduction?

To approximate the SSS matrix

A = SSS(PS , RS , Qs , Ds , Us , Ws , Vs)

with
Ã = SSS(P̃S , R̃S , Q̃s , Ds , Ũs , W̃s , Ṽs)

where P̃S , R̃S , Q̃s , Ũs , W̃s , Ṽs have smaller size, and

‖A− Ã‖ ≤ ε
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SSS Matrices and Its LTV System Realization

Motivation

Mixed-causal linear time-varying (LTV) system over finite time interval [k0, kf ],[
xci+1
xai−1

]
=

[
Ri

Wi

] [
xci
xai

]
+

[
Qi
Vi

]
ui

yi =
[
Pi Ui

] [xci
xai

]
+ Di ui

ū =
[
uT1 , uT2 , . . . uTN

]T
ȳ =

[
yT1 , yT2 , . . . yTN

]T


N=4
=⇒ ȳ =


Di U1V2 U1W2V3 U1W2W3V4

P2Q1 D2 U2V3 U2W3V4
P3R2Q1 P3Q2 D3 U3V4

P4R3R2Q1 P4R3Q2 P4Q3 D4

 ū

How to do Model Reduction?

SSS matrix 
generators

LTV system 
matrices

LTV 
system 
MOR

SSS matrix 
generators of 
smaller size

Reduced LTV 
system matrices
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Approximate Balanced Truncation for LTV Systems

Low Rank Approximation of the Gramians

Causal part of the mixed-causal LTV system,{
xk+1 = Akxk + Bkuk

yk = Ckxk

over [ko , kf ], where Ak ∈ RMk+1×Mk , Bk ∈ RMk+1×mk , and Ck ∈ Rnk×Mk .

Controllability gramian Gc (k) and observability gramian Go(k)

Gc (k + 1) = AkGc (k)AT
k + BkB

T
k

Go(k) = AT
k Go(k + 1)Ak + CT

k Ck

with Gc (ko) = 0 and Go(kf + 1) = 0. Gc (k) and Go(k) are symmetric positive
semi-definite, usually of low numerical rank.

Gc (k) = LkL
T
k , Lk ∈ RMk×rk , rk ≤ Mk ,

Low rank approx.
=⇒ Gc (k) ≈ L̃k L̃

T
k , L̃k ∈ RMk×r , r ≤ rk .
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Approximate Balanced Truncation for LTV Systems
(cont’d)

Low Rank Update

Approximate Gc (k) ≈ G̃c (k) = L̃k L̃
T
k , update G̃c (k + 1)[

Ak L̃k Bk

]
= UΣVT

U =
[

U1 U2
]
, Σ =

[
Σ1

Σ2

]
L̃k+1 = U1Σ1

Approximate Balanced Truncation

Balancing via
G̃Tc (k)G̃o(k) = UkΣkV

T
k

truncation by

Πl (k) = G̃o(k)VkΣ
− 1

2
k , Πr (k) = G̃c (k)UkΣ

− 1
2

k

gives {
x̃k+1 = Πl (k + 1)AkΠr (k)x̃k + Πl (k + 1)Bkuk

yk = CkΠr (k)x̃k
.
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Extended Kalman Filter for 1-D System Identification

1-D Heat Equation

Heat equation over x ∈ [0, 1]

∂u(x , t)

∂t
= ∇ · (k(x)∇u(x , t))−

1

2
u(x , t)

u(x , t0) = u0 on ∂Γ, ∇· divergence operator and ∇ gradient operator, k(x) the
heat conduction coefficients.

PDE
FEM/FDM

=⇒ ODE
Euler Method

=⇒
{

Tk+1 = A(θ)Tk + B(θ)uk

yk = C(θ)Tk

with θ = {k(x),∆t} {
Tk+1 = A(θ)Tk + B(θ)uk + ωk

yk = C(θ)Tk + vk

where E(ωkω
T
j ) = Qδkj , E(vkv

T
j ) = Rδjk , E(ωkv

T
j ) = Sδkj , E(x0) = 0,

E(x0xT0 ) = Πx and E(θθT ) = Πθ.
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Extended Kalman Filter for SysID

Innovations Form
T̂k+1 = A(θ̂k )T̂k + B(θ̂k )uk + Kk

(
yk − C(θ̂k )T̂k

)
θ̂k+1 = θ̂k + Lk

(
yk − C(θ̂k )T̂k

)
Kalman gains[

Kk

Lk

]
=

([
Ak Mk

0 I

]
Ξk

[
Ck Nk

]T
+

[
S
0

])
P−1
k .

and Ak = A(θ̂k ), Mk =
∂

∂θ

(
A(θ)T̂k + B(θ)uk

)
|
θ=θ̂k

, Ck = C(θ̂k ),

Nk =
∂

∂θ

(
C(θ)T̂k

)
|
θ=θ̂k

where

Pk =
[

Ck Nk

]
Ξk

[
Ck Nk

]T
+ R

Ξk+1 =

[
Ak Mk

0 I

]
Ξk

[
Ak Mk

0 I

]T
−
[

Kk

Lk

]
Pk

[
Kk

Lk

]T
+

[
Q 0
0 0

]
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Numerical Experiments

Choose k(x) ∈ 1 + 2
5
U [−1, 1], ω ∼ N (0, 10−6), v ∼ N (0, 10−6)

Set initial guess Ξx = Ξθ = I , k0 = 1. Stop criteria
‖θ̂k − θ?‖2

‖θ?‖2

≤ 5× 10−4

Random run the numerical experiments 5 times.
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Numerical Experiments (cont’d)
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Conclusions & Remarks

SSS matrix computations yield linear computational complexity for EKF
for 1-D SysID.

The approximate balanced truncation is computationally cheaper than the
conventional method.

Both MOR algorithms give linear computational complexity.

To extend to higher dimensional systems, such as 2-D or 3-D, multilevel
SSS matrix is necessary.

For multilevel SSS matrices, structure preserving MOR is the key, still an
open problem.
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