More Insights into Deflation Preconditioner for Helmholtz Problem

Group Talk Series AH Sheikh, guided by C. Vuik and D. Lahaye June 06, 2014

1

Delft Institute of Applied Mathematics

Delft University of Technology

Overview

- Helmholtz and SLP
- Deflation preconditioning
- Variation in Deflation
- Analysis/Comparison
- Conclusions

2

Delft Institute of Applied Mathematics

June 06, 2014

The Helmholtz equation

The Helmholtz equation without damping

$$-\Delta \mathbf{u}(x_i) - k^2(x_i)\mathbf{u}(x_i) = \mathbf{g}(x_i) \text{ in } \Omega$$

• Linear system $A_h u_h = g_h$ is: Sparse & complex valued, for certain boundary conditions Symmetric & Indefinite for large k

- For high resolution a very fine grid is required: 30 60 gridpoints per wavelength (or ≈ 5 - 10 × k) → A_h is extremely large!
- Standard multigrid method does not work!
- Traditionally solved by a Krylov subspace method, which exploits the sparsity.

June 06, 2014

Complex Shifted Laplace Preconditioner

 $M(\beta_1,\beta_2) := -\Delta - (\beta_1 - \iota\beta_2)k^2I$

Advantage: Spectrum is bounded in circle.

Disadvantage : That circle touches origin 0;

Spectrum encounters near-zero eigenvalues for large k.

Spectrum of CSLP preconditioned Helmholtz

k = 30

k = 120

June 06, 2014

4

Deflation

Deflation, a projection preconditioner

P = I - AQ, with $Q = ZE^{-1}Z^T$ and $E = Z^TAZ$

where,

 $Z \in \mathbb{R}^{n \times r}$, with deflation vectors $Z = [z_1, ..., z_r]$, $rank(Z) = r \le n$

Along with a traditional preconditioner M, deflated preconditioned system reads

$$PM^{-1}Au = PM^{-1}g.$$

The choice of deflation vectors: spectrum of matrix, physics of problem, etc

5

June 06, 2014

Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as deflation matrix, i.e. $Z = I_{2h}^h$ and $Z^T = I_{h}^{2h}$ then

 $P_h = I_h - A_h Q_h$, with $Q_h = I_{2h}^h A_{2h}^{-1} I_h^{2h}$ and $A_{2h} = I_h^{2h} A_h I_{2h}^h$

where

- P_h can be interpreted as a coarse grid correction and
- Q_h as the coarse grid operator
- A_{2h}^{-1} How to solve this ? ?

MultiLevel approach; Krylov approximation of A_{2h}^{-1} preconditioned by CSLP and deflation again.

Deflation: Approximate solve A_{2h}^{-1}

Exact inversion of A_{2h}

In-exact inversion of A_{2h}

June 06, 2014

7

Shifting Deflated-Spectrum

Shift term

June 06, 2014

$$Q_h = I_h^{2h} A_{2h}^{-1} I_h^{2h}$$

Strategy: Solve A_{2h} iteratively to required accuracy on certain levels, and shift the deflated spectrum to λ_h^n by adding shift in deflation preconditioner, call it **ADEF1** preconditioner

 $P_{(h,ADEF1)} = M_h^{-1} P_h + \lambda_h^n Q_h$

It is theorotically proved that term Q_h shifts the spectrum to λ_h^n

8

Deflation: Shift to 1 ?

Without Shift Q_{2h}

With Shift Q_{2h}

NEXT: $\lambda_h(B_{h,2h})$ where $B_{h,2h} = P_{(h,ADEF1)}M_h^{-1}A_h$

9

June 06, 2014

Spectrum insights: ADEF1

Plotting $\lambda_h(B_{h,2h})$

Spectrum of $B_{h,2h}$ for k = 100 and k = 1000, 20gp/wl

10

June 06, 2014

Spectrum insights: ADEF1

Plotting $Re(\lambda_h(P_{h,ADEF1}A_h))$

Real eigenvalues v/s index. k = 100 and k = 1000, 20gp/wl

11

June 06, 2014

Spectrum insights: ADEF1

Real eigenvalues v/s index. k = 160, h = 320

12

June 06, 2014

Spectral formula

If $c_{\ell} = cos(l\pi h)$, spectral formulae of $P_{h,ADEF}A_h$ is

$$\lambda_h \left(P_{h,ADEF} A_h \right) = -\frac{\left(\mathsf{c}_{\ell}^2 + 1 \right) \kappa^4 + \left(-4 \, \mathsf{c}_{\ell}^2 - 4 \right) \kappa^2 - 4 \, \left(\mathsf{c}_{\ell}^4 - 1 \right)}{\left(\left(\mathsf{c}_{\ell}^2 + 1 \right) \kappa^2 + 2 \left(\mathsf{c}_{\ell}^2 - 1 \right) \right) h^2}$$

We also know, eigenvalues of Galerikin Helmholtz operator

$$A_{2h} = (I_h^{2h})^{\ell} A_h^{\ell} (I_{2h}^h)^{\ell} = \frac{2(1 - c_{\ell}^2) - \kappa^2 (1 + c_{\ell}^2)}{2h^2}$$

Denominator in $\lambda_h(P_{h,ADEF1}A_h)$ is scaled formula of A_{2h}

June 06, 2014

13

Deflation: TLKM

Two-Level Krylov Method ^{*a*}, if $\hat{A}_h = M_h^{-1}A_h$ and \hat{P}_h is based upon \hat{A}_h (instead A_h)

$$\hat{P}_h = I_h - \hat{A}_h \hat{Q}_h,$$

where

$$\hat{Q}_h = I_{2h}^h \hat{A}_{2h}^{-1} I_h^{2h}$$
 and $\hat{A}_{2h} = I_h^{2h} \hat{A}_h I_{2h}^h = I_h^{2h} (M_h^{-1} A_h) I_{2h}^h$

Construction of coarse matrix A_{2h} at level 2h costs inversion of preconditioner at level h.

Approximate A_{2h} ?

 $\begin{array}{ll} \mbox{Ideal} & \mbox{Practical} \\ A_{2h} = I_{h}^{2h} (M_{h}^{-1}A_{h}) I_{2h}^{h} & A_{2h} = I_{h}^{2h} (M_{h}^{-1}A_{h}) I_{2h}^{h} \\ A_{2h} \approx \Theta_{h} M_{2h}^{-1} A_{2h}, \ \Theta_{h} = I_{h}^{2h} I_{2h}^{h} \end{array}$

^aErlangga, Y.A and Nabben R., ETNA 2008

June 06, 2014

Delft Institute of Applied Mathematics

Spectral insights: TLKM

June 06, 2014

Delft Institute of Applied Mathematics

Spectral insights: TLKM

Real part eigenvalues of \hat{B}_h vs index. Also the Real part eigenvalues of \hat{A}_h ;

k = 100

k = 1000

June 06, 2014

ADEF1 v TLKM

Differentiating ADEF1 and TLKM, assuming $\lambda_{max} = 1$ and left preconditioning

ADEF1MLKM* $P_{(ADEF1)} = M_h^{-1}(I_h - A_hQ_h) + Q_h$ $P_{(MLKM)} = I_h - \hat{A}_h\hat{Q}_h + \hat{Q}_h$ Applocation on Au = gApplication on $\hat{A}u = \hat{g}$

June 06, 2014

17

Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM and ADEF1; k = 160 and 10 gp/wl TLKM ADEF1

June 06, 2014

Fourier Analysis

Spectrum of Helmholtz preconditioned by TLKM and ADEF1; k = 160 and 20 gp/wl TLKM ADEF1

June 06, 2014

Cost comparison

Application cost per iteration at two levels

For some vector v,

	ADEF1	TLMG
$A_h v$	1	1
$M_h^{-1}v$	1	2
$Q_h v$: $I_h^{2h} v$	1	1
$Q_h v$: $I_{2h}^h v$	1	1
$Q_h v$: $A_{2h}^{-1} v$	1	1
$Q_h v$: M_{2h}^{-1}	0	1
$\Theta_h v$	0	1

June 06, 2014

20

One Dimensional Helmholtz with Som. BCs. Wave number against Krylov iterations Two level solver

Comparison of number of iterations by ADEF1 and MLKM.

21

June 06, 2014

Adapted Marmousi Problem

Reduced velocity contrast: $2587 \le c(x, y) \le 3325$

Adapted geomegry convenient for geometric vectors.

Mamousi Problem: Solve time and iterations

Frequency f	Solve Time		Iterations	
	SLP-F ADEF1-F		SLP-F	ADEF1-F
1	1.25	5.06	13	7
10	9.63	9.35	106	13
20	70.45	57.47	181	21
40	522.90	424.74	333	38

June 06, 2014

23

Mamousi Problem: Solve time and iterations; discretization20 gp/wl

Frequency f	Solve Time		Iterations	
	SLP-F ADEF1-F		SLP-F	ADEF1-F
f = 1	1.23	5.08	13	7
f = 10	40.01	21.83	106	8
f = 20	280.08	131.30	177	12
f = 40	20232.6	3997.7	340	21

June 06, 2014

A

Three Dimensional Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size *h* is such that $kh \approx 0.3125$

Wave number	Solve Time		Iterations	
k	SLP-F	ADEF1-F	SLP-F	ADEF1-F
5	0.04	0.32	7	8
10	0.48	2.32	9	9
20	8.14	17.28	20	9
40	228.29	155.52	70	10
60	1079.99	607.45	97	11

June 06, 2014

Results

Solve time per grid points . 10gp/wl

June 06, 2014

Three Dimensional Layered Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that $kh \approx 0.625$

Wave number k	Solv	e Time	Iterations		
	SLP-F ADEF1-F		SLP-F	ADEF1-F	
5	0.09	0.24	9	11	
10	1.07	1.94	15	12	
20	16.70	18.89	32	16	
30	73.82	78.04	43	21	
40	1304.2	214.7	331	24	
60	-	989.5	500+	34	

June 06, 2014

Delft Institute of Applied Mathematics

UDelft

Three Dimensional Layered Helmholtz on unit cube domain with sommerfeld boundary conditions on all faces. Grid size h is such that $kh \approx 0.3125$

Wave number k	Solve Time		Iterations		
	SLP-F ADEF1-F		SLP-F	ADEF1-F	
5	0.6	1.4	9	9	
10	7.5	10.04	14	9	
20	324.1	79.2	72	9	
30	3810.9	361.7	285	11	

Algebraic deflation vectors ?

- FEM regular mesh triangular element discretization.
- Algebraically constructed deflation; AMG cycle.
- ADEF1 preconditioner.
- Comparison with FDM.
- Algebraic vectors proceed the coarsening slower than geometric.
- Mesh is refined enough till satisfactory the wavelength resolution.

Solver	k=10	20	40	80	120	160	200
SLPD*	15(0.02)	30(0.07)	57(0.57)	108(5.8)	157(22.6)	204(59.6)	252(130.5
SLPF*	22(0.05)	43(0.16)	72(0.85)	128(6.33)	178(21.8)	232(55.7)	278(115.9
2Lev	7(0.00)	10(0.03)	14(0.27)	23(2.17)	37(8.8)	61(27.9)	87(67.8)
2Lev*	6(0.02)	8(0.05)	10(0.32)	15(2.46)	20(8.4)	26(21.4)	32(43.8)
MLV	16(0.25)	27(0.8)	58(3.6)	116(18.4)	177(50.3)	235(125.2)	292(233.7
MLV*	22(0.27)	40(1.27)	66(5.4)	118(32.8)	166(110.8)	214(240.6)	258(447.0
MLF	10(0.6)	11(1.6)	15(4.5)	24(15.7)	32(28.2)	41(70.1)	51(103.9
MLF*	7(0.25)	8(0.85)	10(2.4)	16(15.2)	19(38.3)	24(81.4)	27(144.5
MLD	7(0.05)	10(.2)	14(1.26)	21(9.04)	29(31.6)	36(76.3)	43(149.8
MLD*	6(0.07)	8(0.5)	10(2.9)	15(23.7)	19(80.4)	24(191.8)	27(387.3

June 06, 2014

Delft Institute of Applied Mathematics

TUDelft

Conclusion and Discussion

- Near null space modes in A_h persist. Same time extraordinary gain in Krylov iterations. Ritz testing in progress.
- How to treat near-null space modes in coarser operators ?
- FEM discretization and algebraic deflation vectors in 3-dimension failed. Mass matrix NOT diagonal, it has negative entries off-diagonal.
- Flexible in choosing larger imaginary shift in CSLP. Reported!
- Adapted coarse grid operator. Work in progress!
- Different shifts in SLP at different levels. Future!

31

June 06, 2014

References

- Y.A. Erlangga and R. Nabben. On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian. ETNA, 2008.
- M.B. van Gijzen, Y.A. Erlangga and C. Vuik. Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian. SIAM J.of Sc. Comp. 2007.
- J.M. Tang. Two level preconditioned Conjugate Gradient methods with applications to bubbly flow problems. PhD Thesis, DIAM TU Delft 2008.
- A.H. Sheikh, D. Lahaye and C. Vuik. On the convergence of shifted Laplace preconditioner combined with multi-grid deflation. NLAA Volume 20, Issue 4, pages 645-662, August 2013

Thank you!

June 06, 2014

33