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Introduction

Applications:
Acoustics,
Seismic waves,
Optics (Light waves) and

Electromagnetic

Our object:

To develop an iterative efficient iterative scheme to get acceptable nu-

merical solution of the Helmholtz equation
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The Helmholtz equation

The Helmholtz equation without damping

−∆u(x, y)− k2(x, y)u(x, y) = g(x, y) in Ω

u(x, y) is the pressure field,
k(x, y) is the wave number,
g(x, y) is the point source function and
Ω is domain bounded by Absorbing boundary conditions

∂u

∂n
− ιu = 0

n is normal direction to respective boundary.
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Problem description
• Second order Finite difference stencil:









−1

−1 4− k2h2 −1

−1









• Linear system Au = g: properties
Sparse & complex valued
Symmetric & Indefinite for large k

• Is traditionally solved by Krylov subspace method, they exploit the
sparsity.
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Preconditioning
• ILU and variants

• From Laplace to complex shifted Laplace preconditioner (2005)

• Shifted Laplace preconditioner (SLP)

M := −∆u− (β1 − ιβ2)k
2
u

• Results shows: (β1, β2) = (1, 0.5) is shift of choice

• What does SLP do ? ?
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Shifted Laplace Preconditioner
• Introduces damping, Multigrid approximation

• Norm of spectrum of preconditioned operator bounded above by 1

• Spectrum goes near to zero, as k increases.

Spectrum of M−1(1, 0.5)A for

k = 30 and k = 120
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Numerical results

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 10 17 28 44 70 14

n = 48 10 17 28 38 49 308

n = 64 10 17 28 36 45 163

n = 80 10 17 27 35 44 116

n = 160 10 17 27 35 43 82

n = 320 10 17 27 35 42 80



9

Delft Institute of Applied Mathematics

Numerical results

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 48 4/10 6/17 10/28 16/38 26/49 273/308

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 80 4/10 5/17 7/27 10/35 14/44 156/116

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

with / without deflation.
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Deflation: definition

For any deflation subspace matrix

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rankZ = r

P = I −AQ, with Q = ZE−1ZT andE = ZTAZ

Solve PAu = Pg preconditioned by M−1 or M−1PA = M−1Pg

For e.g. , if

spec (A) = {λ1, λ2, λ3, ..., λn}

and Z, the r eigenvectors then

spec (PA) = {0, ..., 0, λr+1, ...λn}

In multigrid deflation, inter-grid transfer operator (Prolongation) as deflation matrix.
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Deflation

Setting Z = I2h
h

and ZT = Ih
2h

then

P = I −AQ, with Q = I2h
h
E−1Ih2h and E = Ih2hA

2h
h

where
P can be read as coarse grid correction and
Q the coarse grid operator ( or Galerkin operator).
E−1 need to be computed, and this leads to a multilevel algorithm.
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Fourier Analysis

1D Helmholtz model.
Typically, Dirichlet boundary conditions.

spec (PM−1A) = f(β1, β2, k, h, l)

is a complex valued function.
Setting kh = 0.625 and (β1, β2) = (1, 0.5), we see

• Spectrum of (I − PM−1A) with shifts (1, 0.5) near zero is
wrapped and clustered around 1 with few outliers.

• Spectrum remains almost same, when imaginary shift is varied
from 0.5 to 1.
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Fourier Analysis

Analysis shows, deflation pushes spectrum around one with few
outliers.

k = 30 k = 120
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Fourier Analysis

Analysis tells increase in imaginary shift does not change spectrum.

(β1, β2) = (1, 0.5) (β1, β2) = (1, 1)
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Numerical results

Sommerfeld boundary conditions are used for test problem.

Increase in imaginary shift in SLP ??

Constant wavenumber problem Wedge problem
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Numerical results
• Number of GMRES iterations with/without deflation. Shifts in

preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 48 4/10 6/17 10/28 16/38 26/49 273/308

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 80 4/10 5/17 7/27 10/35 14/44 156/116

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80
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Numerical results

Number of GMRES iterations with/without deflation to solve a Wedge
problem. Shifts in preconditioner are (1, 0.5)

Grid freq = 10 freq = 20 freq = 30 freq = 40 freq = 50

74× 124 7/33 20/60 79/95 267/156 490/292

148× 248 5/33 9/57 17/83 42/112 105/144

232× 386 5/33 7/57 10/81 25/108 18/129

300× 500 4/33 6/57 8/81 12/105 18/129

374× 624 4/33 5/57 7/80 9/104 13/128
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Conclusions
• (Almost) Parameter independent scheme.

• 1D problem analyzed.

• Numerical results confirms analysis.

• Flexibility to increase imaginary shift, when deflation is combined
with SLP.

• Without deflation, when imaginary shift is increased in SLP,
spectrum remains bounded above 1, but lower part moves to zero.

• Further Multilevel scheme, recursively for coarse problem in
deflation.

• Further LFA for 2D problem, taking into account multigrid solution
of SL preconditioner.
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Thank You for Your Attention
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