LECTURE 1 SETS

What is a Set?

- A set is a well-defined collection of distinct objects.
 - No duplicates
 - Order does not matter
- The objects in a set are called the elements or members of the set.
- Capital letters A,B,C,... usually denote sets.
- Lowercase letters a,b,c,... denote the elements of a set.

- The collection of the vowels in the word "probability".
- The collection of students' IDs in this class.
- The collection of two-digit positive integers divisible by 5.
- The collection of great football players in the National Football League.
- The collection of intelligent members of the United States Congress.

Mathematical Examples

```
o {2,3,5,7,11}
o {(1,1), (2,2), (3,3)}

    {Apple, Orange, Banana, Peach}

{Apple, Dell, IBM}
o {Heads, Tails}

    \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \
0 {}
```

No Duplicates

- o {1,1,2,3,5,8} is not a set
- \circ {1,2,3,5,8} is a set

Order does not matter

- \circ {3,4} = {4,3}
- \circ {1,2,3,4,5} = {2,3,4,5,1}
- \circ {1,4,2,5,3} = {1,3,5,2,4}
- {Apple, Dell, IBM} = {Dell, Apple, IBM}

The Empty Set

- The set with no elements.
- Also called the <u>null set</u>.
- Denoted by the symbol φ.
- Example: The set of real numbers x that satisfy the equation

$$2x + 1 = 3$$

Finite and Infinite Sets

- A finite set is one which can be counted.
- Example: The set of two-digit positive integers has 90 elements.
- An infinite set is one which cannot be counted.
- Example: The set of students' ID in this class.

The Cardinality of a Set

- Simple; size of Set
- \circ Notation: n(A)

• For finite sets A, n(A) is the number of elements of A.

o For infinite sets A, write $n(A) = \infty$.

Specifying a Set

List the elements <u>explicitly</u>, e.g.,

$$C = \{a, o, i\}$$

List the elements <u>implicitly</u>, e.g.,

$$K = \{10, 15, 20, 25, \dots, 95\}$$

Use set builder notation, e.g.,

$$Q = \{ x \mid x = p/q \text{ where } p \text{ and } q \text{ are integers and } q \neq 0 \}$$

The Universal Set

- A set *U* that includes all of the elements under consideration in a particular discussion or problem.
- Depends on the context.
- Examples: The set of Latin letters, the set of natural numbers, the set of points on a line.

The Membership Relation

- Let A be a set and let x be some object.
- \circ Notation: $x \in A$
- Meaning: x is a member of A, or x is an element of A, or x belongs to A.
- \circ Negated by writing $x \notin A$
- o Example: $V = \{a, e, i, o, u\}$. $e \in V$, $b \notin V$.

Element-of Notation

- $x \in S''$ means that x is an element of the set S.
- $51 \in \{1,2,3\}$
- 2∈ {1,2,3}
- $0.3 \in \{1,2,3\}$

Not-an-element-of Notation

- o "x ∉ S" means that x is **not** an element of the set S.
- $0 \notin \{1,2,3\}$
- $04 \notin \{1,2,3\}$
- \circ 17 \notin {1,2,3}

Equality of Sets

- Two sets A and B are equal, denoted A=B, if they have the same elements.
- o Otherwise, $A \neq B$.
- Example: The set A of odd positive integers is not equal to the set B of prime numbers.
- Example: The set of odd integers between 4 and 8 is equal to the set of prime numbers between 4 and 8.

Subsets

- A is a <u>subset</u> of B if every element of A is an element of B.
- o Notation: $A \subseteq B$
- \circ For each set A, $A \subset A$
- \circ For each set B, $\emptyset \subseteq B$
- o A is proper subset of B if $A \subseteq B$ and $A \neq B$

The Power Set Operation

- o The power set P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- o E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}.
- Sometimes P(S) is written 2^{S} . Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|.
 There are different sizes of infinite sets!

- \circ Set A = {1, 2}
- $\circ P(A) = \{ \emptyset, \{1\}, \{2\}, \{1,2\} \}$

- \circ Set B = {a, b, c}
- O P(B) = { Ø, {a}, {b}, {c}, {a,b},
 {a,c}, {b,c}, {a,b,c} }

- \circ Set C = {x, y, z, w}
- O P(C) has 16 subsets:
- (Ø, {x}, {y}, {z}, {w}, {x,y},
 {x,z}, {x,w}, {y,z}, {y,w}, {z,w},
 {x,y,z}, {x,y,w}, {x,z,w}, {y,z,w},
 {x,y,z,w} }

Set Operations

 Sets are mathematical objects which conforms different operations.

Few are following...

Unions

The <u>union</u> of two sets A and B is

$$A \cup B = \{ x \mid x \in A \text{ or } x \in B \}$$

The word "or" is inclusive.

- $\circ A = \{1, 2, 3\}$
- \circ B = {3, 4, 5}
- \circ A \cup B = {1, 2, 3, 4, 5}

```
X = {a, b}Y = {b, c, d}X U Y = {a, b, c, d}
```

- \circ P = {2, 4, 6, 8}
- $\circ Q = \{1, 2, 3, 4\}$
- \circ P \cup Q = {1, 2, 3, 4, 6, 8}

Intersections

The intersection of A and B is

$$A \cap B = \{ x \mid x \in A \text{ and } x \in B \}$$

 Example: Let A be the set of even positive integers and B the set of prime positive integers. Then

$$A \cap B = \{2\}$$

Definition: A and B are <u>disjoint</u> if

$$A \cap B = \emptyset$$

Complements

If A is a subset of the universal set U,
 then the <u>complement</u> of A is the set

$$A^c = \left\{ x \in U \mid x \notin A \right\}$$

o Note: $A \cap A^c = \Phi$; $A \cup A^c = U$

Venn Diagrams

Set A represented as a disk inside a rectangular region representing *U*.

Possible Venn Diagrams for Two Sets

The Complement of a Set

The shaded region represents the complement of the set *A*

The Union of Two Sets

The Intersection of Two Sets

Sets Formed by Two Sets

$$R_1 = A \cap B^c$$

$$\bigcirc$$
 $R_2 = A \cap B$

$$R_3 = A^c \cap B$$

$$R_4 = A^c \cap B^c$$

$$\circ R_4 = A^c \cap B^c$$

Set Identities

- o Identity: $A \cup \emptyset = A$ $A \cap U = A$
- o Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- o Idempotent: $A \cup A = A = A \cap A$
- o Double complement: $(\overline{A}) = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Law for Sets

 Exactly analogous to (and derivable from) DeMorgan's Law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

To prove statements about sets, of the form

 $E_1 = E_2$ (where E_3 are set expressions), here are three useful techniques:

- \circ Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately.
- Use logical equivalences.
- Use a membership table.

Method 1: Mutual subsets

Example: Show

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.

- o Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - o Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - o Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- o Show $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for nonmembership.
- Prove equivalence with identical

Membership Table Example

Prove $(A \cup B) - B = A - B$.

A	\boldsymbol{B}	$A \cup B$	$(A \cup B) - B$		A	A– B	
0	0	0	()		0	
0	1	1	()		0	
1	0	1	2	1		1	
1	1	1				0	

Membership Table Exercise

Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A-C	В-С	$(A-C)\cup (B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					

Two Basic Counting Rules

If A and B are finite sets,

1.
$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$2. n(A \cap B^c) = n(A) - n(A \cap B)$$

See the preceding Venn diagram.