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Problem to Solve

We consider solving the linear system

Ax = b

with preconditioned Krylov solver, where A is large and sparse.

When A comes from discretized partial differential equation
(PDE), the matrix A has an multi-level sequentially
semiseparable (MSSS) structure.

By exploiting the structure of the matrix, we can construct a
class of efficient preconditioners based on MSSS matrix
computations with linear complexity (O(n)).
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Multi-level Sequentially Semiseparable Matrices

Sequentially Semiseparable
(SSS) Matrices
Off-diagonal blocks from the
strictly lower-triangular part
and upper-triangular part are
of low rank.

Semiseparable Matrices
All sub-blocks taken from
the strictly lower-triangular
part and upper-triangular
part are of rank 1.

Sequentially Semiseparable 
or Quasiseparable Matrices
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Multi-level Sequentially Semiseparable Matrices
Generators Representation of MSSS Matrices

Let A be an N × N block matrix with SSS structure, then A can be
written in the following block partitioned form

Ai,j =


UiWi+1 · · ·Wj−1V

T
j , if i < j ;

Di , if i = j ;
PiRi−1 · · ·Rj+1Q

T
j , if i > j .

and denoted as A = SSS(PS , RS , Qs , Ds , Us , Ws , Vs).

Example

Take N = 4 for example, we have

A =


D1 U1V

T
2 U1W2V

T
3 U1W2W3V

T
4

P2Q
T
1 D2 U2V

T
3 U2W3V

T
4

P3R2Q
T
1 P3Q

T
2 D3 U3V

T
4

P4R3R2Q
T
1 P4R3Q

T
2 P4Q

T
3 D4


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Multi-level Sequentially Semiseparable Matrices
Generators Representation of MSSS Matrices (cont’d)

Reference
S. Chandrasekaran, P. Dewilde et al.SIAM. J. Matrix Anal. &
Appl, 2005, 27(2), 341–364.

Definition
The matrix is said to be a k-level multi-level sequentially
semiseparable (MSSS) matrix, if its generators are (k − 1)-level
MSSS matrices. The 1-level MSSS matrix is the SSS matrix that
satisfies the generator representation aforementioned.

() EFF. PRE. with MSSS STR. Yue Qiu, ICNAAM 2013 8 / 31



Multi-level Sequentially Semiseparable Matrices
Generators Representation of MSSS Matrices (cont’d)

Example
Take the 2D Laplacian matrix A with homogeneous Dirichlet boundary condition
for example,

A =



D F
E D F

E
. . .

. . .

. . . D F
E D


, where D =



4 −1
−1 4 −1

−1
. . .

. . .

. . . 4 −1
−1 4


and E = F = −In, In is the n × n identity matrix. The matrix A has the
multi-level sequentially semiseparable structure and can be denoted as

A =MSSS(In, 0, E , D, In, 0, F )

where D = SSS(1, 0, −1, 4, 1, 0, −1), E = F = SSS(0, 0, 0, −1, 0, 0, 0).
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Multi-level Sequentially Semiseparable Matrices
Remarks on SSS Matrices

Remarks
1 Generators of MSSS matrices can be variant, even of different

sizes, as long as satisfying the block-partitioned form.

2 Almost all the operations (addition, multiplication, inversion, et
al) of SSS matrices can be performed in linear computational
complexity and preserve the SSS matrix structure.

3 Addition and multiplication will lead to growth of the rank of
the generators, which increases the computational complexity.

4 Model order reduction (MOR) is necessary to keep the
computational complexity low.
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Multi-level Sequentially Semiseparable Matrices
Growth of the Rank of the Generators

Example

Take the multiplication of 2 SSS matrices A and B for example,

A B

*
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Multi-level Sequentially Semiseparable Matrices
Growth of the Rank of the Generators

Example

Take the multiplication of 2 SSS matrices A and B for example,



A B C
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Multi-level Sequentially Semiseparable Preconditioners

To solve the system, ideally we make an LU factorization of the
system matrix with MSSS matrix computation technique.

All the computations are performed on the generators of the
system matrix.

This leads to growth of the rank of the generators.

To keep the computational complexity low, model reduction is
needed.

This yields an approximate factorization of the system matrix,
which can be used as a preconditioner.
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Multi-level Sequentially Semiseparable Preconditioners
Model Order Reduction

Purpose

Find SSS matrices with generators
of smaller sizes that are equivalent
to the original SSS matrix to a
certain tolerance.

Ways Out

A suitable model order reduction
algorithm can be derived from the
correspondence between SSS
matrices and linear time-varying
(LTV) systems.

Illustration


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Multi-level Sequentially Semiseparable Preconditioners
Linear Time-Varying System Representation

Mixed-causal linear time-varying system[
xci+1
xai−1

]
=

[
Ri

Wi

] [
xci
xai

]
+

[
C f
i

Cb
i

]
ui

yi =
[

B f
i Bb

i

] [ xci
xai

]
+ Aiui

with zero initial conditions.

Input-Output Relation
Stack all the input and output variables

ū =
[

uT1 uT2 · · · uTN
]T

ȳ =
[

yT
1 yT

2 · · · yT
N

]T
we have the system input-output
described as

ȳ = Āū

Example

Take N = 4 for example, we have Ā
described as

A1 Bb
1 C

b
2 Bb

1 W2C
b
3 Bb

1 W2W3C
b
4

Bf
2C

f
1 A2 Bb

2 C
b
3 B2W3C

b
4

Bf
3R2C

f
1 Bf

3C
f
2 A3 B3C

b
4

B f
4R3R2C

f
1 Bf

4R3C
f
2 Bf

4C
f
3 A4


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Multi-level Sequentially Semiseparable Preconditioners
A Novel Model Reduction Algorithm

MOR Illustration

SSS matrix 
generators

LTV system 
matrices

LTV 
system 
MOR

SSS matrix 
generators of 
smaller size

Reduced LTV 
system matrices

Reference
Y. Qiu, M.B. van Gijzen, et al. Tech. Rept. 13-04. Delft
Institute of Applied Mathematics, Delft University of
Technology, 2013.
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Multi-level Sequentially Semiseparable Preconditioners
A Novel Model Reduction Algorithm (cont’d)

MOR of LTV System
Consider the causal LTV system{

xk+1 = Akxk + Bkuk
yk = Ckxk

over time interval [k0, kf ] with zero initial states.
Balanced truncation: eliminates the system states that consume more input
energy to reach but contributes little to the output energy of the system.

Controllability Gramian Gc(k)
Energy consumed to reach certain states at
time step k

Gc (k + 1) = AkGc (k)AT
k + BkB

T
k

Gc (k0) = 0

Observability Gramian Go(k)
Energy of the system states contributes to
output at time step k

Go(k) = AT
k Go(k + 1)Ak + CT

k Ck

Go(kf ) = 0
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Multi-level Sequentially Semiseparable Preconditioners
A Novel Model Reduction Algorithm (cont’d)

Low-rank Approximation
Both Gc (k) and Go(k) are positive (semi-)definite and are often of low numerical
rank. Thus, low-rank approximation could be performed to approximate Gc (k)
and Go(k).

Gc (k) ≈ L̃ck L̃
c
k

T
, Go(k) ≈ L̃ok L̃

o
k

T
,

where L̃ck ∈ RN×nck , L̃ok ∈ RN×nok and nok , nck � N.

Reduced LTV System
With the approximated Gc (k) and Go(k), the reduced LTV system{

x̂k+1 = Πl (k + 1)AkΠr (k)x̂k + Πl (k + 1)Bkuk

yk = CkΠr (k)x̂k .

where Πl (k) ∈ Rn×N , Πr (k) ∈ RN×n, N and n are the system order before and
after model reduction.
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Multi-level Sequentially Semiseparable Preconditioners
Convectional Model Reduction Algorithm

Hankel Blocks Approximation
Approximate the Hankel blocks of the SSS matrix sequentially.

1H

2H

3H

4H

Reference
S. Chandrasekaran, P. Dewilde et al.SIAM. J. Matrix Anal. & Appl, 2005,
27(2), 341–364.
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Numerical Experiments
Preconditioning of Convection-Diffusion Equation

Convection-Diffusion Equation

−ε∇2u +−→ω .∇u = f in Ω

uD = gD on ΓD

∂u

∂n
= gN on ΓN

where

gD =

{
(2x − 1)2(2y − 1)2 if x ∈ [0, 1

2
]2

0 otherwise
, gN = (2x − 1)(2y − 1),

Ω = [0, 1]2, ΓN = {1} × (0, 1), ΓD = Γ\ΓN , ε is a positive scalar, −→ω is the unit

directional vector, −→ω = (cos(θ), sin(θ))T and n is the normal vector on the
bounds pointing outward.

Experiment Setup
Perform the experiment with Matlab 2010b on a laptop with Intel Core 2 Duo
P8700 2.57GHz and 4Gb memory.
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Numerical Experiments
Preconditioning of Convection-Diffusion Equation (cont’d)

Computational Results

Set ε = 10−2, θ = π
5

and the stopping tolerance tol = 10−6.

Table: Pre. time by new MOR and convectional MOR and IDR time

mesh size h iter. NO. pre. time (s) IDR(4) time (s) total (s)
2−5(3) 4 0.43 0.27 0.80
2−6(3) 4 0.84 0.37 1.21
2−7(4) 4 3.44 0.83 4.27
2−8(4) 4 12.58 2.20 14.78
2−9(4) 6 48.14 10.20 58.34

mesh size h iter. NO. pre. time (s) IDR(4) time (s) total (s)
2−5(3) 2 0.48 0.08 0.56
2−6(3) 2 1.37 0.17 1.54
2−7(4) 2 5.47 0.39 5.86
2−8(4) 3 21.11 1.54 22.65
2−9(4) 4 85.09 6.77 91.86
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Numerical Experiments
Preconditioning of Optimal Control of PDEs

IDR(s) Method

To solve the nonsymmetric system, we use the IDR(s) method.

P. Sonneveld, M.B. Van Gijzen. SIAM J. Sci. Comput., 2008, 31(2),
1035-1062.

Optimal Control of PDEs
Consider the PDE-constrained optimization problem,

min
u, f

1

2
‖u − û‖2 + β‖f ‖2

s.t. Lu = f in Ω

uD = gD on ΓD

∂u

∂n
= gN on ΓN

L is an operator, û is the desired system state and f is the system input. For the
optimal control of the convection-diffusion equation, we have L = −ε∇2 +−→w .∇
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Numerical Experiments
Preconditioning of Optimal Control of PDEs (cont’d)

Approximation of the Schur Complement
By introducing the weak formulation and discretizing the system with Galerkin
method, the discrete analogue of the minimization problem is therefore,

min
u, f

1

2
uTMu − uTb + c + βf TMf (1)

s.t. Ku = Mf + d (2)

The optimal solution of (1)-(2) is given by solving the saddle-point system,2βM 0 −M
0 M KT

−M K 0

 f
u
λ

 =

0
b
d

 . (3)

2βM 0 −M
0 M KT

−M K 0

 =

 I
0 I
− 1

2β
I KM−1 I

2βM 0 −M
M KT

S


where S = −

(
1

2β
M + KM−1KT

)
is the Schur complement. Here we use the

MSSS computation technique to approximate S.
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Numerical Experiments
Preconditioning of Optimal Control of PDEs (cont’d)

Computational Results

Set ε = 10−2, β = 10−1, θ = π
5

and the stopping tolerance tol = 10−6.

Table: Pre. time by new MOR and convectional MOR and MINRES time

problem size iter. NO. pre. time (s) MINRES time (s) total (s)
3× 210(4) 16 0.77 1.55 2.32
3× 212(4) 16 1.21 3.40 4.61
3× 214(4) 16 3.82 10.34 14.16
3× 216(4) 16 13.47 34.12 47.59

problem size iter. NO. pre. time (s) MINRES time (s) total (s)
3× 210(4) 16 0.71 1.43 2.14
3× 212(4) 16 2.25 3.38 5.63
3× 214(4) 16 8.08 10.23 18.31
3× 216(4) 16 30.71 34.09 64.80
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Conclusions & Remarks

1 MSSS matrices computation provides an efficient approach to
construct a preconditioner.

2 The new model order reduction algorithm and the convectional
algorithm gives efficient preconditioner of linear computational
complexity.

3 Both preconditioner are almost independent of the mesh size.

4 The new algorithm is computationally cheaper than the
convectional one.

5 Extension to 3D is a big challenge because of the model
reduction of the higher level, some work has already been done
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Preconditioning of 3D Problems

Precondition of 3D Poisson Equation
Consider the 3D Poisson equation

−
(
∂

∂x
u(x , y , z) +

∂

∂y
u(x , y , z) +

∂

∂z
u(x , y , z)

)
= f

u = gD on ΓD

Discretize the 3D Poisson equation with finite difference method, we have the
following system,

Φu = b

with

Φ =


M −L
−L M −L

−L M −L
. . .

. . .
. . .

−L M

 , M =


D −P
−P D −P

−P D −P
. . .

. . .
. . .

−P D


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Preconditioning of 3D Problems

Precondition of 3D Poisson Equation (cont’d)

L =


R Q
Q R Q

Q R Q

. . .
. . .

. . .

Q R

 , D =
1

30


128 −14
−14 128 −14

−14 128 −14

. . .
. . .

. . .

−14 128



R = P =
1

30


14 3
3 14 3

3 14 3

. . .
. . .

. . .

3 14

 , Q =
1

30


3 1
1 3 1

1 3 1

. . .
. . .

. . .

1 3


To do the LDU factorization of the matrix Φ, the Schur complement Si are{

S1 = M

Si+1 = M − LS−1
i LT

() EFF. PRE. with MSSS STR. Yue Qiu, ICNAAM 2013 29 / 31



Preconditioning of 3D Problems

Preconditioning of 3D Poisson Equation (cont’d)
Approximate the Schur complement Si with MSSS computation technique and
solve the linear system with conjugate gradient (CG) method, set the stopping
tolerance tol = 10−6, we have the following results.

Table: Pre. time by new MOR and the CG time

problem size iter. NO. pre. time (s) CG time (s) total (s)
26(4) 3 1.97 0.11 2.08
29(4) 4 4.32 0.72 5.04
212(4) 5 8.68 3.92 12.60
215(4) 8 29.46 30.64 60.10
218(4) 12 112.71 235.80 348.51

Reference
Y. Qiu, M.B. van Gijzen, et al. Tech. Rept. 13-04. Delft Institute of
Applied Mathematics, Delft University of Technology, 2013.
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Thanks for your attention! Any questions, suggestions or
remarks?
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