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The Helmholtz equation

The Helmholtz equation without damping

−∆u(xi) − k2(xi)u(xi) = g(xi) in Ω

k(xi) is the wave number,
g(xi) is the point source function and
Ω is the domain. Absorbing boundary conditions are used on Γ.

∂u

∂n
− ιu = 0

n is the unit normal vector pointing outwards on the boundary.
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Discretization
• Second order Finite Difference stencil:
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• Linear system Ahuh = gh holds properties:
Sparse & complex valued
Symmetric & Indefinite for large k

• For high resolution a very fine grid is required: 30 − 60 gridpoints
per wavelength (or ≈ 5 − 10 × k) → Ah is extremely large!

• Traditionally solved by a Krylov subspace method, which exploits
the sparsity.
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Shifted Laplace Preconditioner

• M(β1, β2) := −∆ − (β1 − ιβ2)k
2I

• Spectrum encounters near-zero eigenvalues, as k increases.

Spectrum of M−1A, where (β1, β2) = (1, 0.5)

k = 30 k = 120
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Why Deflation!!

Number of GMRES iterations. Shifts in the preconditioner are (1, 0.5)

Grid k = 10 k = 20 k = 30 k = 40 k = 50 k = 100

n = 32 5/10 8/17 14/28 26/44 42/70 13/14

n = 64 4/10 6/17 8/28 12/36 18/45 173/163

n = 96 3/10 5/17 7/27 9/35 12/43 36/97

n = 128 3/10 4/17 6/27 7/35 9/43 36/85

n = 160 3/10 4/17 5/27 6/35 8/43 25/82

n = 320 3/10 4/17 4/27 5/35 5/42 10/80

Diagonal entries where 20 gp/wl with / without deflation
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Deflation: or two-grid method

Deflation, a projection preconditioner

P = I − AQ, with Q = ZE−1ZT and E = ZT AZ

where,

Z ∈ Rn×r, with deflation vectors Z = [z1, ..., zr], rank(Z) = r ≤ n

Along with a traditional preconditioner M , deflated preconditioned
system reads

PM−1Au = PM−1g.

The choice of deflation vectors: spectrum of matrix, physics of problem, etc
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Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as
deflation matrix, i.e. Z = I2h

h and ZT = Ih
2h then

Ph = Ih − AhQh, with Qh = I2h
h A−1

2h Ih
2h and A2h = Ih

2hAhI2h
h

where
Ph can be interpreted as a coarse grid correction and
Qh as the coarse grid operator
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Deflation: Implementation

Deflation can be implemented alongwith SLP Mh,

M−1
h PhAhuh = M−1

h Phgh

Ahuh = gh is preconditioned by two-level preconditoner M−1
h Ph.

For large problems, A2h is enough large to invert exactly and inversion
of A2h is sensitive, since Ph deflates spectrum to zero.

To do is: Solve A2h iteratively to required accuracy on certain levels,
and shift the deflated spectrum to λmax

h by adding shift in two level
preconditoner, we get ADEF1 preconditioner

P(h,ADEF1) = M−1
h Ph + λmax

h Qh
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Deflation: MLKM

MultiLevel Krylov Method a, if Âh = M−1
h Ah, and develop P̂h using Âh

(instead Ah) will be

P̂h = Ih − ÂhQ̂h,

where

Q̂h = Ih
2hÂ−1

2h I2h
h and Â2h = I2h

h ÂhIh
2h = I2h

h (M−1
h Ah)Ih

2h

Construction of coarse matrix A2h at level 2h costs inversion of preconditioner at level h.

Approximate A2h ?

Ideal Practical

A2h = I2h
h (M−1

h Ah)Ih
2h A2h = I2h

h (M−1
h Ah)Ih

2h

A2h ≈ I2h
h Ih

2hM−1
2h A2h

aErlangga, Y.A and Nabben R., ETNA 2008
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ADEF1 v MLKM

Differentiating ADEF1 and MLKM, assuming λmax = 1 and left
preconditioning

ADEF1 MLKM∗

P(ADEF1) = M−1
h

(Ih − AhQh) + Qh P(MLKM) = Ih − ÂhQ̂h + Q̂h

Applocation on Au = g Application on Âu = ĝ
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Cost comparison

Application cost per iteration at two levels
For some vector v,

ADEF1 MLMG

Ahv 1 1

M−1
h v 1 2

Qhv: I2h
h v 1 1

Qhv: Ih
2hv 1 1

Qhv: M−1
2h 0 1

Ih
2hI2h

h v 0 1



June 13, 2013 13

Delft Institute of Applied Mathematics

Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM b,
k = 160 and 20 gp/wl
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM and ADEF1;
k = 160 and 10 gp/wl

MLKM ADEF1
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM and ADEF1;
k = 160 and 20 gp/wl
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Numerical results

One Dimensional Helmholtz with Som. BCs.
Wave number against Krylov iterations
Two level solver
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Adapted Marmousi Problem

Reduced velocity contrast: 2587 ≤ c(x, y) ≤ 3325
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Numerical Results

Marmousi problem ADEF1 performance compared with SLP

No. of Iter. “t” in sec.
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Numerical results

Three Dimensional Helmholtz on unit cube domain with sommerfeld
boundary conditions on all faces.

Wavenumber k

Solver Type 5 10 15 20 30 40 60 80

SL Prec. 11 15 21 29 47 74 118 185

ADEF1-V(8,2,1) 11 15 21 28 44 67 101 153

ADEF1-F(8,2,1) 9 10 11 11 13 16 22 28

SL Prec. : Only shifted Laplace preconditioner
ADEF1-F : Multilevel solver , Fcycle for slp.
ADEF1-V : Multilevel solver , Vcycle for slp.
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Numerical results

Petsc time for;
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Numerical results

Algebraic deflation vectors ?
Regular mesh FEM discretization of 2D Helmholtz, Sommerfeld BCs.
Algebraic deflation vectors.
ADEF1 solver.

Wavenumber k

Solver 10 20 40 80 120 160 200

SL Prec. 22 43 72 128 178 232 278

2Lev 6 8 10 15 20 26 32

ADEF1-F 7 8 10 16 19 24 27

For 3D Helmholtz, some unexpected and unacceptable results were observed!
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Conclusions
• Concern about solve time problem Marmousi: working on it.

• Damping improves ADEF1 performance, like SLP. Results not
included.

• FEM discretization and algebraic deflation vectors in 3D are not
favorable! Why, open question!

• Flexible in choosing larger imaginary shift.

• Further research 3D constrasted wavenumber problem, Different
shifts in SLP at different levels, ...
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Thank you!
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