Discrete Structures (Discrete Mathematics)

Relations

Relations

- The connections between people and things.
- Between people, family relation
 - 'to be brothers' x is a brother of y
 - 'to be older' x is older than y
 - 'to be parents'
 x and y are parents of z
- Between things, numerical relations
 - 'to be greater than'
 x < y on the real numbers
 - 'to be divisible by' x is divisible by y on the set of integers
- Between things and people, legal relations
 - 'to be an owner'
 - 'to be std of class'

- x is an owner of y
 - Trump is a std of class 24DS

Cartesian Product

- The Cartesian product of sets A and B, denoted by $A \times B$, is the set of all ordered pairs of elements from A and B.
- $A \times B = \{(a, b) | a \in A \land b \in B\}$
- The elements of the Cartesian product are ordered pairs. In particular $(a, b) = (c, d) \leftrightarrow (a = c) \land (b = d)$
- $\{1,2\} \times \{a,b\} = \{(1,a), (1,b), (2,a), (2,b)\}$
- $\{Mon, Tue\} \times \{Jan, Feb\} =$ $\{(Mon, Jan), (Mon, Feb), (Tue, Jan), (Tue, Feb)\}$

Cartesian Product of More Than Two Sets

- Instead of ordered pairs we may consider ordered triples, or, more general, k-tuples
- (*a*, *b*), an ordered pair
- (a, b, c), an ordered triple
- (a, b, c, d), an ordered quadruple
- $(a_1, a_2, ..., a_k)$, a k-tuple
- Pairs, triples, quadruples, and k-tuples are elements of Cartesian products of 3, 4, and k sets, respectively

Relations

 Relationship between elements of sets are represented using the structure called a relation, which is just a subset of the cartesian product of sets.

Definition:

Let A and B be sets. A binary relation from A to B is a subset of $A \times B$.

Binary Relation

- Let A and B be sets. A binary relation from set A to set B is any subset of $A \times B$.
- Binary relations represent relationship between two sets.

Example

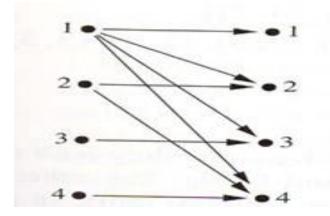
- A = {Ali, Junaid, Maria, Hassan}
 B = {CSC102, CSC105, CSC222, CSC106} R: "relation of students enrolled in courses"
- $R = \{(Junaid, CSC102), (Maria, CSC222)\}$
- (Maria, CSC102) $\notin R$
- (Junaid, CSC222) $\notin R$
- (Maria, CSC106) $\notin R$

More Relations

- Relations can be generalized to subsets of cartesian products of more than two sets
- Any subset of the Cartesian product of 3 sets is called a ternary relation
 - 'x and y are parents of $z' \subseteq \text{People} \times \text{People}$
- Any subset of the Cartesian product of k sets is called a k-ary relation

Functions as Relations

- A function $f:A \rightarrow B$ is a relation from A to B
- A relation from A to B is not always a function $f:A \rightarrow B$
- Relations are generalizations of functions!



Functions as Relations

- Let A and B are two sets:
- R is relation between A and B.
- $R \subseteq A \times B$
- R will be function if
 - If <u>Every element of A</u> is related to some <u>unique</u> element of B

Relations on a Set

- A (binary) relation from a set A to itself is called a relation on the set A.
- A= {1,2,3,4}
- R={(a,b) | a divides b}

- A binary relation can be described using a list of pairs.
- Example:
- Among 6 people (Ali, Hamza, Umer, Asad, Haroon and Amir), Ali and Amir are brothers; and Umer, Asad and Haroon are brothers.
- *A* = {*Ali, Hamza, Umer, Asad, Haroon, Amir*}
- Brotherhood = $\{(x, y) | x \text{ is a brother of } y\}$
- Brotherhood = {(Ali, Amir), (Amir, Ali), (Umer, Asad), (Asad, Umer), (Umer, Haroon), (Haroon, Umer), (Asad, Haroon), (Haroon, Asad)}

Combining Relations

- Relations from A to B are subsets of A × B, two relations from A to B can be combined in any way two sets can be combined.
- Let $A = \{1, 2, 3\}$ and $B = \{1, 2, 3, 4\}$
- The relations $R_1 = \{(1,1), (2,2), (3,3)\}$ and $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$
- $R_1 \cup R_2$
- $R_1 \cap R_2$
- $R_1 R_2$
- $R_2 R_1$

Combining Relations

- Let *R* be a relation from a set *A* to a set *B* and *S* be a relation from *B* to a set *C*. The composite of *R* and *S* is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which their exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of *R* and *S* by $S^{\circ}R$.
- What is the composite of the relations *R* and *S*, where *R* is the relation from {1, 2, 3} to {1, 2, 3, 4} with

 $R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\}$ and

S is the relation from $\{1, 2, 3, 4\}$ to $\{0, 1, 2\}$ with

 $S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}?$

- A binary relation can also be described using a matrix.
 - Rows are labeled with elements of A
 - Columns are labeled with elements of B.
- We write 1 in row a, column b if and only if (a, b) ∈ R; otherwise we write 0.

- A = {Ali, Hamza, Umer, Asad, Haroon, Amir}
- Brotherhood = $\{(x, y) | x \text{ is a brother of } y\}$
- Brotherhood = {(Ali, Amir), (Amir, Ali), (Umer, Asad), (Asad, Umer), (Umer, Haroon), (Haroon, Umer), (Asad, Haroon), (Haroon, Asad)}

	Ali	Hamza	Umer	Asad	Haroon	Amir
Ali	0	0	0	0	0	1
Hamza	0	0	0	0	0	0
Umer	0	0	0	1	1	0
Asad	0	0	1	0	1	0
Haroon	0	0	1	1	0	0
Amir	1	0	0	0	0	0

- A binary relation can also be described using a directed graph.
- A graph of a relation R ∈ A × B consists of two sets of vertices labeled by elements of A and B.
- A vertex a is connected to a vertex b with an edge (arc) if and only if (a, b) ∈ R.

Reflexivity

- Note: from now on we will consider only binary relations on A.
- That is such relations are subsets of $A \times A$.
- Reflexivity: A binary relation R ⊆ A × A is said to be reflexive if ∀a ∈ A, (a, a) ∈ R
- $R = \{(a, b) | (a, b) \in Z \times Z, a \le b\}$ is reflexive.

	а	b	С	d	е	
а	1					
b		1				
С			1			
d				1		
е		•			1	
						1

Symmetricity

- Symmetricity: A binary relation $R \subseteq A \times A$ said to be symmetric if, $\forall a, b \in A, (a, b) \in R \rightarrow (b, a) \in R$
- R = {(a,b)|(a,b) ∈ people × people, a and b are siblings}
 is symmetric, because if a is a sibling of b, then b is a sibling of a

	а	b	С	d	е	
а	0	1	0	0	0	
b	1	0	0	1	0	
С	0	0	0	0	1	
d	0	1	0	0	0	
е	0	0	1	0	0	

Transitivity:

- Transitivity: A binary relation $R \subseteq A \times A$ said to be transitive if, $\forall a, b, c \in A, (a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$
- $R = \{(a, b) | (a, b) \in Z \times Z, a \le b\}$ is transitive, because if, $a \le b$ and $b \le c$ then $a \le c$.

Anti-Symmetricity

- Anti-Symmetricity: A binary relation $R \subseteq A \times A$ said to be anti-symmetric, if $\forall a, b \in A, (a, b) \in R \land (b, a) \in R \rightarrow a = b$
- The relation Motherhood ('x is the mother of y') is antisymmetric, because if x is a mother of y, then y is not the mother of x.

	а	b	С	d	е	
а	0	0	0	0	0	
b	1	0	0	0	0	
С	0	0	1	0	0	
d	0	0	0	0	0	
е	0	0	1	0	0	

Equivalence Relations

• A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Example

- Which of these relations on {0, 1, 2, 3} are equivalence relations? Determine the properties of an equivalence relation that the others lack
- $R_1 = \{ (0,0), (1,1), (2,2), (3,3) \}$
 - R_1 has all the properties, thus, is an equivalence relation
- $R_2 = \{ (0,0), (0,2), (2,0), (2,2), (2,3), (3,2), (3,3) \}$
 - Not reflexive: (1,1) is missing
 - Not transitive: (0,2) and (2,3) are in the relation, but not (0,3)

•
$$R_3 = \{ (0,0), (1,1), (1,2), (2,1), (2,2), (3,3) \}$$

• Has all the properties, thus, is an equivalence relation

- $R_4 = \{ (0,0), (1,1), (1,3), (2,2), (2,3), (3,1), (3,2) (3,3) \}$
 - Not transitive: (1,3) and (3,2) are in the relation, but not (1,2)
- $R_5 = \{ (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,2), (3,3) \}$
 - Not symmetric: (1,2) is present, but not (2,1)
 - Not transitive: (2,0) and (0,1) are in the relation, but not (2,1)

Examples

- Parenthood ('x is the parent of y')
- Brotherhood ('x is the brother of y')
- Neighborhood ('x is the neighbor of y')
- Ownership ('x is the owner of y')
- 'x divides y'
- x ≤ y
- x = y
- x < y

Chapter Reading and Exercise

Chapter # 9 Topic # 9.1 Q-1,2,3,10,11,18,30,32 Topic # 9.3 Q-1,2,3,4,5,6,7,8,13-c,14,23-28