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Control and ldentification of Distributed Systems

Control of spatially interconnected system arise in many applications
@ multi-agent systems
@ distributed power control
@ control of PDEs

Challenge for control and identification of such systems

@ High Computational Complexity

N interconnected systems, each system with n states, (’)(n3 N3)

@ Memory Consumption

O(n*N?), not economical for large N.
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Ways Out

Overcome the computational complexity
@ Linear matrix inequality (LMI) approach

Spatially invariant system transformed by fractional transformation,
O(n**N®), where 2.5 < a < 3.5. [D'Andrea & Dullerud, TAC 2003.]

@ Structured matrix approach

Exploit the matrix structure, (D(n3N). [Rice & Verhaegen, TAC 2010,
TAC 2011; Torres & van Wingerden, TAC 2014.]

@ Approximate sparse inverse

Exploit the sparsity of the system matrix, compute an approximate sparse
inverse. [Haber & Verhaegen, TAC 2013; Lin & Jovanovic, TAC 2014.]

Reduce memory consumption
@ Structured matrix approach
O(n?N) for sequentially semiseparable (SSS) matrix, n < N.
@ Approximate sparse inverse

Depends on the prescribed sparsity patten and approximation error, and
< O(n?N?).
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@ Problem Formulation
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1-D Distributed Systems

Spatially Interconnected Systems Global System Model
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.
o= [T T T
u= [Ul U2 UN]
.
o—[,T T T
V= [yl Yo yN]
» ” v Global system
X]_[A B][x
y| = ¢ bz
Local system
where,
i A; Bf B> B [x Ay BPcl  BPwhCP  BPWhwsCh
S fiv1 | _ | 0 Qi |f i | B As B2CP ByWsCP
T |bica (o A AL B{R,Cf Bfcf As By}
Yi G G 6P b Lui BfRsRyCf  BfRsC,  Bfc) Ay
3
TUDelft

MOR for SSS Matrices and Applications



© Sequentially Semiseparable Matrices
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SSS Matrices and Properties

Definition
Let A be an N x N block matrix with SSS structure, then A can be written in
the following block partitioned form
UWigq--- Wj_l\/jT, if i <j;
Aij= D;, if i =j;
PiRi—l'“Rj+1QjT7 if i>j.
and denoted as A = SSS(Ps, Rs, Qs, Ds, Us, Ws, V5).

Properties of SSS Matrices

@ +, x, and ()71 are closed under such structure.
@ Complexity of at most O(r3N)
@ +, X will lead to growth of the rank of the off-diagonal blocks, r;, where
r = maxr;.
1

@ Model order reduction (MOR) is necessary to keep the computational
complexity low.
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Model Reduction for SSS Matrices

Why Model Reduction?

The off-diagonal rank r defined by
r=max{r,ry}

where
r = max {size(R;)}, ru = max {size(W;)}

Basic matrix-matrix operations increase r (keep in mind O(r3N)).

What is Model Reduction?

To approximate the SSS matrix
A=S8S8S8(Ps, Rs, Qs, Ds, Us, Ws, Vi)
with . o . . . .
AZSSS(P& Rs, Qs, Ds, Us, W, Vs)

where ,‘55, IN?S, Qs, Us, Ws, Vs have smaller size, and

|A— Al <e
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SSS Matrices and Its LTV System Realization

Motivation

Mixed-causal linear time-varying (LTV) system over finite time interval [ko, K],

] _ [Ri Xt Qi .
=15 w [+ (0]

XS D; U1V, UiWo Vs UiWo W3V,
vi=[P U] [x;a] + Divi nee o | PGy D, A AT I
T YT PRy P3 Q> D3 UsV,
a=[of, of, ... uf] PiR3RaQ1  PaR3Q  PaQ3 D4
T
5= [,T T
y= [Yl s Yoo - YN]

How to do Model Reduction?

SSS matrix <):‘l> LTV system
generators matrices
LTV
<):I system
MOR
SSS matrix
Reduced LTV
g (] Sl
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@ A New Model Reduction Algorithm
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Approximate Balanced Truncation for LTV Systems

Low Rank Approximation of the Gramians
Causal part of the mixed-causal LTV system,
{Xk+1 = Arxk + Brug
Vi = Cixic
over [ko, k], where Ay € RMik1 XM B, € RMik+1Xmk and C € R > Mk,
Controllability gramian Gc(k) and observability gramian G, (k)
Ge(k +1) = AGe(K)AL + ByB[
Go(k) = Al Go(k + 1)Ak + C] Ci

with Ge(ko) = 0 and Go(kr + 1) = 0. Gc(k) and Go(k) are symmetric positive
semi-definite, usually of low numerical rank.

Ge(k) = LgL], L € RMXk - pe < My,

Low rank approx.
—

Ge(K) = L L], L eRMXr r <.
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Approximate Balanced Truncation for LTV Systems
(cont'd)

Low Rank Update
Approximate Ge(k) = Gc(k) = liklt[, update Ge(k 4 1)
o [ Al | Bk |=uzvT

oU:[U1|U2],z:[:1 22]

o Zk+1 = U1
Approximate Balanced Truncation

Balancing via . .
Gl (K)Go(k) = UkE( VY
truncation by
~ _1 ~ _1
Mi(k) = Go(k)ViZ, 2, Mr(k) = Ge(k)UkZ, *
gives
Sier1 = My(k + 1AM (k)% + M (k + 1) Byuk
yi = N, (k)X .
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@ Numerical Experiments
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Extended Kalman Filter for 1-D System Identification

1-D Heat Equation
Heat equation over x € [0, 1]
Qu(x, t)
ot

u(x, to) = up on 9T, V- divergence operator and V gradient operator, k(x) the
heat conduction coefficients.

=V - (k(x)Vu(x,t)) — %u(x, t)

T, = A(0) T, B(6

PDE FEI\LF}DM ODE Evler Method k+1 (0) Tk + B(0) uk
ik = C(0) Tk

with 6 = {k(x), At}

Tiy1 = A(0) Ty + B(0)ux + wi
vk = C(0) Ti + vk

where E(wkij) = Q(Skj, E(VijT) = Rlsjk, E(wkva) = S(Skj, E(XO) =0,
E(xoxg ) =My and E(60T) =M,.
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Extended Kalman Filter for SysID

Innovations Form
Tir =A@ Tic+ B ue + Kic (v — BT

Op1 = Ok + Ly (}’k - C(é\k)?k)
Kalman gains
L= T ]ete w3 ])e
% (A(B):’:k + B(G)Uk) lo—g,» Ck = C(O).

b ~
Nk = — (C(G) Tk) |9:§k where

o6
PkZ[Ck Nk]:k[Ck Nk]T—l-R
= A Mz [ A M ]T [ K ]p [ KT
k1= 0 1 |TK 0 L | 7% Lk
Q 0
18 o]
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Numerical Experiments

Choose k(x) € 1+ 2uU[-1,1], w ~ N(0,107°), v ~ N(0,107%)

0, — 0"
110 Il2 <5x10-

Set initial guess =, ==y =/, ky = 1. Stop criteria T
2

Random run the numerical experiments 5 times.

— — unstructured EKF|
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Computational ime (seconds)
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Figure: Average computational time Figure: Average number of iterations
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Numerical Experiments (cont'd)
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Conclusions & Remarks

@ SSS matrix computations yield linear computational complexity for EKF
for 1-D SysID.
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SSS matrix computations yield linear computational complexity for EKF
for 1-D SysID.

The approximate balanced truncation is computationally cheaper than the
conventional method.

Both MOR algorithms give linear computational complexity.

To extend to higher dimensional systems, such as 2-D or 3-D, multilevel
SSS matrix is necessary.
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Conclusions & Remarks
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SSS matrix computations yield linear computational complexity for EKF
for 1-D SysID.

The approximate balanced truncation is computationally cheaper than the
conventional method.

Both MOR algorithms give linear computational complexity.

To extend to higher dimensional systems, such as 2-D or 3-D, multilevel
SSS matrix is necessary.

For multilevel SSS matrices, structure preserving MOR is the key, still an
open problem.
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