# An Scalable Helmholtz Solver Combining the Shifted Laplace Preconditioner With Multigrid Deflation

Sparse Days
September 6-7th, 2011
CERFACS, Toulouse, France.

A.H.Sheikh, D.Lahaye, C.Vuik



#### Title of the slide

- Introduction
- Preconditioning
- Second-level preconditioning (Deflation)
- Fourier Analysis of two-level method
- Numerical experiments
- Conclusions

#### Introduction

#### **Applications:**

Acoustics,
Seismic waves,
Optics (Light waves) and
Electromagnetic

#### Our object:

To develop an iterative efficient iterative scheme to get acceptable numerical solution of the Helmholtz equation

# The Helmholtz equation

The Helmholtz equation without damping

$$-\Delta \mathbf{u}(x,y) - k^2(x,y)\mathbf{u}(x,y) = \mathbf{g}(x,y) \text{ in } \Omega$$

 $\mathbf{u}(x,y)$  is the pressure field,  $\mathbf{k}(x,y)$  is the wave number,  $\mathbf{g}(x,y)$  is the point source function and  $\Omega$  is domain bounded by Absorbing boundary conditions

$$\frac{\partial \mathbf{u}}{\partial n} - \iota \mathbf{u} = 0$$

n is normal direction to respective boundary.

# **Problem description**

Second order Finite difference stencil:

$$\begin{bmatrix} -1 \\ -1 & 4 - k^2 h^2 & -1 \\ -1 & \end{bmatrix}$$

- Linear system Au = g: properties
   Sparse & complex valued
   Symmetric & Indefinite for large k
- Is traditionally solved by Krylov subspace method, they exploit the sparsity.

# **Preconditioning**

- ILU and variants
- From Laplace to complex shifted Laplace preconditioner (2005)
- Shifted Laplace preconditioner (SLP)

$$M := -\Delta \mathbf{u} - (\beta_1 - \iota \beta_2) k^2 \mathbf{u}$$

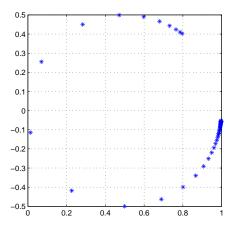
- Results shows:  $(\beta_1, \beta_2) = (1, 0.5)$  is shift of choice
- What does SLP do??

# Shifted Laplace Preconditioner

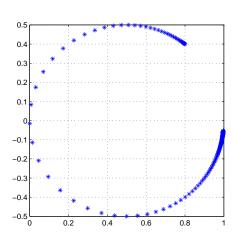
- Introduces damping, Multigrid approximation
- Norm of spectrum of preconditioned operator bounded above by 1
- Spectrum goes near to zero, as *k* increases.

Spectrum of  $M^{-1}(1, 0.5)A$  for

$$k = 30$$



and



k = 120

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

| Grid    | k = 10 | k = 20 | k = 30 | k = 40 | k = 50 | k = 100 |
|---------|--------|--------|--------|--------|--------|---------|
| n=32    | 10     | 17     | 28     | 44     | 70     | 14      |
| n=48    | 10     | 17     | 28     | 38     | 49     | 308     |
| n = 64  | 10     | 17     | 28     | 36     | 45     | 163     |
| n = 80  | 10     | 17     | 27     | 35     | 44     | 116     |
| n = 160 | 10     | 17     | 27     | 35     | 43     | 82      |
| n = 320 | 10     | 17     | 27     | 35     | 42     | 80      |

Number of GMRES iterations. Shifts in preconditioner are (1, 0.5)

| Grid    | k = 10 | k = 20 | k = 30 | k = 40 | k = 50 | k = 100 |
|---------|--------|--------|--------|--------|--------|---------|
| n = 32  | 5/10   | 8/17   | 14/28  | 26/44  | 42/70  | 13/14   |
| n=48    | 4/10   | 6/17   | 10/28  | 16/38  | 26/49  | 273/308 |
| n = 64  | 4/10   | 6/17   | 8/28   | 12/36  | 18/45  | 173/163 |
| n = 80  | 4/10   | 5/17   | 7/27   | 10/35  | 14/44  | 156/116 |
| n = 160 | 3/10   | 4/17   | 5/27   | 6/35   | 8/43   | 25/82   |
| n = 320 | 3/10   | 4/17   | 4/27   | 5/35   | 5/42   | 10/80   |

with / without deflation.



#### **Deflation: definition**

For any deflation subspace matrix

$$Z \in \mathbb{R}^{n \times r}$$
, with deflation vectors  $Z = [z_1, ..., z_r], rank Z = r$ 

$$P = I - AQ$$
, with  $Q = ZE^{-1}Z^T$  and  $E = Z^TAZ$ 

Solve PAu=Pg preconditioned by  $M^{-1}$  or  $M^{-1}PA=M^{-1}Pg$  For e.g. , if

$$spec(A) = \{\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n\}$$

and Z, the r eigenvectors then

$$spec(PA) = \{0, ..., 0, \lambda_{r+1}, ...\lambda_n\}$$

In multigrid deflation, inter-grid transfer operator (Prolongation) as deflation matrix.



### **Deflation**

Setting  $Z = I_h^{2h}$  and  $Z^T = I_{2h}^h$  then

$$P = I - AQ$$
, with  $Q = I_h^{2h} E^{-1} I_{2h}^h$  and  $E = I_{2h}^h A_h^{2h}$ 

#### where

- P can be read as coarse grid correction and
- the coarse grid operator ( or Galerkin operator).

 $E^{-1}$  need to be computed, and this leads to a multilevel algorithm.



# **Fourier Analysis**

1D Helmholtz model.

Typically, Dirichlet boundary conditions.

$$spec(PM^{-1}A) = f(\beta_1, \beta_2, k, h, l)$$

is a complex valued function.

Setting kh = 0.625 and  $(\beta_1, \beta_2) = (1, 0.5)$ , we see

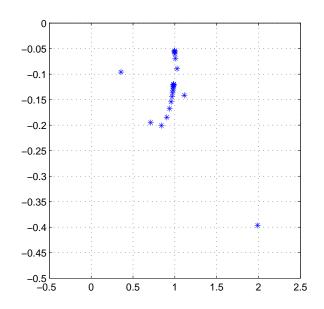
- Spectrum of  $(I PM^{-1}A)$  with shifts (1, 0.5) near zero is wrapped and clustered around 1 with few outliers.
- Spectrum remains almost same, when imaginary shift is varied from 0.5 to 1.



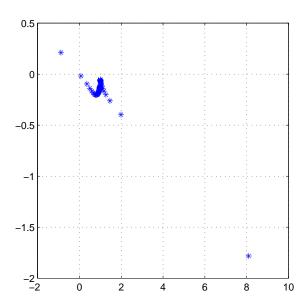
# **Fourier Analysis**

Analysis shows, deflation pushes spectrum around one with few outliers.

$$k = 30$$



$$k = 120$$

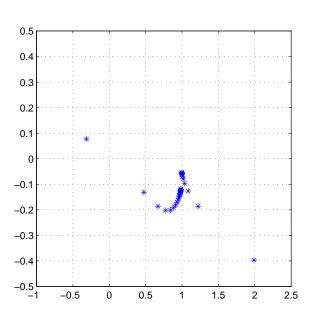


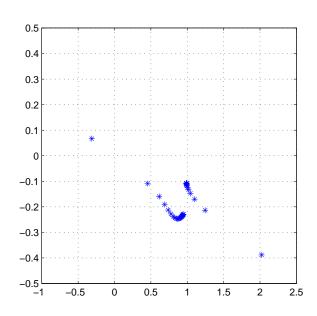
# **Fourier Analysis**

Analysis tells increase in imaginary shift does not change spectrum.

$$(\beta_1, \beta_2) = (1, 0.5)$$

$$(\beta_1, \beta_2) = (1, 1)$$



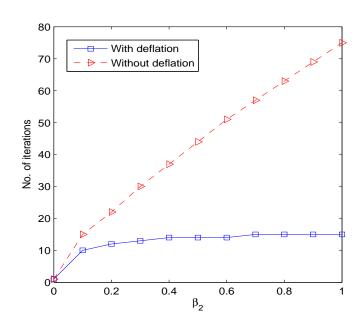


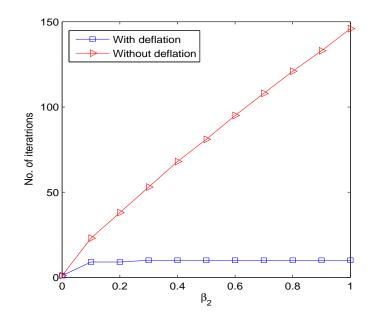
Sommerfeld boundary conditions are used for test problem.

Increase in imaginary shift in SLP ??

Constant wavenumber problem

Wedge problem





• Number of GMRES iterations with/without deflation. Shifts in preconditioner are (1,0.5)

| Grid    | k = 10 | k = 20 | k = 30 | k = 40 | k = 50 | k = 100 |
|---------|--------|--------|--------|--------|--------|---------|
| n = 32  | 5/10   | 8/17   | 14/28  | 26/44  | 42/70  | 13/14   |
| n=48    | 4/10   | 6/17   | 10/28  | 16/38  | 26/49  | 273/308 |
| n = 64  | 4/10   | 6/17   | 8/28   | 12/36  | 18/45  | 173/163 |
| n = 80  | 4/10   | 5/17   | 7/27   | 10/35  | 14/44  | 156/116 |
| n = 160 | 3/10   | 4/17   | 5/27   | 6/35   | 8/43   | 25/82   |
| n = 320 | 3/10   | 4/17   | 4/27   | 5/35   | 5/42   | 10/80   |

Number of GMRES iterations with/without deflation to solve a Wedge problem. Shifts in preconditioner are (1,0.5)

| Grid                    | freq = 10 | freq = 20 | freq = 30 | freq = 40 | freq = 50 |
|-------------------------|-----------|-----------|-----------|-----------|-----------|
| $\boxed{74 \times 124}$ | 7/33      | 20/60     | 79/95     | 267/156   | 490/292   |
| $148 \times 248$        | 5/33      | 9/57      | 17/83     | 42/112    | 105/144   |
| $232 \times 386$        | 5/33      | 7/57      | 10/81     | 25/108    | 18/129    |
| $300 \times 500$        | 4/33      | 6/57      | 8/81      | 12/105    | 18/129    |
| $374 \times 624$        | 4/33      | 5/57      | 7/80      | 9/104     | 13/128    |

### **Conclusions**

- (Almost) Parameter independent scheme.
- 1D problem analyzed.
- Numerical results confirms analysis.
- Flexibility to increase imaginary shift, when deflation is combined with SLP.
- Without deflation, when imaginary shift is increased in SLP,
   spectrum remains bounded above 1, but lower part moves to zero.
- Further Multilevel scheme, recursively for coarse problem in deflation.
- Further LFA for 2D problem, taking into account multigrid solution of SL preconditioner.



#### References

- M. van Gijzen, Y. Erlangga, C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian, SIAM J. Sc. Comp. 29 (2007) 1942-1958
- Y. Erlangga, R. Nabben, On a multilevel Krylov method for the Helmholtz equation preconditioned by shifted Laplacian, Electronic Transaction on Num. Analysis (ETNA) 31 (2008) 403-424.
- A.H. Sheikh, D. Lahaye, C. Vuik, A scalable Helmholtz solver combining the shifted Laplace perconditioner with multigrid deflations, DIAM Tech. Report 11-01, TU Delft, Netherlands
- J. Tang, S. MacLachlan, R. Nabben, C. Vuik, A comparison of two-level preconditioners based on multigrid and deflation, SIAM. J. Matrix Anal. and Appl. 31 (2010) 1715-1739.

#### Thank You for Your Attention