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Introduction

Applications:

Acoustics,
Seismic waves,
Optics (Light waves) and

Electromagnetic

Our object:

To develop an iterative efficient iterative scheme to get acceptable nu-

merical solution of the Helmholtz equation
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The Helmholtz equation

The Helmholtz equation without damping

—Au(z,y) — E(z,y)u(z,y) = g(z,y) inQ

u(z,y) is the pressure field,

k(z,y) is the wave number,

g(x,y) is the point source function and

(2 is domain bounded by Absorbing boundary conditions

0
=0

on

n IS normal direction to respective boundary.
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Problem description

® Second order Finite difference stencil:

—1
~1 4—k°n?* -1
—1

® Linear system Au = g: properties
Sparse & complex valued
Symmetric & Indefinite for large &

® |s traditionally solved by Krylov subspace method, they exploit the
sparsity.
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Preconditioning

® |LU and variants

® From Laplace to complex shifted Laplace preconditioner (2005)

¢ Shifted Laplace preconditioner (SLP)
. 2
M = —Au — (51 — Lﬁg)k u

® Results shows: (51, 52) = (1,0.5) is shift of choice

® \What does SLP do ? ?
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Shifted Laplace Preconditioner

® |Introduces damping, Multigrid approximation

® Norm of spectrum of preconditioned operator bounded above by 1

® Spectrum goes near to zero, as k increases.

Spectrum of M ~1(1,0.5) A for
k=30 and k=120
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Numerical results

Number of GMRES iterations. Shifts in preconditioner are (1,0.5)

Grid k=10 | k=20 | k=30 | k=40 | £E=50 | k=100
n = 32 10 17 28 44 70 14
n = 48 10 17 28 38 49 308
n = 64 10 17 28 36 45 163
n = 80 10 17 27 35 44 116
n = 160 10 17 27 35 43 82
n = 320 10 17 27 35 42 30
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Numerical results

Number of GMRES iterations. Shifts in preconditioner are (1,0.5)

Grid k=10 | k=20 | k=30 | k=40 | £E=50 | k=100

n = 32 5/10 8/17 14/28 | 26/44 | 42/70 13/14
n = 48 4/10 6/17 10/28 | 16/38 | 26/49 | 273/308
n = 64 4/10 6/17 8/28 12/36 | 18/45 | 173/163
n = 80 4/10 5/17 1127 10/35 | 14/44 | 156/116
n =160 | 3/10 4/17 5/27 6/35 8/43 25/82
n =320 | 3/10 4/17 4/27 5/35 5/42 10/80

with / without deflation.
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Deflation: definition

For any deflation subspace matrix

Z € R"*", with deflation vectors 7 = [z, ..., 2], rankZ =r

P=1—-AQ, with Q=ZE'Z! andE =2'AZ

Solve PAu = Pg preconditioned by M ~! or M~'PA = M~1Pg
Fore.g. ,if

spec (A) = {1, Ao, A3, ..y An }

and Z, the r eigenvectors then

spec (PA) ={0,...,0, \ri1, .- A}

In multigrid deflation, inter-grid transfer operator (Prolongation) as deflation matrix.
L
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Deflation

Setting Z = I?" and Z* = I}, then
P=1—-AQ, with Q=1I"E~'I}) and E = I}, A?"

where

P can be read as coarse grid correction and

() the coarse grid operator ( or Galerkin operator).

E~! need to be computed, and this leads to a multilevel algorithm.

= S
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Fourier Analysis

1D Helmholtz model.
Typically, Dirichlet boundary conditions.

spec (PM ™1 A) = f(B1, B2, k, I, 1)
IS a complex valued function.
Setting kh = 0.625 and (31, B2) = (1,0.5), we see

® Spectrum of (I — PM~1A) with shifts (1,0.5) near zero is
wrapped and clustered around 1 with few outliers.

® Spectrum remains almost same, when imaginary shift is varied
from 0.5 to 1.
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Fourier Analysis

Analysis shows, deflation pushes spectrum around one with few
outliers.

k = 30 k=120
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Fourier Analysis

Analysis tells increase in imaginary shift does not change spectrum.

(B1,B2) = (1,0.5) (B1,82) = (1,1)
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Numerical results

Sommerfeld boundary conditions are used for test problem.

Increase in imaginary shift in SLP ??
Constant wavenumber problem
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Numerical results

®* Number of GMRES iterations with/without deflation. Shifts Iin
preconditioner are (1,0.5)

Grid

x>
|

10 | k=20 | k=30 | k=40 | k=50 | £ =100

n = 32 5/10 8/17 14/28 | 26/44 | 42/70 13/14
n = 48 4/10 6/17 10/28 | 16/38 | 26/49 | 273/308
n = 64 4/10 6/17 8/28 12/36 | 18/45 | 173/163
n = 80 4/10 5/17 1127 10/35 | 14/44 | 156/116
n =160 | 3/10 4/17 5/27 6/35 8/43 25/82
n =320 | 3/10 4/17 4/27 5/35 5/42 10/80
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Numerical results

Number of GMRES iterations with/without deflation to solve a Wedge

problem. Shifts in preconditioner are (1,0.5)

Grid freq = 10 freq =20 | freq=30 | freq =40 | freq =50
74 x 124 7/33 20/60 79/95 | 267/156 | 490/292
148 x 248 5/33 9/57 17/83 42/112 | 105/144
232 x 386 5/33 7/57 10/81 25/108 | 18/129
300 x 500 4/33 6/57 8/81 12/105 18/129
374 x 624 4/33 5/57 7/80 9/104 13/128
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Conclusions

® (Almost) Parameter independent scheme.
® 1D problem analyzed.
® Numerical results confirms analysis.

® Flexibility to increase imaginary shift, when deflation is combined
with SLP.

® Without deflation, when imaginary shift is increased in SLP,
spectrum remains bounded above 1, but lower part moves to zero.

® Further Multilevel scheme, recursively for coarse problem in
deflation.

® Further LFA for 2D problem, taking into account multigrid solution
of SL preconditioner.
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Thank You for Your Attention
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