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The Helmholtz equation

The Helmholtz equation without damping
—AU(CIZZ,;) — kz(ﬂjz)U(CE@) — g(CCZ) In )

k(z;) is the wave number,
g(x;) is the point source function and
(2 is the domain. Absorbing boundary conditions are used on I'.

0
=0

on

n is the unit normal vector pointing outwards on the boundary.
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Discretization

® Second order Finite Difference stencil:

—1
—1 4—k*h* -1
—1

® Linear system Ahuh — (J, holds properties:
Sparse & complex valued
Symmetric & Indefinite for large &

® For high resolution a very fine grid is required: 30 — 60 gridpoints
per wavelength (or =~ 5 — 10 x k) — A, Is extremely large!

® Traditionally solved by a Krylov subspace method, which exploits
the sparsity.
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Shifted Laplace Preconditioner

® M(B1,02) := —A — (81 — 1B2)k?I

® Spectrum encounters near-zero eigenvalues, as k increases.

Spectrum of M~1A, where (81, 32) = (1,0.5)
k= 30 k=120
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Why Deflation!!

Number of GMRES iterations. Shifts in the preconditioner are (1,0.5)

Grid k=10 | k=20 | k=30 | k=40 | k=50 | £ =100
n = 32 5/10 8/17 14/28 | 26/44 | 42/70 13/14
n = 64 4/10 6/17 8/28 12/36 | 18/45 | 173/163
n = 96 3/10 5/17 1127 9/35 12/43 36/97
n =128 | 3/10 4/17 6/27 7135 9/43 36/85
n =160 | 3/10 4/17 5127 6/35 8/43 25/82
n =320 | 3/10 4117 4127 5/35 5/42 10/80

Diagonal entries where 20 gp/wl
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Deflation: or two-grid method

Deflation, a projection preconditioner
P=1-AQ, with Q=ZE'Z! and E=21AZ
where,
Z € R™*", with deflation vectors 7 = [z, ..., 2], rank(Z)=r <n

Along with a traditional preconditioner M, deflated preconditioned

system reads
PM 'Au=PM1q.

The choice of deflation vectors: spectrum of matrix, physics of problem, etc
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Deflation for Helmholtz

With choice of multigrid inter-grid transfer operator (Prolongation) as
deflation matrix, i.e. Z = I?" and Z7 = I}, then

Ph = [h — Ath, with Qh = [%hAQ_hl]g’h and Agh = IghAh]}%h

where

P, can be interpreted as a coarse grid correction and
(), as the coarse grid operator

o dweel32013 s
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Deflation: Implementation

Deflation can be implemented alongwith SLP M;,,
Mh_lphAhuh — Mh_lphgh
Apup = gy, 1S preconditioned by two-level preconditoner Mh‘lPh.

For large problems, A, iIs enough large to invert exactly and inversion
of A, IS sensitive, since P, deflates spectrum to zero.

To do is: Solve Ay, iteratively to required accuracy on certain levels,
and shift the deflated spectrum to A\7*** by adding shift in two level
preconditoner, we get ADEF1 preconditioner

P apery = My Py 4+ A7 Qp,
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Deflation: MLKM

MultiLevel Krylov Method #, if A, = M, * Ay, and develop P, using A,
(instead A;) will be

where
Qn = I A T and Ay, = IV ALIL, = (MY AT,

Construction of coarse matrix As;, at level 2k costs inversion of preconditioner at level h.

Approximate As;, ?
|deal Practical

Agp = LM (M, P Ap) 1Yy, | Asn = LM (M, Ap) I3,

%Erlangga, Y.A and Nabben R., ETNA 2008
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ADEF1 v MLKM

Differentiating ADEF1 and MLKM, assuming \,,.. = 1 and left
preconditioning

ADEF1 MLKM *
Piaperyy =M, "(In — AnQp) + Qn | Porrrarn = In — AnQn + Qn
Applocation on Au = g Application on Au = §
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Cost comparison

Application cost per iteration at two levels

For some vector v,

ADEF1 | MLMG
Apv 1 1
M; v 1 2
Cthilghv 1 1
QmﬁL%v 1 1
Qnv: My,' | 0 1
Ié‘hlﬁhv 0 1
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM P,
k = 160 and 20 gp/wl
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM and ADEF1;
k = 160 and 10 gp/wl
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Fourier Analysis

Spectrum of Helmholtz preconditioned by MLKM and ADEF1;
k = 160 and 20 gp/wil
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Numerical results

One Dimensional Helmholtz with Som. BCs.
Wave number against Krylov iterations
Two level solver
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Comparison of number of iterations by ADEF1 and MLKM.
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Adapted Marmousi Problem

Reduced velocity contrast: 2587 < c¢(x,y) < 3325
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Numerical Results

Marmousi problem ADEF1 performance compared with SLP
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Numerical results

Three Dimensional Helmholtz on unit cube domain with sommerfeld
boundary conditions on all faces.

Wavenumber &
Solver Type 5 110151 20| 30| 40| 60 80

SL Prec. 11 |15 |21 | 29 | 47 | 74 | 118 | 185
ADEF1-vV(8,2,1) || 11 | 15| 21 | 28 | 44 | 67 | 101 | 153
ADEF1-F8,2,1) || 9 |10 | 11 |11 |13 |16 | 22 | 28

SL Prec. : Only shifted Laplace preconditioner
ADEF1-F : Multilevel solver , Fcycle for slp.
ADEF1-V : Multilevel solver , Vcycle for sip.
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Numerical results

Petsc time for;

solve time setup time
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ADEF1 solve time and Setup time.
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Numerical results

Algebraic deflation vectors ?

Regular mesh FEM discretization of 2D Helmholtz, Sommerfeld BCs.
Algebraic deflation vectors.

ADEF1 solver.

Wavenumber k
Solver 10 [ 20 | 40 | 80 | 120 | 160 | 200

SL Prec. 22 | 43 | 72 | 128 | 178 | 232 | 278
2Lev 6 | 8 10| 15 | 20 | 26 | 32
ADEF1-F || 7 | 8 | 10 | 16 19 | 24 | 27

For 3D Helmholtz, some unexpected and unacceptable results were observed!
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Conclusions

® Concern about solve time problem Marmousi: working on it.

® Damping improves ADEF1 performance, like SLP. Results not
included.

® FEM discretization and algebraic deflation vectors in 3D are not
favorable! Why, open question!

® Flexible in choosing larger imaginary shift.

® Further research 3D constrasted wavenumber problem, Different
shifts in SLP at different levels, ...

o dweelz2013 2
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Thank you!
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