CSD101 - Discrete Structures (Discrete Mathematics) Fall 2016

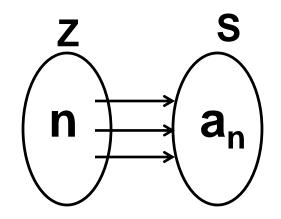
> Lecture - 11 Sequences and Summations

Sequences

A sequence is a discrete structure used to represent an ordered list of elements e.g. 1, 2, 3, 4, 5 and 1, 3, 9, 27, 81,

Sequences

- A sequence is a function from a subset of the set integers
 Z (usually the set {0,1,2,...} or the set {1,2,3,...}) to a set
 S.
- The notation a_n denotes the image of the integer n.
- a_n : a *term* of the sequence
- $\{a_n\}$: entire sequence
 - Same notation as sets!



Sequences

- Consider the sequence $\{a_n\}$, where $a_n = 1/n$.
 - The list of the terms of this sequence beginning with a₁:
 a₁, a₂, a₃, a₄, ...
 {1, 1/2, 1/3, 1/4, ...}
- Consider the sequence $\{a_n\}$, where $a_n = 3n$.
 - The list of the terms of this sequence beginning with a₁:
 {3, 6, 9, 12, ...}

Geometric Progression

A geometric progression is a sequence of the form

 $a, ar, ar^2, ..., ar^n, ...$

Where the **initial term** *a* and the **common ratio** *r* are real numbers.

General Term of Geometric Progression

- Let a be the first term and r be the common ratio of a geometric sequence. Then the sequence is
 a, ar, ar², ar³, ...
- If a_n, for n ≥ 1, represents the terms of the sequence then
 a₁ = first term = a = ar¹⁻¹
 a₂ = second term = ar = ar²⁻¹
 a₃ = third term = ar² = ar³⁻¹
 By symmetry
 a_n = nth term = arⁿ⁻¹ for all integers n ≥ 1.

Geometric Progression (Example)

Is {2. (5)ⁿ⁻¹} geometric progression? If yes then what will be sequence, initial term and common ratio?
 2,10,50,250,...
 Yes, 2=2 and r=5

Yes, a=2 and r=5

Is {6. (1/3)ⁿ⁻¹} geometric progression?
 6,2,2/3,2/9,...
 Yes, a=6 and r=1/3

Geometric Progression (Example

• Find the 8th term of the following geometric sequence

4, 12, 36, 108, ...

Arithmetic Progression

An arithmetic progression is a sequence of the form

$$a, a + d, a + 2d, \dots, a + nd, \dots$$

Where the initial term *a* and the common difference *d* are real numbers.

General Term of Arithmetic Progression

- Let **a** be the first term and **d** be the common difference of an arithmetic sequence. Then the sequence is a, a + d, a + 2d, a + 3d, ...
- If a_n , for $n \ge 1$, represents the terms of the sequence then $a_1 = \text{first term} = a = a + (1 - 1)d$ $a_2 = \text{second term} = a + d = a + (2 - 1)d$ $a_3 = \text{third term} = a + 2d = a + (3 - 1)d$ By symmetry $a_n = \text{nth term} = a + (n - 1)d$ for all integers $n \ge 1$.

Arithmetic Progression (Example)

- Is {4n 5} Arithmetic progression?
 -1,3,7,11,...
 Yes, a=-1 and d=4
- Is {10 3n} Arithmetic progression?
 7,4,1,-2,...
 Yes, a=7 and d=-3

Arithmetic Progression (Example)

• Find the 20th term of the arithmetic sequence

3, 9, 15, 21, ...

• Which term of the arithmetic sequence

Determining the Sequence Formula

- Given values in a sequence, how do you determine the formula?
- Steps to consider:
 - Is it an arithmetic progression (each term a constant amount from the last)?
 - Is it a geometric progression (each term a factor of the previous term)?
 - Does the sequence repeat itself (or cycle)?
 - Does the sequence combine previous terms?
 - Are there runs of the same value?

• Find a formula for the following sequence.

1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, ...

Solution:

The sequence alternates 1's and 0's, increasing the number of 1's and 0's each time.

• Find a formula for the following sequence.

1, 1/2, 1/4, 1/8, 1/16, ...

Solution:

 $\{1/2^{n-1}\}$ It is a geometric progression. a=1 and r=1/2

• Find formula for the following sequence.

1, 3, 5, 7, 9, ...

Solution:

 $\{2n - 1\}$ It is a arithmetic progression. a=1 and d=2

• Find formula for the following sequence.

Solution:

 $\{(-1)^{n-1}\}$ It is a geometric progression. a=1 and r=-1

How can you produce the terms of the following sequence?

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, ...

Solution:

A rule for generating this sequence is that integer n appears exactly n times.

How can you produce the terms of the following sequence?

5, 11, 17, 23, 29, 35, 41, ...

Solution:

A rule for generating this sequence is 6n - 1. It is an arithmetic progression. a=5 and d=6

• Find a formula for the following sequence.

Solution:

Each term is 7 less than the previous term. $a_n = 22 - 7n$

Useful Sequences

nth Term	First 10 Terms
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2 ⁿ	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3 ⁿ	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
<u>n!</u>	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

• Find a formula for the following sequence?

2, 16, 54, 128, 250, 432, 686, ...

Solution:

Each term is twice the cube of *n*. $a_n = 2 * n^3$

• Find formula for the following sequence.

1, 7, 25, 79, 241, 727, 2185, ...

Solution:

Compare it to $\{3^n\}$. $\{3^n-2\}$

Summations

- The sum of the terms a_m , a_{m+1} , ..., a_n from the sequence $\{a_n\}$ is:
- a_m , a_{m+1} , ..., a_n
- $\sum_{j=m}^{n} a_j$
- $\sum_{m \le j \le n} a_j$, where \sum donates **summation** and j is the **index of summation**.
- m is lower limit and n is upper limit.

Summations

• A summation:

$$\sum_{j=m}^{n} a_j$$

is like a for loop:

Summations (Example)

Express the sum of the first 100 terms of the sequence $\{1/n\}$ for n=1,2,3,...

Solution:

Summations (Example)

What is the value of \sum

$$\sum_{i=1}^{3} i^2?$$

Solution:

$$\sum_{i=1}^{3} i^2 = 1 + 4 + 9 = 14$$

More Summations (Example)

• $\sum_{k=1}^{5} (k+1) = 2 + 3 + 4 + 5 + 6 = 20$

•
$$\sum_{k=0}^{4} (-2)^k = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4 = 11$$

More Summations (Example)

Evaluate
$$\sum_{k=1}^{10} (2^k - 2^{k-1}) = ?$$

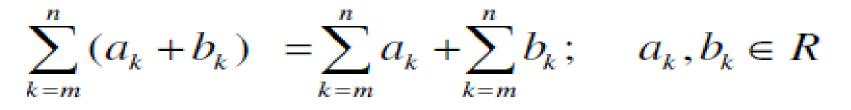
Solution:

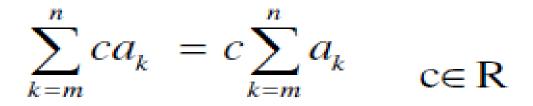
$$\sum_{k=1}^{10} (2^k - 2^{k-1}) = (2^1 - 2^0) + (2^2 - 2^1) + (2^3 - 2^2) + (2^4 - 2^3) + (2^5 - 2^4) + (2^6 - 2^5) + (2^7 - 2^6) + (2^8 - 2^7) + (2^9 - 2^8) + (2^{10} - 2^9)$$
$$= -1 + 2^{10} = -1 + 1024 = 1023$$

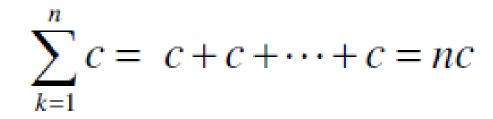
Shifting the Index of Summation

- Useful in case of sum.
- $\sum_{j=1}^{5} j^2$ shift the index of summation from 0 to 4 rather than from 1 to 5.

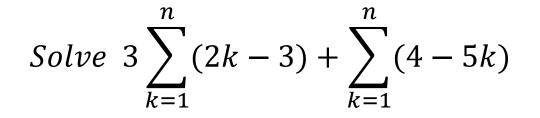
Properties of Summations







Example



Double Summations

Like a nested for loop

$$\cdot \sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

Is equivalent to:

int sum = 0; for (int i = 1; i <= 4; i++) for (int j = 1; j <= 3; j++) sum += i*j;

Double Summations

• $\sum_{i=1}^{4} \sum_{j=1}^{3} ij$

 $\sum_{i=1}^{4} \sum_{j=1}^{3} ij = \sum_{i=1}^{4} (i+2i+3i)$ $i=1 \ j=1 \ i=1$ $=\sum^{4} 6i$ i=1= 6 + 12 + 18 + 24 = 60.

Example

Solve
$$\sum_{i=1}^{3} \sum_{j=1}^{2} (i-j).$$

Some Useful Summations

г

TABLE for Some Useful Summation Formulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^{k} \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r\neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	
$\sum_{k=1}^{\infty}, kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	

Example

Find
$$\sum_{k=50}^{100} k^2$$
.

$$\sum_{k=50}^{100} k^2 = \sum_{k=1}^{100} k^2 - \sum_{k=1}^{49} k^2.$$
 because $\sum_{k=1}^{100} k^2 = \sum_{k=1}^{49} k^2 + \sum_{k=50}^{100} k^2,$

$$\sum_{k=50}^{100} k^2 = \frac{100 \cdot 101 \cdot 201}{6} - \frac{49 \cdot 50 \cdot 99}{6} = 338,350 - 40,425 = 297,925.$$

because $\sum_{k=1}^{n} k^2 = n(n+1)(2n+1)/6$

Example

Find $\sum_{k=100}^{200} k$. Find $\sum_{k=99}^{200} k^3$.

Exercise Questions

Chapter # 2 Topic # 2.4 Questions 1, 2, 4, 25, 26, 29,30,31, 32, 33, 34, 39, 40