Exercise - Sets and Relations

Construct sets

$$A = \{a, b, a + b, a + c, b + c, a + b + c\}$$

and

$$B = \{a, c, a - b, a - c, b - a, b - c, c - a, c - b\}$$

where a, b c are last three digits of your student enrollment number. For instance, sutdent's enrollment number is $25IT_{\underline{15}}$, then a=1,b=5 and c=a+1=5+1=6

- 1. Find
 - a. $A \cup B$
 - b. $A \cap B$
 - c. A B
 - d. B A
 - e. A^c and B^c
- 2. Prove De-Morgan's law using above sets
- 3. Define a relation \mathcal{R} from A to B by:

$$(x,y) \in \mathbb{R} \iff x + y \text{ is even}$$

List all ordered pairs in \mathcal{R} .

- 4. Consider the **identity relation** I_A on set A.
 - Write all ordered pairs of I_A .
 - Is it reflexive, symmetric, and transitive?
- 5. Define relation \mathcal{R} from set A to B by:

$$(x,y) \in \mathcal{R} \iff x > y$$

Find \mathcal{R} and determine whether it is **antisymmetric**.

6. Suppose relation \mathcal{R} from A to B is defined by:

$$(x,y) \in T \iff x = y + a$$

- Find \mathcal{R} .
- Write the inverse relation $\mathcal{R}^{\{-1\}}$.
- 7. On set B, define relation \mathcal{R} by:

$$(x,y) \in E \iff (x-y) \text{ is divisible by } (a+b)$$

- Show that EE is an **equivalence relation**.
- Find the **equivalence classes** of each element of BB.